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Much research in cognitive neuroscience supports prediction as a canonical computation of cognition across
domains. Is such predictive coding implemented by feedback from higher-order domain-general circuits, or is it
locally implemented in domain-specific circuits? What information sources are used to generate these pre-
dictions? This study addresses these two questions in the context of language processing. We present fMRI ev-
idence from a naturalistic comprehension paradigm (1) that predictive coding in the brain’s response to language
is domain-specific, and (2) that these predictions are sensitive both to local word co-occurrence patterns and to
hierarchical structure. Using a recently developed continuous-time deconvolutional regression technique that
supports data-driven hemodynamic response function discovery from continuous BOLD signal fluctuations in
response to naturalistic stimuli, we found effects of prediction measures in the language network but not in the
domain-general multiple-demand network, which supports executive control processes and has been previously
implicated in language comprehension. Moreover, within the language network, surface-level and structural
prediction effects were separable. The predictability effects in the language network were substantial, with the
model capturing over 37% of explainable variance on held-out data. These findings indicate that human sentence
processing mechanisms generate predictions about upcoming words using cognitive processes that are sensitive
to hierarchical structure and specialized for language processing, rather than via feedback from high-level ex-
ecutive control mechanisms.

1. Introduction mechanisms that support predictive language processing are not well

understood. Under one widely held view, predictive language process-

The human brain is an efficient prediction engine (James, 1890).
Facilitation in processing expected information, as well as processing
costs of violated expectations, have been reported in many domains. In
the domain of language comprehension, various results show that lis-
teners and readers actively predict upcoming linguistic material (e.g.,
Kutas and Hillyard, 1984; MacDonald et al., 1994; Tanenhaus et al.,
1995; Rayner et al., 2004; Frank and Bod, 2011; Smith & Levy, 2011,
2013; Gagnepain et al., 2012; Staub and Benatar, 2013; Frank et al.,
2015; Kuperberg and Jaeger, 2016). However, the cognitive and neural
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ing is implemented by domain-general executive (inhibitory control and
working memory) resources. This perspective receives support from
numerous studies showing that prediction effects during language
comprehension are absent or less pronounced for populations with
reduced executive resources, such as children, older individuals, and
non-native speakers (e.g., Federmeier et al., 2002; Federmeier and
Kutas, 2005; Dagerman et al., 2006; Federmeier et al., 2010; Mani and
Huettig, 2012; Wlotko and Federmeier, 2012; Martin et al., 2013; Kaan,
2014; Mitsugi and MacWhinney, 2016; Gambi et al., 2018; Payne and
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Federmeier, 2018; cf. Dave et al., 2018; Havron et al., 2019). Further-
more, several neuroimaging studies have reported sensitivity to lin-
guistic manipulations in what appear to be cortical regions thought to
support domain-general executive function (e.g., Kaan and Swaab,
2002; Kuperberg et al., 2003; Novick et al., 2005; Rodd et al., 2005;
Novais-Santos et al., 2007; January et al., 2009; Peelle et al., 2009;
Rogalsky and Hickok, 2011; Nieuwland et al., 2012; Wild et al., 2012;
McMillan et al., 2012, 2013), suggesting that such regions may also be
implicated in language processing, including perhaps prediction. These
results have led some to conclude that predictive coding for language is
implemented by domain-general executive control resources (Linck
et al., 2014; Huettig and Mani, 2016; Pickering and Gambi, 2018;
Strijkers et al., 2019).

However, this interpretation is subject to several objections. First,
most prior work on linguistic prediction has relied on behavioral and
electrophysiological measures which are well suited for identifying
global response patterns but cannot spatially localize the source of these
effects in the brain to a certain functional region or network (e.g.,
Mather et al., 2013). Second, the (alleged) between-population differ-
ences in prediction noted above are consistent with accounts that do not
directly invoke executive resources, including (1) possible qualitative
differences between populations in the kind of information that is being
predicted and the consequent need for population-specific norms to
detect prediction effects, or (2) differences in how often predictions are
correct, which may modulate the likelihood of engaging in predictive
behavior (see Ryskin et al., this issue, for discussion). And third, past
studies that did employ neuroimaging tools with high spatial resolution
and consequently reported linguistic prediction responses—typically
neural response increases for violations of linguistic structure—localized
to executive control regions (e.g., Newman et al., 2001; Kuperberg et al.,
2003; Nieuwland et al., 2012; Schuster et al., 2016) may have been
influenced by task artifacts; indeed, some have argued that artificially
constructed laboratory stimuli and tasks increase general cognitive load
in comparison to naturalistic language comprehension (e.g., Blanco-E-
lorrieta and Pylkkédnen, 2017; Blank and Fedorenko, 2017; Campbell
and Tyler, 2018; Wehbe et al., submitted; Diachek et al., 2019). To
ensure that findings from the laboratory paradigms truly reflect the
cognitive phenomenon of interest, it is important to validate them in
more naturalistic experimental settings that better approximate the
typical conditions of human sentence comprehension (Hasson and
Honey, 2012; Hasson et al., 2018).

Despite the growing number of fMRI studies of naturalistic language
comprehension (e.g., Speer et al., 2007; Yarkoni et al., 2008; Speer et al.,
2009; Whitney et al., 2009; Wehbe et al., 2014; Hale et al., 2015;
Henderson et al., 2015, 2016; Huth et al., 2016; Sood and Sereno, 2016;
Brennan, 2016; Desai et al., 2016; de Heer et al., 2017, Dehghani et al.,
2017; Bhattasali et al., 2018), only a handful have directly investigated
effects of word predictability (Willems et al., 2015; Brennan et al., 2016;
Henderson et al., 2016; Lopopolo et al., 2017; see Table 1 for summary),
a well-established predictor of behavioral measures in naturalistic lan-
guage comprehension (Demberg and Keller, 2008; Frank and Bod, 2011;
Smith and Levy, 2013; van Schijndel and Schuler, 2015). These previous
naturalistic studies of linguistic prediction effects in the brain—using
estimates of prediction effort such as surprisal (Hale, 2001; Levy, 2008),
i.e., the negative log probability of a word given its context, or entropy
(Hale, 2006), i.e., an information-theoretic measure of the degree of

Table 1

Previous fMRI studies of prediction effects in naturalistic sentence comprehension.
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constraint placed by the context on upcoming words—have yielded
mixed results on the existence, type, and functional location of such
effects. For example, of the lexicalized and unlexicalized (part-of--
speech) bigram and trigram models of word surprisal explored in
Brennan et al. (2016), only part-of-speech bigrams positively modulated
neural responses in most regions of the functionally localized language
network. Lexicalized bi- and trigrams and part-of-speech trigrams yiel-
ded generally null or negative results (16 out of 18 comparisons). By
contrast, Willems et al. (2015) found lexicalized trigram effects in re-
gions typically associated with language processing (e.g., anterior and
posterior temporal lobe). In addition, Willems et al. (2015) and Lopo-
polo et al. (2017) found prediction effects in regions that are unlikely to
be specialized for language processing, including (aggregating across
both studies) the brain stem, amygdala, putamen, and hippocampus, as
well as in superior frontal areas more typically associated with
domain-general executive functions like self-awareness and coordina-
tion of the sensory system (Goldberg et al., 2006). It is therefore not yet
clear whether predictive coding for language relies on domain-general
mechanisms in addition to, or instead of, language-specific ones, espe-
cially in naturalistic contexts.

In addition to questions about the functional localization of linguistic
prediction, substantial prior work has also investigated the structure of
the predictive model, seeking to shed light on the nature of linguistic
representations in the mind. Specifically, if effects from theoretical
constructs—such as hierarchical natural language syntax—can be
detected in online processing measures (whether behavioral or neural),
this would constitute evidence that such constructs are present in human
mental representations and used to comprehend language. In the
particular case of hierarchical representations, their psychological re-
ality is widely supported by behavioral and electrophysiological ex-
periments using constructed stimuli (see Lewis and Phillips, 2015 for
review), by production experiments (Momma & Ferreira, 2019), and by
some behavioral (Roark et al., 2009; Fossum and Levy, 2012; van
Schijndel and Schuler, 2015; Shain et al., 2016), electrophysiological
(Brennan and Hale, 2019) and neuroimaging (Brennan et al., 2016)
experiments using naturalistic stimuli. However, other naturalistic
studies reported null or negative syntactic effects (Frank and Bod, 2011;
van Schijndel and Schuler, 2013; Shain and Schuler, 2018 contra Shain
et al., 2016), or mixed syntactic results within the same set of experi-
ments (Demberg and Keller, 2008; Henderson et al., 2016), leading some
to argue that the representations used for language comprehension (in
the absence of task artifacts from constructed stimuli) contain little hi-
erarchical structure (Frank and Christiansen, 2018). Furthermore, the
few naturalistic fMRI studies that have explored structural prediction
effects have yielded inconsistent localization of these effects. For
example, Brennan et al. (2016) found context-free grammar surprisal
effects throughout the functional language network except in inferior
frontal gyrus, whereas inferior frontal gyrus is the only region in which
Henderson et al. (2016) found such effects.

The current study thus used fMRI to determine whether signatures of
predictive  coding  during naturalistic = language  compre-
hension—increased response to less predictable words, i.e. surprisal
effects (e.g., Smith and Levy, 2013), based on either linear word se-
quences or hierarchical structures—are primarily evident in (1) the
domain-specific, fronto-temporal language (LANG) network (Fedorenko
et al., 2011), and/or (2) the domain-general, fronto-parietal multiple

Study # Participants Stimulus length HRF model Functional localization Out-of-sample evaluation
Willems et al. (2015) 24 19 min Canonical No No
Brennan et al. (2016) 26 12 min Canonical Yes No
Henderson et al. (2016) 40 22 paragraphs Canonical No No
Lopopolo et al. (2017) 22 19 min Canonical No No
Current study 78 13.5 min (avg per participant) Data-driven (CDR) Yes Yes
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demand (MD) network (Duncan, 2010). The MD network supports ex-
ecutive functions (e.g., inhibitory control, attentional selection, conflict
resolution, maintenance and manipulation of task sets) across both lin-
guistic and non-linguistic tasks (e.g., Duncan and Owen, 2000; Fedor-
enko et al., 2013; Hugdahl et al., 2015; for discussion, see: Fedorenko,
2014) and has been shown to be sensitive to surprising events (Corbetta
and Shulman, 2002).

On the one hand, given that the language network plausibly stores
linguistic knowledge, including the statistics of language input, it might
directly carry out predictive processing. Such a result would align with a
growing body of cognitive neuroscience research supporting prediction
as a “canonical computation” (Keller and Mrsic-Flogel, 2018) locally
implemented in domain-specific circuits (Montague et al., 1996; Rao
and Ballard, 1999; Alink et al., 2010; Bubic et al., 2010; Bastos et al.,
2012; Wacongne et al., 2011, 2012; Singer et al., 2018). This hypothesis
is also supported by prior findings of linguistic prediction effects in
portions of the language network (Bonhage et al., 2015; Willems et al.,
2015; Brennan et al., 2016; Henderson et al., 2016; Lopopolo et al.,
2017; Matchin et al., 2018).

On the other hand, given that the MD network has been argued to
encode predictive signals across domains and relay them as feedback to
other regions (Strange et al., 2005; Cristescu et al., 2006; Egner et al.,
2008; Wacongne et al., 2011; Chao et al., 2018), it might be recruited to
predict upcoming words and structures in language. There is an exten-
sive literature on neural signatures of prediction, such as activity asso-
ciated with prediction errors, in brain regions that appear to belong to
the MD network, including bilateral areas in the dorsolateral pre-frontal
cortex, the inferior frontal gyrus, the anterior cingulate cortex, and the
parietal lobe (for a review, see Dehaene et al., 2015; for a meta-analysis,
see D’ Astolfo and Rief, 2017). These areas are sensitive to rule violations
in non-linguistic sequences, including hierarchically structured ones, in
different sensory domains (e.g., auditory and visual; Bekinschtein et al.,
2009; Ahlheim et al., 2014; Uhrig et al., 2014; Wang et al., 2015; Wang
et al., 2017; Chao et al., 2018). In addition, they are recruited during
learning of structured sequences in the motor domain (Bischoff-Grethe
et al., 2004; Eickhoff et al., 2010). Beyond representing deterministic
rules, such regions are also engaged in probabilistic predictions (Strange
etal., 2005; Meyniel and Dehaene, 2017). Such predictions can be based
on either inferring a generative model underlying the input sequence
(Glascher et al., 2010; Schapiro et al., 2013) or on reward contingencies
(Koch et al., 2008; Zarr and Brown, 2016; Alexander and Brown, 2018;
for a review, see: Rushworth and Behrens, 2008).

There are two main hypotheses in the contemporary literature that
link predictive processing in the MD network with increased activity to
more surprising words. First, the MD network might provide additional
resources (“cognitive juice”) to various cognitive processes, including
language. Under this scenario, MD regions might “come to the rescue” of
the language network when processing demands are increased, which
would be the case when surprisal is higher. Indeed, prior work suggests
that the MD network could be recruited when language processing be-
comes effortful, e.g., under acoustic (Adank, 2012; Hervais-Adelman
et al., 2012; Wild et al., 2012; Scott and McGettigan, 2013; Vaden et al.,
2013) or syntactic (Kuperberg et al., 2003; Nieuwland et al., 2012)
noise; in healthy aging (for reviews, see Wingfield and Grossman, 2006;
Shafto and Tyler, 2014); during recovery from aphasia (Brownsett et al.,
2014; Geranmayeh et al., 2014, 2016; 2017; Meier et al., 2016; Sims
et al., 2016; Hartwigsen, 2018); and in L2 processing and multi-lingual
control (e.g., Wartenburger et al., 2003; Riischemeyer et al., 2005;
Yokoyama et al., 2006; de Bruin et al., 2014; Grant et al., 2015; Kim
et al., 2016; for reviews, see Perani and Abutalebi, 2005; Sakai, 2005;
Abutalebi, 2008; Kotz, 2009; Hervais-Adelman et al., 2011; Pliatsikas
and Luk, 2016). Second, the MD network, especially in the prefrontal
cortex, may construct abstract representations of context, which serve as
working memory for guiding behavior (Alexander and Brown, 2018).
The main goal of such representations is to minimize prediction errors in
other brain regions, so these representations are communicated in a
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top-down manner to the language network or other domain-specific
networks (e.g., sensory areas). Such high-level, abstract predictive sig-
nals are potentially useful because they could perhaps “explain away”
some more local prediction errors computed in the language network (e.
g., in a sentence like “the cat that the dog chased on the balcony
escaped”, the verb “escaped” might be unexpected based on the local
context of the previous few words, but its occurrence could be explained
away by a more global and abstract representation that looks farther
into the past and predicts a verb for “the cat” in the main clause). In
essence, then, signals from the MD network could bias representations in
the language network in favor of the features that are most relevant in a
given context (for a similar reasoning for sensory cortices, see Miller and
Cohen, 2001; Sreenivasan et al., 2014; D’Esposito and Postle, 2015).
However, these higher-level predictions are still sometimes incorrect,
and when errors propagate back to the MD network, its regions would be
triggered to adjust their predictive model in order to minimize future
errors. This “model revision” process may register as increased neural
processing (Chao et al., 2018).

Prior fMRI studies using hand-constructed sentences to probe effects
of linguistic expectation have not yielded a clear answer as to the
mechanisms—language-specific vs. domain-general—that support lin-
guistic prediction. Numerous such studies have observed responses in
areas of the language network to manipulations of word predictability
(Kuperberg et al., 2000; Baumgaertner et al., 2002; Kiehl et al., 2002;
Friederici et al., 2003; Gold et al., 2006; Obleser et al., 2007; Dien et al.,
2008; Obleser and Kotz, 2009; Bonhage et al., 2015; Schuster et al.,
2016, 2019; Hartwigsen et al., 2017; Matchin et al., 2018). However, as
discussed above, many studies have also reported linguistic prediction
effects in frontal, parietal, and cingulate cortical regions typically
associated with the MD network (Kuperberg et al., 2000; Baumgaertner
et al., 2002; Gold et al., 2006; Bonhage et al., 2015; Hartwigsen et al.,
2017), as well as in other parts of the brain like the fusiform gyrus
(Kuperberg et al., 2000; Gold et al., 2006) and the cerebellum (Lesage
et al., 2017). Although it is certainly possible that predictive coding for
language is carried out by both the LANG and the MD networks, with
additional contributions from other brain areas, it is important to ensure
that the foregoing results are not due to task artifacts induced by the use
of artificially constructed stimuli (see Discussion), through validation of
these findings in more naturalistic comprehension conditions (Hasson
et al., 2018).

To distinguish between hypotheses above in a naturalistic compre-
hension paradigm, we searched for neural responses in LANG vs. MD
regions to the contextual predictability of words as estimated by two
model implementations of surprisal: a surface-level 5-gram model, and a
hierarchical probabilistic context-free grammar (PCFG) model. N-gram
surprisal estimates are sensitive to word co-occurrence patterns but are
limited in their ability to model hierarchical natural language syntax,
since they contain no explicit representation of grammatical categories
or syntactic composition and have limited memory for preceding words
in the sentence (in our case, up to four preceding words). PCFG surprisal
estimates, by contrast, are based on structured syntactic representations
of the unfolding sentence but do not directly encode surface-level word
co-occurrence patterns. Correlations between each of these two mea-
sures and human neural responses would shed light on the relative
importance assigned to these two information sources (word co-
occurrences and syntactic structures) in computing predictions about
upcoming words. Although surprisal is not the only extant measure of
linguistic prediction (others include PCFG entropy, Roark et al., 2009;
entropy reduction, Hale, 2006; and successor surprisal, Kliegl et al.,
2006), surprisal has received extensive consideration in the experi-
mental literature (e.g., Demberg and Keller, 2008; Frank and Bod, 2011;
Fossum and Levy, 2012; Frank et al., 2015; van Schijndel and Schuler,
2015; Brennan et al., 2016; Henderson et al., 2016; Brennan and Hale,
2019; Shain, 2019). We did not consider these related measures in order
to avoid excessive statistical comparisons.

Note that by estimating prediction effects using surprisal, we are
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implicitly assuming a notion of linguistic prediction as a distributed pre-
activation process, following e.g. Kuperberg and Jaeger (2016), rather
than as an all-or-nothing commitment to a specific upcoming word.
Thus, we are investigating the degree to which the statistics of the local
lexical (n-gram) and structural (PCFG) linguistic context modulate
neural recruitment during the sentence processing, and which cognitive
systems (language-specific vs. domain-general) are subject to such
modulation. We leave aside questions about the underlying mechanisms
by which these effects arise: e.g. the extent to which they are “active” or
“passive”, or the extent to which integrative structure-building opera-
tions (e.g. composing words into syntactic constituents, constructing
dependencies, etc.) underlie the observed facilitation effects (Altmann,
1998; Hale, 2014) (See Discussion for elaboration on this point.)

To identify language-specific and domain-general cortical regions
without having to rely on the problematic practice of reverse inference
from anatomy to function (Poldrack, 2006, 2011, Fig. 1), we function-
ally defined the LANG and MD networks in each individual participant
using an independent “localizer” task (Saxe et al., 2006; Fedorenko
etal., 2010), and then examined the response of those functional regions
to each estimate of surprisal during naturalistic comprehension. To
foreshadow our results, we find significant independent effects of
5-gram and PCFG surprisal in LANG, but no such effects in MD, as well as
significant differences in surprisal effect sizes between the two net-
works. This finding supports the hypothesis that predictive coding for
language is primarily carried out by language-specialized rather than
domain-general cortical circuits and exploits both surface-level and
structural cues.

2. Materials and methods
2.1. General approach

Several features set the current study apart from prior cognitive
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neuroscience
comprehension.

First, we used naturalistic language stimuli rather than controlled
stimuli constructed for a particular experimental goal. Naturalistic
stimuli improve ecological validity compared to isolated constructed
stimuli that may introduce task artifacts and not generalize to everyday
cognition (Demberg and Keller, 2008; Hasson and Honey, 2012; Richlan
et al., 2013; Schuster et al., 2016; Campbell and Tyler, 2018). Mini-
mizing such artifacts is crucial in studies of the MD network, which is
highly sensitive to task variables (Miller and Cohen, 2001; Sreenivasan
et al., 2014; D’Esposito and Postle, 2015; Diachek et al., 2019). More-
over, prior work indicates that naturalistic stimuli yield more reliable
fMRIBOLD signals than artificial tasks (Hasson et al., 2010).

Second, we used participant-specific functional localization to
identify regions of interest constituting the LANG and MD networks
(Fedorenko et al., 2010). This approach is crucial because many func-
tional regions do not exhibit a consistent mapping onto
macro-anatomical landmarks (e.g., Frost and Goebel, 2012; Tahmasebi
et al., 2012; Vazquez-Rodriguez et al., 2019), and this variability is
especially problematic when functionally distinct regions lie in close
proximity to one another, as is the case in the frontal (Amunts et al.,
1999; Tomaiuolo et al., 1999), temporal (Jones and Powell, 1970; Gloor,
1997; Wise et al., 2001) and parietal (Caspers et al., 2006, 2008; Sche-
perjans et al., 2008) lobes, which house the LANG and MD networks.
Due to this inconsistent functional-to-anatomical mapping, a given ste-
reotactic coordinate might belong to the LANG network in some par-
ticipants but to the MD network in others, as is indeed the case in our
sample (Fig. 1) (see also Fedorenko et al., 2012a; Blank et al., 2017;
Fedorenko & Blank, in press). Such inter-individual variability severely
compromises the validity of both anatomical localization (Juch et al.,
2005; Poldrack, 2006; Fischl et al., 2007; Frost and Goebel, 2012;
Tahmasebi et al., 2012) and group-based functional localization (Saxe
et al., 2006; Fedorenko and Kanwisher, 2009): these approaches risk

investigations of linguistic prediction during

Fig. 1. Inter-individual variability in the mapping of
function onto anatomy. Each column demonstrates
variability in a different coordinate in MNI space,
specified at the top (in mm). For each coordinate,
sagittal T1 slices from four participants are shown,
with the coordinate circled on each slice (participants
differ across columns). In each case, the top two
participants show a Sentences > Nonwords effect in
this coordinate (colored in red-yellow), whereas the
bottom two participants show the opposite, Non-
words > Sentences effect in this same coordinate
(colored in green-blue). In all cases, the effect size of
the circled coordinate is strong enough to be included
among the participant-specific fROIs. Other voxels
exhibiting strong contrast effects in the localizer task
(namely, among the top 10% of voxels across the
neocortical gray matter) are superimposed onto the
anatomical slices, in color. Colorbars show p-values
associated with each of the two localizer contrasts.
(For interpretation of the references to color in this
figure legend, the reader is referred to the Web
version of this article.)
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both decreased sensitivity (i.e. failing to identify a functional region due
to insufficient spatial alignment across participants) and decreased
functional resolution (i.e. mistaking two functionally distinct regions for
a single region due to apparent spatial overlap across the sample). In
contrast, participant-specific functional localization allows us to pool
data from a given functional region across participants even in the
absence of perfect anatomical alignment, and is therefore better suited
for the kind of questions we study here (Nieto-Castanon and Fedorenko,
2012). Both networks we probe here have been extensively functionally
characterized in prior work, so responses to linguistic surprisal therein
can be taken to index the engagement of linguistic processing mecha-
nisms vs. domain-general executive mechanisms (e.g., Mather et al.,
2013).

Third, we analyzed the BOLD signal times-series using a recently
developed statistical framework—continuous-time deconvolutional
regression (CDR; Shain and Schuler, 2018, 2019)—that is designed to
overcome problems in hemodynamic response modeling presented by
naturalistic experiments. Namely, the variable spacing of words in
naturalistic language prevents direct application of discrete-time,
data-driven techniques for hemodynamic response function (HRF) dis-
covery, such as finite impulse response modeling (FIR) or vector
autoregression. Because CDR is a parametric continuous-time decon-
volutional method, it can infer the hemodynamic response directly from
naturalistic time series, without distortionary preprocessing steps such
as predictor interpolation (cf. Huth et al., 2016). Thus, unlike prior
naturalistic fMRI studies of prediction effects in language processing
(Table 1), we do not assume the shape of the HRF.

Fourth, unlike studies in Table 1, we evaluated hypotheses using
non-parametric statistical tests of model fit to held-out (out-of-sample)
data, an approach which builds external validity directly into the sta-
tistical test and should thereby improve replicability (e.g., Demsar,
2006).

Finally, to our knowledge, this is the largest fMRI investigation to
date (78 participants) of prediction effects in naturalistic language
comprehension.

3. Experimental design
3.1. Participants

Seventy-eight native English speakers (30 males), aged 18-60
(M+£SD = 25.8 4+ 9, Med + SIQR = 23 + 3), from MIT and the sur-
rounding Boston community participated for payment. Each participant
completed a passive story comprehension task (the critical experiment)
and a functional localizer task designed to identify the LANG and MD
networks.

Sixty-nine participants (88%) were right-handed, as determined by
either the Edinburgh handedness inventory (n = 66) (Oldfield, 1971) or
self-report (n = 11) (handedness data were not collected for one
participant). Eight participants were left-handed, but seven of these
showed typical left-lateralized language activations, as determined by
examining their activation patterns for the language localizer task (see
below); the remaining participant had a right-lateralized language
network. We chose to include the latter participant’s data in the ana-
lyses, to err on the conservative side, and to be able to generalize the
results to the population at large (see Willems et al.,, 2015; for
discussion).

All participants gave informed consent in accordance with the re-
quirements of MIT’s Committee on the Use of Humans as Experimental
Subjects (COUHES).

3.2. Stimuli and procedure
The localizer task and critical (story comprehension) experiment

were run either in the same scanning session (67 participants) or in two
separate sessions (11 participants, who have performed the localizer
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task while participating in other studies; see Mahowald and Fedorenko,
2016, for evidence of high stability of language localizer activations
across sessions). For the critical experiment, each participant listened to
one or more stories (one story: n = 34; two stories: n = 14; three stories:
n = 13; four stories: n = 2; five stories: n = 4; six stories: n = 5; seven
stories: n = 1; or eight stories: n = 5). In each session, participants
performed a few other, unrelated tasks, with scanning sessions lasting
approximately 2 h.

Localizer task. We used a single localizer task to identify functional
regions of interest in both the LANG and MD networks, using opposite
task contrasts across these networks as described below. This task, which
has been described in more detail elsewhere (Fedorenko et al., 2010),
consisted of reading sentences and lists of unconnected, pronounceable
nonwords in a standard two-condition blocked design with a counter-
balanced order across runs. Stimuli were presented one word/nonword
at a time. The majority of participants (n = 60) read these materials
passively (and pressed a button at the end of each trial, to sustain
alertness); for some participants (n = 18), every trial ended with a
memory probe item, and they had to indicate via a button press whether
or not this probe had appeared in the preceding sentence/nonwords
sequence. In addition, different participants performed versions of the
task differing slightly in stimulus timing, number of blocks, etc., i.e.
features that do not affect the robustness of the contrast (e.g., Fedorenko
et al., 2010; Mahowald and Fedorenko, 2016) (for experimental pa-
rameters, see Table 2). A version of this localizer is available at https://e
vlab.mit.edu/funcloc/download-paradigms.

To identify LANG regions, we used the contrast sentences > nonwords.
This contrast targets higher-level aspects of language, to the exclusion of
perceptual (speech/reading) and motor-articulatory processes (for dis-
cussion, see Fedorenko and Thompson-Schill, 2014; or Fedorenko, in
press). Critically, this localizer has been extensively validated over the
past decade across diverse parameters: it generalizes across tasks (pas-
sive reading vs. memory probe), presentation modalities (visual vs.

Table 2
Experimental parameters for the different versions of the localizer task.
Version
A B C D
Number of 60 6 5

participants
Task (Passive PR M M M

Reading/

Memory)

Words/nonwords 12 12 8 12

per trial
Trial duration 6000 6000 4800 6000

(ms)

Fixation 100 300 300 300

Presentation of 450 350 350 350

each word/

nonword

Probe (M) + 400 1000 1350 1000

button press

(M/PR)

Fixation 100 500 350 500
Trials per block 3 3 5 3
Block duration (s) 18 18 24 18
Blocks per 8 8 4 6

condition (per

run)

Conditions Sentences Sentences Sentences Sentences
Nonwords Nonwords Nonwords Nonwords
Word-lists® Word-lists®
Fixation block 14 18 16 18

duration (s)

Number of 5 5 3 4
fixation blocks

Total run time (s) 358 378 336 396

Number of runs 2 2 3-4 2-3

# Used for the purposes of another experiment; see (Fedorenko et al., 2010).
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auditory), and materials (e.g., Fedorenko et al., 2010; Braze et al., 2011;
Vagharchakian et al., 2012), including both coarser contrasts (e.g., be-
tween natural speech and an acoustically degraded control: Scott et al.,
2017) and narrower contrasts (e.g., between lists of unconnected, real
words and nonword lists, or between sentences and lists of real words:
Fedorenko et al., 2010; Blank et al., 2016). Whereas there are many
potential differences (linguistic and otherwise) between the processing
of sentences vs. nonwords, all regions localized with the sentences >
nonwords contrast show a similar response profile: on the one hand, they
exhibit sensitivity to various aspects of linguistic processing, including
(but not limited to) lexical, phrasal, and sentence-level semantic and
syntactic processing (e.g., Fedorenko et al., 2012b, 2018; Blank et al.,
2016; Mollica et al., 2018; Blank & Fedorenko, in revision; similar
patterns obtain in electrocorticographic data with high temporal reso-
lution: Fedorenko et al., 2016). On the other hand, they show robust
language-selectivity in their responses, with little or no response to
non-linguistic tasks, including domain-general contrasts targeting, e.g.,
working memory or inhibitory control (Fedorenko et al., 2011, 2012a).
In other words, the localizer shows both convergent construct validity
with other linguistic contrasts, and discriminant construct validity
against non-linguistic contrasts. Moreover, the functional network
identified by this contrast is internally synchronized yet strongly
dissociated from other brain networks during naturalistic cognition (e.
g., Blank et al., 2014; Paunov et al., 2019; Braga et al., 2019; for evi-
dence from inter-individual effect-size differences, see: Mineroff et al.,
2018), providing evidence that the localizer task is ecologically valid.
Thus, a breadth of evidence demonstrates that the sentences > nonwords
contrast identifies a network that is engaged in language processing and
appears to be a “natural kind” in the functional architecture of the
human brain.

To identify MD regions, we used the nonwords > sentences contrast,
targeting regions that increase their response with the more effortful
reading of nonwords compared to that of sentences. This “cognitive
effort” contrast robustly engages the MD network and can reliably
localize it. Moreover, it generalizes across a wide array of stimuli and
tasks, both linguistic and non-linguistic including, critically, contrasts
targeting executive functions such as working-memory and inhibitory
control (Fedorenko et al., 2013; Mineroff et al., 2018). Supplementary
Figs. 1 and 2 demonstrate that the MD regions thus localized robustly
respond to a difficulty (i.e. memory load) manipulation in a
non-linguistic, spatial working-memory task (administered to a subset of
participants in the current dataset).

Main (story comprehension) task. Participants listened to stories from
the publicly available Natural Stories Corpus (Futrell et al., 2018). These
stories were adapted from existing texts (fairy tales and short stories) to
be “deceptively naturalistic™: they contained an over-representation of
rare words and syntactic constructions embedded in otherwise natural
linguistic context. Behavioral data indicate that these stories effectively
manipulate predictive processing, as self-paced reading times from an
independent sample show robust effects of surprisal (Futrell et al.,
2018). Stories were recorded by two native English speakers (one male,
one female) at a 44.1 kHz sampling rate, ranged in length from 4m46s to
6m29s (983-1099 words), and were played over scanner-safe head-
phones (Sensimetrics, Malden, MA).

Following each story, some participants answered six (n = 29) or
twelve (n = 12) comprehension questions, presented in a two-
alternative forced-choice format. For all but 4 of these participants,
accuracy was significantly above chance (binomial test for each partic-
ipant: all ps < 0.046, uncorrected). For the remaining participants,
comprehension questions were not part of the experimental design (n =
30), were not collected due to equipment malfunction (n = 4), or were
lost (n = 3). We note that BOLD signal time-series show indistinguish-
able levels of stimulus-locked activity regardless of whether compre-
hension questions are administered or not, at least in the networks
studied here (Blank and Fedorenko, 2017).
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3.3. Data acquisition and preprocessing

Data acquisition. Structural and functional data were collected on a
whole-body 3 Tesla Siemens Trio scanner with a 32-channel head coil at
the Athinoula A. Martinos Imaging Center at the McGovern Institute for
Brain Research at MIT. T1-weighted structural images were collected in
176 axial slices with 1 mm isotropic voxels (repetition time (TR) =
2,530 ms; echo time (TE) = 3.48 ms). Functional, blood oxygenation
level-dependent (BOLD) data were acquired using an EPI (echo-planar
imaging) sequence with a 90° flip angle and using GRAPPA (GeneRal-
ized Autocalibrating Partial Parallel Acquisition) with an acceleration
factor of 2; the following parameters were used: thirty-one 4.4 mm thick
near-axial slices acquired in an interleaved order (with 10% distance
factor), with an in-plane resolution of 2.1 mm x 2.1 mm, FoV (field of
view) in the phase encoding (Anterior » Posterior) direction 200 mm and
matrix size 96 mm x 96 mm, TR = 2000 ms and TE = 30 ms. The first 10
s of each run were excluded to allow for steady state magnetization.

Spatial preprocessing. Data preprocessing was carried out with SPM5
and custom MATLAB scripts. Preprocessing of anatomical data included
normalization into a common space (Montreal Neurological Institute
(MNI) template), resampling into 2 mm isotropic voxels, and segmen-
tation into probabilistic maps of the gray matter, white matter (WM) and
cerebrospinal fluid (CSF). Preprocessing of functional data included
motion correction, normalization, resampling into 2 mm isotropic vox-
els, smoothing with a 4 mm FWHM Gaussian kernel and high-pass
filtering at 200s. Note that SPM was only used for preprocessing and
basic first-level modeling, aspects that have not changed much in later
versions; we used an older version of SPM because data for this study are
used across other projects spanning many years and hundreds of par-
ticipants, and we wanted to keep the SPM version the same across all the
participants.

Temporal preprocessing. Data from the story comprehension runs were
additionally preprocessed using the CONN toolbox (Whitfield-Gabrieli
and Nieto-Castanon, 2012) with default parameters, unless specified
otherwise. Five temporal principal components of the BOLD signal
time-series from the WM were regressed out of each voxel’s time-course;
signal originating in the CSF was similarly regressed out. Six principal
components of the six motion parameters estimated during offline mo-
tion correction were also regressed out, as well as their first time
derivative.

3.4. Participant-specific functional localization of the LANG and MD
networks

Modeling localizer data. A general linear model estimated the voxel-
wise effect size of each condition in each experimental run of the
localizer task. These effects were each modeled with a boxcar function
(representing entire blocks/events) convolved with the canonical He-
modynamic Response Function (HRF). The model also included first-
order temporal derivatives of these effects, as well as nuisance re-
gressors representing entire experimental runs and offline-estimated
motion parameters. The obtained beta weights were then used to
compute the two functional contrasts of interest: sentences > nonwords
for identifying LANG regions, and nonwords > sentences for identifying
MD regions. These contrasts were computed only for voxels whose
probability of belonging to the gray matter was greater than 1/3, based
on the segmentation of the participant’s anatomical data. All other
voxels were not considered further.

Defining functional regions of interest (fROIs). For each participant,
functional ROIs were defined by combining two sources of information
(Fedorenko et al., 2010; Julian et al., 2012): (i) the participant’s acti-
vation map for the relevant localizer contrast (converted from beta
weights to t-scores), and (ii) group-level constraints (“masks”; available
for download from https://evlab.mit.edu/funcloc/download-parcels).
The latter demarcated brain areas within which most or all individuals
in prior studies showed activity for the localizer contrasts (Fig. 2).
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For the LANG fROIs, we used masks derived from a group-level
probabilistic representation of the sentences > nonwords contrast in a
set of 220 participants. These masks were similar to the masks derived
from 25 participants, as originally reported in Fedorenko et al. (2010),
and covered extensive portions of the left lateral frontal, temporal, and
parietal cortices. In particular, six masks were used: in the inferior
frontal gyrus (IFG) and its orbital part (IFGorb), middle frontal gyrus
(MFQ), anterior temporal cortex (AntTemp), posterior temporal cortex
(PostTemp), and angular gyrus (AngG).

For the MD fROIs, we used masks derived from a group-level prob-
abilistic representation of data from a previously validated MD-localizer
task in a set of 197 participants. The task, described in detail in Fedor-
enko et al. (2011), contrasted hard and easy versions of a visuo-spatial
working memory task (we did not use masks based on the nonwords
> sentences contrast in order to maintain consistency with other current
projects in our lab, and because prior work has established the similarity
of the activation landscapes for these two contrasts; Fedorenko et al.,
2013). These masks were constrained to be bilaterally symmetric by
averaging individual hard > easy contrast maps across the two hemi-
spheres prior to generating the group-level representation (only the
group-based masks, covering large swaths of cortex, were constrained in
this way; fROIs in the current study were free to vary in their location
across hemispheres, within the borders of these masks). The topography
of these masks largely overlapped with anatomically based masks that
we had used in previous work (e.g., Fedorenko et al., 2013; Blank et al.,
2014; Paunov et al., 2019). In particular, 10 masks were used in each
hemisphere: in the posterior (PostPar), middle (MidPar), and anterior
(AntPar) parietal cortex, precentral gyrus (PrecG), superior frontal gyrus
(SFG), middle frontal gyrus (MFG) and its orbital part (MFGorb), oper-
cular part of the inferior frontal gyrus (IFGop), the anterior cingulate
cortex and pre-supplementary motor cortex (ACC/pSMA), and the insula
(Insula).

These group-level masks, in the form of binary maps, were used to
constrain the selection of participant-specific fROIs. In particular, for
each participant, 6 LANG fROIs were created by (i) intersecting each
LANG mask with each individual participant’s unthresholded t-map for
the sentences > nonwords contrast; and then (ii) choosing the 10% of

(A) Group-based
masks

(B) Overlap: localizer
contrast effect

(C) Overlap: fROIs
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voxels with highest t-scores in the intersection. Similarly, 20 MD fROIs
were created by intersecting each MD mask with each participant’s
unthresholded t-map for the nonwords > sentences contrast and selecting
the 10% of voxels with the highest t-scores within each intersection. This
top-10% criterion balances the trade-off between choosing only voxels
that respond robustly to the relevant contrast and having a sufficient
number of voxels in each fROI of each participant. Moreover, this cri-
terion guarantees fROIs of identical size across participants (occupying
10% of each mask). Few exceptions to this criterion were made for those
cases where less than 10% of the voxels in a mask showed a t-score
greater than 0; here, we only included the subset of voxels with positive
t-scores in the fROI, and excluded those voxels showing effects in the
opposite direction.

Prior to the critical statistical analyses, we ensured that all fROIs
showed the expected functional signatures, i.e. a sentences > nonwords
effect for the LANG fROIs, and a nonwords > sentences effect for the MD
fROIs. To this end, the reliability of each contrast effect (i.e. the differ-
ence between the beta estimates of the two localizer conditions) was
tested using a 2-fold across-run cross-validation: for each participant,
fROIs were defined based on odd (even) run(s) and, subsequently, in-
dependent estimates of the relevant contrast effect were obtained from
the left-out even (odd) run(s). These contrast effects were averaged
across the two partitions (odd/even) and tested for significance across
participants, via a dependent samples t-test (FDR-corrected for the
number of fROIs within each network). The sentence > nonwords effect
was highly reliable throughout the language network (for all six fROIs:
ty7) > 9.5,p < 10712 corrected; conservative effect size based on an
independent samples test: Cohen’s d > 0.82), and the nonwords > sen-
tences effect was highly reliable throughout the MD network (for all 20
fROISs: t77y > 2.25, p < 0.05; conservative effect size based on an inde-
pendent samples test: Cohen’s d > 0.16) (see also Supplementary Figs. 1
and 2 for evidence of overlap with a spatial working memory contrast, as
in Fedorenko et al., 2013).

(D) Examples of participant-specific fROIs:

G GG

o
N

Fig. 2. Defining participant-specific fROIs in the language (top) and MD (bottom) networks (only the left-hemisphere is shown). All images show approximated
projections from functional volumes onto the surface of an inflated brain in common space. (A) Group-based masks used to constrain the location of fROIs. Contours
of these masks are depicted in white on all brains in (B)-(D). (B) Overlap maps of localizer contrast effects (sentence > nonwords for the language network, nonwords
> sentences for the MD network) across the 78 participants in the current sample (these maps were not used in the process of defining fROIs and are shown for
illustration purposes). Each non gray-scale coordinate is colored according to the percentage of participants for whom that coordinate was among the top 10% of
voxels showing the strongest localizer contrast effects across the neocortical gray matter. (C) Overlap map of fROI locations. Each non gray-scale coordinate is colored
according to the number of participants for whom that coordinate was included within their individual fROIs. (D) Example fROIs of three participants. Apparent
overlap across language and MD fROIs within an individual is illusory and due to projection onto the cortical surface. Note that, because data were analyzed in
volume (not surface) form, some parts of a given fROI that appear discontinuous in the figure (e.g., separated by a sulcus) are contiguous in volumetric space.
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4. Statistical analysis
4.1. Predictor definitions

To estimate word predictability in naturalistic data, we used an
information-theoretic measure known as surprisal (Shannon, 1948; Hale,
2001): the negative log probability of a word given its context. Surprisal
can be computed in many ways, depending on the choice of probability
model. Three previous naturalistic fMRI studies (Willems et al., 2015;
Brennan et al., 2016; Lopopolo et al., 2017) searched for surface-level
n-gram surprisal effects, using words and/or parts of speech as the
token-level representation. In addition, two previous naturalistic fMRI
studies (Brennan et al., 2016; Henderson et al, 2016) probed
structure-sensitive PCFG surprisal measures (Hale, 2001; Roark et al.,
2009). As discussed in the Introduction, results from these studies failed
to converge on a clear answer as to the nature and functional location of
surprisal effects. In this study, we therefore used the following surprisal
estimates:

e 5-gramSurprisal: 5-gram surprisal for each word in the stimulus set
from a KenLM (Heafield et al., 2013) language model with default
smoothing parameters trained on the Gigaword 3 corpus (Graff et al.,
2007). 5-gram surprisal quantifies the predictability of words as the
negative log probability of a word given the four words preceding it
in context.

e PCFG Surprisal: Lexicalized probabilistic context-free grammar
surprisal computed using the incremental left-corner parser of van
Schijndel et al. (2013) trained on a generalized categorial grammar
(Nguyen et al., 2012) reannotation of Wall Street Journal sections 2
through 21 of the Penn Treebank (Marcus et al., 1993).

Models also included the control variables Sound Power, Repetition
Time (TR) Number, Rate, Frequency, and Network, which were oper-
ationalized as follows:

e Sound Power: Frame-by-frame root mean squared energy (RMSE) of

the audio stimuli computed using the Librosa software library

(McFee et al., 2015).

TR Number: Integer index of the current fMRI sample within the

current scan.

e Rate: Deconvolutional intercept. A vector of ones time-aligned with

the word onsets of the audio stimuli. Rate captures influences of

stimulus timing independently of stimulus properties (see e.g.,

Brennan et al., 2016; Shain and Schuler, 2018).

Frequency: Corpus frequency computed using a KenLM unigram

model trained on Gigaword 3. For ease of comparison to surprisal,

frequency is represented here on a surprisal scale (negative log

probability), such that larger values index less frequent words (and

thus greater expected processing cost).

e Network: Numeric predictor for network ID, 0 for MD and 1 for
LANG.

Models additionally included the mixed-effects random grouping
factors Participant and fROI. Prior to regression, all predictors were
rescaled by their standard deviations in the training set except Rate
(which has no variance) and Network (which is an indicator variable).
Reported effect sizes are therefore in standard units.

4.2. Continuous-time deconvolutional regression

Naturalistic language stimuli pose a challenge for established sta-
tistical methods in fMRI because the stimuli (words) (1) are variably
spaced in time and (2) do not temporally align with response samples
recorded by the scanner. Previous approaches to address this issue have
various drawbacks. Some fMRI studies of naturalistic language pro-
cessing have assumed a canonical shape for the hemodynamic response
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function (Boynton et al., 1996) and used it to convolve stimulus prop-
erties into response-aligned measures (Willems et al., 2015; Brennan
et al., 2016; Lopopolo et al., 2017). This approach is unable to account
for regional variation in the shape of the hemodynamic response, even
though the canonical HRF is known to be a poor fit to some brain regions
(Handwerker et al., 2004). Discrete-time methods for data-driven HRF
identification such as finite impulse response modeling (FIR; Dayal and
MacGregor, 1996) and vector autoregression (VAR; Sims, 1980) are
widely used to overcome the limitations of the canonical HRF for fMRI
research (e.g., Friston et al., 1994; Harrison et al., 2003) but are of
limited use in the naturalistic setting because they assume (multiples of)
a fixed time interval between stimuli that does not apply to words in
naturally-occurring speech. Some studies (e.g. Huth et al., 2016) address
this problem by continuously interpolating word properties, resampling
the interpolated signal so that it temporally aligns with the fMRI record,
and fitting FIR models using the resampled design matrix. However, this
approach can be distortionary in that word properties (e.g., surprisal)
are not temporally continuous.

Our study employed a recently developed continuous-time decon-
volutional regression (CDR) technique that accurately infers parametric
continuous-time impulse response functions—such as the HRF—from
arbitrary time series (Shain and Schuler, 2018, 2019). Because CDR is
data-driven, it can address the potential impact of poor fit in the ca-
nonical HRF, and because it is defined in continuous time, it eliminates
the need for distortionary preprocessing steps like continuous interpo-
lation. CDR models in this study used the following two-parameter HRF
kernel based on the widely-used double-gamma canonical HRF (Lind-
quist et al., 2009):

ﬂaxafle%‘ 1 ﬂa+lUXa+‘)e7—j‘
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where a and p are initialized to the SPM defaults of 6 and 1, respectively.
More complex kernels (e.g., that fit the amplitude of the second term,
rather than fixing it at 1/6) were avoided because of their potential to
overfit.

The parametric continuous-time nature of CDR is similar to that of
models used, for example, by Kruggel and von Cramon (1999), Kruggel
et al. (2000), Miezin et al. (2000), Lindquist and Wager (2007), and
Lindquist et al. (2009) for nonlinear estimation of gamma-shaped HRFs.
The main advantages of CDR over these approaches are that (1) it ex-
ploits the Tensorflow (Abadi et al., 2015) and Edward (Tran et al., 2016)
libraries for optimizing large-scale variational Bayesian computation
graphs using state of the art estimation techniques from deep lear-
ning—this study used the Adam optimizer with Nesterov momentum
(Kingma and Ba, 2014; Nesterov, 1983; Dozat, 2016); (2) it supports
mixed effects modeling of effect coefficients and HRF parameters; and
(3) it supports parameter tying, constraining the solution space by
ensuring that all predictors share a common HRF shape in a given region
(with potentially differing amplitudes). Predictors in these models were
given their own coefficients (which rescale h above), but the parameters
o and B of h were tied across predictors, modeling the assumption of a
fixed-shape blood oxygenation response to neural activity in a given
cortical region.

The CDR models applied in this study assumed improper uniform
priors over all parameters in the variational posterior and were opti-
mized using a learning rate of 0.001 and stochastic minibatches of size
1024. Following standard practice from linear mixed-effects regression
(Bates et al., 2015), random effects were L2-regularized toward zero at a
rate of 1.0. Convergence was declared when the loss was uncorrelated
with training time by t-test at the 0.5 level for at least 250 of the past 500
training epochs. For computational efficiency, predictor histories were
truncated at 256 timesteps (words), which yields a maximum temporal
coverage in our data of 48.34s (substantially longer than the effective
influence of the canonical HRF). Prediction from the network used an
exponential moving average of parameter iterates (Polyak and Juditsky,
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1992) with a decay rate of 0.999, and models were evaluated using
maximum a posteriori estimates obtained by setting all parameters in the
variational posterior to their means. This approach is valid because all
parameters are independent Gaussian in the CDR variational posterior
(Shain and Schuler, 2018).

4.3. Model specification

The following CDR model specification was fitted to responses from
each of the LANG and MD fROIs, where italics indicate predictors
convolved using the fitted HRF and bold indicates predictors that were
ablated for hypothesis tests:

BOLD ~ TRNumber + soundPower + Rate + Frequency + 5-gram+
PCFG + (TRNumber + soundPower + Rate + Frequency + 5-gram + PCFG
| fROD) + (1 | Participant).

The random effect by fROI indicates that the model included zero-
centered by-fROI random variation in response amplitude and HRF
parameters for each functional region of interest. As shown, the model
also included a random intercept by participant (the data do not appear
to support richer by-participant random effects, e.g. including random
slopes and HRF shapes, since such models explained no held-out vari-
ance in early analyses, indicating overfitting). The above model can test
whether the surprisal variables help predict neural activation in a given
cortical region. However, it cannot be used to compare the magnitudes
of response to surprisal across networks (Nieuwenhuis et al., 2011).
Therefore, we directly tested for a difference in influence by fitting the
combined responses from both LANG and MD using the following model
specification with the indicator variable Network:

BOLD ~ TRNumber + soundPower + Rate + Frequency + 5-gram+
PCFG + Network + TRNumber:Network + soundPower:Network + Rate:
Network + Frequency:Network + 5-gram:Network + PCFG:Network +
(1 | fROD) + (1 | Participant).

The random effects by fROI were simplified in comparison to that of
the single-network models because the Network variable exactly parti-
tions the fROIs. Thus ablated models can fully capture network differ-
ences as long as they have by-fROI random effects for surprisal. Indeed,
initial tests showed virtually no difference in held-out likelihood be-
tween full and ablated combined models when those models included
full by-fROI random effects despite large-magnitude estimates for the
interactions with Network in the full model. Furthermore, the fitted
parameters suggested that the by-fROI term was being appropriated in
ablated models to capture between-network differences. In the full
model, the 5-gram Surprisal estimates for 50% of LANG fROIs and 45% of
MD fROIs were positive, while in the model with 5-gram:Network abla-
ted, 100% of LANG fROIs and only 20% of MD fROIs were positive,
indicating that differences in response to 5-gram Surprisal had been
"pushed" into the by-fROI random term. For this reason, we used simpler
models for the combined test, despite their insensitivity to by-fROI
variation in HRF shape or response amplitude.

In interactions between Network and convolved predictors, the
interaction was computed following convolution but prior to rescaling
with that predictor’s coefficient. Thus, the interaction term represents
the offset in the estimated coefficient from the MD network to the LANG
network, as is the case for binary interaction terms in linear regression
models.

Finally, exact deconvolution from continuous predictors like Sound
Power is not possible, since such predictors do not have an analytical
form that can be integrated. Instead, we sampled sound power at fixed
intervals (100 ms), in which case the event-based CDR procedure re-
duces to a Riemann sum approximation of the continuous convolution
integral. Note that the word-aligned predictors (e.g. 5-gram Surprisal)
therefore have different timestamps than Sound Power, and as a result
the history window spans different regions of time (up to 128 words into
the past for the word-aligned predictors and up to 100 ms x 128 =12.8s
of previous Sound Power samples).
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4.4. Ablative statistical testing

In order to avoid confounds from (1) collinearity in the predictors
and/or (2) overfitting to the training data, we followed a standard
testing protocol from machine learning of evaluating differences in
prediction performance on out-of-sample data using ablative non-
parametric paired permutation tests for significance (Demsar, 2006).
This approach can be used to assess the presence of an effect by
comparing the prediction performance of a model that contains the ef-
fect against that of an ablated model that does not contain it. Specif-
ically, given two pre-trained nested models, we computed the
out-of-sample by-item likelihoods from each model over the evalua-
tion set and constructed an empirical p value for the likelihood differ-
ence test statistic by randomly swapping by-item likelihoods n times
(where n = 10,000) and computing the proportion of obtained likeli-
hood differences whose magnitude exceeded that observed between the
two models. To ensure a single degree of freedom for each comparison,
only fixed effects were ablated, with all random effects retained in all
models.

The data partition was created by cycling TR numbers e into different
bins of the partition with a different phase for each participant u:

partition (e; u) _etu
30

mod 2

assigning output 0 to the training set and 1 to the evaluation set. Since
TR duration is 2s, this procedure splits the BOLD times series into 60 s
chunks, alternating assignment of chunks into training and evaluation
sets with a different phase for each participant. Partitioning in this way
allowed us to (1) obtain a model of each participant, (2) cover the entire
time series, and (3) sub-sample different parts of the time series for each
participant during training, while at the same time suppressing corre-
lation between the training and evaluation responses by using a rela-
tively long period of alternation (30 TRs or 60s).

4.5. Accessibility

Access instructions for software and supplementary data needed to
replicate these experiments (e.g. librosa, PyMVPA, CDR, KenLM, Giga-
word 3, etc.) are given in the publications cited above. Post-processed
fMRI timeseries are publicly available at the following URL: htt
ps://osf.io/eyp8q/. These experiments were not pre-registered.

5. Results

The CDR-estimated mean double-gamma hemodynamic response
functions (HRFs) for the LANG and MD networks are given in Fig. 3, the
estimated HRFs by fROI in LANG regions are shown in Fig. 4, surprisal
estimates and percent variance explained by fROI are given in Tables 3
and 4, and population-level effect estimates (i.e. areas under the esti-
mated HRFs) are reported in Table 5. MD estimates by region are plotted
in Supplementary Figs. 3 and 4; they are of little relevance because they
do not generalize (Tables 4 and 6). As shown, HRF shapes resemble but
deviate slightly from the canonical HRF (Boynton et al., 1996) to varying
degrees in each region, highlighting both consistency with HRF esti-
mates established by prior research as well as the potential of CDR to
discover subtle differences in HRF shape between cortical regions
(Handwerker et al., 2004) in naturalistic data. The models find positive
effects of similar strength for both 5-gram Surprisal and PCFG Surprisal in
LANG, and smaller effects of surprisal (even negative in the case of
5-gram Surprisal) in MD.

At the level of individual regions, the models explained held-out
variance in all but one of the LANG fROIs (the exception was the
AngG fROI). In contrast, the models explained no held-out variance in
any but one MD fROI (the left MFGorb fROI). We leave these two ex-
ceptions to future research, but overall, the results demonstrate that
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Fig. 3. Estimated overall double-gamma hemodynamic response functions (HRFs) by network. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.).
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Fig. 4. Estimated language-network HRFs by fROL

surprisal effects are generally present throughout the LANG network and
generally absent throughout the MD network. The differences between
the individual-network models are largely replicated in the Combined
model (Table 5), where main effects represent the estimated mean

Table 3
LANG surprisal estimates by fROI. Estimates given are the area under the
fitted HRF. Models explain held-out variance in all regions but AngG.

fROI Hemisphere  5-gram PCFG % Held-Out Variance response in MD while interactions with Network represent the estimated

estimate estimate Explained difference in mean response between LANG and MD. As shown, Com-
AngG L 0.030 0.156 0.0% bined model estimates of both 5-gram:Network and PCFG:Network are
ﬁ:gremp t g;ég 8:2(1)2 :;ZZ positive and large-magnitude, indicating that the model estimates these
IFGorb L 0.010 0.318 1.3% variables to yield greater increases in neural activity in LANG over MD.
MFG L 0.382 0.346 2.3% Table 6 reports model percent variance explained compared to a
PostTemp L 0.242 0.258 6.1% theoretical ceiling computed by regressing individual participants’
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Table 4
MD surprisal estimates by fROI. Estimates given are the area under the fitted
HRF. Models explain no held-out variance in any region except left MFGorb.

fROI Hemisphere  5-gram PCFG % Held-Out Variance
estimate estimate Explained
AntPar L 0.102 0.523 0.0%
IFGop L 0.009 0.141 0.0%
Insula L —0.200 0.284 0.0%
MFG L 0.074 0.026 0.0%
MFGorb L —-0.215 0.252 0.5%
MidPar L 0.116 —0.051 0.0%
mPFC L 0.125 0.257 0.0%
PostPar L 0.083 —0.006 0.0%
PrecG L 0.078 0.048 0.0%
SFG L 0.180 0.025 0.0%
AntPar R 0.016 0.077 0.0%
IFGop R —0.011 0.075 0.0%
Insula R —0.185 0.227 0.0%
MFG R 0.058 0.006 0.0%
MFGorb R —0.004 0.019 0.0%
MidPar R 0.040 —0.110 0.0%
mPFC R -0.321 0.440 0.0%
PostPar R 0.312 0.434 0.0%
PrecG R 0.034 0.118 0.0%
SFG R 0.066 —0.034 0.0%
Table 5
Model effect estimates.
Predictor Coefficient
LANG MD Combined
Sound Power —0.055 —0.006 —0.003
TR Number 0.148 0.048 0.005
Rate 0.242 0.146 0.048
Frequency —0.060 —0.199 —0.134
5-gram Surprisal 0.209 —0.025 0.003
PCFG Surprisal 0.235 0.097 0.038
Network - - -1.32
Sound Power by Network - - —0.050
TR Number by Network - - 0.008
Rate by Network - - 0.269
Frequency by Network - - 0.040
5-gram Surprisal by Network - - 0.212
PCFG Surprisal by Network - - 0.193

responses against responses from the same brain region in all other
participants exposed to that stimulus. This ceiling is designed to quantify
the variance that can be explained based on the stimuli alone, inde-
pendently of inter-participant variation. As shown, models explain a
substantial amount of the available variance in LANG. MD models
explain no variance on the evaluation set, suggesting that the MD model
did not learn generalizable patterns.

Because fROIs were modeled as random effects in these analyses,
pairwise statistical testing of between-region differences in effect
amplitude is not straightforward, and systematic investigation of re-
gions/subnetworks within each broader functional network is left to
future work. However, a qualitative examination of the by-region esti-
mates suggests potentially interesting functional differences within the
language network (Table 3). In particular, the IFG, MFG, and PostTemp
fROIs all responded roughly equally to both measures of surprisal. The

Table 6
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IFGorb fROI responded more to PCFG than 5-gram Surprisal (an unex-
pected finding given that this is not the language region that is tradi-
tionally most strongly associated with syntactic processing; e.g.,
Friederici, 2011; Blank et al., 2016). The AngG fROI showed a similar
pattern, but the models did not explain held-out variance for this fROI.
And the AntTemp fROI responded more to 5-gram than PCFG Surprisal (a
finding which bears on debates about the functional role of this brain
region in language processing; see Discussion). Although the differences
in effect sizes between the two surprisals are significant in each of
IFGorb, AngG, and AntTemp by Monte Carlo estimated credible in-
tervals tests, such tests are anticonservative in CDR (Shain and Schuler,
2019). Nonetheless, they suggest that different regions of the language
network might be differentially sensitive to surface-level vs. structural
properties of language. The internal architecture of the language
network has been long debated, and a number of proposals have been
put forward (e.g., Friederici, 2011, 2012; Baggio and Hagoort, 2011;
Tyler et al., 2011; Duffau et al., 2014; Ullman, 2016). However, no
consensus has yet been reached about whether different regions support
different aspects of language processing, and, if so, which regions sup-
port which linguistic computations (see e.g., Fedorenko et al., 2018, for
discussion). Perhaps neural investigations of naturalistic language
comprehension, combined with the power of the novel CDR approach
and stringent statistical evaluation, can help inform this ongoing debate.

Tables 7-9 show the main finding of this study: fixed effects for 5-
gram Surprisal and PCFG Surprisal significantly improve held-out likeli-
hood in the LANG network over a model containing neither, as well as
over one another. The difference in effect size between the LANG and
MD networks is statistically significant, as shown by the significant
likelihood improvements yielded by interactions of the surprisal vari-
ables with Network.

As shown in Fig. 3, the effects signs for Frequency in both networks
are negative. Because the Frequency predictor was inverse-scaled (i.e.,
mesaured as negative log probability), this result means that more
infrequent words are associated with lower BOLD signal. This effect is
not what would be expected if word frequency modulated neural ac-
tivity (Staub, 2015), but it is consistent with recent naturalistic behav-
ioral evidence against distinct effects of frequency and predictability
(Shain, 2019), as well as with previous theoretical claims that apparent
frequency effects are underlyingly effects of predictability (Levy, 2008).
Negative effects like these indicate suppression of the BOLD response
and pose a challenge for interpretation (Harel et al., 2002). Prior work
has suggested that such negative effects can arise from increased

Table 7

LANG result. Significance in LANG by paired permutation test of log-likelihood
improvement on the evaluation set from including a fixed effect for each of 5-
gram Surprisal and PCFG Surprisal, over (1) a baseline with neither fixed effect
and (2) baselines containing the other fixed effect only. The Effect Estimate
column shows the estimated effect size from the model containing the fixed
effect (i.e. the area under the estimated HRF).

Comparison P LL Improvement Effect Estimate
5-gram over neither 0.0001*** 182 0.307
PCFG over neither 0.0001*** 183 0.352
5-gram over PCFG 0.0001*** 61 0.209
PCFG over 5-gram 0.0001*** 61 0.235

Model percent variance explained compared to a “ceiling” linear model regressing against the mean response of all other participants for a particular story/fROL “%
Total” columns show absolute percent variance explained, while “% Relative” columns show percent variance explained relative to the ceiling.

LANG MD Combined

% Total % Relative % Total % Relative % Total % Relative
Ceiling 6.18% 100% 1.34% 100% 2.63% 100%
Model (train) 3.68% 59.5% 0.75% 56.0% 1.18% 44.9%
Model (evaluation) 2.30% 37.2% 0.00% 0.00% 0.71% 27.0%
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Table 8

MD result. Significance in MD by paired permutation test of log-likelihood
improvement on the evaluation set from including a fixed effect for each of 5-
gram Surprisal and PCFG Surprisal, over (1) a baseline with neither fixed effect
and (2) baselines containing the other fixed effect only. A p-value of 1.0 is
assigned by default to comparisons in which held-out likelihood improved under
ablation. The Effect Estimate column shows the estimated effect size from the
model containing the fixed effect (i.e. the area under the estimated HRF).

Comparison p LL Improvement Effect Estimate
5-gram over neither 0.137 3 0.019

PCFG over neither 1.0 29 0.081

5-gram over PCFG 1.0 -8 —0.025

PCFG over 5-gram 1.0 —40 0.097

Table 9

Combined result. Significance in the combined data by paired permutation test
of log-likelihood improvement on the evaluation set from including a fixed
interaction for each of 5-gram Surprisal and PCFG Surprisal with Network, over (1)
a baseline with neither fixed interaction and (2) baselines containing the other
fixed interaction only. The Effect Estimate column shows the estimated interac-
tion size from the model containing the fixed interaction (i.e. the difference in
effect estimate between LANG and MD).

Comparison P LL Effect
Improvement Estimate

5-gram:Network over neither 0.0001 *** 144 0.212

PCFG:Network over neither 0.0001*** 144 0.193

5-gram:Network over PCFG: 0.0001*** 53 0.301
Network

PCFG:Network over 5-gram: 0.0001*** 53 0.317
Network

processing load elsewhere in the brain through hemodynamic factors
(“vascular steal”) (Lee et al., 1995; Saad et al., 2001; Harel et al., 2002;
Kannurpatti and Biswal, 2004) and/or neuronal ones such as inhibition
by an attention mechanism (Smith et al., 2000; Shmuel et al., 2002,
2006). The means by which such mechanisms might give rise to negative
frequency effects in our data are not currently clear. Since frequency
effects are not central to our present research question, we leave tar-
geted investigation of their existence and direction to future research.
Fig. 5 and Table 10 assess the generalizability of surprisal effects
across participants. Fig. 5 shows most by-participant improvements
clustered around a positive median, without strong visual indication of
large-magnitude positive outliers that might exclusively drive the effect.
This intuition is quantified in Table 10. As shown, held-out likelihood
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Fig. 5. LANG likelihood improvement by participant. Spread of by-
participant likelihood improvements in each comparison. Most improvements
are positive, and effects are not driven by large positive outliers (see Table 10).
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Table 10

Generality of LANG surprisal effects across participants. Median likelihood
improvement in LANG on the evaluation set by participant, percent of partici-
pants whose held-out predictions improved due to surprisal effects, and the
number of participants with the largest held-out improvement whose data can be
removed without changing the significance of the effect at a 0.05 level. Held-out
likelihood improves for most participants in every comparison, and at least 5 of
the most responsive participants can be removed in each comparison without
changing the significance of the effect.

Comparison Median LL Improvement % Participants Num
by Participant Improved Removable
Participants

5-gram over 1.236 71.8% 19

neither
PCFG over 0.732 64.1% 14

neither
5-gram over 0.335 61.5% 7

PCFG
PCFG over 5- 0.498 60.3% 5

gram

improves for most participants in all comparisons. Furthermore, at least
5 of the most responsive participants in each comparison can be
removed without changing the significance of the effect. Participant
removal is a stringent criterion not only because it excludes the most
responsive participants from consideration but also because it reduces
the power of the permutation test by shrinking the evaluation set. These
participant-level analyses demonstrate that surprisal effects in LANG
fROIs are not merely driven by a small number of outlier participants.

6. Discussion

The current study examined signatures of predictive processing
during naturalistic story comprehension in two functionally distinct
cortical networks: the domain-specific language (LANG) network, and
the domain-general multiple demand (MD) network. Specifically, we
tested which of these networks increased their responses with lower
word predictability, operationalized using both 5-gram and probabilistic
context-free grammar (PCFG) surprisal. The main results, yielded by
continuous-time deconvolutional regression (CDR) analysis of surprisal
effects in the two networks, are shown in Tables 7-9: in LANG, both 5-
gram Surprisal and PCFG Surprisal have positive effects that yield sta-
tistically significant improvements to held-out likelihood, both over a
baseline containing neither fixed effect as well as over one another. By
contrast, in MD, neither surprisal effect is significant in any comparison.
A direct test for a difference in surprisal effects across the two networks
(Table 9) shows that the interactions of both surprisals with network are
positive and statistically significant, indicating that the BOLD response
to both surface-level (5-gram) and structural (PCFG) word predictability
is larger in LANG than MD. These results are over a baseline that in-
cludes an effect for lexical frequency (log unigram probability), which is
notable given the strong natural correlation between surprisal and fre-
quency, both generally (Demberg and Keller, 2008) and in the current
experimental materials (r = 0.78 overall). This finding suggests that the
surprisal effects reported here are indeed driven by predictive coding
and not merely by the cost of retrieving infrequent words. Together,
these results demonstrate that predictive coding for upcoming words is
primarily a canonical computation carried out by domain-specific
cortical circuits, rather than by feedback from higher, domain-general
executive control circuits, and that these predictions depend on both
surface-level and structural information sources. Our finding of a
generalized effect of PCFG Surprisal throughout the language network
aligns with prior findings of evidence for linguistic prediction (e.g.
Kuperberg et al., 2000; Baumgaertner et al., 2002; Friederici et al., 2003;
Obleser et al., 2007) and syntactic processing (e.g., Blank et al., 2016;
see Zaccarella et al., 2017 for review) in these regions, but suggests that
prior evidence of linguistic prediction effects in MD (e.g. Kuperberg
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et al., 2000; Baumgaertner et al., 2002; Gold et al., 2006; Bonhage et al.,
2015; Hartwigsen et al., 2017) may have been influenced by the use of
artificially constructed linguistic stimuli and/or task artifacts.

This finding bears on an ongoing discussion in cognitive neurosci-
ence about the compartmentalization of language processing. Early in-
vestigations of the functional organization of the brain argued for the
existence of neuroanatomical modules dedicated to specific linguistic
functions, from lower-level perceptual and motor components of lan-
guage to higher-level ones like phonological, lexical, and combinatorial
syntactic and semantic processing (Broca, 1861; Dax, 1863; Wernicke,
1874; Fodor, 1983; Petersen et al., 1988; Levelt, 1989; Pinker, 1994).
This position has been called into question by subsequent work stressing
the distributed nature of cognition (e.g., Mesulam, 1998; Thompson-S-
chill et al., 2005; Blumstein and Amso, 2013), based on evidence both
(1) that brain regions conventionally believed to be language-specific
are also recruited for non-linguistic tasks (e.g., Dehaene et al., 1999;
Stanescu-Cosson et al., 2000; Maess et al., 2001; Kaan and Swaab, 2002;
Koelsch et al., 2002; Koechlin and Jubault, 2006; Hein and Knight, 2008;
Blumstein, 2009; January et al., 2009), and (2) that brain regions
conventionally believed to support domain-general cognitive control are
also recruited for language processing, especially under difficult
comprehension conditions (e.g., Kaan and Swaab, 2002; Kuperberg
et al., 2003; Novick et al., 2005; Rodd et al., 2005; Novais-Santos et al.,
2007; January et al., 2009; Peelle et al., 2009; Rogalsky and Hickok,
2011; Nieuwland et al., 2012; Wild et al., 2012; McMillan et al., 2012,
2013, Hsu and Novick, 2016). Although such results might raise doubts
about the necessity and sufficiency of the putative language network for
language processing, they are counterbalanced by rigorous
non-replications of (1) the engagement of language regions in, e.g.,
arithmetic, working memory, or cognitive control tasks (Fedorenko
et al., 2011; Monti et al., 2012; Amalric & Dehaene, 2019), and (2) the
engagement of cognitive control (MD) regions in language processing
(Blank and Fedorenko, 2017; Wehbe et al., submitted). Based on this
evidence, some have concluded that there does indeed exist a func-
tionally specific cortical language network (Fedorenko, 2014; Fedor-
enko and Thompson-Schill, 2014; see also Hagoort, 2005; Friederici
et al., 2011; Matchin et al., 2014; Rogalsky et al., 2015; Matchin et al.,
2017, for proposals that are compatible with the idea that at least some
of the language-responsive areas are specific to language) and that MD
engagement in many previous studies of language processing was
induced by experimental task artifacts (Campbell and Tyler, 2018;
Wehbe et al., submitted; Diachek et al., 2019).

The aforementioned debate about the compartmentalization of lan-
guage processing has largely focused on controlled experimental para-
digms, which are prone to induce task artifacts that confound functional
differentiation of neural structures. The present study, by showing
strong prediction-based functional differentiation between the LANG
and MD networks during naturalistic language comprehension, provides
evidence that predictive coding for language is primarily carried out by
language-specific rather than domain-general mechanisms.

This finding also contributes to the growing literature on predictive
coding in the mammalian brain, which has recently produced evidence
that neurons are tuned to predict upcoming inputs but has also primarily
focused on low-level perceptual processing (Rao and Ballard, 1999;
Alink et al., 2010; Bubic et al., 2010; Keller and Mrsic-Flogel, 2018;
Singer et al., 2018). The present study suggests that prediction extends
to high-level cognitive functions like language comprehension and is
similarly implemented as a domain-specific canonical computation in
regions that plausibly store linguistic knowledge (e.g., Hagoort, 2005;
Fedorenko, 2014).

The finding that surprisal computed by marginalizing over syntactic
structures (PCFG Surprisal) modulates the LANG response indepen-
dently of surface-level n-gram surprisal is evidence that participants are
indeed computing such structures during incremental sentence pro-
cessing (Hale, 2001; Levy, 2008; Fossum and Levy, 2012; van Scijndel
and Schuler, 2015; Rasmussen and Schuler, 2018) and is inconsistent
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with previous arguments that the human sentence processing response is
largely insensitive to such structures (Frank and Bod, 2011; Frank et al.,
2012; Frank and Christiansen, 2018). At the same time, the finding that
5-gram Surprisal modulates the LANG response independently of PCFG
Surprisal is evidence that the human sentence processing mechanism is
sensitive to word co-occurrence patterns in ways that are not well
captured by a strictly context-free parser. This suggests either (1) that
the human parser is not strictly context-free (see e.g., tree-adjoining
grammars, Joshi, 1985; combinatory categorial grammars, Steedman,
2000; and other context-sensitive grammar formalisms for natural lan-
guage), or (2) that participants track both hierarchical structure and
word co-occurrence patterns separately and simultaneously when
generating predictions, and that these two kinds of processes take place
in overlapping brain areas. Evaluating these hypotheses is left to future
work. The lack of structured prediction effects in MD is of interest given
prior proposals that ground structural effects in constraints on working
memory (Abney and Johnson, 1991; Resnik, 1992; van Schijndel et al.,
2013; Rasmussen and Schuler, 2018). These theories view the process-
ing of hierarchical language structures as a special case of a domain
general capacity for hierarchic sequential prediction (Botvinick, 2007),
which is at least consistent with the hypothesis that the resources
recruited for prediction are also domain general (see e.g. Smith and
Levy, 2013). However, to the extent that the memory resources used for
prediction are also expected to activate in response to prediction error
(e.g., by undergoing model revision, Chao et al., 2018, see Introduction),
the failure to find such a signal in MD suggests that these memory re-
sources may also be specific to the functional language network, rather
than domain general (e.g., Caplan and Waters, 1999; Matchin et al.,
2017).

Estimates at the fROI level shed light on results from prior natural-
istic fMRI experiments (Willems et al., 2015; Brennan et al., 2016;
Henderson et al., 2016; Lopopolo et al., 2017). We found strong effects
of both surface-level and structural estimates of word predictability in
roughly the union of left-hemisphere language regions for which such
effects have been reported in prior work (e.g., temporal and inferior
frontal regions). At the same time, we did not find clear evidence of
predictive coding in regions linked with the multiple demand network,
like superior frontal gyrus (cf. Lopopolo et al., 2017), in part because our
use of held-out significance tests helped us avoid reporting MD surprisal
effects that fail to generalize (e.g., left-hemisphere SFG, Table 4). The
lack of held-out testing in earlier studies may therefore have contributed
to prior findings of surprisal effects in MD regions. Finally, we obtained
significant positive effects for surprisal implementations in language
regions that have previously been reported null or negative (e.g., lex-
icalized trigrams in IFG and posterior temporal cortex or PCFG surprisal
in IFG, per Brennan et al., 2016; PCFG surprisal in the temporal lobe, per
Henderson et al., 2016). It is possible that the size of the present study
increased sensitivity to these effects, since studies using less data are
more likely to yield sign and magnitude errors (Gelman and Carlin,
2014). The picture that emerges more clearly from our results than from
those of prior studies is of a predictive coding mechanism that is specific
to the functional language network, generalized throughout it, and
sensitive to both surface-level word co-occurrence patterns and hierar-
chical structure.

In focusing on prediction effects, we recognize that language
comprehension involves a good deal more than simply minimizing
surprise—meanings conveyed by partially-complete words and syntac-
tic structures are rapidly and incrementally recognized, stored, and in-
tegrated into existing knowledge representations as the discourse
unfolds (Tanenhaus et al., 1995; Altmann and Kamide, 1999). Numerous
studies have probed the computations involved in storage, retrieval, and
integration during human sentence comprehension (MacDonald et al.,
1992; Kluender and Kutas, 1993; Gibson and Ko, 1998; Felser et al.,
2003; Hsiao and Gibson, 2003; Aoshima et al.,, 2004; Grodner and
Gibson, 2005; Lewis and Vasishth, 2005; Fiebach et al., 2005; Fedorenko
et al., 2006, 2007; Rasmussen and Schuler, 2018), and several
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memory-based estimators of structural processing have been studied
across behavioral and cognitive neuroscience investigations, including
embedding difference (Wu et al., 2010), the number of open nodes based
on a particular parsing strategy (top-down, bottom-up, or left-corner;
Nelson et al., 2017; Brennan & Pylkkanen, 2017), dependency locality
costs (storage or integration cost from maintaining and retrieving syn-
tactic dependencies; Gibson, 2000), and encoding or retrieval interfer-
ence (i.e. processing costs in the ACT-R framework; Lewis and Vasishth,
2005). Effort due to memory storage and retrieval is plausibly distinct
from effort due to reallocating resources between competing structural
interpretations of the unfolding sentence (a standard interpretation of
surprisal effects, e.g. Hale, 2001; Levy, 2008) (but see Futrell & Levy,
2017), and a complete account of human language processing will likely
involve both prediction-based and integration-based computations
(Levy et al., 2013; Levy & Gibson, 2013). Although these kinds of
integration effects are outside the scope of the present study of predic-
tive coding, we note that some have argued that prediction may sub-
serve memory retrieval and therefore interact with integrative
processing (Altmann, 1998). Therefore, the prediction effects reported
here may, to some extent, be amenable to interpretation as effects of
integration. That is, researchers who view “prediction” as a conscious
lexically specific activity may view these results as evidence of con-
ceptual pre-activation or preparedness that eases integration once a
word is observed (see Ferreira and Chantavarin, 2018, for an overview
of this distinction). We leave to future work a fuller investigation of this
distinction and simply note that our results indicate that any such
pre-activation processes appear to be restricted to the LANG network,
rather than invoking the MD network, and are strongly correlated with
probabilistic measures of word predictability. The fMRI dataset pro-
duced by this study will hopefully support further investigation into the
interplay of memory and expectation in the language-selective and
domain-general networks.

Our emphasis on structural influences on prediction, rather than
sensitivity to syntactic structure more generally, is a possible explana-
tion for one apparent discrepancy between our results and those of some
previous studies. In particular, we do not find clear evidence of PCFG
Surprisal effects in the AntTemp language fROI (relative to other effect
sizes in this study, the PCFG Surprisal estimate in AntTemp — 0.017 —is
close to zero), whereas numerous previous studies have argued for
syntactic effects in left anterior temporal cortex, both using hand-
constructed stimuli (Mazoyer et al., 1993; Stowe et al., 1998; Frieder-
ici et al., 2003; Vandenberghe et al., 2002; Dronkers et al., 2004;
Humphries et al., 2006; Rogalsky and Hickok, 2011; Pallier et al., 2011;
Brennan & Pylkkanen, 2012; Nelson et al., 2017) and naturalistic stimuli
(Brennan et al., 2012; Brennan & Pylkkanen, 2017; Bhattasali et al.,
2018, 2019). The role of the left anterior temporal cortex in syntactic
processing has been called into question by an absence of syntactic
deficits in patients with anterior temporal damage (e.g., Wilson et al.,
2012), and some have argued that parts of the anterior temporal lobe
primarily carry out lexical and semantic processing, including perhaps
semantic composition (e.g., Bemis and Pylkkanen, 2011), rather than
syntactic structure building (Visser et al., 2010; Wilson et al., 2014;
Lambon Ralph et al., 2017; see also Matchin et al., 2018). However, even
granting that the left anterior temporal cortex is implicated in syntactic
processing, prior studies by and large have focused on structural mea-
sures that are arguably integrative in nature (syntactic node count,
number of parser operations, etc.) or have used manipulations that are
too broad to target prediction vs. integration (sentences vs. list of words
or “Jabberwocky” sentences). Indeed, claims about syntactic processing
in the left anterior temporal cortex tend to focus on composition rather
than on structured prediction. Our results thus do not preclude a role for
the left anterior temporal cortex in structure-building broadly
construed; they simply fail to show strong evidence in this brain area of
effects of structural context on word predictability. Prior studies of
structured prediction effects in the left anterior temporal cortex have
yielded mixed results: although Brennan et al. (2016) found evidence of
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part-of-speech n-gram and PCFG surprisal in the anterior temporal
cortex over bi- and tri-gram effects, Lopopolo et al. (2017) did not find a
response to part-of-speech n-gram surprisal, and the response to syn-
tactic PCFG surprisal in Henderson et al. (2016) was too weak to achieve
significance. Prediction effects based on lexical context in the left ante-
rior temporal cortex (i.e. lexical n-grams) are better attested (Willems
etal., 2015; Lopopolo et al., 2017), and some have explicitly argued that
this area plays a central role in lexical-semantic prediction (Lau et al.,
2016). Our findings in the AntTemp fROI (large effects of 5-gram Sur-
prisal in the AntTemp language fROI) contribute to this debate, sug-
gesting that lexical predictability does modulate activity in the left
anterior temporal cortex (among other regions), whereas syntactic
prediction likely occurs elsewhere. The left anterior temporal cortex
may therefore be an important object of study in teasing apart predictive
vs. integrative processing during language comprehension, and further
investigation is warranted.

In summary, our findings based on a large-scale naturalistic fMRI
experiment support a view of linguistic prediction as implemented by
domain-specific cortical circuits, sensitive to both surface-level and
syntactic information sources, and generalized across the functional
language network.
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