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Abstract: The application of the CPT (charge-conjugation, parity, and time reversal) theorem to an

apple falling on Earth leads to the description of an anti-apple falling on anti–Earth (not on Earth).

On the microscopic level, the Dirac equation in curved space-time simultaneously describes spin-1/2

particles and their antiparticles coupled to the same curved space-time metric (e.g., the metric

describing the gravitational field of the Earth). On the macroscopic level, the electromagnetically

and gravitationally coupled Dirac equation therefore describes apples and anti-apples, falling on

Earth, simultaneously. A particle-to-antiparticle transformation of the gravitationally coupled

Dirac equation therefore yields information on the behavior of “anti-apples on Earth”. However,

the problem is exacerbated by the fact that the operation of charge conjugation is much more

complicated in curved, as opposed to flat, space-time. Our treatment is based on second-quantized

field operators and uses the Lagrangian formalism. As an additional helpful result, prerequisite to

our calculations, we establish the general form of the Dirac adjoint in curved space-time. On the basis

of a theorem, we refute the existence of tiny, but potentially important, particle-antiparticle symmetry

breaking terms in which possible existence has been investigated in the literature. Consequences for

antimatter gravity experiments are discussed.

Keywords: antimatter gravity; CPT symmetry; antimatter free-fall experiments; Lorentz violation;

Dirac equation; curved space-time

1. Introduction

It is common wisdom in atomic physics that the Dirac equation describes particles and

antiparticles simultaneously, and that the negative-energy solutions of the Dirac equation have to

be reinterpreted in terms of particles that carry the opposite charge as compared to particles, and in

which numerical value of the energy E is equal to the negative value of the physically observed

energy [1]. Based on the Dirac equation, the existence of the positron was predicted, followed by

its experimental detection in 1933, by Anderson [2]. If we did not reinterpret the negative-energy

solutions of the Dirac equation, then the helium atom would be unstable against decay into a state

where the two electrons perform quantum jumps into continuum states [3]. This phenomenon is

extremely well known in atomic physics as the “Brown–Ravnhall disease” and leads to actual, practical,

numerical problems in so-called Multi–Configuration Dirac–Fock (MDCF) atomic structure codes,

where considerable numerical and analytic effort has been invested into a resolution of said problems,

with the help of projection operators [4–7]. If one did not invoke the positive-energy projection

operators in MCDF codes, then, for a system as simple as helium, nonsensical results would be

obtained. Namely, one of the electrons could undergo a quantum jump into the positive-energy

continuum, the other, into the negative-energy continuum, with the sum of the energies of the

two continuum states (final state of the two-electron nonradiative transition) being equal to the
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sum of the two bound-state energies of the helium atom from which the transition started [3,8,9].
The “Brown–Ravnhall disease” is of course addressed, on the theoretical level, by invoking the Dirac
sea, or, alternatively, by invoking the reinterpretation principle and quantum field theory. Let us recall
that the development of quantum field theory made it possible to reformulate the Dirac equation
in a way that treats the antiparticles as “sea” particles rather than the absence of a particle from the
“Dirac sea of negative-energy particles”. Still, it is sometimes overlooked that the Dirac equation
describes particles and antiparticles simultaneously, which constitutes a numerical manifestation being
“Brown–Ravnhall disease” (see [3]).

The absolute necessity to reinterpret the negative-energy solutions of the Dirac equation as
antiparticle wave functions, i.e., the necessity to interpret positive-energy and negative-energy
solutions of one single equation as describing two distinct particles, hints at the possibility to
use the Dirac equation as a bridge to the description of the gravitational interaction of antimatter.
Namely, if the Dirac equation is being coupled to a gravitational field, then, since it describes particles
and antiparticles simultaneously, the Dirac equation offers us an additional dividend: In addition
to describing the gravitational interaction of particles, the Dirac equation automatically couples the
antiparticle (the “anti-apple”), which is described by the same equation, to the gravitational field, too.

Corresponding investigations have been initiated in a series of recent publications [10–13].
One may ask whether the dynamics of particles and antiparticles differ in a central, static, gravitational
field, but also, if there are any small higher-order effects breaking the particle-antiparticle symmetry
under the gravitational interaction. For the central gravitational field, this question has been answered
in [10–12], with the result being that the Dirac particle and antiparticle behave exactly the same in
a central gravitational field, due to a perfect particle-antiparticle symmetry which extends to the
relativistic and curved-space-time corrections to the equations of motion. For a de Sitter space-time,
which has constant curvature, we refer to [14].

This is interesting because the transformation of the gravitational force under the particle-to-
antiparticle transformation has been discussed controversially in the literature [15–18]. In [19], it was
pointed out that the role of the CPT transformation in gravity needs to be considered with care: It relates
the fall of an apple on Earth to the fall of an anti-apple on anti-Earth, but not on Earth. The Dirac
equation, colloquially speaking, applies to both apples, as well as anti-apples, on Earth, i.e., to particles
and antiparticles in the same space-time metric. One might have otherwise speculated about the
existence of tiny violations of the particle-antiparticle symmetry, even on the level of the gravitationally
coupled Dirac theory. For example, in [20], it was claimed that the Dirac Hamiltonian for a particle in a
central gravitational field, after a Foldy–Wouthuysen transformation which disentangles the particle
from the antiparticle degrees of freedom, contains the term (see the last term on the first line of the
right-hand side of Equation (31)):

H ∼ − h̄

2c
~Σ ·~g , ~Σ =

(

~σ 0
0 ~σ

)

. (1)

We here explicitly include the reduced Planck constant h̄ and the speed of light c in order to
facilitate the comparison to [20]. Also, the vector of Pauli spin matrices is denoted as ~σ. The term
proportional to ~Σ · ~g, where ~g is the acceleration due to gravity, would break parity, because ~Σ

transforms as a pseudovector, while ~g transforms as a vector under parity. This aspect has given rise
to discussion, based on the observation that an initially parity-even Hamiltonian (in a central field)
should not give rise to parity-breaking terms after a disentangling of the effective Hamiltonians for
particles and antiparticles [21,22].

The absence of such parity-violating (and particle-antiparticle symmetry breaking) terms
has meanwhile been confirmed in remarks following Equation (15) of [23], in the text following
Equation (35) of [24], and also, in clarifying remarks given in the text following Equation (7.33) of [25].
Further clarifying analyses can be found in [26,27]. Related calculations have recently been considered
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in other contexts [25,28,29]. The question of whether such parity- and particle-antiparticle symmetry
violating terms could exist in higher orders in the momentum expansion has been answered negatively
in [11], but only for a static central gravitational field, and in [30], still negatively, for combined static,
central gravitational, and electrostatic fields.

We should note that [20] was not the only place in the literature where the authors speculated
about the existence of P (parity), and CP (charge-conjugation and parity) violating terms obtained
after the identification of low-energy operators obtained from Dirac Hamiltonians in gravitational
fields; For example, in Equation (46) of [31], spurious parity-violating, and CP-violating terms
were obtained after a Foldy–Wouthuysen transformation; these terms would of course also violate
particle-antiparticle symmetry.

In order to address the question of a general, dynamic space-time background, it is necessary
to perform the full particle-to-antiparticle symmetry transformation of the Dirac formalism, in an
arbitrary (possibly dynamic) curved-space-time-background. This transformation is most stringently
carried out on the level of the Lagrangian formalism. A preliminary result has recently been published
in [13,32], where a relationship was established between the positive-energy and negative-energy
solutions of the Dirac equation in an arbitrary dynamics curved-space-time-background. However,
the derivation in [13,32] is based on a first-quantized formalism, which lacks the unified description
in terms of the field operator. The field operator comprises all (as opposed to any) solution of the
gravitationally (and electromagnetically) coupled Dirac equation. In general, a satisfactory description
of antiparticles, in the field-theoretical context, necessitates a description in terms of particle- and
antiparticle creation and annihilation processes, and therefore, the introduction of a field operator.
In consequence, the investigation [13,32] is augmented here on the basis of a transformation of the
entire Lagrangian density, which can be expressed in terms of the charge-conjugated (antiparticle)
bispinor wave function, and generalized to the level of second quantization. The origin [13] of a rather
disturbing minus sign which otherwise appears in the Lagrangian formalism upon charge conjugation
in first quantization will be addressed. The use of the Lagrangian formalism necessitates a definition of
the Dirac adjoint in curved space-times. As a spin-off result of the augmented investigations reported
here, we find the general form of the Dirac adjoint in curved space-times, in the Dirac representation
of γ matrices.

According to [19], the role of the CPT transformation in gravity needs to be considered with care:
A priori, a CPT transformation of a physical system consisting of an apple falling on Earth would
describe the fall of an anti-apple on anti-Earth. Key to our considerations is the fact that, on the
microscopic level, the Dirac equation applies (for one and the same space-time metric) to both particles
and antiparticles simultaneously (this translates, on the macroscopic level, to “apples”, as well as
“anti-apples”). This paper is organized as follows: We investigate the general form of the Dirac adjoint
in Section 2, present our theorem in Section 3, and, in Section 4, we provide an overview of connections
to new forces and CPT violating parameters. Conclusions are reserved for Section 5.

2. Dirac Adjoint for Curved Space–Times

In order to properly write down the Lagrangian of a Dirac particle in a gravitational field,
we first need to generalize the concept of the Dirac adjoint to curved space-times. We recall that the
Dirac adjoint transforms with the inverse of the Lorentz transform as compared to the original Dirac
spinor. A general, local, spinor Lorentz transformation S(Λ) is given as follows (we here consider the
transformation in curved, not flat, space) can be written as,

S(Λ(x)) = exp
(

− i
4

ǫAB(x) σAB

)

, σAB =
i
2

[

γA, γB
]

, A, B = 0, 1, 2, 3 . (2)

Here, S denotes the spinor representation of the Lorentz transformation Λ. Note that the generator
parameters ǫAB(x) = −ǫBA(x), for local Lorentz transformations, are in general coordinate-dependent.
A decisive question is whether or not the Dirac adjoint, which should transform with the inverse of the
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local Lorentz transformation, changes its functional form when the Lorentz transformations are made
local, instead of global, as is manifest in the coordinate-dependent generators ǫAB(x). This question
has not been answered conclusively in the literature to the best of our knowledge, with a conjecture
being formulated in Equation (14a) of [33]. Note that, in curved as opposed to flat space, the local
Lorentz transformation S(Λ) = S(Λ(x)) also becomes coordinate-dependent. In the following, capital
Roman letters A, B, C, · · · = 0, 1, 2, 3 refer to Lorentz indices in a local freely falling coordinate system.
The (flat-space) Dirac matrices γA are assumed to be taken in the Dirac representation [1],

γ0 =

(

✶2×2 0
0 ✶2×2

)

, γA =

(

0 σA

−σA 0

)

, A = 1, 2, 3 . (3)

Here, the vector of Pauli spin matrices is denoted as~σ, composed of the entries σA with A = 1, 2, 3.
In consequence, the spin matrices σAB are the flat-space spin matrices. The spin matrices fulfill the
commutation relations

[ 1
2 σCD, 1

2 σEF] = i
(

gCF 1
2 σDE + gDE 1

2 σCF − gCE 1
2 σDF − gDF 1

2 σCE
)

. (4)

These commutation relations, we should note in passing, are completely analogous to those
fulfilled by the matrices ▼AB that generate (four-)vector local Lorentz transformations. As is well
known, the latter have the components (denoted by indices C and D)

(▼AB)
C

D = gC
A gDB − gC

B gDA . (5)

The (local) vector local Lorentz transformation Λ with components ΛC
D is obtained as the

matrix exponential

ΛC
D(x) =

(

exp
[

1
2

ǫAB(x)▼AB

])C

D

. (6)

The algebra fulfilled by the▼matrices is well known to be

[▼CD,▼EF] = gCF
▼

DE + gDE
▼

CF − gCE
▼

DF − gDF
▼

CE . (7)

The two algebraic relations (4) and (7) are equivalent if one replaces

▼
CD → − i

2
σCD , (8)

which leads from Equation (2) to Equation (6).
Under a local Lorentz transformation, a Dirac spinor transforms as

ψ′(x′) = S(Λ(x))ψ(x) . (9)

In order to write the Lagrangian, one needs to define the Dirac adjoint in curved space-time.
In order to address this question, one has to remember that in flat-space-time, the Dirac adjoint ψ(x) is
defined in such a way that is transforms with the inverse of the spinor Lorentz transform as compared
to ψ(x),

ψ
′
(x′) = ψ(x) S(Λ−1(x)) = ψ(x) [S(Λ(x))]−1 . (10)

The problem of the definition of ψ(x) in curved space-time is sometimes treated in the literature
in a rather cursory fashion [34]. Let us see if in curved space-time, we can use the ansatz

ψ(x) = ψ+(x) γ0 , (11)
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with the same flat-space γ0 as is used in the flat-space Dirac adjoint. (Here, ψ+(x) denotes the
Hermitian adjoint. Throughout this article, we will denote the Hermitian adjoint of a vector or matrix
by the superscript +.) In this case,

ψ
′
(x′) = ψ+(x′) S+(Λ(x)) γ0 =

(

ψ+(x′) γ0
) [

γ0 S+(Λ(x)) γ0
]

, (12)

To first order in the Lorentz generators ǫAB, we have, indeed,

γ0 S+(Λ(x)) γ0 = 1 +
i
4

ǫAB(x) γ0 σ+
AB γ0 = 1 +

i
4

ǫAB(x) σAB = [S(Λ(x))]−1 , (13)

where we have used the identity

σ+
AB = − i

2
[γ+

B , γ+
A] = −

i
2

γ0 [γ0γ+
B γ0, γ0γ+

Aγ0] γ0

= − i
2

γ0 [γB, γA] γ0 = −γ0 σBA γ0 = γ0 σAB γ0 . (14)

It is easy to show that Equation (13) generalizes to all orders in the ǫAB(x) parameters,
which justifies our ansatz given in Equation (11). The result is that the flat-space γ0 matrix can
be used in curved space, just like in flat space, in order to construct the Dirac adjoint. The Dirac adjoint
spinor transforms with the inverse spinor representation of the Lorentz group (see Equation (10)).

Our findings, notably, Equation (11) ramify a suggestion originally made by Bargmann
(see equation (14a) of [33]), who also proposed to define ψ(x) with the flat-space γ0 matrix,
rather than the curved-space γ0 [for the definition of the curved-space γµ matrices, see Equation (16)].
The conjecture formulated in [33] has been mentioned around equation (61) of [32], with reference to
the conservation of a correspondingly defined current. Here, we provide additional evidence for the
validity of the ansatz given in Equation (11), by establishing the result that the Dirac adjoint, defined
accordingly in curved space-time, transforms with the inverse of the local Lorentz transformation,
as it should.

3. Lagrangian and Charge Conjugation

Equipped with an appropriate form of the Dirac adjoint in curved space-time, we start from the
well-known Lagrangian density [13,32,34–45]

L(x) = ψ(x)
[

i γµ Dµ −mI

]

ψ(x) ,

Dµ = ∂µ − Γµ + ie Aµ , (15)

S =
∫

d4x
√

−det g(x)L(x) .

We recall that, throughout this article, capital Roman indices A, B, C, · · · = 0, 1, 2, 3 refer to a
freely falling coordinate system (a Lorentz index), while Greek indices µ, ν, ρ, · · · = 0, 1, 2, 3 refer to an
external coordinate system (an Einstein index). The partial derivative with respect to the coordinate xµ

is denoted as ∂µ, and mI is the inertial mass, while e is the electron charge. In Equation (15), Dµ is the
“double covariant” derivative describing both the gravitational interaction (via the spin connection
Γµ), as well as the electromagnetic interaction (via the term ie Aµ), where e denotes the electron charge.
We carefully distinguish between the inertial mass mI and the gravitational mass mG; in Equation (15),
it is the inertial mass which enters the formalism. The determinant det g(x) of the metric tensor gµν(x)

enters the expression for the gauge-invariant action S . We reemphasize that Equation (15) is well
known and in agreement with the literature [13,32,34–45]. For a number of recent works, we refer to
Equations (3.129) and (3.190) of [43], Equation (3.44) in Section 3.3.1 of [45], Equation (2) of [20], and,
for a review, [44]; furthermore, the reader might consult [13] for a very recent paper. Note that several
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quantities which enter Equation (15) are coordinate-dependent, where, in the notation, we suppress the
space-time coordinate dependence, as is customary in the literature [20,43–45]. In particular, one has
γµ = γµ(x), and Γµ = Γµ(x). Because the underlying formalism is extremely well established and
corresponding formulas have been discussed at length in the literature, we can restrict the discussion
here to the essential formulas which define the spin connection (where we reserve the notation ωAB

µ

for the Ricci rotation coefficients),

γµ = e
µ
A γA , Γµ =

i
4

ωAB
µ σAB , ωAB

µ = eA
ν

(

∂µeνB + Γν
µρ eρB

)

. (16)

Here, the e
µ
A are the vielbein (or vierbein with reference to the four-dimensional space-time)

coefficients. The Ricci rotation coefficients are denoted as ωAB
µ = ωAB

µ (x), while the Γν
µρ = Γν

µρ(x) are
the Christoffel symbols. Note that {γµ, γν} = 2gµν = 2gµν(x), where gµν(x) is the curved-space metric,
while we reserve gAB = diag(1,−1,−1,−1) for the flat-space counterpart, following the conventions
used in [10,13].

We shall attempt to derive the particle-antiparticle symmetry on the level of a transformation of
the Lagrangian. In comparison to textbook treatments (see, e.g., pp. 89 ff. and 263 ff. of [46], p. 70 of
[47], p. 66 of citeGa1975, pp. 89 ff. and 263 ff. of [48], p. 142 of [49], p. 218 of [50], p. 67 of [51], p. 116 of
[52], p. 320 of [53], p. 153 of [1], and Chapter 7 of [54]), our derivation is much more involved in view of
the appearance of the Γµ matrices which describe the gravitational coupling. In other words, we note
that none of the mentioned standard textbooks of quantum field theory discuss the gravitationally

coupled Dirac equation, and all cited descriptions are limited to the flat-space Dirac equation, where
the role of the charge conjugation operation is much easier to analyze than in curved space.

From Equation (15), we recall that the double-covariant coupling to both the gravitational, as well
as the electromagnetic, field is given as follows,

Dµ = ∂µ − Γµ + ie Aµ = ∇µ + ie Aµ , (17)

where ∇µ = ∂µ − Γµ is the gravitational covariant derivative.
As a side remark, we note that gravitational spin connections Γµ = i

4 ωAB
µ σAB and other

gauge-covariant couplings are unified in the so-called spin-charge family theory [55–59] which calls
for a unification of all known interactions of nature in terms of an SO(1, 13) overarching symmetry
group. (In the current article, we use the spin connection matrices purely in the gravitational context).
The SO(1, 13) has a 25-dimensional Lie group, with 13 boosts and 12 rotations in the internal space.
This provides for enough Lie algebra elements to describe the Standard Model interactions, and predict
a fourth generation of particles. The spin-charge family theory is a significant generalization of
Kaluza-Klein-type ideas [60,61].

In the context of the current investigations, though, we restrict ourselves to the gravitational spin
connection matrices. In view of the (in general) nonvanishing space-time dependence of the Ricci
rotation coefficients, we can describe the quantum dynamics of relativistic spin-1/2 particles on the
basis of Equations (15) and (16). The σAB matrices defined in Equation (16) represent the six generators
of the spin-1/2 representation of the Lorentz group.

The Lagrangian (15) is Hermitian, and so, we can transform the expression as follows:

L = L+ = ψ+(x)
[{

−i
←−
∂ µ − e Aµ

}

(γµ)+ − (−i)
(

Γµ

)+
(γµ)+ −mI

]

[

ψ(x)
]+ . (18)

Here, the left partial derivative, denoted as
←−
∂µ , acts on all expressions to the left of the derivative

operator. We emphasize that the expression (18) is obtained as the plain Hermitian adjoint of the
Lagrangian given in Equation (15); there is no partial integration necessary in order to go from
Equation (15) to Equation (18). An insertion of γ0 matrices under use of the identity (γ0)2 = 1 leads to
the relation
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L+ = ψ+(x) γ0
[

{

−i←−
∂µ − e Aµ

}

γ0 (γµ)+ γ0 + i
{

γ0 (Γµ

)+
γ0
}

γ0 (γµ)+ γ0 −mI

]

γ0 [ψ(x)
]+ . (19)

In addition, we recall that γ0 (Γµ)+ γ0 = −Γµ, because

Γ+
µ = − i

4
ωAB

µ σ+
AB = − i

4
ωAB

µ γ0 σAB γ0 = −γ0 Γµγ0 . (20)

So, the adjoint of the Lagrangian is

L+ = ψ+(x) γ0
[{

−i
←−
∂ µ − e Aµ

}

γµ − i Γµ γµ −mI

]

γ0 [ψ(x)
]+ . (21)

Now, we use the relations ψ+(x) γ0 = ψ(x) and γ0
[

ψ(x)
]+

= ψ(x) and arrive at the form

L+ = ψ(x)
[{

−i
←−
∂ µ − e Aµ

}

γµ − i Γµ γµ −mI

]

ψ(x) . (22)

Because L is a scalar, a transposition again does not change the Lagrangian, and we have (the left
derivative again becomes a right derivative)

(

L+)T
= ψT(x)

[

(γµ)T
{

−i
−→
∂ µ − e Aµ

}

− i (γµ)T (
Γµ

)T −mI

]

[

ψ(x)
]T . (23)

An insertion of the charge conjugation matrix C = iγ2 γ0 (with the flat-space γ2 and γ0) leads to

(

L+)T
= ψT(x)C−1

[

C (γµ)T C−1
{

−i
−→
∂ µ − e Aµ

}

−i C (γµ)T C−1 C ΓT
µ C−1 −mI

]

C
[

ψ(x)
]T . (24)

We use the identities C (γµ)T C−1 = −γµ, and C
(

Γµ

)T
C−1 = −Γµ. The latter of these can be

shown as follows:

C ΓT
µ C−1 =

i
4

{

i
2

ωAB
µ C

[

γT
B, γT

A

]

C−1
}

=
i
4

{

i
2

ωAB
µ [−γB, −γA]

}

= −Γµ . (25)

The result is the expression

(

L+)T
= ψT(x)C−1

[

(−γµ)
{

−i
−→
∂ µ − e Aµ

}

− i (−γµ)
(

−Γµ

)

−mI

]

C
[

ψ(x)
]T . (26)

Now, we express the result in terms of the charge-conjugate spinor ψC(x) and its adjoint ψC(x)

(further remarks on this point are presented in Appendix B),

ψC(x) = C
[

ψ(x)
]T , ψC(x) = −ψT(x)C−1 , (27)

where we use the identity C−1 = −C (see also Appendix A). The Lagrangian becomes

L =
(

L+)T
= −ψC(x)

[

γµ
{

i
−→
∂ µ + e Aµ

}

− i γµ Γµ −mI

]

ψC(x)

= − ψC(x)
[

γµ
{

i(∂µ − Γµ) + e Aµ

}

−mI

]

ψC(x) . (28)

The Lagrangian given in Equation (28) differs from Equation (18) only with respect to the sign of
electric charge, as is to be expected, and with respect to the replacement of the Dirac spinor ψ(x) by its
charge conjugation ψC(x). The overall minus sign is physically irrelevant as it does not influence the
variational equations derived from the Lagrangian; besides, it finds a natural explanation in terms of
the reinterpretation principle, if we interpret ψ(x) as a Dirac wave function in first quantization.
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Namely, there is a connection of the spatial integrals of the mass term, proportional to

J =
∫

d3r ψ(x)ψ(x) =
∫

d3r ψ(t,~r)ψ(t,~r) =
∫

d3r ψ+(t,~r)γ0ψ(t,~r) , (29)

and the charge conjugate,

JC =
∫

d3r ψ
C
(x)ψC(x) =

∫

d3r
(

ψC(t,~r)
)+

γ0ψ(t,~r) . (30)

Both of the above integrals connect to the energy eigenvalue of the Dirac equation in the limit of
time-independent fields (see Appendix A and B). One can show that the energy eigenvalues of Dirac
eigenstates ψ, in the limit of weak potentials and states composed of small momentum components,
exactly correspond to the integrals J and JC (up to a factor mI). In turn, the dominant term in the
Lagrangian in this limit is

L → −ψ(x)mI ψ(x) = +ψC(x)mI ψC(x) . (31)

Because the integral
∫

d3rL equals −J (or +JC ), the sign change becomes evident: it is due to
the fact that the states ψC describe antiparticle wave functions where the sign of the energy flips
in comparison to particles. The matching of mI to the gravitational mass can be performed in a
central, static field [10,13], and results in the identification mI = mG, where mG is the gravitational
mass. The gravitational covariant derivative ∂µ − Γµ has retained its form in going from Equation (18)
to Equation (28), in agreement with the perfect particle-antiparticle symmetry of the gravitational
interaction. Because the above demonstration is general and holds for arbitrary (possibly dynamic)
space-time background Γ, there is no room for a deviation of the gravitational interactions of
antiparticles (antimatter) to deviate from those of matter. This has been demonstrated here on the basis
of Lagrangian methods, supplementing a recent preliminary result [13].

In order to fully clarify the origin of the minus sign introduced upon charge conjugation,
one consults Chapters 2 and 3 of [1] and Chapter 7 of [54]. Namely, in second quantization, there is an
additional minus sign incurred upon the charge conjugation, which restores the original sign pattern
of the Lagrangian. According to Equations (2.107) and (3.157) of [1], we can write the expansion of the
free Dirac field operator as

ψ̂(x) = ∑
s

∫ d3 p

(2π)3
m

E

[

as(~p) us(~p) e−ip·x + eip·x vs(~p) b+
s (~p)

]

. (32)

The field operator is denoted by a hat in order to differentiate it from the Dirac wave function.
The four-momentum is pµ = (E,~p), where E =

√

~p2 + m2 is the free Dirac energy, and us(~p) and
vs(~p) are the positive-energy and negative-energy spinors with spin projection s (onto the z axis).
Furthermore, the particle annihilation operator as(~p) and the antiparticle creation operator b+

s (~p),
and their Hermitian adjoints, fulfill the commutation relations given in Equation (3.161) of [1],

{

as(~p), a+
s′(~p)

}

=
E

m
(2π)3 δ(3)(~p− ~p′) δss′ , (33)

{

bs(~p), b+
s′ (~p

′)
}

=
E

m
(2π)3 δ(3)(~p− ~p′) δss′ . (34)

Here, δss′ denotes the Kronecker delta. The spinors are normalized according to equation (2.43a)
of [1], i.e., they fulfill the relation u+

s (~p) us(~p) = v+
s (~p) vs(~p) = E/m. For the charge conjugation

in the second-quantized theory, it is essential that an additional minus sign is incurred in view of
the anticommutativity of the field operators. Namely, without considering the interchange of the

field operators, one would have, under charge conjugation, Jµ(x) = ψ(x)γµψ(x) = ψ
C
(x)γµψC(x) =

JCµ(x), i.e., the current would not change under charge conjugation which is intuitively inconsistent
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(see the remark following Equation (4.618) of [54]). However, for the field operator current (from here
on, we denote field operators with a hat), we have Ĵµ(x) = ψ̂(x)γµψ̂(x) = −ψ̂C(x)γµψ̂C(x) = − ĴCµ(x),
because one has incurred an additional minus sign due to the restoration of the field operators into
their canonical order after charge conjugation (see the remark following Equation (7.309) of [54]).

In our derivation above, when one transforms to a second-quantized Dirac field (but keeps
classical background electromagnetic field and a classical non-quantized curved-space-time metric),
one starts from Equation (22) as an equivalent, alternative formulation of Equation (15). One observes
that in going from Equations (22) to (23), one has actually changed the order of the field operators in
relation to the Dirac spinors. Restoring the original order, much in the spirit of equation (7.309) of [54],
one incurs an additional minus sign which ensures that

L̂ = ψ̂(x)
[

γµ
{

i
(

∂µ − Γµ

)

− e Aµ

}

−mI

]

ψ̂(x)

= ψ̂C(x)
[

γµ
{

i(∂µ − Γµ) + e Aµ

}

−mI

]

ψ̂C(x) , (35)

exhibiting the effect of charge conjugation in the second-quantized theory—and restoring the overall
sign of the Lagrangian. The theorem (35) shows that particles and antiparticles behave exactly the same
in gravitational fields. It also demonstrates the sign change in the charge of the antimatter particle,
when compared to matter (“antimatter electromagnetism”). However, it does not automatically imply
the equality of the inertial and gravitational masses, which is a point to be discussed in Equations (36)
and (37).

The result (35) confirms and expands results previously obtained in [13,32], regarding the behavior
of the gravitationally coupled Dirac equation under charge conjugation. Superficially, one might say
that the result is somewhat trivial, because it only shows that the masses (which ones? the inertial
or the gravitational ones?) of particles and antiparticles are the same. However, this is far from the
truth. The point is that this trivialization would overlook the distinction between the gravitational
and the inertial mass. Let us be clear about this point: A priori, the mass term which enters the
electromagnetically coupled Dirac equation is the inertial mass, not the gravitational mass (which is
why it has been denoted as mI , not mG). The above result (35) confirms that the inertial masses of
particles and antiparticles remain exactly the same under gravitational coupling. But it does much more.
It also allows us to also make statements about the relation of the inertial and gravitational masses
for both particles, as well as antiparticles, because combined particle-antiparticle equation (the Dirac
equation) has been coupled to a curved space-time. The above result thus tells that the gravitational
coupling of particles and antiparticles must be exactly the same, i.e., that if, say, the inertial mass term
mI relevant for particles can be shown to be related to the gravitational mass as mG = f (mI), with a
given functional relationship f (·), then the gravitational and inertial masses of antiparticles have to
be related by the same functional relationship. All that remains is to find f . For this last step, we can
resort to a particular rather than general problem, e.g., the central-field problem analyzed in [13].
There, in Equations (33a) and (33b) in Section 3.1 of [13], it was shown, by considering the central-field
problem as an anchor point, that

mG = mI (particles) , (36)

implying that f (·) is the identity transformation, and, therefore, per our above considerations, we have

mG = mI (anti-particles) . (37)

The ramification of this result on the basis of the second-quantized formalism is a main result
of the current paper. Note that the distinction between the gravitational and the inertial mass has
been absent from a number of previous investigations (e.g., [32]), in the context of the gravitationally
coupled Dirac equation.

One should, at this stage, remember that experimental evidence, to the extent possible, supports
the above symmetry relation (35). The only direct experimental result on antimatter and gravity comes,
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somewhat surprisingly, from the Supernova 1987A. Originating from the Large Magellanic Cloud,
the originating neutrinos and antineutrinos eventually were detected on Earth. In view of their travel
time of about 160,000 years, they were bent from a “straight line” by the gravity from our own galaxy.
The gravitational bending changed the time needed to reach Earth by about 5 mon. Yet, both neutrinos
and antineutrinos reached Earth within the same 12 s interval, shows that neutrinos and antineutrinos
fall similarly, to a precision of about 1 part in a million [62,63]. In view of the exceedingly small rest
mass of neutrinos, the influence of the mass term (even a conceivable tachyonic mass term) on the
trajectory is negligible [64]. Yet, it is reassuring that experimental evidence, at this time, is consistent
with Equation (35).

4. Alternative Interpretations of Free–Fall Antimatter Gravity Experiments

In view of the symmetry relations derived in this article for the gravitationally and
electromagnetically coupled Dirac equation, it is certain justified to ask about an adequate
interpretation of antimatter gravity experiments. We have shown that canonical gravity cannot
account for any deviations of gravitational interactions of matter versus antimatter. How could tests
of antimatter “gravity” be interpreted otherwise? The answer to that question involves clarification
of the question which “new” interactions could possibly mimic gravity. The criteria are as follows:
(i) The “new” interaction would need to violate CPT symmetry. (ii) The “new” interaction would have
to be a long-range interaction, mediated by a massless virtual particle.

One example of such an interaction would be induced if hydrogen atoms were to acquire,
in addition to the electric charges of the constituents (electrons and protons), an additional “charge”
η e, where e is the elementary charge, while antihydrogen atoms would acquire a charge −η e, where η

is a small parameter. One could conjecture, somewhat ad hoc, the existence of a small, CPT-violating
“mass-equivalent charge” ηe/2 for electrons, protons, and neutrons, while positrons and antiprotons,
and antineutrons, would carry a “mass-equivalent charge” −ηe/2. We will refer to this concept as the
“η force” in the following. The difference in the gravitational force (acceleration due to the Earth’s field)
felt by a hydrogen versus an antihydrogen atom is

F
η

H
− F

η
H = 2 η

[η

2
(Np + Nn + Ne)

] e2

4πǫ R2
⊕

. (38)

Here, R⊕ is the radius of the Earth, while Np, Nn, and Ne are the numbers of protons, neutrons, and
electrons in the Earth. The gravitational force on a falling antihydrogen atom is

FG
H
= G

mp M⊕
R2
⊕

. (39)

Let us assume that an experiment establishes that |Fη

H
− F

η
H| < χ FG

H
, where χ is a measure of the

deviation of the acceleration due to gravity+“η”-force for antihydrogen versus hydrogen. A quick
calculation shows that this translates into a bound

η < 7.3× 10−19√χ . (40)

Antimatter gravity tests thus limit the available parameter space for η and could be interpreted in
terms of corresponding limits on the maximum allowed value of η.

Functionally, for nonrelativistic antimatter free-fall experiments, the “η force” has the same
phenomenological consequences as the model recently formulated in Section 3.3.1 of [45], where a
conceivable alteration of the gravitational interaction of antiparticles is formulated in terms of a0 and
c00 coefficients, implicitly defined in equation (3.44) of [45], which multiply additional terms of the
form aµψγµψ and cµν i ψ γµ(∂ν − Γµ + ieAν)ψ added to the Lagrangian (15), with constant aµ and
cµν coefficients. Our ad hoc model has the advantage that we avoid the necessity of fine-tuning the
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CPT-violating a0 coefficient to the c00 coefficient (in the notation of [45]). This fine-tuning, in the form of
the postulate a0 = −c00/3 (again, using the notation of [45]), is given in the third paragraph following
equation (3.47) of [45].

5. Conclusions

In the current paper, we analyzed the particle-antiparticle symmetry of the gravitationally
(and electromagnetically) coupled Dirac equation and come to the conclusion that a symmetry exists,
for the second-quantized formulation, which precludes the existence particle-antiparticle symmetry
breaking terms on the level of Dirac theory. In a nutshell, one might say the following: Just as much as
the electromagnetically coupled Dirac equation predicts that antiparticles have the opposite charge
as compared to particles (but otherwise behave exactly the same under electromagnetic interactions),
the gravitationally coupled Dirac equation predicts that particles and antiparticles follow exactly the
same dynamics in curved space-time, i.e., with respect to gravitational fields (in particular, they have
the same gravitational mass, and there is no sign change in the gravitational coupling). In the derivation
of our theorem (35), we use the second-quantized Dirac formalism, in the Lagrangian formulation.
Our general result for the Dirac adjoint, communicated in Section 2, paves the way for the Lagrangian
of the gravitationally coupled field, and its explicit form is an essential ingredient of our considerations.

Let us also represent the advances reported here, in regard to the existing literature.
First, the question regarding the absence of particle-antiparticle symmetry breaking terms for general,
dynamic space-time backgrounds has not been answered conclusively in the literature up to this
point [20,31], to the best of our knowledge, because of the lack of a careful distinction between the
gravitational and inertial masses under charge conjugation operations. This has been the task of the
current paper. In particular, our results imply a no-go theorem regarding the possible emergence of
particle-antiparticle-symmetry breaking gravitational, and combined electromagnetic-gravitational
terms in general static and dynamic curved-space-time backgrounds. Furthermore, the equality
of the inertial and gravitational mass for particles and antiparticles, i.e., the validity of the (weak)
equivalence principle, is established for antiparticles (Equations (35) and (37)). Any speculation [20,31]
about the re-emergence of such terms in a dynamic space-time background can thus be laid to rest.
Concomitantly, we demonstrate that there are no “overlap” or “interference” terms generated in the
particle-antiparticle transformation, between the gauge groups, namely the SO(1, 3) gauge group of
the local Lorentz transformations, and the U(1) gauge group of the electromagnetic theory.

In passing, we also firmly establish the validity of a conjecture [33] (see Equation (11)) regarding
the explicit form of the Dirac adjoint in curved space-time, by calculating its transformation properties
under local Lorentz transformations. We also show in Equation (35) that a somewhat disturbing minus
sign in the transformation of the Lagrangian density disappears in the second-quantized formalism.

This result implies both progress and, unfortunately, some disappointment, because the emergence
of matter-antimatter symmetry violating terms would have been fascinating and would have opened
up, quite possibly, interesting experimental opportunities. In our opinion, free-fall antimatter gravity
experiments should be interpreted in terms of limits on CPT-violating parameters, such as the η

parameter introduced in Section 4. This may be somewhat less exciting than a “probe of the equivalence
principle for antiparticles” but, still, of utmost value for the scientific community.
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Appendix A. Sign Change of ψ ψ under Charge Conjugation

With the charge conjugation matrix C = iγ2γ0 (superscripts denote Cartesian indices) and the
Dirac adjoint ψ = ψ+ γ0, we have

ψC = C ψ
T
= iγ2 γ0 γ0 ψ∗ = iγ2 ψ∗ . (A1)

We recall that the γ2 (contravariant index, no square) matrix in the Dirac representation matrix is

γ2 =

(

0 σ2

−σ2 0

)

, σ2 =

(

0 −i
i 0

)

,
(

σ2
)+

= σ2 , (A2)

which implies that
(

γ2
)+

= −γ2. The Pauli matrices are denoted as σi with i = 1, 2, 3. The Dirac
adjoint of the charge conjugate is

ψ
C
=
(

ψC
)+

γ0 = ψT(−i)
(

γ2
)+

γ0 = ψT(−i) (−γ2) γ0 = ψT i γ2 γ0 . (A3)

This leads to a verification of the sign flip of the mass terms in the gravitationally coupled
Lagrangian for antimatter, given in Equation (28) (see, also, Equations (29) and (30)),

ψ
C

ψC = (ψTiγ2) γ0 (i γ2 ψ∗) = −(i)2ψT (γ2)2 γ0ψ∗ = −ψT γ0 ψ∗ = −ψ ψ . (A4)

Two useful identities (i) γ0 C+ γ0 = C and (ii) C−1 = −C have been used in Section 3. These will
be derived in the following. The explicit form of the γ2 matrix in the Dirac representation implies that
(

γ2
)+

= −γ2. Based on this relation, we can easily show that

C+ =
(

i γ2 γ0
)+

= −i γ0
(

γ2
)+

= i γ0 γ2 = −i γ2 γ0 = −C . (A5)

The first identity γ0 C+ γ0 = C can now be shown as follows,

γ0 C+ γ0 = γ0
[

−i γ2 γ0
]

γ0 = −i γ0 γ2 = i γ2 γ0 = C . (A6)

Furthermore, one has

C C+ = C (−C) = i γ2 γ0 i γ0 γ2 = −
(

γ2
)2

= − (−✶4×4) = ✶4×4 , (A7)

so that
C−1 = C+ = −C , (A8)

which proves, in particular, that C−1 = −C.

Appendix B. General Considerations

A few illustrative remarks are in order. These concern the following questions: (i) To which
extent do gravitational and electrostatic interactions differ for relativistic particles? This question
is relevant because, in the nonrelativistic limit, in a central field, both interactions are described by
potentials of the same functional form (“1/R potentials”). (ii) In addition, we should clarify why the
integrals (29) and (30) represent the dominant terms in the evaluation of the Dirac particle energies,
in the nonrelativistic limit.
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After some rather deliberate and extensive considerations, one can show [12] that, up to corrections
which combine momentum operators and potentials, the general Hamiltonian for a Dirac particle in a
combined electric and gravitational field is

HD =~α · ~p + β{m(1 + φG)}+ eφC , (A9)

where φG is the gravitational, and φC is the electrostatic potential. In addition,~α is the vector of Dirac
α matrices, ~p is the momentum operator, and β = γ0 is the Dirac β matrix. After a Foldy–Wouthuysen
transformation [26], one sees that the gravitational interaction respects the particle-antiparticle
symmetry, while the Coulomb potential does not, commensurate with the opposite sign of the charge
for antiparticles. Question (i) as posed above can thus be answered with reference to the fact that,
in leading approximation, the gravitational potential enters the Dirac equation as a scalar potential,
modifying the mass term, while the electrostatic potential can be added to the free Dirac Hamiltonian
vecα · ~p + βm by covariant coupling [1].

The second question posed above is now easy to answer: Namely, in the nonrelativistic limit,
one has

~α · ~p→ 0 , (A10)

and furthermore, the gravitational and electrostatic potentials can be assumed to be weak against the
mass term, at least for non-extreme Coulomb fields [65]. Under these assumptions, one has HD → βm,
and the matrix element 〈ψ|HD|ψ〉 assumes the form

∫

d3r ψ+(~r) γ0 mψ(~r) (see Equation (29)).
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