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Abstract

A number of psycholinguistic studies have fac-
torially manipulated words’ contextual pre-
dictabilities and corpus frequencies and shown
separable effects of each on measures of hu-
man sentence processing, a pattern which has
been used to support distinct mechanisms un-
derlying prediction on the one hand and lex-
ical retrieval on the other. This paper exam-
ines the generalizability of this finding to more
realistic conditions of sentence processing by
studying effects of frequency and predictabil-
ity in three large-scale naturalistic reading cor-
pora. Results show significant effects of word
frequency and predictability in isolation but no
effect of frequency over and above predictabil-
ity, and thus do not provide evidence of dis-
tinct mechanisms. The non-replication of sep-
arable effects in a naturalistic setting raises
doubts about the existence of such a distinc-
tion in everyday sentence comprehension. In-
stead, these results are consistent with previ-
ous claims that apparent effects of frequency
are underlyingly effects of predictability.

1 Introduction

Are there distinct effects of a word’s frequency
versus predictability in human sentence compre-
hension? Recent evidence implicates prediction as
a major organizing principle in cognition (Bubic
et al., 2010; Singer et al., 2018; Keller and Mrsic-
Flogel, 2018), and psycholinguists have long stud-
ied the role of prediction in human sentence pro-
cessing and its relation to other comprehension
mechanisms (Marslen-Wilson, 1975; Kutas and
Hillyard, 1984; MacDonald et al., 1994; Tanen-
haus et al., 1995; Hale, 2001; Norris, 2006; Levy,
2008; Frank and Bod, 2011). Some prominent
theories of word recognition claim that ease of
lexical access is modulated by the strength of a
word’s representation in memory, independently

of contextual factors that guide prediction (Seiden-
berg and McClelland, 1989; Coltheart et al., 2001;
Harm and Seidenberg, 2004). Other theories hold
that apparent effects of frequency are underlyingly
effects of predictability (Norris, 2006; Levy, 2008;
Rasmussen and Schuler, 2018).

A number of studies using constructed stim-
uli that factorially manipulate word frequency and
predictability have found separable additive ef-
fects of each, suggesting distinct influences on
lexical processing (see Staub, 2015 for a re-
view). This paper examines the generalizability of
these findings to typical sentence comprehension
by searching for separable effects of frequency
and n-gram predictability using deconvolutional
time series regression (DTSR) models (Shain and
Schuler, 2018) fitted to three large naturalistic
reading corpora: Natural Stories (Futrell et al.,
2018), Dundee (Kennedy et al., 2003), and UCL
(Frank et al., 2013). While results show evidence
of both frequency and predictability effects in iso-
lation, they show no effect of frequency over pre-
dictability and thus do not support the existence
of separable effects. They are instead consistent
with either (1) an account of apparent frequency
effects as epiphenomena of predictive processing
(Norris, 2006; Levy, 2008) or (2) a more circum-
scribed role for frequency effects in naturalistic
reading than constructed experiments suggest.

2 Background and Related Work

2.1 Frequency and Predictability in Human
Sentence Processing

It has long been recognized that low-frequency
words are harder to process (Inhoff and Rayner,
1986). For example, in a neutral context, the
more frequent bottle should on average be pro-
cessed more quickly than the less frequent kettle:
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(1) a. Ihave abottle.
b. Ihave a kettle.

However, context can dramatically alter these pat-
terns by changing words’ predictability (Ehrlich
and Rayner, 1981):

(2) a. the pot calling the bottle black
b. the pot calling the kettle black

Some models of word recognition (Seidenberg
and McClelland, 1989; Coltheart et al., 2001;
Harm and Seidenberg, 2004) posit a context-
independent lexical retrieval mechanism, distinct
from any mechanisms for predictive coding, with
processing cost proportional to the strength of a
word’s representation in memory (a function of
lexical frequency). Such a view predicts separable
effects of frequency and predictability in human
language comprehension. Other models (Hale,
2001; Norris, 2006; Levy, 2008; Rasmussen and
Schuler, 2018) posit no such context-independent
retrieval mechanism, and instead propose a uni-
fied comprehension mechanism that incrementally
reallocates resources between possible interpreta-
tions of the unfolding sentence, with processing
cost proportional to the amount of information
(resource reallocation) contributed by each new
word. Such a view predicts no separable effects of
frequency and predictability because lexical fre-
quencies are subsumed into the incremental prob-
ability model.

Consistently with the first hypothesis, previous
studies have shown separable additive effects of
frequency and predictability by factorially manip-
ulating corpus frequency and cloze predictability
(Rayner et al., 2004; Ashby et al., 2005; Gollan
et al., 2011; Staub and Benatar, 2013, see Staub,
2015 for a review). However, cloze estimates
poorly distinguish degrees of low contextual prob-
ability (Smith and Levy, 2013), and constructed
stimuli, while affording direct control over lin-
guistic variables, may fail to reflect the typical
distributional characteristics of the language, lack
context, and/or inadvertently trigger suspension of
the usual processes of pragmatic inference due to
the absence of an overarching discourse (Demberg
and Keller, 2008; Hasson and Honey, 2012; Shain
et al., 2018). It is therefore not yet clear whether
frequency and predictability effects can be sepa-
rated in a more realistic setting.

2.2 The Naturalistic Experimental Paradigm

Concerns about the ecological validity of con-
structed stimuli can be addressed by the use of
naturalistic stimuli (e.g. stories, newspaper arti-
cles, persuasive pieces, etc.). Naturalistic exper-
iments are therefore an important complement to
constructed experiments in the study of cognitive
processes (Hasson and Honey, 2012).

However, naturalistic experiments introduce
their own challenges. Without the ability to
factorially manipulate frequency and predictabil-
ity, naturalistic studies must confront the natural
collinearity between these two variables in ordi-
nary language (Demberg and Keller, 2008). Fur-
thermore, because naturalistic stimuli do not de-
fine a critical region of the stimulus, responses
are generally modeled word-by-word (Demberg
and Keller, 2008; Frank and Bod, 2011; Smith
and Levy, 2013; van Schijndel and Schuler, 2015).
It is standard psycholinguistic practice to do so
through ablative likelihood ratio testing (LRT) of
linear mixed effects regression (LMER) models
(Bates et al., 2015) fitted to the dependent vari-
able of interest (e.g. fixation duration) (Demberg
and Keller, 2008; Frank and Bod, 2011; van Schi-
jndel and Schuler, 2015; Shain et al., 2016). How-
ever, this approach has important disadvantages.
First, naturalistic data constitute time series that
may violate the independence assumptions of lin-
ear regression and therefore confound model in-
terpretation and hypothesis testing (Baayen et al.,
2017, 2018; Shain and Schuler, 2018). One ma-
jor such confound is temporal diffusion (i.e. a lin-
gering response to stimuli), which can be brought
under statistical control through deconvolutional
time series regression (DTSR) models that directly
estimate temporal structure in the relationships be-
tween predictors and response (Shain and Schuler,
2018). Second, LRT implicitly evaluates on in-
sample data, making it challenging to diagnose
overfitting and to assess external validity (Vasishth
et al., 2018). This can be addressed through out-
of-sample non-parametric tests, such as the paired
permutation test widely used in machine learning
(Demsar, 2006).

3 Experimental Setup

This paper seeks to complement constructed stim-
ulus experiments by searching for separable ef-
fects of frequency and predictability during nat-
uralistic reading, using methods designed to ad-
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Effect estimate (log-ms)

Corpus ‘ SentPos Trial Rate WordLen SaccLen PrevFix Unigram 5-gram
Natural Stories | 0.0098  -0.0216 -0.3069 — — 0.0158  -0.0018  0.0174
Dundee | -0.0085 -0.0052 -0.0277  0.0068 -0.0021  -0.0178  -0.0067  0.0117

UCL 0.0524 -0.1330  0.0023 0.0221 0.0778 0.0005  0.0184

Table 1: Effect estimates in log-ms by corpus, computed as the IRF integral over the longest time offset seen in
training. Following psycholinguistic convention, unigrams and 5-grams have opposite sign (log prob vs. surprisal).
In UCL, sentence position and trial are identical (sentences were shuffled).

Corpus | »
Natural Stories | -0.78
Dundee -0.73
UCL -0.74

Table 2: Pearson’s correlation between 5-gram sur-
prisal and unigram log probability by corpus.

dress the challenges of Section 2.2. The prob-
lem of temporal diffusion is addressed by us-
ing DTSR models rather than LMER (see Ap-
pendix A for implementation details). The prob-
lem of external validity is addressed by using held-
out paired permutation testing rather than LRT,
thus basing the hypothesis test directly on gener-
alization error. The possibility that cloze probabil-
ities are poor estimates of predictability for low-
frequency words is addressed by operationalizing
predictability as 5-gram surprisal generated by a
large-vocabulary statistical language model. The
natural collinearity of frequency and predictabil-
ity is addressed through the use of large-scale
data that should permit subtle differentiation of
collinear effects. Taken together, the corpora ex-
amined in this study contain over one million fixa-
tions generated by 243 human subjects. Although
there is a large-magnitude correlation between un-
igram log probability (frequency) and 5-gram sur-
prisal (predictability) in these corpora, as shown
in Table 2, synthetic experiments show that DTSR
can faithfully identify models from much smaller
data than that used here, even when all predic-
tors are correlated at the 0.75 level (Shain, 2018).
Given the size of the data, failure to distinguish
effects of frequency and predictability would raise
doubts about the existence of such a separation in
naturalistic reading.

3.1 Statistical Procedure

DTSR models are fitted separately to each of
the Natural Stories (Futrell et al., 2018), Dundee
(Kennedy et al., 2003), and UCL (Frank et al.,

2013) corpora.! Following previous investigations
of this question (Rayner et al., 2004; Ashby et al.,
2005; Gollan et al., 2011, inter alia), frequency
is estimated from corpus statistics — in this case,
KenLM (Heafield et al., 2013) unigram models
trained on the Gigaword 3 corpus (Graff and Cieri,
2003). Unlike previous studies using close esti-
mates of predictability (Rayner et al., 2004; Ashby
et al., 2005; Gollan et al., 2011, inter alia), pre-
dictability is statistically estimated, again using
KenLLM models (5-gram) trained on Gigaword 3.
This is both because (1) cloze norming all words
contained in thousands of naturalistic sentences
is prohibitive and (2) statistical language mod-
els trained on large data can more reliably differ-
entiate low probability continuations (Smith and
Levy, 2013). Following recent work on predic-
tion effects in naturalistic sentence comprehension
(Demberg and Keller, 2008; Frank and Bod, 2011;
Smith and Levy, 2013), predictability estimates
are encoded as surprisal by negating the 5-gram
log probabilities.

The models assume ShiftedGamma impulse re-
sponse functions (Shain and Schuler, 2018, see
Appendix A) for each of these variables, as well
as for the nuisance variables word length, saccade
length and an indicator variable for whether the
previous word was fixated.> To capture trends
in the response at different timescales, the mod-

! Natural Stories is a self-paced reading corpus containing
848,768 word fixations from 181 subjects reading narrative
and informational texts. Dundee is an eye-tracking corpus
containing 260,065 word fixations from 10 subjects reading
newspaper editorials. UCL is an eye-tracking corpus contain-
ing 53,070 fixations from 42 subjects reading sentences taken
from novels by amateur authors.

Although the sentences in UCL were randomized and pre-
sented in isolation — and therefore subject to some of the
concerns about constructed stimuli raised in Section 2 — they
are included here because the stimuli are naturally occurring
rather than constructed for a particular experimental purpose.
The UCL results replicate the overall pattern of significance
(Table 3), and excluding them has no impact on the overall
results.

The variables saccade length and previous was fixated
are only used for eye-tracking since they are not relevant to
self-paced reading.
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Comparison ‘ Pooled ‘ Natural Stories

Corpus

Dundee UCL
5-gram only vs. baseline | 0.0001%%* | 0.0001%** 0.0001%%% 0,000 ***
Unigram only vs. baseline | 0.0001%%* | 0.0001%** 0.0001%%%  0.0001***
5-gram + Unigram vs. Unigram-only | 0.0001%%* | 0.0001%** 0.0626 0.0006%%*
5-gram + Unigram vs. 5-gram-only | 0.1515 0.1831 0.0105 0.1491

Table 3: Held-out paired permutation testing results, both pooled (left) and by corpus (right).

els also include linear effects for the word’s in-
dex in the sentence (sentence position) and docu-
ment (¢trial). Following Shain and Schuler (2018),
in addition to the intercept, the models contain a
convolved intercept (rate) designed to capture ef-
fects of stimulus timing. The response used in
all corpora is log fixation duration (go-past for
eye-tracking).?> Outlier filtering is performed in
each corpus following the procedures described in
Shain and Schuler (2018).

Approximately half the data in each corpus
is used for training, with the remaining half
reserved for held-out evaluation. Models in-
clude by-subject random intercepts as well as
by-subject random slopes and impulse response
parameters for each predictor.* Held-out hy-
pothesis testing uses a “diamond” ablative struc-
ture first ablating fixed effects for 5-gram sur-
prisal and unigram log probability individually
and then ablating both. All random effects
are retained in all models. Comparisons use
paired permutation tests of the by-item losses
on the evaluation set, pooling across all cor-
pora.’> Note that the non-parametric permuta-
tion test permits this pooling procedure to unify
the models from all three corpora into a single
test, since (unlike LRT) permutation testing sup-
ports out-of-sample comparison. Data processing
was performed using the ModelBlocks toolchain
(van Schijndel and Schuler, 2013), available
at https://github.com/modelblocks/
modelblocks-release. Model fitting was
performed using the DTSR software library (Shain
and Schuler, 2018), available at https://
github.com/coryshain/dtsr. See the ci-
tations above for data access instructions.

3The overall pattern of significance does not change when
first-pass durations are used.

*By-word random intercepts are not included because of
their potential to subsume frequency effects.

>To correct for different error variances, errors are
rescaled by the joint standard deviation of the errors from the
full and ablated models by corpus.

4 Results

Effect estimates® from the full models are pre-
sented in Table 1 and pooled statistical compar-
isons are presented in the Pooled column of Ta-
ble 3. If predictability and frequency effects are
additive, all four comparisons in Table 3 should be
significant. As shown, this is not the case. There is
evidence that both frequency (unigram log prob-
ability) and predictability (5-gram surprisal) in
isolation reliably index processing difficulty, as
shown by the significance of both effects over the
baseline. However, when the effects are compared
to each other, predictability explains significantly
more variance than frequency but not vice versa.

This general pattern of results further obtains
for each corpus individually, as shown by the Cor-
pus column breakdown in Table 3. One minor ex-
ception is that neither predictability nor frequency
improves significantly over the other in Dundee.’
The Dundee results are nevertheless consistent
with an interpretation in which frequency and pre-
dictability do not index distinct processing phe-
nomena and inconsistent with an interpretation in
which they do. These results thus provide no evi-
dence of separable frequency and predictability ef-
fects, whether the corpora are considered together
or individually.

5 Discussion

As described in Section 4, results show no evi-
dence of separable effects of frequency and pre-
dictability in naturalistic reading. One possible
explanation for this outcome is that 5-gram sur-
prisal tracks human prediction effort better than
cloze probabilities, in part because cloze proba-
bilities are less reliable for infrequent words. Al-
though countervailing evidence exists in the liter-
ature (e.g. Smith and Levy, 2011 found effects of
cloze but not n-gram probabilities in human read-

® The estimated impulse response functions that underlie
these effect sizes are plotted in Appendix B.

"The p-value of 0.0105 observed for frequency over pre-
dictability does not achieve significance at the 0.05 level un-
der 6-way Bonferroni correction (2 variables X 3 corpora).
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ing times), in general this evidence is based on
weak statistical competitors to cloze (e.g. Smith
and Levy, 2011 used tri-grams). By contrast, re-
cent trends in cognitive modeling point toward a
correlation between the linguistic and psycholin-
guistic performance of language models, such that
more powerful models with lower perplexity also
tend to correlate more strongly with measures of
cognitive effort (Goodkind and Bicknell, 2018;
van Schijndel and Linzen, 2018). This suggests
that apparent frequency effects may arise in part
from poor estimates of predictability. Note that by
using 5-gram surprisal rather than more powerful
neural language models (Jozefowicz et al., 2016),
the analysis described in this paper is conserva-
tive in its attribution of variance to predictabil-
ity. The failure of frequency is thus all the more
compelling, since replacing 5-gram surprisal with
surprisals obtained from more powerful language
models would be unlikely to increase the explana-
tory power of frequency.

Another potential explanation for the lack of
separable effects of frequency and predictability is
the use of naturalistic rather than constructed stim-
uli. Neuroscientific evidence shows that domain-
general executive control regions activate during
the processing of some artificially constructed lan-
guage stimuli (Kaan and Swaab, 2002; Kuperberg
et al., 2003; Novick et al., 2005; January et al.,
2009) but fail to activate during the processing of
naturalistic stimuli (Blank and Fedorenko, 2017).
Such results have led some to argue that artifi-
cially constructed experimental stimuli may in-
crease general cognitive load by coercing compre-
hension into problem solving, thereby engaging
mechanisms that play little role in everyday sen-
tence processing (Campbell and Tyler, 2018, We-
hbe et al., in prep; Diashek et al., in prep). It is
possible that the language comprehension mecha-
nisms that implement linguistic prediction (Shain
et al., under review) are relatively less engaged
while domain general executive control mecha-
nisms are relatively more engaged during the pro-
cessing of constructed stimuli presented without
context, perhaps suppressing the influence of pre-
ceding words on participants’ reading behavior.
Further investigation is needed in order to explore
this hypothesis.

In any case, it is a statistical truism that nega-
tive results do not motivate acceptance of the null
hypothesis. Thus, it is possible that frequency ef-

fects exist in naturalistic reading but are too small
to be detected here. Nevertheless, the failure to
find frequency effects in large naturalistic data in-
dicates that any such effects are greatly attenuated
in the processing of naturalistic texts in compari-
son to the processing of constructed stimuli, which
circumscribes the importance that any such effects
might have in driving comprehension effort during
typical reading.

6 Conclusion

This paper explored whether effects of word fre-
quency and predictability are distinguishable in
naturalistic sentence processing. Despite the size
of the combined dataset, results showed no ev-
idence of separable effects in naturalistic read-
ing, contrary to previous findings of separable ef-
fects in studies using constructed stimuli. This
investigation thus shows no evidence of a dis-
tinct, context-independent lexical retrieval mecha-
nism modulated by strength of memory represen-
tation (Seidenberg and McClelland, 1989; Colt-
heart et al., 2001; Harm and Seidenberg, 2004),
and instead favors a view in which sentence pro-
cessing effort is driven by a mechanism that in-
crementally reallocates resources between com-
peting interpretations, subsuming any effects of
raw lexical frequency (Norris, 2006; Levy, 2008;
Rasmussen and Schuler, 2018). The discrep-
ancy between constructed and naturalistic exper-
imental settings presents a puzzle for our un-
derstanding of the mental processes that under-
lie human language comprehension, and is per-
haps linked to recent evidence that artificially con-
structed linguistic stimuli can spuriously engage
non-linguistic executive mechanisms by increas-
ing general cognitive load as compared to natural-
istic settings (Blank and Fedorenko, 2017; Camp-
bell and Tyler, 2018). Further investigation into
the precise sources of the discrepancy may shed
new light on the interplay between prediction and
memory in human sentence processing.
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A DTSR Implementation

The deconvolutional time series regression
(DTSR) models used in this paper were fitted
using the code repository released by Shain
and Schuler (2018), available at: https:
//github.com/coryshain/dtsr. Models
used variational inference to fit the means and
variances of independent normal posterior distri-
butions over all model parameters assuming an
improper uniform prior. Convolved predictors
used the three-parameter ShiftedGamma impulse
response function (IRF) kernel:

B (x _ 5)a—le—ﬁ(:):—6)
I(a)

flz;0,8,0) = (1)

Posterior means for the IRF parameters were ini-
tialized at « = 2, § = 5, and § = —0.2, which de-
fines a decreasing IRF with peak centered at £t = 0
that decays to near-zero within about 1s. Mod-
els were fitted using the Adam optimizer (Kingma
and Ba, 2014) with Nesterov momentum (Nes-
terov, 1983; Dozat, 2016), a constant learning rate
of 0.01, and minibatches of size 1024. For compu-
tational efficiency, histories were truncated at 128
timesteps. Prediction from the network used an
exponential moving average of parameter iterates
with a decay rate of 0.999, and models were eval-
vated using maximum a posteriori estimates ob-
tained by setting all parameters to their posterior
means.? Convergence was visually diagnosed.

8Since all parameters have independent normal distribu-
tions in the variational posterior, the law of large numbers
guarantees that samples from the posterior converge in prob-
ability to the posterior mean.
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B Impulse response shapes

For reference, estimated impulse response shapes
by corpus are plotted in Figures 1-3. Plotted
curves describe the estimated change in the re-
sponse t seconds after having observed a unit
impulse of each predictor. For example, in the
Dundee estimates, observing a word with one
standard deviation of 5-gram surprisal (red curve)
is expected to increase reading time by about 0.04
log-ms instantaneously, and by about 0.01 log-ms
at a subsequent word observed 0.5s later. Posi-
tive IRFs (curves above 0) mean that predictors
are estimated to increase reading time (and, by as-
sumption, comprehension difficulty), and negative
IRFs (curves below 0) mean that predictors are es-
timated to decrease reading time. For more de-
tailed psycholinguistic interpretation of IRF esti-
mates like these, see Shain and Schuler (2018).
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