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Abstract

While the use of character models has been

popular in NLP applications, it has not been

explored much in the context of psycholin-

guistic modeling. This paper presents a char-

acter model that can be applied to a struc-

tural parser-based processing model to calcu-

late word generation probabilities. Experimen-

tal results show that surprisal estimates from

a structural processing model using this char-

acter model deliver substantially better fits to

self-paced reading, eye-tracking, and fMRI

data than those from large-scale language mod-

els trained on much more data. This may sug-

gest that the proposed processing model pro-

vides a more humanlike account of sentence

processing, which assumes a larger role of

morphology, phonotactics, and orthographic

complexity than was previously thought.

1 Introduction and Related Work

Expectation-based theories of sentence processing

(Hale, 2001; Levy, 2008) posit that processing dif-

ficulty is determined by predictability in context.

In support of this position, predictability quantified

through surprisal has been shown to correlate with

behavioral measures of word processing difficulty

(Goodkind and Bicknell, 2018; Hale, 2001; Levy,

2008; Shain, 2019; Smith and Levy, 2013). How-

ever, surprisal itself makes no representational as-

sumptions about sentence processing, leaving open

the question of how best to estimate its underlying

probability model.

In natural language processing (NLP) applica-

tions, the use of character models has been popular

for several years (Al-Rfou et al., 2019; Kim et al.,

2016; Lee et al., 2017). Character models have

been shown not only to alleviate problems with

out-of-vocabulary words but also to embody mor-

phological information available at the subword

level. For this reason, they have been extensively

used to model morphological processes (Elsner

et al., 2019; Kann and Schütze, 2016) or incor-

porate morphological information into models of

syntactic acquisition (Jin et al., 2019). Nonethe-

less, the use of character models has been slow to

catch on in psycholinguistic surprisal estimation,

which has recently focused on evaluating large-

scale language models that make predictions at the

word level (e.g. Futrell et al. 2019; Goodkind and

Bicknell 2018; Hale et al. 2018; Hao et al. 2020).

This raises the question of whether incorporating

character-level information into an incremental pro-

cessing model will result in surprisal estimates that

better characterize predictability in context.

To answer this question, this paper presents a

character model that can be used to estimate word

generation probabilities in a structural parser-based

processing model.1 The proposed model defines a

process of generating a word from an underlying

lemma and a morphological rule, which allows the

processing model to capture the predictability of a

given word form in a fine-grained manner. Regres-

sion analyses on self-paced reading, eye-tracking,

and fMRI data demonstrate that surprisal estimates

calculated from this character-based structural pro-

cessing model contribute to substantially better fits

compared to those calculated from large-scale lan-

guage models, despite the fact that these other mod-

els are trained on much more data and show lower

perplexities on test data. This finding deviates from

the monotonic relationship between test perplexity

and predictive power observed in previous studies

(Goodkind and Bicknell, 2018; Wilcox et al., 2020).

Furthermore, it suggests that the character-based

structural processing model may provide a more

humanlike account of processing difficulty and may

suggest a larger role of morphology, phonotactics,

and orthographic complexity than was previously

1Code for model and experiments is available at https:
//github.com/byungdoh/acl21_semproc.
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thought.

2 Background

The experiments presented in this paper use sur-

prisal predictors (Shannon, 1948) calculated by

an incremental processing model based on a left-

corner parser (Johnson-Laird, 1983; van Schijndel

et al., 2013). This incremental processing model

provides a probabilistic account of sentence pro-

cessing by making a single lexical attachment deci-

sion and a single grammatical attachment decision

for each input word.

Surprisal. Surprisal can be defined as the neg-

ative log ratio of prefix probabilities of word se-

quences w1..t at consecutive time steps t − 1 and t:

S(wt)
def
= − log

P(w1..t)

P(w1..t−1)
(1)

These prefix probabilities can be calculated by

marginalizing over the hidden states qt of the for-

ward probabilities of an incremental processing

model:

P(w1..t) =
∑

qt

P(w1..t qt) (2)

These forward probabilities are in turn defined re-

cursively using a transition model:

P(w1..t qt)
def
=

∑

qt−1

P(wt qt | qt−1) · P(w1..t−1 qt−1)

(3)

Left-corner parsing. The transition model pre-

sented in this paper is based on a probabilistic left-

corner parser (Johnson-Laird, 1983; van Schijndel

et al., 2013). Left-corner parsers have been used

to model human sentence processing because they

define a fixed number of decisions at every time

step and also require only a bounded amount of

working memory, in keeping with experimental ob-

servations of human memory limits (Miller and

Isard, 1963). The transition model maintains a

distribution over possible working memory store

states qt at every time step t, each of which con-

sists of a bounded number D of nested derivation

fragments ad
t /b

d
t . Each derivation fragment spans

a part of a derivation tree from some apex node ad
t

lacking a base node bd
t yet to come. Previous work

has shown that large annotated corpora such as the

Penn Treebank (Marcus et al., 1993) do not require

more than D = 4 of such fragments (Schuler et al.,

2010).

At each time step, a left-corner parsing model

generates a new word wt and a new store state qt

in two phases (see Figure 1). First, it makes a

lexical decision ℓt regarding whether to use the

word to complete the most recent derivation frag-

ment (match), or to use the word to create a new

preterminal node aℓt (no-match). Subsequently, the

model makes a grammatical decision gt regarding

whether to use a predicted grammar rule to combine

the node constructed in the lexical phase aℓt with

the next most recent derivation fragment (match),

or to use the grammar rule to convert this node into

a new derivation fragment agt
/bgt

(no-match):2

P(wt qt | qt−1) =
∑

ℓt ,gt

P(ℓt | qt−1) ·

P(wt | qt−1 ℓt) ·

P(gt | qt−1 ℓt wt) ·

P(qt | qt−1 ℓt wt gt) (4)

Thus, the parser creates a hierarchically organized

sequence of derivation fragments and joins these

fragments up whenever expectations are satisfied.

In order to update the store state based on the

lexical and grammatical decisions, derivation frag-

ments above the most recent nonterminal node are

carried forward, and derivation fragments below it

are set to null (⊥):

P(qt | . . .)
def
=

D
∏

d′=1



























Jad′

t , b
d′

t = ad′

t−1
, bd′

t−1
K if d′ < d

Jad′

t , b
d′

t = agt
, bgt

K if d′ = d

Jad′

t , b
d′

t = ⊥,⊥K if d′ > d

(5)

where the indicator function JϕK = 1 if ϕ is true

and 0 otherwise, and d = argmaxd′{a
d′

t−1
,⊥} + 1 −

mℓt − mgt
. Together, these probabilistic decisions

generate the n unary branches and n − 1 binary

branches of a parse tree in Chomsky normal form

for an n-word sentence.

3 Model

3.1 Processing Model

The processing model extends the above left-corner

parser to maintain lemmatized predicate informa-

tion by augmenting each preterminal, apex, and

base node to consist not only of a syntactic cate-

gory label cpt
, cad

t
, or cbd

t
, but also of a binary pred-

icate context vector hpt
, had

t
, or hbd

t
∈ {0, 1}K+V ·K ,

where K is the size of the set of predicate contexts

and V is the maximum valence of any syntactic

2Johnson-Laird (1983) refers to lexical and grammatical
decisions as ‘shift’ and ‘predict’ respectively.
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a) lexical decision ℓt b) grammatical decision gt

ad
t−1

bd
t−1

wt

⇒

aℓt

mℓt = 1

ad
t−1

bd
t−1

wt

⇒
ad

t−1

bd
t−1

aℓt

mℓt = 0

ad−mℓt
t−1

bd−mℓt
t−1

aℓt

⇒

agt

bgt

mgt
= 1

ad−mℓt
t−1

bd−mℓt
t−1

aℓt

⇒
ad−mℓt

t−1

bd−mℓt
t−1

agt

bgt

mgt
= 0

Figure 1: Left-corner parser operations: a) lexical match (mℓt=1) and no-match (mℓt=0) operations, creating new

apex aℓt , and b) grammatical match (mgt
=1) and no-match (mgt

=0) operations, creating new apex agt
and base bgt

.

category.3 Each 0 or 1 element of this vector rep-

resents a unique predicate context, which consists

of a 〈predicate, role〉 pair that specifies the con-

tent constraints of a node in a predicate-argument

structure. These predicate contexts are obtained by

reannotating the training corpus using a general-

ized categorial grammar of English (Nguyen et al.,

2012),4 which is sensitive to syntactic valence and

non-local dependencies.

Lexical decisions. Each lexical decision of the

parser includes a match decision mℓt and decisions

about a syntactic category cℓt and a predicate con-

text vector hℓt that together specify a preterminal

node pℓt . The probability of generating the match

decision and the predicate context vector depends

on the base node bd
t−1

of the previous derivation

fragment (i.e. its syntactic category and predicate

context vector). The first term of Equation 4 can

therefore be decomposed into the following:

P(ℓt | qt−1) = SOFTMAX
mℓt hℓt

( FFθL[δd
⊤, [δ⊤c

bd
t−1

,h⊤
bd

t−1

] EL] ) ·

P(cℓt | qt−1 mℓt hℓt ) (6)

where FF is a feedforward neural network, and

δi is a Kronecker delta vector consisting of a

one at element i and zeros elsewhere. Depth

d = argmaxd′{a
d′

t−1
,⊥} is the number of non-null

derivation fragments at the previous time step, and

EL is a matrix of jointly trained dense embeddings

for each syntactic category and predicate context.

The syntactic category and predicate context vector

3The valence of a category is the number of unsatisfied
syntactic arguments it has. Separate vectors for syntactic
arguments are needed in order to correctly model cases such as
passives where syntactic arguments do not align with predicate
arguments.

4The predicates in this annotation scheme come from
words that have been lemmatized by a set of rules that have
been manually written and corrected in order to account for
common irregular inflections.

together define a complete preterminal node pℓt for

use in the word generation model:

pℓt
def
=















cbd
t−1
,hbd

t−1
+ hℓt if mℓt = 1

cℓt ,hℓt if mℓt = 0
(7)

and a new apex node aℓt for use in the grammatical

decision model:

aℓt
def
=















ad
t−1

if mℓt = 1

pℓt if mℓt = 0
(8)

Grammatical decisions. Each grammatical de-

cision includes a match decision mgt
and decisions

about a pair of syntactic category labels cgt
and c′gt

,

as well as a predicate context composition oper-

ator ogt
, which governs how the newly generated

predicate context vector hℓt is propagated through

its new derivation fragment agt
/bgt

. The probability

of generating the match decision and the compo-

sition operators depends on the base node b
d−mℓt
t−1

of the previous derivation fragment and the apex

node aℓt from the current lexical decision (i.e. their

syntactic categories and predicate context vectors).

The third term of Equation 4 can accordingly be

decomposed into the following:

P(gt | qt−1 ℓt wt) =

SOFTMAX
mgt ogt

( FFθG[δd
⊤, [δ⊤c

b
d−mℓt
t−1

,h⊤

b
d−mℓt
t−1

, δ⊤caℓt

,h⊤aℓt
] EG] ) ·

P(cgt
| qt−1 ℓt wt mgt

ogt
) ·

P(c′gt
| qt−1 ℓt wt mgt

ogt
cgt

) (9)

where EG is a matrix of jointly trained dense em-

beddings for each syntactic category and predicate

context. The composition operators are associated

with sparse composition matrices Aogt
which can

be used to compose predicate context vectors asso-

ciated with the apex node agt
:

agt

def
=















a
d−mℓt
t−1

if mgt
= 1

cgt
,Aogt

haℓt
if mgt

= 0
(10)
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and sparse composition matrices Bogt
which can be

used to compose predicate context vectors associ-

ated with the base node bgt
:

bgt

def
=



















c′gt
,Bogt

[h
b

d−mℓt
t−1

⊤,haℓt
⊤]⊤ if mgt

=1

c′gt
,Bogt

[0⊤,haℓt
⊤]⊤ if mgt

=0
(11)

3.2 Character-based Word Model

The baseline version of the word model P(wt |

qt−1 ℓt) uses relative frequency estimation with

backoff probabilities for out-of-vocabulary words

trained using hapax legomena. A character-based

test version of this model instead applies a mor-

phological rule rt to a lemma xt to generate an

inflected form wt. The set of rules model affixa-

tion through string substitution and are inverses of

lemmatization rules that are used to derive predi-

cates in the generalized categorial grammar anno-

tation (Nguyen et al., 2012). For example, the rule

%ay→%aid can apply to the word say to derive

its past tense form said. There are around 600 such

rules that account for inflection in Sections 02 to

21 of the Wall Street Journal corpus of the Penn

Treebank (Marcus et al., 1993), which includes an

identity rule for words in bare form and a ‘no se-

mantics’ rule for generating certain function words.

For an observed input word wt, the model first

generates a list of 〈xt, rt〉 pairs that deterministically

generate wt. This allows the model to capture mor-

phological regularity and estimate how expected a

word form is given its predicted syntactic category

and predicate context, which have been generated

as part of the preceding lexical decision. In addi-

tion, this lets the model hypothesize the underly-

ing morphological structure of out-of-vocabulary

words and assign probabilities to them. The second

term of Equation 4 can thus be decomposed into

the following:

P(wt | qt−1 ℓt) =
∑

xt ,rt

P(xt | qt−1 ℓt) ·

P(rt | qt−1 ℓt xt) ·

P(wt | qt−1 ℓt xt rt) (12)

The probability of generating the lemma sequence

depends on the syntactic category cpℓt
and predicate

context hℓt resulting from the preceding lexical

decision ℓt:

P(xt | qt−1 ℓt) =
∏

i

SOFTMAX
xt,i

( WX xt,i + bX )

(13)

where xt,1, xt,2, ..., xt,I is the character sequence of

lemma xt, with xt,1 = 〈s〉 and xt,I = 〈e〉 as special

start and end characters. WX and bX are respec-

tively a weight matrix and bias vector of a softmax

classifier. A recurrent neural network (RNN) calcu-

lates a hidden state xt,i for each character from an

input vector at that time step and the hidden state

after the previous character xt,i−1:

xt,i = RNNθX( [δ⊤cpℓt

,h⊤ℓt , δ
⊤
xt,i

] EX, x
⊤
t,i−1 ) (14)

where EX is a matrix of jointly trained dense em-

beddings for each syntactic category, predicate con-

text, and character.

Subsequently, the probability of applying a par-

ticular morphological rule to the generated lemma

depends on the syntactic category cpℓt
and predi-

cate context hℓt from the preceding lexical decision

as well as the character sequence of the lemma:

P(rt | qt−1 ℓt xt) = SOFTMAX
rt

( WR rt,I + bR ) (15)

where WR and bR are respectively a weight matrix

and bias vector of a softmax classifier. rt,I is the

last hidden state of an RNN that takes as input the

syntactic category, predicate context, and character

sequence of the lemma xt,2, xt,3, ..., xt,I−1 without

the special start and end characters:

rt,i = RNNθR( [δ⊤cpℓt

,h⊤ℓt , δ
⊤
xt,i

] ER, r
⊤
t,i−1 ) (16)

where ER is a matrix of jointly trained dense em-

beddings for each syntactic category, predicate con-

text, and character.

Finally, as the model calculates probabilities

only for 〈xt, rt〉 pairs that deterministically gener-

ate wt, the word probability conditioned on these

variables P(wt | qt−1 ℓt xt rt) is deterministic.

4 Experiment 1: Effect of Character

Model

In order to assess the influence of the character-

based word generation model over the baseline

word generation model on the predictive quality

of surprisal estimates, linear mixed-effects models

containing common baseline predictors and one or

more surprisal predictors were fitted to self-paced

reading times. Subsequently, a series of likelihood

ratio tests were conducted in order to evaluate the

relative contribution of each surprisal predictor to

regression model fit.
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4.1 Response Data

The first experiment described in this paper used

the Natural Stories Corpus (Futrell et al., 2018),

which contains self-paced reading times from 181

subjects that read 10 naturalistic stories consist-

ing of 10,245 tokens. The data were filtered to

exclude observations corresponding to sentence-

initial and sentence-final words, observations from

subjects who answered fewer than four compre-

hension questions correctly, and observations with

durations shorter than 100 ms or longer than 3000

ms. This resulted in a total of 768,584 observa-

tions, which were subsequently partitioned into

an exploratory set of 383,906 observations and a

held-out set of 384,678 observations. The partition-

ing allows model selection (e.g. making decisions

about predictors and random effects structure) to

be conducted on the exploratory set and a single

hypothesis test to be conducted on the held-out set,

thus eliminating the need for multiple trials correc-

tion. All observations were log-transformed prior

to model fitting.

4.2 Predictors

The baseline predictors commonly included in all

regression models are word length measured in

characters and index of word position within each

sentence.5 In addition to the baseline predictors,

surprisal predictors were calculated from two vari-

ants of the processing model in which word gen-

eration probabilities P(wt | qt−1 ℓt) are calculated

using relative frequency estimation (FreqWSurp)

and using the character-based model described in

Section 3.2 (CharWSurp). Both variants of the

processing model were trained on a generalized

categorial grammar (Nguyen et al., 2012) reannota-

tion of Sections 02 to 21 of the Wall Street Journal

(WSJ) corpus of the Penn Treebank (Marcus et al.,

1993). Beam search decoding with a beam size of

5,000 was used to estimate prefix probabilities and

surprisal predictors for both variants.

To account for the time the brain takes to pro-

cess and respond to linguistic input, it is standard

practice in psycholinguistic modeling to include

‘spillover’ variants of predictors from preceding

words (Rayner et al., 1983; Vasishth, 2006). How-

ever, as including multiple spillover variants of

predictors leads to identifiability issues in mixed-

5Although unigram surprisal or 5-gram surprisal is also
commonly included as a baseline predictor, it was not included
in this experiment due to convergence issues.

Model comparison χ2 p-value

Full vs. No CharWSurp 204.48 0.0001∗∗∗

Full vs. No FreqWSurp 0.024 0.8779

Table 1: Likelihood ratio test evaluating the contribu-

tion of CharWSurp and FreqWSurp in predicting self-

paced reading times from the Natural Stories Corpus.

effects modeling (Shain and Schuler, 2019), Char-

WSurp and FreqWSurp were both spilled over by

one position. All predictors were centered and

scaled prior to model fitting, and all regression

models included by-subject random slopes for all

fixed effects as well as random intercepts for each

word and subject-sentence interaction, following

the convention of keeping the random effects struc-

ture maximal in psycholinguistic modeling (Barr

et al., 2013).

4.3 Likelihood Ratio Testing

A total of three linear mixed-effects models were

fitted to reading times in the held-out set using

lme4 (Bates et al., 2015); the full model included

the fixed effects of both CharWSurp and FreqW-

Surp, and the two ablated models included the fixed

effect of either CharWSurp or FreqWSurp. This re-

sulted in two pairs of nested models whose fit could

be compared through a likelihood ratio test (LRT).

The first LRT tested the contribution of CharWSurp

by comparing the fit of the full regression model

to that of the regression model without the fixed

effect of CharWSurp. Similarly, the second LRT

tested the contribution of FreqWSurp by comparing

the fit of the full regression model to that of the

regression model without its fixed effect.

4.4 Results

The results in Table 1 show that the contribution of

CharWSurp in predicting reading times is statisti-

cally significant over and above that of FreqWSurp

(p < 0.0001), while the converse is not significant

(p = 0.8779). This demonstrates that incorporat-

ing a character-based word generation model to

the structural processing model better captures pre-

dictability in context, subsuming the effects of the

processing model without it.

5 Experiment 2: Comparison to Other

Models

To further examine the impact of the character-

based word generation model, CharWSurp and Fre-
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qWSurp were evaluated against surprisal predictors

calculated from a number of other large-scale pre-

trained language models and smaller parser-based

models. To compare the predictive power of sur-

prisal estimates from different language models on

equal footing, we calculated the increase in log-

likelihood (∆LL) to a baseline regression model as

a result of including a surprisal predictor, following

recent work (Goodkind and Bicknell, 2018; Hao

et al., 2020).

5.1 Surprisal Estimates from Other Models

A total of three pretrained language models were

used to calculate surprisal estimates at each word.6

• GLSTMSurp (Gulordava et al., 2018): A two-

layer LSTM model trained on ∼80M tokens of

the English Wikipedia.

• JLSTMSurp (Jozefowicz et al., 2016): A two-

layer LSTM model with CNN character inputs

trained on ∼800M tokens of the 1B Word Bench-

mark (Chelba et al., 2014).

• GPT2Surp (Radford et al., 2019): GPT-2 XL, a

48-layer decoder-only transformer model trained

on the WebText dataset (∼8M web documents).

In addition, three incremental parsing models

were used to calculate surprisal estimates:

• RNNGSurp (Hale et al., 2018; Dyer et al., 2016):

An LSTM-based model with explicit phrase

structure, trained on Sections 02 to 21 of the

WSJ corpus.

• vSLCSurp (van Schijndel et al., 2013): A left-

corner parser based on a PCFG with subcatego-

rized syntactic categories (Petrov et al., 2006),

trained on a generalized categorial grammar rean-

notation of Sections 02 to 21 of the WSJ corpus.

• JLCSurp (Jin and Schuler, 2020): A neural left-

corner parser based on stack LSTMs (Dyer et al.,

2015), trained on Sections 02 to 21 of the WSJ

corpus.

5.2 Procedures

The set of self-paced reading times from the Nat-

ural Stories Corpus after applying the same data

exclusion criteria as Experiment 1 provided the

response variable for the regression models. In ad-

dition to the full dataset, regression models were

6Please refer to the appendix for surprisal calculation, out-
of-vocabulary handling, and re-initialization procedures.

also fitted to a ‘no out-of-vocabulary (No-OOV)’

version of the dataset, in which observations cor-

responding to out-of-vocabulary words for the

LSTM language model with the smallest vocab-

ulary (i.e. Gulordava et al., 2018) were also ex-

cluded. This exclusion criterion was included in

order to avoid putting the LSTM language mod-

els that may have unreliable surprisal estimates for

out-of-vocabulary words at an unfair disadvantage.

This resulted in a total of 744,607 observations

in the No-OOV dataset, which were subsequently

partitioned into an exploratory set of 371,937 obser-

vations and a held-out set of 372,670 observations.

All models were fitted to the held-out set, and all

observations were log-transformed prior to model

fitting.

The predictors included in the baseline linear

mixed-effects model were word length, word posi-

tion in sentence, and unigram surprisal. Unigram

surprisal was calculated using the KenLM toolkit

(Heafield et al., 2013) with parameters trained on

the Gigaword 4 corpus (Parker et al., 2009). In

order to calculate the increase in log-likelihood

(∆LL) attributable to each surprisal predictor, a

‘full’ linear-mixed effects model, which includes

one surprisal predictor on top of the baseline model,

was fitted for each surprisal predictor. As with Ex-

periment 1, the surprisal predictors were spilled

over by one position. All predictors were centered

and scaled prior to model fitting, and all regression

models included by-subject random slopes for all

fixed effects and random intercepts for each word

and subject-sentence interaction.

Additionally, in order to examine whether any of

the models fail to generalize across domains, their

perplexity on the entire Natural Stories Corpus was

also calculated.

5.3 Results

The results show that surprisal from the character-

based structural model (CharWSurp) made the

biggest contribution to model fit compared to sur-

prisal from other models on both full and No-OOV

sets of self-paced reading times (Figure 2; the dif-

ference between the model with CharWSurp and

other models is significant with p < 0.001 by a

paired permutation test using by-item errors). The

exclusion of OOV words did not make a notable

difference in the overall trend of ∆LL across mod-

els. This finding, despite the fact that the pre-

trained language models were trained on much
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Ethical Considerations

Experiments presented in this work used datasets

from previously published research (Futrell et al.,

2018; Kennedy et al., 2003; Marcus et al., 1993;

Shain et al., 2019), in which the procedures for data

collection and validation are outlined.
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A Procedures for Surprisal Calculation

• GLSTMSurp, JLSTMSurp: These models di-

rectly estimate P(wt | w1..t−1), which can be used

to calculate S(wt) = − log P(wt | w1..t−1).

• GPT2Surp: Since GPT-2 relies on byte-pair en-

coding (Sennrich et al., 2016), negative log prob-

abilities of word pieces corresponding to wt were

added together to calculate S(wt) = − log P(wt |

w1..t−1).

• RNNGSurp: Since the generative RNNG model

defines a joint distribution over words and

trees, we marginalize over trees to calculate

P(wt | w1..t−1). To keep this tractable, a word-

synchronous beam search (Stern et al., 2017)

was used with beam size 100, fast-track beam

size 5, and word beam size 10.

• vSLCSurp, JLCSurp: Beam search decoding

with a beam size of 5,000 and 2,000 respectively

was used to estimate prefix probabilities and sur-

prisal predictors.

B Procedures for Out-of-vocabulary

Handling

• GLSTMSurp, JLSTMSurp, JLCSurp: Out-of-

vocabulary (OOV) words in the test corpus were

replaced with a corresponding “UNK” symbol

prior to surprisal estimation.

• GPT2Surp: Special OOV handling was not nec-

essary because GPT-2 uses byte-pair encoding

(Sennrich et al., 2016).

• RNNGSurp, vSLCSurp: Mapping rules from

the Berkeley parser9 were used to replace OOV

words with a set of unknown word classes

(e.g. “UNK-LC-ing”).

9https://github.com/slavpetrov/

berkeleyparser

C Procedures for Hidden State

Re-initialization

• GLSTMSurp, JLSTMSurp, GPT2Surp: The hid-

den states of these models were re-initialized at

the end of every article before making predic-

tions on the next article.

• RNNGSurp, vSLCSurp, JLCSurp: Since these

models predict parsing operations while making

word predictions, their hidden states were re-

initialized after each sentence.


