
Estimating Motion Codes from Demonstration Videos

Maxat Alibayev, David Paulius, and Yu Sun

Abstract— A motion taxonomy can encode manipulations as
a binary-encoded representation, which we refer to as motion
codes. These motion codes innately represent a manipulation
action in an embedded space that describes the motion’s
mechanical features, including contact and trajectory type. The
key advantage of using motion codes for embedding is that mo-
tions can be more appropriately defined with robotic-relevant
features, and their distances can be more reasonably measured
using these motion features. In this paper, we develop a deep
learning pipeline to extract motion codes from demonstration
videos in an unsupervised manner so that knowledge from
these videos can be properly represented and used for robots.
Our evaluations show that motion codes can be extracted from
demonstrations of action in the EPIC-KITCHENS dataset.

I. INTRODUCTION

Roboticists have aimed to develop robots or intelligent
agents for activities of daily living, that can perform not
only tasks for humans but also understand their actions in
order to work safely alongside us. Designing an effective
representation of knowledge is very important in drawing
meaning from actions or understanding what it has observed
or learned [1], [2]. Typically, humans communicate manip-
ulations (such as cutting, mixing, or picking-and-placing,
or other everyday household activities) using verbs, but
understanding the motions through their physical properties,
such as contact types and trajectory types, has not been
extensively studied for robots.

The disconnection between motions in a language space
for communication and their physical properties poses many
difficulties. First of all, a verb is usually too ambiguous to
carry much of the motion’s physical features. A much longer
and detailed description, usually with many sentences, would
be required to represent a motion clearly. Second, distances
between two verbs in language spaces do not represent their
differences in terms of physical motion. Neither Word2Vec
[3] nor one-hot representations take physical motion into
consideration. Hence, it is difficult to define loss functions
using verbs since they have no physical or mechanical
meanings. Third, the elements in the verb vector either in its
original form or Word2Vec have no meanings, making any
element-based calculation computation meaningless. These
difficulties hinder the way motion knowledge is shared
between humans and robots, because eventually, robots rely
upon physical features of motions for action.

For these reasons, we define a new verb embedding
called motion code, which is based on motion’s mechanical

Maxat Alibayev, David Paulius and Yu Sun are in the Department of
Computer Science & Engineering at the University of South Florida, Tampa,
FL, USA. They are members of the Robot Perception and Action Lab.
(Contact: {alibayevm,davidpaulius,yusun}@usf.edu)

INPUT:

Video / Sequence 

of action

OUTPUT:

Motion Code

(e.g. 11100110010000001)

Motion Code Predictor 

(Deep Model)

Motion Taxonomy

(Features)

Fig. 1. Illustration of the pipeline proposed for motion recognition with
the use of the motion taxonomy for motion embedding. In this paper, our
focus is on motion code prediction to obtain a descriptive binary string.

attributes, including contact and trajectory features. In our
previous work [4], [5], we introduced a motion taxonomy,
which is a hierarchical categorization of mechanical prop-
erties pertinent to robotic manipulation motions. Using this
taxonomy, we illustrated how we could embed the concepts
of manipulation as motion codes, which are binary strings
or vectors representing motions in a mechanical space. We
considered attributes such as contact and trajectory details
to be more descriptive of motions such that a robot can
then communicate and interact more effectively with humans.
Unlike preceding works such as [6], [7], [8], [9], [10],
our objective with motion codes is to derive an encoding
of motions, which can be used for motion understanding
and possibly generation. Conventionally, motions can be
represented as vectors to train models (specifically neural
networks) on activity sequences; such vectors can be mea-
sured against one another for a variety of tasks, and they
have been applied to affordance learning and grounding [11],
[12], [13], [14], [15]. In [4], we introduced characteristics
that should be considered when defining motions from the
robot’s point of view, and we showed how motions translated
to their motion codes [5]. Furthermore, these clusters were
supported by a comparison of recorded data from the Daily
Interactive Manipulation (DIM) dataset [16], [17].

However, before this work, motion codes were manually
labeled. Making it automatic will allow the robot to under-
stand motions from demonstration videos for learning and
collaboration. Therefore, this paper’s objective is to present
our approach of extracting motion codes directly from video
demonstrations. This process is referred to as motion code
prediction, where the goal is to obtain a motion code that
accurately describes manipulation from a video.

First, in the paper, we formally introduce an improved
motion taxonomy based on our previous work [4] and define



its attributes in Section II. Then, in Section III, we discuss
a deep-learning-based motion code prediction structure that
identifies each attribute of the taxonomy separately as sub-
strings that can then be appended together to form a single
motion code. In Section IV, we discuss our evaluation of
the presented motion code prediction approach and show its
accuracy in extracting motion code from test videos, which
were obtained from the EPIC-KITCHENS [18] dataset.

II. MOTION CODES

In this section, we describe the various attributes used to
describe and represent manipulations as motion codes. The
purpose of the motion taxonomy is to translate manipulations
into a machine language for motion recognition, analysis, and
tentatively generation. The motion taxonomy from [4] was
revised and updated in [5]. However, in our experiments in
Sections III and IV, we will introduce a condensed version
of this taxonomy. Manipulation is defined to be any atomic
action between active and passive objects; an active object
is defined as a tool or utensil (or the combination of a
robot’s gripper or human hand and tool) that acts upon
passive objects, which are objects that are acted upon as
a result of motion. Hence, when annotating demonstrations
as motion codes, it is important to identify the active and
passive objects in action.

A. Contact Features

Motion types can be classified as either contact or non-
contact interaction types. Contact motion types are all ma-
nipulations that require contact between an active object (i.e.
the actor’s hands or the object that is typically grasped in
the actor’s hands – as opposed to the definition in [4]) and
passive object(s) (i.e. the object(s) that is/are manipulated
by the active object) in the work space. On the other hand,
non-contact motion types are all manipulations that do not
require contact between active and passive objects or no force
is detected between them. In [4], we also referred to the
active object as the manipulator and the passive object(s)
as the manipulatee, but we will instead use the terms active
and passive objects in this paper. Contact can be detected
or observed visually (for instance, by the objects’ borders or
bounding boxes) or using force sensors mounted on objects.
An example of a contact motion is cutting, where the active
tool makes contact with a passive object that is deformed
into smaller units. An example of a non-contact motion is
pouring; when pouring from one container (active) to another
(passive), we usually will not observe contact.

Should a manipulation be identified as contact, we classify
the interaction or engagement between objects as either rigid
or soft. Rigid engagement is where there is no deformation
or structure change among interacting objects, while soft
engagement is where objects deform as a result of the
interaction (e.g. cutting) or if the objects allow admittance
(e.g. piercing). As a change to the previous version of the
taxonomy, we have added a description of the structural
integrity of the objects used in order to describe deformation,
which is separate to the engagement type and falls under

its own tree. Active and passive objects either undergo
no state deformation (non-deforming) or exhibit state or
structural change (deforming). A perfect example of a soft
engagement motion is chopping, as an active knife object will
permanently deform the passive object into smaller units; as
for a rigid motion, an example of this is picking-and-placing,
since the object is simply moved and does not exhibit any
structural change. Deformation can be further distinguished
as temporary or permanent, which is attributed to the objects’
material or texture. For instance, squeezing an object such as
a sponge will show temporary deformation since it returns to
its original shape after the action. However, in the chopping
example from before, this state change is permanent.

We also note the duration of contact being made between
the active and passive objects. If the actor only makes contact
for a short duration in the manipulation, we consider that
contact to be discontinuous; however, if the contact between
the active tool and passive object is persistent, we consider
that contact to be continuous. It is important to note that
this perspective changes depending on what is considered to
be the active object. If we consider the actor’s hand to be
the active tool by itself, then we can assume that once it is
grasping a tool for manipulation, there would be continuous
contact between the hand and the tool, which is why we
consider the active tool to be either the hand (if there is no
tool acting upon other objects) or both the hand and tool as a
unit (if there are other objects in the manipulation). Contact
duration can be determined visually (for instance, by timing
the overlap of bounding boxes) or physically with sensors.

B. Trajectory Features

An important aspect of manipulation execution is motion
planning and generation, where importance lies in executing
a trajectory that fulfills the conditions of an action. Hence, in
our taxonomy, we describe the trajectory taken by both the
active and passive objects; we describe an object’s trajectory
as prismatic (or translational) or revolute (or rotational).

Prismatic motions are manipulations where an object is
translated or moved along a certain axis or plane. Prismatic
motions are identified as 1-dimensional (along a single
axis), 2-dimensional (confined to a plane) or 3-dimensional
(confined to a manifold space); this can be interpreted as
having 1 to 3 degrees of freedom (DOF) of translation.
Revolute motions, on the other hand, are those manipulations
where an object is rotated about an axis or plane of rotation;
a robot performing such motions would rely on its revolute
joints. Similar to prismatic motions, revolute motions range
from 1-D to 3-D motion (i.e. from 1 to 3 DOF); typically,
revolute motions are confined to a single axis of rotation in
world space (such as in fastening or loosening a screw).

A motion is not limited to one trajectory type, as these
properties are not mutually exclusive; therefore, we can say
that a motion can be prismatic-only, revolute-only, neither
prismatic nor revolute or both prismatic and revolute. An
example of a prismatic-only motion is dipping, where an
active object will be translated to make contact with a
stationary passive object, while an example of a revolute-



1 axis

Prismatic (Translation)

Active Trajectory Type

2+ axes

YesNo

00

Revolute (Rotational)

No (Acyclical) Yes (Cyclical)

Recurrence

1101

10

AND

1 axis 2+ axes

YesNo

00

1101

OROR

OR OR OR

Engagement Type

Interaction Type

Rigid Elastic/Soft

Non-contact Contact 

000

Contact Duration

Discontinuous Continuous

10

AND

1110

OR OR

OR

Passive Trajectory Type

None Present

10

OR

Fig. 2. Hierarchy of attributes used in motion code prediction. Motion
codes were simplified to 9 bits in length, which was done by minimizing
the trajectory descriptors for better use on egocentric videos.

only motion is fastening a screw using a screwdriver. Some
motions such as flipping with a turner or spatula may exhibit
both prismatic and revolute properties.

We can also describe trajectory by its recurrence, which
describes if the motion exhibits repetitive movement by
repeating its trajectory. A motion can be acyclical or cyclical,
which may be useful depending on the context of motion.
For instance, mixing ingredients in a bowl may be repeated
until the ingredients have fully blended together, or in the
case of loosening a screw, the screwdriver will be rotated
until the screw is completely out of the surface. Learned
acyclical motions can be made cyclical by simply repeating
the executed trajectory, which is a decision that can be left
up to the robot if it is not finished with its task and failed to
successfully complete the manipulation.

C. Simplified Taxonomy and Motion Codes

By default, a full motion code is of length 18 bits [5].
However, due to the difficulty of identifying certain features
as well as the limitation imposed by our evaluation dataset,
we selected only a subset of the attributes for motion codes
in this paper, thus shortening the motion code to 9 bits. In
particular, we do not consider the structural outcome (both
active and passive) and active descriptor bits, because we
wanted to focus more on the interaction between the active
and passive objects. In addition, we also simplified the format
for trajectory bits; for active object trajectory, we reduced
the number of DOF for prismatic and revolute trajectory
descriptors to be zero, one, or many (i.e. more than one).

TABLE I
MOTION CODES FOR MANIPULATIONS BASED ON FIGURE 2. EACH

COMPONENT IS SEPARATED BY HYPHENS FOR LEGIBILITY.

Motion Code Motion Types and Variants

000-0-00-01-0 pour
000-0-01-00-0 sprinkle
100-0-00-01-0 rotate
100-0-01-00-1 switch, press, turn on (button)
100-0-11-01-1 turn on, switch (knob)
101-0-01-00-0 pull, push, move, wipe, spread
101-0-01-01-0 turn over, flip
101-0-11-00-0 put/take (in, out), remove, pick, place
101-0-11-00-1 open, close (door)
101-1-00-01-0 shake (revolute)
101-1-01-00-0 shake (prismatic)
101-1-11-01-1 shake, wash, move
110-0-11-01-0 dry, shake (drying)
111-0-00-00-0 squeeze (in hand)
111-0-01-00-0 dip, insert, pierce, crack (egg)
111-0-01-00-1 peel, break, cut, chop, slice, scrape
111-0-01-01-0 squeeze
111-0-01-01-1 dry (hands)
111-0-11-00-0 fold, break, spread, squeeze
111-1-11-00-0 mix, stir, beat, whisk

We justify this simplification by the fact that we only use
visual information from egocentric videos, which makes it
challenging to accurately compute the trajectories without a
coordinate system of reference. Lastly, the trajectories of the
passive objects were reduced to a single bit representing the
existence of the motion of the passive object with respect to
the active object, which is different to the default description
of passive objects with respect to the world frame. Figure 2
shows all applied modifications as a hierarchical tree, which
differs to that in [5]. With 5 unique outcomes for interaction
type, 2 unique outcomes for active object’s recurrence,
3 outcomes for prismatic and revolute trajectories, and 2
outcomes for passive object’s trajectory, the motion codes
in this format may have 180 valid combinations.

D. Translating Motions to Code

Motion codes can be assigned to manipulations by using
the flowchart in Figure 2 as a decision tree. We will use the
example of flipping a patty with a turner. First, we start with
the interaction type and we determine whether the motion is
contact or non-contact. In flipping, the active turner object
makes contact with the passive object, therefore classifying
this as a contact motion. Since there is contact, we proceed
down that branch, where we then describe the engagement
type between the objects and the contact duration throughout
the action. In our example, the turner will lift and not
deform the passive object while maintaining contact for a
majority of the manipulation (until the passive object falls).
Hence, for the contact portion of the code, we will have
‘101’. We then proceed to describe the trajectory type of the
objects in action. When flipping an object, there is usually no
recurrence (which we indicate with ‘0’ before the trajectory
bits). The active trajectory has some 1D prismatic trajectory
and it especially exhibits rotation about a single axis (‘0-
01-01’); the passive object also adopts the same trajectory,



I3D 

Feature Extraction
101-1-11-00-1

Word2Vec 

embedding

Input Video (x)
𝜃(𝑥)

Input Nouns (z)

[e.g. Vegetable]

𝜙(𝑧)

ℒ1

ℒ5

𝑓1

𝑓5

Output Motion Code (y)

Component Classifiers

Fig. 3. Illustration of the combined network architecture used for motion code prediction. By combining I3D features and Word2Vec embedding with
our own classifiers that detect attributes in Figure 2, we output motion codes that describe the manipulation occurring in the input video.

therefore making no movement relative to the active object
(‘0’). By combining all of these substrings, we end up with
a single, representative motion code ‘101-0-01-01-0’.

In Table I, we provide examples of action types seen in
several household manipulation datasets, such as DIM, EPIC-
KITCHENS, MPII Cooking Activities [19], and FOON [20],
[21], and their respective motion code assignment. Several
motions can share the same motion code due to common
mechanics, such as cutting and peeling since they are both
1D-prismatic motions that permanently deform the passive
objects. We can also account for variations in manipulation.
For instance, we may see manipulations that operate in 1
DOF or in many DOF, or we may see different motions
with the same label (as we will show in Section IV).

III. METHODOLOGY

Having established the definition of the motion taxonomy
and all properties it encompasses, we now discuss how we
can automatically obtain motion codes from video demon-
strations. In short, we design a deep neural network model
to extract visual feature vectors from the videos, which are
then further passed to classifiers for each component of the
taxonomy. The overall structure is illustrated as Figure 3.

A. Motion Prediction Model

Given a video x (where x ∈ X), we want to obtain a
motion code y that describes the manipulation taking place
by feeding x into a deep network θ : X → Ω. Since our
goal is to use video modality for motion code prediction, the
deep network model θ should integrate spatial and temporal
features of the videos. Presently, there are several action
recognition models that satisfy these criteria. Our choice fell
on Two-Stream Inflated 3D ConvNets (I3D), originally from
[22]. This architecture uses Inception-V1 [23] convolutional
neural network (CNN), which was pre-trained on ImageNet
dataset, and inflates the 2D convolutional and pooling layers
with a temporal dimension that were later tuned with the Ki-
netics dataset [22]. The model also combines two modalities
of video frames: RGB and optical flow frames. Two separate
models for both modalities are trained individually, and the
final feature vectors are obtained via late fusion by averaging
two outputs. This model boasts the highest action recogni-
tion accuracy results on well-known benchmarks, including

EPIC-KITCHENS [18], which we use in our experiments.
To potentially improve motion code prediction, we also tried
to incorporate knowledge of the objects in action into the
training process. Formally, we modified the model described
above by encoding the semantic features of the objects z ∈ Z
with embedding function φ : Z → Ψ and combining it
with the visual features. For our experiments, we concatenate
these two feature vectors. We use a Word2Vec model pre-
trained on Google News [3] (containing over 3 million
words) to encode these semantic features about objects seen
in each video. A model of this kind could be used for queries,
where we can determine what kind of motion with a given
object can be executed to replicate a certain activity.

From each video, we use the extracted features ω from I3D
(where ω ∈ Ω) and the word embedding of object semantics
ψ (where ψ ∈ Ψ) as a feature vector ξ ∈ (Ω,Ψ∗) (where Ψ∗

denotes that semantic features may or may not be used) to
be passed into several classifiers fi. To explain, each motion
code was broken down into the five independent components:
interaction type, recurrence, active prismatic motion, active
revolute motion, and passive object motion with respect to
active object. Each of these components were used to train
individual classifiers whose output will be combined into
a single code as opposed to predicting an entire motion
code. In this way, individual predictors will more accurately
identify features. In other words, the feature vector is then
passed through these classifiers fi : (Ω,Ψ∗) → Yi to
then predict the value for the ith component, yi ∈ Yi, of
the final motion code. Each component was converted into
one-hot vectors, making the motion prediction identical to
feature classification. All components were then combined
into a single motion code y. The objective function for
classification of the ith component, Li, is a cross-entropy
loss. The total objective function is the linear combination
of all components’ objective functions, as follows:

L =
∑5

i=1
λiLi

IV. EVALUATION

Based on the proposed methodology, we now evaluate
the performance of unsupervised motion code prediction
from video demonstrations using our proposed model. Using
videos from EPIC-KITCHENS, we evaluated three variations



of our motion prediction model and show how well they
performed in deriving motion codes.

A. Dataset and Training Details

For our motion prediction model, we use videos from the
EPIC-KITCHENS [18] dataset for training. We annotated
3,528 video segments with motion codes using the taxonomy
(Figure 2). Videos in EPIC-KITCHENS are annotated with
object in action details in the “noun” field, where the entry is
a list of words that describes the objects. We use these words
as an input z to the Word2Vec model. Overall, 2,742 videos
were used for training and 786 were used for testing. The
dataset was annotated with 32 unique motion codes, and each
code had at least 20 video segments assigned as its label.

The entire model was trained for 50 epochs with Adam
optimizer and the learning rate set to 0.0003 that decreases by
40% every 5 epochs. For the first 3 epochs, the convolutional
layers of the base model were frozen to allow the top layers
to fine-tune for a better initialization. The input video frames
are sampled to 6 frames per second to increase the training
and inference speed. As mentioned before, both RGB and
optical flow frames were used. In our experiments, all λ
coefficients are set to 1. During training, we add the L2

norm of the network parameters multiplied by a weight decay
factor to the loss function for L2 regularization. The model
was implemented with the TensorFlow library.

B. Results and Analysis

We computed the results for three variations of our model:
one that uses only visual features, another that incorporates
noun vectors with visual features, and another that also
uses noun vectors but with noise, where 20% of nouns are
incorrect. For each model, we also evaluated the performance
of each individual component of the motion codes, namely
the interaction (3 bits), recurrence (1 bit), active prismatic
motion (2 bits), active revolute motion (2 bits), and passive
object motion with respect to the active object (1 bit). The
models were evaluated based on their motion code prediction
accuracy. From Table II we can see that the baseline model
performed fairly well given that there are not many training
videos and 180 possible outcomes. However, when we re-
laxed the accuracy measurement to allow at most one bit to
be incorrectly predicted, the overall performance increased
by 32%, which means roughly a third of all predicted codes
are just one bit off from the ground truth motion code.
Another interesting thing to note is that in all cases, late
fusion of the predictions of both modalities improves the
overall performance of the model.

Results in Table II also suggest that using noun vectors
as an input to the model improves the overall accuracy by
10%, which is quite a significant jump. If we look at the
breakdown of individual components, noun vectors mostly
benefit the prediction of passive object motion with respect
to the active object. We observed that roughly 10% of videos
that were assigned incorrect motion codes by the baseline
model but were then given correct codes from the noun
model had only 1 bit that was wrong, which was the passive

TABLE II
MOTION PREDICTION ACCURACY RESULTS ON TEST VIDEOS (AS %).

Models RGB Flow Fused

Baseline
Entire code 35.1 35.2 38.9
Entire code with 1 bit off 67.3 64.5 70.9

Interaction 85.8 84.7 87.0
Recurrence 90.7 91.0 92.5
Prismatic trajectory 70.6 72.8 73.2
Revolute trajectory 74.4 76.2 78.5
Passive motion 68.6 64.8 71.9

Nouns
Entire code 45.3 46.1 48.0
Entire code with 1 bit off 73.2 72.1 75.3

Interaction 86.4 86.4 87.9
Recurrence 90.6 91.2 92.1
Prismatic trajectory 76.0 74.4 74.9
Revolute trajectory 80.5 78.6 81.3
Passive motion 76.0 78.9 79.9

Nouns (20% noise)
Entire code 40.8 39.9 43.1
Entire code with 1 bit off 70.7 68.8 72.1

Interaction 86.5 85.9 88.0
Recurrence 90.7 91.5 92.5
Prismatic trajectory 74.2 71.8 73.5
Revolute trajectory 76.3 76.6 78.4
Passive motion 72.4 72.6 73.9

object motion bit. For instance, the baseline model classified
a video as passive object motion being present with respect
to the manipulator, while the ground truth is the opposite.

Interestingly, 8% of these videos showed an action where
person either picks up and places an object or opens and
closes it (e.g. door, microwave, fridge). The passive object
motion bit for pick-and-place actions were corrected from 1
to 0, while in open and close actions, the bit was set from 0 to
1. In almost all cases when a person picks or places an object,
the object is moving with the same trajectory as the hand,
making the passive object stationary with respect to the hand.
On the other side, when person opens or closes a door, the
door always moves strictly around its axis, making it to have
only a revolute motion with 1 DOF. Such kind of a motion
trajectory is rarely performed by a human. These examples
show that the model leverages the information about the
objects and can make assumptions based on that knowledge.
Even after adding 20% noise to the input noun vectors, the
overall accuracy of motion code prediction lies right in the
middle between the baseline model and the model with 100%
correct noun vectors.

Overall, our model shows that it can successfully predict
motion components. The performance can be further im-
proved with a larger training set due to the large number of
parameters to train in the I3D model. The EPIC-KITCHENS
dataset includes 28,472 training videos, which is ten times
larger than the size of our training set, but labelling these
videos with ground truth motion codes is time-intensive. We
would also want to be able to predict the motion codes of



the original length and format that would define the motions
in a more detailed way. However, the information from
egocentric videos is not sufficient for this task. This could be
achieved with ADL videos of the same scenes from multiple
perspectives. In addition, readings from motion sensors could
be helpful in predicting motion trajectories of all objects with
respect to a fixed point in the world coordinate system.

V. CONCLUSION

In this paper, we build upon verb embedding as motion
codes, which we proposed for a robot’s understanding of
motions in a physical space [4], [5]. Motion codes are
created using the motion taxonomy to describe motions from
a mechanical perspective. Prior to this work, motion codes
were not obtained automatically from demonstration videos;
therefore, in this work, we introduced our approach for
extracting motion codes directly from video demonstrations,
which we refer to as motion code prediction. Using existing
neural network models, we designed a deep model that
identifies components from the taxonomy separately, which
are then concatenated to form a single motion code.

Our experiments showed an accuracy of 70.9% when
we allowed at most 1 bit to be incorrect from the ground
truth using our baseline model that only considers visual
features; however, by integrating nouns associated with each
video with the model, we showed that we can improve this
performance to 75.3%. Even when considering an overall
correct prediction, noun integration significantly improved
results by 10%. The achieved results lead us to believe that
embedding motions with our taxonomy may also contribute
to action recognition from videos. Such an approach to
embedding introduces a new motion space that can bridge the
gap between visual features and the action labels and other
semantic features. In addition, the generated motion codes
could be used as an attribute space for zero shot learning.

In the future, we will investigate if motion codes can
improve accuracy in motion recognition tasks that use human
language labels for supervised learning. Additionally, with an
improved motion prediction model, we will explore the use
of motion codes to append knowledge and to perform task
planning with our knowledge source FOON [20], [21].

VI. ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant Nos. 1812933 and 1910040.

REFERENCES

[1] D. Paulius and Y. Sun, “A survey of knowledge representation in
service robotics,” Robotics and Autonomous Systems, vol. 118, pp.
13–30, 2019.

[2] A. B. Jelodar, D. Paulius, and Y. Sun, “Long Activity Video Under-
standing using Functional Object-Oriented Network,” IEEE Transac-
tions on Multimedia, 2018.

[3] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[4] D. Paulius, Y. Huang, J. Meloncon, and Y. Sun, “Manipulation Motion
Taxonomy and Coding for Robots,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2019,
pp. 5596–5601.

[5] D. Paulius, N. Eales, and Y. Sun, “A Motion Taxonomy for Manipu-
lation Embedding,” in Proceedings of Robotics: Science and Systems,
Corvalis, Oregon, USA, July 2020.

[6] Y. Kuniyoshi, M. Inaba, and H. Inoue, “Learning by watching:
Extracting reusable task knowledge from visual observation of human
performance,” IEEE transactions on robotics and automation, vol. 10,
no. 6, pp. 799–822, 1994.

[7] R. Dillmann, “Teaching and learning of robot tasks via observation of
human performance,” Robotics and Autonomous Systems, vol. 47, no.
2-3, pp. 109–116, 2004.

[8] J. Takamatsu, K. Ogawara, H. Kimura, and K. Ikeuchi, “Recognizing
assembly tasks through human demonstration,” The International
Journal of Robotics Research, vol. 26, no. 7, pp. 641–659, 2007.

[9] W. Dai, Y. Sun, and X. Qian, “Functional analysis of grasping
motion,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2013, pp. 3507–3513.

[10] Y. Yang, Y. Li, C. Fermuller, and Y. Aloimonos, “Robot Learning
Manipulation Action Plans by “Watching” Unconstrained Videos from
the World Wide Web,” in Twenty-Ninth AAAI Conference on Artificial
Intelligence, 2015.

[11] Y. Huang and Y. Sun, “Learning to pour,” in 2017 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), Sep.
2017, pp. 7005–7010.

[12] K. Fang, T.-L. Wu, D. Yang, S. Savarese, and J. J. Lim, “Demo2vec:
Reasoning object affordances from online videos,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 2139–2147.

[13] A. Daruna, W. Liu, Z. Kira, and S. Chernova, “RoboCSE: Robot
Common Sense Embedding,” arXiv preprint arXiv:1903.00412, 2019.

[14] O. Roesler, A. Aly, T. Taniguchi, and Y. Hayashi, “Evaluation of word
representations in grounding natural language instructions through
computational human-robot interaction,” in 2019 14th ACM/IEEE
International Conference on Human-Robot Interaction (HRI). IEEE,
2019, pp. 307–316.

[15] T. Chen, Y. Huang, and Y. Sun, “Accurate pouring using model
predictive control enabled by recurrent neural network,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Nov 2019, pp. 7688–7694.

[16] Y. Huang and Y. Sun, “A dataset of daily interactive manipulation,”
The International Journal of Robotics Research, vol. 38, no. 8, pp.
879–886, 2019.

[17] “Daily Interactive Manipulation (DIM) Dataset,” http://rpal.cse.usf.
edu/datasets manipulation.html, accessed: July 31, 2020.

[18] D. Damen, H. Doughty, G. M. Farinella, S. Fidler, A. Furnari,
E. Kazakos, D. Moltisanti, J. Munro, T. Perrett, W. Price, and M. Wray,
“Scaling Egocentric Vision: The EPIC-KITCHENS Dataset,” in Euro-
pean Conference on Computer Vision (ECCV), 2018.

[19] M. Rohrbach, S. Amin, M. Andriluka, and B. Schiele, “A database for
fine grained activity detection of cooking activities,” in CVPR, 2012,
pp. 1194–1201.

[20] D. Paulius, Y. Huang, R. Milton, W. D. Buchanan, J. Sam, and Y. Sun,
“Functional Object-Oriented Network for Manipulation Learning,” in
2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). Daejeon, South Korea: IEEE, 2016, pp. 2655–2662.

[21] D. Paulius, A. B. Jelodar, and Y. Sun, “Functional Object-Oriented
Network: Construction & Expansion,” in ICRA 2018 - IEEE Interna-
tional Conference on Robotics and Automation. Brisbane, Australia:
IEEE, May 2018, pp. 5935–5941.

[22] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new
model and the kinetics dataset,” in proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 6299–6308.

[23] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2015.

http://rpal.cse.usf.edu/datasets_manipulation.html
http://rpal.cse.usf.edu/datasets_manipulation.html

	Introduction
	Motion Codes
	Contact Features
	Trajectory Features
	Simplified Taxonomy and Motion Codes
	Translating Motions to Code

	Methodology
	Motion Prediction Model

	Evaluation
	Dataset and Training Details
	Results and Analysis

	Conclusion
	Acknowledgements
	References

