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Abstract

While the use of character models has been
popular in NLP applications, it has not been
explored much in the context of psycholin-
guistic modeling. This paper presents a char-
acter model that can be applied to a struc-
tural parser-based processing model to calcu-
late word generation probabilities. Experimen-
tal results show that surprisal estimates from
a structural processing model using this char-
acter model deliver substantially better fits to
self-paced reading, eye-tracking, and fMRI
data than those from large-scale language mod-
els trained on much more data. This may sug-
gest that the proposed processing model pro-
vides a more humanlike account of sentence
processing, which assumes a larger role of
morphology, phonotactics, and orthographic
complexity than was previously thought.

1 Introduction and Related Work

Expectation-based theories of sentence processing
(Hale, 2001; Levy, 2008) posit that processing dif-
ficulty is determined by predictability in context.
In support of this position, predictability quantified
through surprisal has been shown to correlate with
behavioral measures of word processing difficulty
(Goodkind and Bicknell, 2018; Hale, 2001; Levy,
2008; Shain, 2019; Smith and Levy, 2013). How-
ever, surprisal itself makes no representational as-
sumptions about sentence processing, leaving open
the question of how best to estimate its underlying
probability model.

In natural language processing (NLP) applica-
tions, the use of character models has been popular
for several years (Al-Rfou et al., 2019; Kim et al.,
2016; Lee et al., 2017). Character models have
been shown not only to alleviate problems with
out-of-vocabulary words but also to embody mor-
phological information available at the subword
level. For this reason, they have been extensively
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used to model morphological processes (Elsner
et al., 2019; Kann and Schiitze, 2016) or incor-
porate morphological information into models of
syntactic acquisition (Jin et al., 2019). Nonethe-
less, the use of character models has been slow to
catch on in psycholinguistic surprisal estimation,
which has recently focused on evaluating large-
scale language models that make predictions at the
word level (e.g. Futrell et al. 2019; Goodkind and
Bicknell 2018; Hale et al. 2018; Hao et al. 2020).
This raises the question of whether incorporating
character-level information into an incremental pro-
cessing model will result in surprisal estimates that
better characterize predictability in context.

To answer this question, this paper presents a
character model that can be used to estimate word
generation probabilities in a structural parser-based
processing model.! The proposed model defines a
process of generating a word from an underlying
lemma and a morphological rule, which allows the
processing model to capture the predictability of a
given word form in a fine-grained manner. Regres-
sion analyses on self-paced reading, eye-tracking,
and fMRI data demonstrate that surprisal estimates
calculated from this character-based structural pro-
cessing model contribute to substantially better fits
compared to those calculated from large-scale lan-
guage models, despite the fact that these other mod-
els are trained on much more data and show lower
perplexities on test data. This finding deviates from
the monotonic relationship between test perplexity
and predictive power observed in previous studies
(Goodkind and Bicknell, 2018; Wilcox et al., 2020).
Furthermore, it suggests that the character-based
structural processing model may provide a more
humanlike account of processing difficulty and may
suggest a larger role of morphology, phonotactics,
and orthographic complexity than was previously

'Code for model and experiments is available at ht tps :
//github.com/byungdoh/acl21_semproc.
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thought.

2 Background

The experiments presented in this paper use sur-
prisal predictors (Shannon, 1948) calculated by
an incremental processing model based on a left-
corner parser (Johnson-Laird, 1983; van Schijndel
et al., 2013). This incremental processing model
provides a probabilistic account of sentence pro-
cessing by making a single lexical attachment deci-
sion and a single grammatical attachment decision
for each input word.

Surprisal. Surprisal can be defined as the neg-
ative log ratio of prefix probabilities of word se-
quences w_; at consecutive time steps f — 1 and ¢:

def Pwi..)
Sev) fog Pwi.i-1) =
These prefix probabilities can be calculated by
marginalizing over the hidden states g, of the for-
ward probabilities of an incremental processing

model:

Powi) = ) POwi q) @)
qr

These forward probabilities are in turn defined re-
cursively using a transition model:

def
Pwi.r qr) = Z Pw: gr | gi-1) - PW1.1=1 qi-1)

qr-1

3)
Left-corner parsing. The transition model pre-
sented in this paper is based on a probabilistic left-
corner parser (Johnson-Laird, 1983; van Schijndel
et al., 2013). Left-corner parsers have been used
to model human sentence processing because they
define a fixed number of decisions at every time
step and also require only a bounded amount of
working memory, in keeping with experimental ob-
servations of human memory limits (Miller and
Isard, 1963). The transition model maintains a
distribution over possible working memory store
states g, at every time step ¢, each of which con-
sists of a bounded number D of nested derivation
fragments a?/b?. Each derivation fragment spans
a part of a derivation tree from some apex node af
lacking a base node b? yet to come. Previous work
has shown that large annotated corpora such as the
Penn Treebank (Marcus et al., 1993) do not require
more than D = 4 of such fragments (Schuler et al.,

2010).
At each time step, a left-corner parsing model
generates a new word w; and a new store state ¢,

in two phases (see Figure 1). First, it makes a
lexical decision {; regarding whether to use the
word to complete the most recent derivation frag-
ment (match), or to use the word to create a new
preterminal node a,, (no-match). Subsequently, the
model makes a grammatical decision g; regarding
whether to use a predicted grammar rule to combine
the node constructed in the lexical phase a;, with
the next most recent derivation fragment (match),
or to use the grammar rule to convert this node into
a new derivation fragment ag, /b,, (no-match):*

Pw: g | qi-1) = Z P | gi-1) -
b Pw; | gi—1 €1) -

P(g: | gi—1 ti wy) -
P(q: | gi—1 € wi 1) “4)

Thus, the parser creates a hierarchically organized
sequence of derivation fragments and joins these
fragments up whenever expectations are satisfied.

In order to update the store state based on the
lexical and grammatical decisions, derivation frag-
ments above the most recent nonterminal node are
carried forward, and derivation fragments below it
are set to null (L):

d pd _ d
p |(laf.bf =a,_

b\ ifd <d

def , ’ cr
P(gi]..) = 1_[ al,b? = ag,b,] ifd =d
= [ad,p? = 1,1] ifd >d
(&)

where the indicator function [¢] = 1 if ¢ is true
and 0 otherwise, and d = argmaxd,{afllil} +1-
myg, — myg,. Together, these probabilistic decisions
generate the n unary branches and n — 1 binary
branches of a parse tree in Chomsky normal form
for an n-word sentence.

3 Model
3.1 Processing Model

The processing model extends the above left-corner
parser to maintain lemmatized predicate informa-
tion by augmenting each preterminal, apex, and
base node to consist not only of a syntactic cate-
gory label ¢, Cqds OF Cpd,s but also of a binary pred-
icate context vector hy,, ha;” or hbttz € {0, 1}K+VK,
where K is the size of the set of predicate contexts
and V is the maximum valence of any syntactic

2Johnson-Laird (1983) refers to lexical and grammatical
decisions as ‘shift’ and ‘predict’ respectively.
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Figure 1: Left-corner parser operations: a) lexical match (m,=1) and no-match (m,=0) operations, creating new
apex ay,, and b) grammatical match (mg,=1) and no-match (m,,=0) operations, creating new apex a,, and base b,.

category.® Each O or 1 element of this vector rep-
resents a unique predicate context, which consists
of a (predicate, role) pair that specifies the con-
tent constraints of a node in a predicate-argument
structure. These predicate contexts are obtained by
reannotating the training corpus using a general-
ized categorial grammar of English (Nguyen et al.,
2012),* which is sensitive to syntactic valence and
non-local dependencies.

Lexical decisions. Each lexical decision of the
parser includes a match decision m,, and decisions
about a syntactic category c,, and a predicate con-
text vector hy, that together specify a preterminal
node p¢,. The probability of generating the match
decision and the predicate context vector depends
on the base node bf_l of the previous derivation
fragment (i.e. its syntactic category and predicate
context vector). The first term of Equation 4 can
therefore be decomposed into the following:

P(C: 1 gi-1) = SOFTMAX(FFRy [0, 61, by 1F1])

mehy, a

Plce, | gi—1 mg, hy,) (6)

where FF is a feedforward neural network, and
0; is a Kronecker delta vector consisting of a
one at element i and zeros elsewhere. Depth
d = argmaxd,{afi ,#-L} is the number of non-null
derivation fragments at the previous time step, and
E is a matrix of jointly trained dense embeddings
for each syntactic category and predicate context.
The syntactic category and predicate context vector

3The valence of a category is the number of unsatisfied
syntactic arguments it has. Separate vectors for syntactic
arguments are needed in order to correctly model cases such as
passives where syntactic arguments do not align with predicate
arguments.

“The predicates in this annotation scheme come from
words that have been lemmatized by a set of rules that have
been manually written and corrected in order to account for
common irregular inflections.

together define a complete preterminal node py, for
use in the word generation model:

def de ’ hbd l‘i‘ hft if I’YLgt = l (7)
pe, = - - )
' Ces h[t if me, = 0
and a new apex node a,, for use in the grammatical
decision model:

d _
def )@} if mg, =1

®)

ar,

Pe, if me, = 0

Grammatical decisions. Each grammatical de-
cision includes a match decision myg, and decisions
about a pair of syntactic category labels c,, and cg,,
as well as a predicate context composition oper-
ator og,, which governs how the newly generated
predicate context vector hy, is propagated through
its new derivation fragment a,, /b,,. The probability
of generating the match decision and the compo-
sition operators depends on the base node bd m"’
of the previous derivation fragment and the apex
node a,, from the current lexical decision (i.e. their
syntactic categories and predicate context vectors).
The third term of Equation 4 can accordingly be
decomposed into the following:

P(gt | qr-1 lwy) =

SOFTMAX( FFg, [0, [0, o ,h', i 5T hT ]EG])
Mg Og; b,_ 1”7, b,_

Plcg, | gr-1 € wr mg, 0g,) -

P(cg, | g1 & wi mg, 04, cg,) )

where Eg is a matrix of jointly trained dense em-
beddings for each syntactic category and predicate
context. The composition operators are associated
with sparse composition matrices A,, which can
be used to compose predicate context vectors asso-
ciated with the apex node ay,:

d—my,
dEf 4

a
81
Cgr» Ao, Ny,

Og;

if =1
L (10)
ifmg, =0
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and sparse composition matrices B, which can be
used to compose predicate context vectors associ-
ated with the base node by,:

C () [h d-m, T h ]
bg,df o b an
07 b1 ifmg-

Ogt

3.2 Character-based Word Model

The baseline version of the word model P(w; |
q:-1 {;) uses relative frequency estimation with
backoff probabilities for out-of-vocabulary words
trained using hapax legomena. A character-based
test version of this model instead applies a mor-
phological rule r; to a lemma x; to generate an
inflected form w,. The set of rules model affixa-
tion through string substitution and are inverses of
lemmatization rules that are used to derive predi-
cates in the generalized categorial grammar anno-
tation (Nguyen et al., 2012). For example, the rule
$ay—%aid can apply to the word say to derive
its past tense form said. There are around 600 such
rules that account for inflection in Sections 02 to
21 of the Wall Street Journal corpus of the Penn
Treebank (Marcus et al., 1993), which includes an
identity rule for words in bare form and a ‘no se-
mantics’ rule for generating certain function words.

For an observed input word w;, the model first
generates a list of (x;, r;) pairs that deterministically
generate w;. This allows the model to capture mor-
phological regularity and estimate how expected a
word form is given its predicted syntactic category
and predicate context, which have been generated
as part of the preceding lexical decision. In addi-
tion, this lets the model hypothesize the underly-
ing morphological structure of out-of-vocabulary
words and assign probabilities to them. The second
term of Equation 4 can thus be decomposed into
the following:

POv | g1 €)= )" P(xi 1 g1 €) -
P | g1 b xy) -

Pwe |l gi—1 € xi 1) (12)

The probability of generating the lemma sequence
depends on the syntactic category ¢, and predicate
context h,, resulting from the preceding lexical
decision ¢;:

P(x: | gi-1 &) = SOFTMAX( Wx x;; + bx)

I (13)

where x; 1, X2, ..., X1 is the character sequence of
lemma x;, with x;; = (s) and x;; = (e) as special
start and end characters. Wx and by are respec-
tively a weight matrix and bias vector of a softmax
classifier. A recurrent neural network (RNN) calcu-
lates a hidden state x;; for each character from an
input vector at that time step and the hidden state
after the previous character x;;_:

= RNNy (167, .h.67 1Ex.x[ ) (14)
where Ex is a matrix of jointly trained dense em-
beddings for each syntactic category, predicate con-
text, and character.

Subsequently, the probability of applying a par-
ticular morphological rule to the generated lemma
depends on the syntactic category c,, and predi-
cate context hy, from the preceding lexical decision
as well as the character sequence of the lemma:

P(ry | gi—1 €; x1) = SortMax( Wr .+ br) (15)

where Wy and bg are respectively a weight matrix
and bias vector of a softmax classifier. r;; is the
last hidden state of an RNN that takes as input the
syntactic category, predicate context, and character
sequence of the lemma x;2, x; 3, ..., X, ;-1 Without
the special start and end characters:

r;; = RNNg, ( [6T Jh) 67 ]ER,rZi_l)

€0 YV Xy i

(16)

where Eg is a matrix of jointly trained dense em-
beddings for each syntactic category, predicate con-
text, and character.

Finally, as the model calculates probabilities
only for (x;, r,) pairs that deterministically gener-
ate w;, the word probability conditioned on these
variables P(w; | ;-1 €; x; ;) is deterministic.

4 Experiment 1: Effect of Character
Model

In order to assess the influence of the character-
based word generation model over the baseline
word generation model on the predictive quality
of surprisal estimates, linear mixed-effects models
containing common baseline predictors and one or
more surprisal predictors were fitted to self-paced
reading times. Subsequently, a series of likelihood
ratio tests were conducted in order to evaluate the
relative contribution of each surprisal predictor to
regression model fit.
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4.1 Response Data

The first experiment described in this paper used
the Natural Stories Corpus (Futrell et al., 2018),
which contains self-paced reading times from 181
subjects that read 10 naturalistic stories consist-
ing of 10,245 tokens. The data were filtered to
exclude observations corresponding to sentence-
initial and sentence-final words, observations from
subjects who answered fewer than four compre-
hension questions correctly, and observations with
durations shorter than 100 ms or longer than 3000
ms. This resulted in a total of 768,584 observa-
tions, which were subsequently partitioned into
an exploratory set of 383,906 observations and a
held-out set of 384,678 observations. The partition-
ing allows model selection (e.g. making decisions
about predictors and random effects structure) to
be conducted on the exploratory set and a single
hypothesis test to be conducted on the held-out set,
thus eliminating the need for multiple trials correc-
tion. All observations were log-transformed prior
to model fitting.

4.2 Predictors

The baseline predictors commonly included in all
regression models are word length measured in
characters and index of word position within each
sentence.’ In addition to the baseline predictors,
surprisal predictors were calculated from two vari-
ants of the processing model in which word gen-
eration probabilities P(w, | ¢,—1 {;) are calculated
using relative frequency estimation (FreqgWSurp)
and using the character-based model described in
Section 3.2 (CharWSurp). Both variants of the
processing model were trained on a generalized
categorial grammar (Nguyen et al., 2012) reannota-
tion of Sections 02 to 21 of the Wall Street Journal
(WSJ) corpus of the Penn Treebank (Marcus et al.,
1993). Beam search decoding with a beam size of
5,000 was used to estimate prefix probabilities and
surprisal predictors for both variants.

To account for the time the brain takes to pro-
cess and respond to linguistic input, it is standard
practice in psycholinguistic modeling to include
‘spillover’ variants of predictors from preceding
words (Rayner et al., 1983; Vasishth, 2006). How-
ever, as including multiple spillover variants of
predictors leads to identifiability issues in mixed-
mnigram surprisal or 5-gram surprisal is also

commonly included as a baseline predictor, it was not included
in this experiment due to convergence issues.

Model comparison ‘ ¥ ‘ p-value

Full vs. No CharWSurp | 204.48 | 0.0001***
Full vs. No FregWSurp | 0.024 | 0.8779

Table 1: Likelihood ratio test evaluating the contribu-
tion of CharWSurp and FreqWSurp in predicting self-
paced reading times from the Natural Stories Corpus.

effects modeling (Shain and Schuler, 2019), Char-
WSurp and FreqWSurp were both spilled over by
one position. All predictors were centered and
scaled prior to model fitting, and all regression
models included by-subject random slopes for all
fixed effects as well as random intercepts for each
word and subject-sentence interaction, following
the convention of keeping the random effects struc-
ture maximal in psycholinguistic modeling (Barr
etal., 2013).

4.3 Likelihood Ratio Testing

A total of three linear mixed-effects models were
fitted to reading times in the held-out set using
1me4 (Bates et al., 2015); the full model included
the fixed effects of both CharWSurp and FreqW-
Surp, and the two ablated models included the fixed
effect of either CharWSurp or FreqWSurp. This re-
sulted in two pairs of nested models whose fit could
be compared through a likelihood ratio test (LRT).
The first LRT tested the contribution of CharWSurp
by comparing the fit of the full regression model
to that of the regression model without the fixed
effect of CharWSurp. Similarly, the second LRT
tested the contribution of FreqWSurp by comparing
the fit of the full regression model to that of the
regression model without its fixed effect.

4.4 Results

The results in Table 1 show that the contribution of
CharWSurp in predicting reading times is statisti-
cally significant over and above that of FreqWSurp
(p < 0.0001), while the converse is not significant
(p = 0.8779). This demonstrates that incorporat-
ing a character-based word generation model to
the structural processing model better captures pre-
dictability in context, subsuming the effects of the
processing model without it.

S Experiment 2: Comparison to Other
Models

To further examine the impact of the character-
based word generation model, CharWSurp and Fre-
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qgWSurp were evaluated against surprisal predictors
calculated from a number of other large-scale pre-
trained language models and smaller parser-based
models. To compare the predictive power of sur-
prisal estimates from different language models on
equal footing, we calculated the increase in log-
likelihood (ALL) to a baseline regression model as
aresult of including a surprisal predictor, following
recent work (Goodkind and Bicknell, 2018; Hao
et al., 2020).

5.1 Surprisal Estimates from Other Models

A total of three pretrained language models were
used to calculate surprisal estimates at each word.®

o GLSTMSurp (Gulordava et al., 2018): A two-
layer LSTM model trained on ~80M tokens of
the English Wikipedia.

o JLSTMSurp (Jozefowicz et al., 2016): A two-
layer LSTM model with CNN character inputs
trained on ~800M tokens of the 1B Word Bench-
mark (Chelba et al., 2014).

e GPT2Surp (Radford et al., 2019): GPT-2 XL, a
48-layer decoder-only transformer model trained
on the WebText dataset (~8M web documents).

In addition, three incremental parsing models
were used to calculate surprisal estimates:

o RNNGSurp (Hale et al., 2018; Dyer et al., 2016):
An LSTM-based model with explicit phrase
structure, trained on Sections 02 to 21 of the
WSJ corpus.

e VSLCSurp (van Schijndel et al., 2013): A left-
corner parser based on a PCFG with subcatego-
rized syntactic categories (Petrov et al., 2006),
trained on a generalized categorial grammar rean-
notation of Sections 02 to 21 of the WSJ corpus.

e JLCSurp (Jin and Schuler, 2020): A neural left-
corner parser based on stack LSTMs (Dyer et al.,
2015), trained on Sections 02 to 21 of the WSJ
corpus.

5.2 Procedures

The set of self-paced reading times from the Nat-
ural Stories Corpus after applying the same data
exclusion criteria as Experiment 1 provided the
response variable for the regression models. In ad-
dition to the full dataset, regression models were

®Please refer to the appendix for surprisal calculation, out-
of-vocabulary handling, and re-initialization procedures.

also fitted to a ‘no out-of-vocabulary (No-OOV)’
version of the dataset, in which observations cor-
responding to out-of-vocabulary words for the
LSTM language model with the smallest vocab-
ulary (i.e. Gulordava et al., 2018) were also ex-
cluded. This exclusion criterion was included in
order to avoid putting the LSTM language mod-
els that may have unreliable surprisal estimates for
out-of-vocabulary words at an unfair disadvantage.
This resulted in a total of 744,607 observations
in the No-OOV dataset, which were subsequently
partitioned into an exploratory set of 371,937 obser-
vations and a held-out set of 372,670 observations.
All models were fitted to the held-out set, and all
observations were log-transformed prior to model
fitting.

The predictors included in the baseline linear
mixed-effects model were word length, word posi-
tion in sentence, and unigram surprisal. Unigram
surprisal was calculated using the KenLLM toolkit
(Heafield et al., 2013) with parameters trained on
the Gigaword 4 corpus (Parker et al., 2009). In
order to calculate the increase in log-likelihood
(ALL) attributable to each surprisal predictor, a
“full’ linear-mixed effects model, which includes
one surprisal predictor on top of the baseline model,
was fitted for each surprisal predictor. As with Ex-
periment 1, the surprisal predictors were spilled
over by one position. All predictors were centered
and scaled prior to model fitting, and all regression
models included by-subject random slopes for all
fixed effects and random intercepts for each word
and subject-sentence interaction.

Additionally, in order to examine whether any of
the models fail to generalize across domains, their
perplexity on the entire Natural Stories Corpus was
also calculated.

5.3 Results

The results show that surprisal from the character-
based structural model (CharWSurp) made the
biggest contribution to model fit compared to sur-
prisal from other models on both full and No-OOV
sets of self-paced reading times (Figure 2; the dif-
ference between the model with CharWSurp and
other models is significant with p < 0.001 by a
paired permutation test using by-item errors). The
exclusion of OOV words did not make a notable
difference in the overall trend of ALL across mod-
els. This finding, despite the fact that the pre-
trained language models were trained on much
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Figure 2: Perplexity measures from each model, and
improvements in regression model log-likelihood from
including each surprisal estimate on Natural Stories
self-paced reading data.

larger datasets and also show lower perplexities
on test data,” suggests that this model may provide
a more humanlike account of processing difficulty.
In other words, accurately predicting the next word
alone does not fully explain humanlike processing
costs that manifest in self-paced reading times. The
analysis of residuals grouped by the lowest base
category of the previous time step (c,« ) from man-
ual annotations (Shain et al., 2018) shows that the
improvement of CharWSurp over GPT2Surp was
broad-based across categories (see Figure 3).

6 Experiment 3: Eye-tracking Data

In order to examine whether these results general-
ize to other latency-based measures, linear-mixed
effects models were fitted on the Dundee eye-
tracking corpus (Kennedy et al., 2003) to test the
contribution of each surprisal predictor, following
similar procedures to Experiment 2.

6.1 Procedures

The set of go-past durations from the Dundee Cor-
pus (Kennedy et al., 2003) provided the response

"Perplexity of the parsing models is higher partly because
they optimize for a joint distribution over words and trees.

GPT-2 Overestimates
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Figure 3: Residual error from the regression model
with GPT2Surp and change in error from the regres-
sion model with CharWSurp. Circle widths show the
frequency of each syntactic category in the Natural Sto-
ries self-paced reading data.

variable for the regression models. The Dundee
Corpus contains gaze durations from 10 subjects
that read 20 newspaper editorials consisting of
51,502 tokens. The data were filtered to exclude
unfixated words, words following saccades longer
than four words, and words at starts and ends of
sentences, screens, documents, and lines. This
resulted in the full set with a total of 195,296 obser-
vations, which were subsequently partitioned into
an exploratory set of 97,391 observations and a
held-out set of 97,905 observations. As with Exper-
iment 2, regression models were also fitted to a No
OOV version of the dataset, in which observations
corresponding to out-of-vocabulary words for the
Gulordava et al. (2018) model were also excluded.
This resulted in a subset with a total of 184,894 ob-
servations (exploratory set of 92,272 observations,
held-out set of 92,622 observations). All models
were fitted to the held-out set, and all observations
were log-transformed prior to model fitting.

The predictors included in the baseline linear
mixed-effects models were word length, word po-
sition, and saccade length. In order to calculate
the increase in log-likelihood from including each
surprisal predictor, a full model including one sur-
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Figure 4: Perplexity measures from each model,
and improvements in regression model log-likelihood
from including each surprisal estimate on Dundee eye-
tracking data.

prisal predictor on top of the baseline model was
fitted for each surprisal predictor. All surprisal pre-
dictors were spilled over by one position, and all
predictors were centered and scaled prior to model
fitting. All regression models included by-subject
random slopes for all fixed effects and random in-
tercepts for each word and sentence.

6.2 Results

The results in Figure 4 show that as with Experi-
ment 2, surprisal from the character-based struc-
tural model (CharWSurp) made the biggest contri-
bution to model fit on both full and No-OOV sets
of go-past durations (the difference between model
with CharWSurp and other models is significant
with p < 0.001 by a paired permutation test us-
ing by-item errors). In contrast to Natural Stories,
surprisal from the two left-corner parsing models
(i.e. vSLCSurp and JLCSurp) did not contribute to
as much model fit compared to other models. The
exclusion of OOV words again did not make a no-
table difference in the general trend across different
models, although it led to an increase in ALL for
GLSTMSurp and RNNGSurp. Residuals grouped
by the lowest base category from the previous time
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Figure 5: Residual error from the regression model
with GPT2Surp and change in error from the regres-
sion model with CharWSurp. Circle widths show the
frequency of each syntactic category in the Dundee eye-
tracking data.

step show that, similarly to Natural Stories, the
improvement of CharWSurp over GPT2Surp was
broad-based across different categories (see Fig-
ure 5). These results provide further support for the
observation that language models that are trained
to predict the next word accurately do not fully ex-
plain processing cost in the form of latency-based
measures.

7 Experiment 4: fMRI Data

Finally, to examine whether a similar tendency
is observed in brain responses, we analyzed the
time series of blood oxygenation level-dependent
(BOLD) signals in the language network, which
were identified using functional magnetic reso-
nance imaging (fMRI). To this end, the novel sta-
tistical framework of continuous-time deconvolu-
tional regression (CDR; Shain and Schuler, 2019)
was employed. As CDR allows the data-driven es-
timation of continuous impulse response functions
from variably spaced linguistic input, it is more
appropriate for modeling fMRI responses, which
are typically measured in fixed time intervals. Sim-
ilarly to the previous experiments, the increase in
CDR model log-likelihood as a result of including a
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surprisal predictor on top of a baseline CDR model
was calculated for evaluation.

7.1 Procedures

This experiment used the same fMRI data used
by Shain et al. (2019), which were collected from
78 subjects that listened to a recorded version of
the Natural Stories Corpus. The functional regions
of interest (fROI) corresponding to the domain-
specific language network were identified for each
subject based on the results of a localizer task that
they conducted. This resulted in a total of 202,295
observations, which were subsequently partitioned
into an exploratory set of 100,325 observations and
a held-out set of 101,970 observations by assigning
alternate 60-second intervals of BOLD series to
different partitions for each participant. All models
were fitted to the BOLD signals in the held-out set.

The predictors included in the baseline CDR
model were the index of current fMRI sample
within the current scan, unigram surprisal, and
the deconvolutional intercept which captures the
influence of stimulus timing. Following Shain
et al. (2019), the CDR models assumed the two-
parameter HRF based on the double-gamma canon-
ical HRF (Lindquist et al., 2009). Furthermore, the
two parameters of the HRF were tied across pre-
dictors, modeling the assumption that the shape of
the blood oxygenation response to neural activity
is identical in a given region. However, to allow the
HREFs to have differing amplitudes, a coefficient
that rescales the HRF was estimated for each pre-
dictor. The models also included a by-fROI random
effect for the amplitude coefficient and a by-subject
random intercept.

To calculate the increase in log-likelihood from
including each predictor, a full CDR model includ-
ing the fixed effects of one surprisal predictor was
also fitted for each surprisal predictor. All surprisal
predictors were included without spillover,® and all
predictors were centered prior to model fitting.

7.2 Results

The results in Figure 6 show that surprisal from
GPT-2 (GPT2Surp) made the biggest contribution
to model fit in comparison to surprisal from other
models (difference between model with GPT2Surp
and other models significant with p < 0.001 by a
paired permutation test using by-item errors). Most

8 As CDR estimates continuous HRFs from variably spaced

linguistic input, consideration of spillover variants of surprisal
predictors was not necessary.
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Figure 6: Perplexity measures from each model, and
improvements in regression model log-likelihood from
including each surprisal estimate on Natural Stories
fMRI data.

notably, in contrast to self-paced reading times and
eye-gaze durations, CharWSurp did not contribute
as much to model fit on fMRI data, with a ALL
lower than those of the LSTM language models.
This differential contribution of CharWSurp across
datasets suggests that latency-based measures and
blood oxygenation levels may capture different as-
pects of online processing difficulty.

8 Conclusion

This paper presents a character model that can
be used to estimate word generation probabili-
ties in a structural parser-based processing model.
Experiments demonstrate that surprisal estimates
calculated from this processing model generally
contribute to substantially better fits to human re-
sponse data than those calculated from large-scale
pretrained language models or other incremental
parsers. These results add a new nuance to the rela-
tionship between perplexity and predictive power
reported in previous work (Goodkind and Bicknell,
2018; Wilcox et al., 2020). In addition, they sug-
gest that structural parser-based processing models
may provide a more humanlike account of sen-
tence processing, and may suggest a larger role of
morphology, phonotactics, and orthographic com-
plexity than was previously thought.
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A Procedures for Surprisal Calculation

o GLSTMSurp, JLSTMSurp: These models di-
rectly estimate P(w, | wy_,—1), which can be used
to calculate S(w;) = —log P(w; | wi_—1).

o GPT2Surp: Since GPT-2 relies on byte-pair en-
coding (Sennrich et al., 2016), negative log prob-
abilities of word pieces corresponding to w, were
added together to calculate S(w;) = —log P(w |
Wi.r—1)-

o RNNGSurp: Since the generative RNNG model
defines a joint distribution over words and
trees, we marginalize over trees to calculate
P(w; | wi.,-1). To keep this tractable, a word-
synchronous beam search (Stern et al., 2017)
was used with beam size 100, fast-track beam
size 5, and word beam size 10.

o VSLCSurp, JLCSurp: Beam search decoding
with a beam size of 5,000 and 2,000 respectively
was used to estimate prefix probabilities and sur-
prisal predictors.

B Procedures for Out-of-vocabulary
Handling

o GLSTMSurp, JLSTMSurp, JLCSurp: Out-of-
vocabulary (OOV) words in the test corpus were
replaced with a corresponding “UNK” symbol
prior to surprisal estimation.

o GPT2Surp: Special OOV handling was not nec-
essary because GPT-2 uses byte-pair encoding
(Sennrich et al., 2016).

o RNNGSurp, vSLCSurp: Mapping rules from
the Berkeley parser’ were used to replace OOV
words with a set of unknown word classes
(e.g. “UNK-LC-ing”).

https://github.com/slavpetrov/
berkeleyparser

C Procedures for Hidden State
Re-initialization

o GLSTMSurp, JLSTMSurp, GPT2Surp: The hid-
den states of these models were re-initialized at
the end of every article before making predic-
tions on the next article.

e RNNGSurp, vSLCSurp, JLCSurp: Since these
models predict parsing operations while making
word predictions, their hidden states were re-
initialized after each sentence.
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