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Gene expression is a stochastic process. Despite the increase of protein numbers in growing cells,
the protein concentrations are often found to be confined within small ranges throughout the cell
cycle. Generally, the noise in protein concentration can be decomposed into an intrinsic and an
extrinsic component, where the former vanishes for high expression levels. Considering the time
trajectory of protein concentration as a random walker in the concentration space, an effective
restoring force (with a corresponding “spring constant”) must exist to prevent the divergence of
concentration due to random fluctuations. In this work, we prove that the magnitude of the effective
spring constant is directly related to the fraction of intrinsic noise in the total protein concentration
noise. We show that one can infer the magnitude of intrinsic, extrinsic, and measurement noises of
gene expression solely based on time-resolved data of protein concentration, without any a priori
knowledge of the underlying gene expression dynamics. We apply this method to experimental data
of single-cell bacterial gene expression. The results allow us to estimate the average copy numbers
and the translation burst parameters of the studied proteins.

INTRODUCTION8

Gene expression in all forms of life is subject to noise9

[1–7]. Experimentally, stochastic gene expression has10

been intensively studied, mostly in growing cells with ex-11

ponentially growing cell volume [8–12] in which the copy12

numbers of mRNAs and proteins in general double on13

average during the cell cycle, as widely observed in bac-14

terial and eukaryotic cells [8, 13–15]. To reduce cell cycle15

effects, a more biologically relevant protocol to quantify16

the stochastic degree of gene expression is to calculate the17

variability of concentration because most genes in prolif-18

erating cells exhibit approximately constant protein con-19

centrations throughout the cell cycle over multiple gen-20

erations [13, 16–21]. In yeast and mammalian cells, most21

genes also exhibit approximately constant mRNA con-22

centrations throughout the cell cycle [14, 22, 23].23

Considering the time trajectory of protein concentra-24

tion as a one dimensional random walker in the space of25

concentration, it must be subject to an effective restor-26

ing force to prevent the divergence of concentration in27

the long time limit (note that cell growth contributes to28

this restoring force via the effect of dilution, as discussed29

extensively in Ref. [19]). However, little is known about30

how the strength of this restoring force is related to the31

stochastic nature of protein concentration. In this work32

we show that one can in fact infer the contribution of33

intrinsic and extrinsic noise (which we will define later)34

to the total gene expression noise from the properties of35

the restoring force. Previous works on solving this chal-36

lenge often rely on particular models of the underlying37

dynamics of gene expression [24–27]. Here we develop a38

novel protocol which is, in contrast, insensitive to many39

of the details of the gene expression dynamics, and is40

thus applicable to a broad class of models. The proto-41

col only relies on analysis of time-series data of protein42

concentrations. We expect it to be applicable to expo-43

nentially growing cells such as bacteria, yeast and cancer44

cells [8–12].45

In the following, we first introduce a general framework46

to study the variability of mRNA and protein concentra-47

tions in growing cells. Within the framework, the initi-48

ation rates of transcription and translation can be age-49

dependent (here, we define age as the elapsed time since50

cell birth), e.g., due to gene dosage effects as well as more51

complex cell cycle dependencies [15]. We show that inde-52

pendent of the details of the gene expression dynamics,53

the variances of mRNA and protein concentrations can54

always be decomposed into an extrinsic component and55

an intrinsic component. In the large cell volume limit, the56

intrinsic noise vanishes while the extrinsic noise remains57

finite [28]. We then introduce our protocol to extract the58

fraction of intrinsic noise, extrinsic noise and measure-59

ment noise in the total noise of protein concentrations60

and finally apply the method to experimental data of61

bacterial gene expression.6263

Decomposition of noise.—For simplicity, we consider a64

cell growing exponentially at a constant growth rate µ65

with a constant doubling time T = ln(2)/µ, see Fig. 1.66

When the cell divides, the cell volume divides symmet-67

rically, therefore the molecules are assumed to be seg-68

regated binomially and symmetrically between the two69

daughter cells [3]. Since for both bacterial and eukary-70

otic cells the degradation times of many proteins are71

longer than the cell cycle duration [29], we consider a72

non-degradable protein in the main text. Our results73

are equally valid for proteins with a finite degradation74

rate after some slight modifications (Supplementary In-75

formation, SI A) [30]. Our results are also robust against76



2

transcription translation

gene

mRNA protein

Cell volume:

FIG. 1. The cell volume V grows exponentially in time with
a growth rate µ and τ is the cell age. k1 and k2 are the
transcription rate and translation rate per cell volume which
can be age-dependent. The chemical reactions of gene ex-
pression are summarized on the right. Nm and Np are the
absolute mRNA and protein copy numbers respectively. τm
is the lifetime of mRNA using which one can define the trans-
lation burst parameter βτm (the average number of proteins
produced in the lifetime of a single mRNA).

fluctuating growth rates and doubling times as we show77

in SI B. We allow the initiation rates of transcription and78

translation per cell volume, k1, k2, to be time dependent79

and, for example, they can exhibit stochastic dynamics.80

One can further express k2 = βm where m is the mRNA81

concentration and β is the initiation rate of translation82

per mRNA. Mechanistically β is determined by the bind-83

ing rate of ribosomes to mRNAs and largely determined84

by the concentration of ribosomes, which is roughly con-85

stant throughout the cell cycle [20].86

Consider an experiment where one tracks a single lin-87

eage of cells over multiple generations, records the data88

of protein concentrations p uniformly in time with reso-89

lution ∆t, and finally computes the resulting variance of90

concentrations based on all collected data. We find that91

the resulting variance of protein concentration σ2
p can be92

generally decomposed into three components (SI A):93

σ2
p =

cov(k2, p)

µ︸ ︷︷ ︸
Upstream noise

+
〈 k2

2µV

〉
︸ ︷︷ ︸

Poisson noise

+
p(T )

4 ln(2)Vb︸ ︷︷ ︸
Partitioning noise

. (1)

Here cov(k2, p) = 〈k2p〉−〈k2〉〈p〉 and 〈··〉 represents aver-94

age over time. The first part represents the noise due to95

a fluctuating upstream factor, namely, the initiation rate96

of translation per cell volume. One important source of97

upstream noise is the fluctuation in mRNA copy num-98

ber [28]. The second term represents the noise due to99

the stochastic production process which we denote as100

Poisson noise here. The last term stems from the ran-101

dom partitioning during cell division where T = ln 2/µ is102

the doubling time. The Poisson noise and the partition-103

ing noise scale with the inverse of cell volume and their104

contributions to the square of the coefficient of variation105

(variance/mean2) vanish for highly expressed proteins.106

In contrast, the upstream noise stems from the fluctua-107

tion in the translation rate per cell volume and it does not108

vanish in the large cell volume limit. We therefore define109

the sum of the Poisson noise and the partitioning noise as110

intrinsic and the upstream noise as extrinsic, consistent111

with previous works [28, 31]. We numerically confirm the112

validity of the noise decomposition for multiple gene ex-113

pression dynamics including stochastic transcription and114

translation rate (SI B, Fig. S1).115

We remark that the definition of extrinsic noise in our116

framework is different from the extrinsic noise inferred117

from the dual-reporter setup [1, 32], which is defined118

as the correlated noise of two identical genes controlled119

by the same promoters. The possible sources of extrin-120

sic noise in the dual-reporter setup belong to a subset121

of those of the extrinsic noise in our framework which122

includes all possible upstream factors correlated or not123

across genes. Therefore, the extrinsic noise from the124

dual-reporter method is typically smaller than the ex-125

trinsic noise defined in our current framework, as we will126

discuss further later.127
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FIG. 2. (a) Given a time series of protein concentration, we
first compute the discrete time derivative of protein concen-
tration ∆p/∆t with a time interval ∆t. (b) Next, we perform
a linear fit of ∆p/∆t against the current protein concentration
p and consider the absolute value of the fitted slope. In the
case of negligible measurement noise, the fraction of intrin-
sic noise is the ratio between the slope and growth rate. (c)
For experimental data with measurement noise, we compute
∆p/∆t for multiple time intervals ∆t and repeat the protocol
in (b) for each time interval. Finally, we perform a linear fit
of the normalized slopes against 1/∆t and infer the fraction
of intrinsic noise from the intercept.

128

129

Extracting the fraction of intrinsic and extrinsic130

noise.—In the following, we discuss a protocol to dis-131

entangle the contribution of intrinsic and extrinsic noise132

to the total noise based on the time trajectory of con-133

centration [Fig. 2(a, b)]. We consider a discrete incre-134

ment of protein concentration over a small time window,135

∆p(t) = p(t+ ∆t)− p(t), which can be expressed as136

∆p(t) =
∆Np(t)

V (t)
− µp(t)∆t, (2)

where ∆Np(t) is a random variable from a Poisson dis-137

tribution with mean k2(t)V∆t assumed constant within138
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FIG. 3. (a) Simulation of a constitutively expressed gene.
(Upper) We compare the predicted fraction of intrinsic noise
(y axis) to the measured value (x axis). (Bottom) An example
of the raw numerical data with the binned data shown as well
(red circles). The dashed line is the linear fit of the raw data.
The same analysis also applies to panel (b). Here k1 = 10.
(b) Simulation of a transcriptional bursting gene with kon =
10, koff = 10, k1 = 20. In all upper panels, the doubling
time T = 60, τm = 10, and β is varied so that log10 β =
−2,−1.5,−1,−0.5. In all bottom panels, log10 β = −0.5. We
compute the time-derivative of protein concentration with a
time interval ∆t = 0.5. The errorbars are computed as the
standard deviation of 5 independent simulations and in each
simulation, 103 cell cycles are tracked.

the small time interval ∆t. The second term on the right139

side arises from dilution due to cell growth. The pro-140

tein concentration fluctuates but does not diverge in the141

long time limit, therefore we can make an analogy with142

a Brownian particle attracted to a fixed point with a143

linear restoring force equal to −kx where k is the spring144

constant and x is the particle position relative to its equi-145

librium point. In the case of a Brownian particle, one can146

find the spring constant of the restoring force as the slope147

in the linear fitting of the discrete velocity ∆x/∆t vs. x.148

In the case of protein concentration, one can do a similar149

analysis by linearly fitting the discrete time derivative of150

protein concentration ∆p/∆t vs. p. Considering a least151

square linear fitting, the slope of the linear fitting is found152

to be153

S ≡ −
cov
(∆p(t)

∆t , p(t)
)

σ2
p

= µ− cov(k2(t), p(t))

σ2
p

. (3)

where we have used Eq. (2). If the covariance between154

the translation rate and protein concentration vanishes,155

the spring constant of the restoring force is simply the156

growth rate. Combined with Eq. (1), we find that the157

slope is proportional to the growth rate and the propor-158

tional constant is precisely the fraction of intrinsic noise159

in the total protein concentration noise variance:160

S = µ
(
1− cov(k2(t), p(t))

µσ2
p

)
= µfin. (4)

The above equation shows that we can extract the frac-161

tion of intrinsic noise fin in the total noise by linearly162

fitting the time derivative of the protein concentration163

against the current protein concentration without any a164

priori knowledge of the underlying gene expression dy-165

namics. Extrinsic noise reduces the slope in the lin-166

ear fitting which precisely equals the growth rate µ in167

the absence of extrinsic noise. An extended discussion168

along with an intuitive argument on the effects of extrin-169

sic noise based on a Langevin equation is provided in SI170

F. We remark that our protocols are also applicable to171

nongrowing cells with a constant cell volume given the172

lifetime of the studied protein is known (SI A).173

Analysis of synthetic data.—We test Eq. (4) on syn-174

thetic data, first considering a constitutively expressed175

gene where the initiation rate of transcription per cell176

volume k1 is constant as is the initiation rate of trans-177

lation per mRNA β. This assumption corresponds to178

the case in which both RNA polymerase and ribosomes179

are limiting for gene expression, as discussed in detail in180

Ref. [19]. We compute fin numerically using Eq. (1)181

and compare it with the prediction from Eq. (4), finding182

excellent agreement [Fig. 3(a)]. To test the robustness of183

our protocol, we also verify our theoretical results on var-184

ious other gene expression dynamics: (1) the scenario of185

transcriptional bursting where a gene switches from “off”186

state to “on” state with rate kon and vice versa with rate187

koff [Fig. 3(b)]; (2) a gene with a constant transcription188

rate proportional to the gene number which doubles in189

the middle of the cell cycle [Fig. S2(a)]; this scenario190

corresponds to the situation when the gene copy num-191

ber is the sole limiting factor of transcription [19]; (3)192

a gene with a transcription rate modulated throughout193

the cell cycle due to a finite period of DNA replication194

[Fig. S2(b), see details in SI E]; (4) a gene with a fluc-195

tuating transcription rate [Fig. S2(c)]; (5) a gene with a196

fluctuating translation rate per mRNA [Fig. S2(d)]. In197

all cases, the predicted fractions of intrinsic noise match198

the actual values well. We also find that in all cases in-199

creasing the translation rate per mRNA β increases the200

fraction of extrinsic noise as the effects of upstream noise201

are amplified, consistent with the analytical results of202

constitutively expressed genes (SI C, D). We have also203

confirmed the robustness of our results against the num-204

ber of cell cycles sampled and the effects of fluctuating205

growth rates and division volumes (Fig. S3). Note that206

in the case of a fluctuating growth rate one also has to207

account for the correlation between the protein concen-208

tration and growth rate, as discussed in SI B.209210

In our framework the extrinsic noise is extracted from211

the time trajectory of the protein concentration of a sin-212
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FIG. 4. (a) We compute the time derivative of protein concentration as a function of the current protein concentration using
data from Ref. [33] and the measured slope normalized by the growth rate is 1.90. The time interval used is ∆t = 1 min and
the growth rate is µ = 0.0213 min−1. (b) We repeat the analysis using another data from Ref. [8] where the measured slope
normalized by the growth rate is 0.45. Here ∆t = 1 min and µ = 0.0327 min−1. (c) We adjust the time interval to compute
the time derivative of protein concentration and compute the slope in the linear fit of ∆p/∆t vs. p. The normalized slope is
linearly fitted as a function of the inverse of the time interval. The fraction of intrinsic noise in the total noise can be calculated
from the intercept of the linear fit. We also infer the fraction of measurement noise in the total noise from the slope of the
linear fit. (d) We summarize the calculated fractions of different noise for the two data sets. fin: the fraction of intrinsic noise.
fex: the fraction of extrinsic noise. fme: the fraction of measurement noise.

gle gene, which is distinct from that of the dual-reporter213

method. If the two genes in the dual-reporter setup share214

the same fluctuating translation rate k2(t), the two defi-215

nitions of extrinsic noise will coincide [SI G, Fig. S6(a)].216

However, if the correlated noise between the two genes217

is at the transcriptional level, the extrinsic noise inferred218

from the dual-reporter will be smaller than the one ex-219

tracted from our protocol, which we confirm numerically220

[Fig. S6(b)].221

Analysis of experimental data.—Experimentally, the222

measured protein concentration is always augmented by223

measurement noise. To model the effects of measurement224

noise, we assume the measured protein concentration at225

time t to equal226

p(t) = p0(t) + η(t) (5)

where p0(t) is the actual protein concentration and η(t)227

is the measurement noise term assumed uncorrelated be-228

tween different measurements. We will revisit this as-229

sumption later on and show that the datasets we an-230

alyzed are consistent with it. The covariance between231

∆p/∆t and p becomes cov(∆p
∆t , p) = cov(∆p0

∆t , p0) −232

σ2
η/∆t. Compared with Eq. (4), the slope in the lin-233

ear fitting of ∆p/∆t vs. p is modified to234

S ≡ −
cov(∆p

∆t , p)

σ2
p

= µ
(
fin +

σ2
η

µσ2
p∆t

)
. (6)

We confirm Eq. (6) using numerical simulations with235

artificial measurement noise. In this case since σ2
η is as-236

signed and fin is known, we can directly compare the left237

and right sides of Eq. (6), obtaining good agreement (SI238

H, Fig. S7). Experimentally, the fluorescence level may239

not accurately reflect the instantaneous protein number240

due to a finite maturation time of the fluorescent protein.241

We have confirmed that the effects of a finite maturation242

time does not affect our results for experimentally rele-243

vant values of the maturation times [34] (SI I, Fig. S8).244

We analyze two datasets of E. coli growth. In both,245

cells are exponentially growing and a fluorescent protein246

is constitutively expressed [8, 33]. A single lineage of247

cells is tracked for about 100 generations with cell vol-248

ume and fluorescence level measured simultaneously. In249

both cases, the time interval between two consecutive250

data points is 1 min. To compute fin, we increase the251

time interval to compute ∆p/∆t and find the slopes in252

the linear fitting of ∆p/∆t vs. p for each time interval253

[see examples for ∆t = 1 min in Fig. 4(a, b)]. We then254

linearly fit the resulting slopes as a function of 1/∆t [Fig.255

2(c)] and the results agree well with the prediction of Eq.256

(6) [Fig. 4(c)]. Notably, this allows us to infer both fin as257

the intercept of the linear fit, and the fraction of measure-258

ment noise from the slope. The results are summarized259

in Fig. 4(d). To justify the assumption of uncorrelated260

measurement noise, we show that the scaling with ∆t in261

Eq. (6) is violated for correlated measurement noise (SI262

H, Fig. S7).263

In this way we find that the ratio between the mea-264

surement noise and the total noise in the two data sets265

are respectively 17% and 10% in terms of their standard266

deviations, which are the square roots of the numbers267

in Figure 4(d). We can further use our analytic results268

for constitutively expressed genes as used in these exper-269

iments to estimate the average copy numbers of proteins270

at cell birth and the translation burst parameter βτm (see271

Eqs. S28, S29 in SI C) [31]. We find that Np ≈ 230 at cell272

birth, βτm ≈ 1.37 for Data in Fig. 4(a), and Np ≈ 210 at273

cell birth, βτm ≈ 2.81 for Data in Fig. 4(b). The differ-274

ences between the two data sets are presumably due to275

the different strains and promoters. We note that if the276

normalization constant to convert the fluorescence level277

to protein number is known, one can also compute the278

partitioning noise based on Eq. (1) and the Poisson noise279
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as the remaining component of the intrinsic noise, which280

is confirmed using the synthetic data [Fig. S1(g)].281

Summary and outlook.—In this work, we start from a282

general framework of stochastic gene expression in expo-283

nentially growing cells. Our approach allows us to take284

into account the cell growth and division explicitly and285

study the variability in protein concentrations, directly286

relevant to experiments on proliferating cells such as bac-287

teria, yeast or cancer cells. We derive a broadly appli-288

cable decomposition of the protein concentration noise,289

finding that the total noise can be expressed as the sum290

of the noise due to upstream factors, the Poisson noise291

due to the random process of production and degrada-292

tion, and the noise due to random partitioning during cell293

division. These results are independent of the underlying294

details of the particular dynamics of mRNA and protein295

synthesis. Given a time trajectory of protein concentra-296

tion, one may linearly fit the discrete time derivative of297

protein concentration as a function of the protein con-298

centration. We find that the slope of the fit, normalized299

by the growth rate, equals the fraction of intrinsic noise300

in the total protein concentration noise in the absence of301

measurement noise. We verify our theoretical framework302

on synthetic data of protein concentrations for genes with303

various underlying gene expression dynamics.304

Importantly, we generalize our protocol to analyze ex-305

perimental data of E. coli gene expression and show how306

a generalization of the method can simultaneously reveal307

the fraction of measurement noise in addition to that308

of intrinsic and extrinsic noise. Our framework predicts309

that the slope in the linear fitting of the time deriva-310

tive of protein concentration vs. the current protein con-311

centration has a linear dependence on the inverse of the312

time interval used to compute the time derivative, which313

agrees well with the experimental results. Assuming a314

model of a constitutively expressed protein as used in315

these experiments, our approach also allows us to infer316

the average copy numbers of proteins at cell birth as well317

as the translation burst parameter.318

The generality of our approach and the agreement be-319

tween experiments and theoretical predictions suggests320

that the method should be broadly applicable and will321

serve as a useful tool for gene expression analysis includ-322

ing mammalian cells and other non-microbial eukaryotes323

as long as a sufficient number of cell cycles are sampled.324

Our protocol to extract the intrinsic and extrinsic noise325

relies only on the time trajectory of protein concentration326

of a single gene, in contrast to the dual-reporter proto-327

col which relies on measuring protein concentrations of328

two identical genes. Combing our method with the dual-329

reporter method, one can further decompose the extrinsic330

noise into correlated and uncorrelated components. The-331

oretically, our work paves the way to further studies on332

the nature of the widely-observed yet poorly understood333

extrinsic noise in gene expression.334
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A. Derivation of the noise decomposition

For any chemical reaction in which the number of particle i changes dα,i in reaction α with rate rα [1], the time
dependence of the covariance of the numbers of particle i and j is

dcov(xi, xj)

dt
=
∑
α

dα,i(xjrα − xj rα) + dα,j((xirα − xi rα) + dα,idα,jrα. (S1)

Here cov(x, y) = xy − x y. Based on the chemical reactions of gene expression we introduced in Fig. 1 of the main
text,

Nm
k1V−−→ Nm + 1, (S2)

Nm
Nm/τm−−−−−→ Nm − 1, (S3)

Np
k2V−−→ Np + 1, (S4)

one can find the time-dependence of the variance of protein concentration using p = Np/V (τ):

dσ2
p(τ)

dτ
= 2cov(k2(τ), p) +

k2(τ)

V (τ)
− 2µσ2

p(τ). (S5)

Here we use σ2
p(τ) to represent the instantaneous variances of protein concentrations as functions of the age (where

the variance is taken over an ensemble of cell cycles conditioned on the same age). The average x(τ) is over different

cell cycles conditioned on the same age, σ2
x(τ) = x2(τ)−x2(τ), and cov(x, y)(τ) = x(τ)y(τ)−x(τ) y(τ). We integrate

Eq. (S5) within a cell cycle from 0 to T and what is left on the left side of Eq. (S5) is simply proportional to
σ2
p(T )−σ2

p(0) where T is the doubling time. Because of the random partitioning of molecules, the variances of protein

concentrations at cell division and at cell birth are related by σ2
p(0) = σ2

p(T ) + p(T )/2Vb [1]. In the following, we will
use 〈··〉τ to represent averaging over age uniformly within a cell cycle. Finally, we obtain the general expression of
the variance of protein concentration:

〈σ2
p(τ)〉τ =

〈cov(k2(τ), p(τ))

µ

〉
τ︸ ︷︷ ︸

Upstream noise

+
〈k2(τ)

2µV

〉
τ︸ ︷︷ ︸

Poisson noise

+
p(T )

4 ln(2)Vb︸ ︷︷ ︸
Partitioning noise

. (S6)

Here 〈σ2
p(τ)〉τ =

∫ T
0
σ2
p(τ)dτ/T = 〈p2(τ)〉τ − 〈p2(τ)〉τ is the age-averaged σ2

p(τ), and the first two terms on the right
side of Eq. (S6) are defined similarly.

In practice, in order to use Eq. (S6) one needs to accurately know the age of each cell within the cell cycle. We
will now derive a variant of Eq. (S6) where the variance is taken over all collected data points uniformly sampled
in time. This version is easier to use on experimental data, and in the main text all of our analysis of synthetic
and experimental data are performed using this “pooled average” rather than the age-average discussed above. For
example, the protein variance would take the simple form σ2

p = 〈p2〉 − 〈p〉2 where 〈··〉 represents average over all data
uniformly sampled in time over multiple cell cycles (note that this protocol is not valid for data from a snapshot of a
population of growing cells in which the age distribution is non-uniform [2, 3]).
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Since uniform in time sampling of a trajectory can be thought of as integrating over age, this implies that 〈f(τ)〉τ =
〈f〉 for any random variable. This immediately tells us that the last two terms on the RHS of Eq. (S6) are identical
in the age-average and the pooled average. The subtlety arises in the first term on the RHS and the LHS, where we
shall shortly see the two averaging methods are distinct - and nonetheless the structure of the equation is maintained.
Consider first the LHS. 〈σ2

p(τ)〉τ = 〈p2(τ)〉τ − 〈p2(τ)〉τ while σ2
p = 〈p2〉 − 〈p〉2. The first term clearly is identical

by our previous logic (where the random variable considered is p2). The second term is different though, and we
find that σ2

p = 〈σ2
p(τ)〉τ + 〈p2(τ)〉τ − 〈p(τ)〉2τ . In a similar fashion we find that cov(k2, p) = 〈cov(k2(τ), p(τ)〉τ +

〈k2(τ)p(τ)〉τ/µ−〈k2(τ)〉τ 〈p(τ)〉τ/µ where cov(k2, p) = 〈k2p〉−〈k2〉〈p〉 is calculated using the pooled average. According
to Eq. (S4) and the exponential growth of cell volume, it is straightforward to find that dp(τ)/dτ = k2(τ) − µp(τ)
and therefore, dp(τ)2/dτ = 2k2(τ)p(τ)− 2µp2. By integrating the time derivative of p(τ)2 from 0 to T and using the
boundary condition p(0) = p(T ), we find that 〈k2(τ)p(τ)〉τ/µ = 〈p(τ)2〉τ . Similarly, it is straightforward to find that
〈p(τ)〉τ = 〈k2(τ)〉τ/µ. Therefore, Eq. (S6) is valid for the pooled average as well,

σ2
p =

cov(k2, p)

µ︸ ︷︷ ︸
Upstream noise

+
〈 k2

2µV

〉
︸ ︷︷ ︸

Poisson noise

+
p(T )

4 ln(2)Vb︸ ︷︷ ︸
Partitioning noise

. (S7)

Note that Eq. (S6) and Eq. (S7) are equivalent for proteins with p(τ) constant throughout the cell cycle and the
above derivation is also valid for proteins with a finite lifetime.

Using Eq. (S1), we also obtain the time-dependence of the covariance of mRNA and protein concentrations, and
the variance of mRNA concentration using m = Nm/V (τ), p = Np/V (τ):

dcov(m, p)(τ)

dτ
= cov(k2(τ),m) + cov(k1(τ), p)− (2µ+

1

τm
)cov(m, p)(τ), (S8)

dσ2
m(τ)

dτ
= 2cov(k1(τ),m) +

m

τmV (τ)
+

k1

V (τ)
− 2(µ+

1

τm
)σ2
m(τ). (S9)

Here we use σ2
m(τ) to represent the instantaneous variance of mRNA concentration as a function of the age. The

average x(τ) is over different cell cycles conditioned on the same age, σ2
x(τ) = x2 − x2, and cov(x, y)(τ) = xy − x y.

Using a similar argument for mRNAs, we integrate Eq. (S9) from 0 to T within a cell cycle. Using the boundary
condition of mRNA concentration, we obtain

σ2
m =

cov(k1,m)

µ+ 1
τm︸ ︷︷ ︸

Upstream noise

+
〈 m(t)

τm
+ k1(t)

2(µ+ 1
τm

)V (t)

〉
︸ ︷︷ ︸

Poisson noise

+
〈m(T )〉

4(µ+ 1
τm

)VbT︸ ︷︷ ︸
Partitioning noise

. (S10)

Similar logic leads to the following equation for proteins with a finite lifetime τp,

σ2
p =

cov(k2, p)

µ+ 1
τp︸ ︷︷ ︸

Upstream noise

+
〈 p(t)

τp
+ k2(t)

2(µ+ 1
τp

)V (t)

〉
︸ ︷︷ ︸

Poisson noise

+
〈p(T )〉

4(µ+ 1
τp

)VbT︸ ︷︷ ︸
Partitioning noise

. (S11)

Our protocol to extract the fraction of intrinsic noise is equally valid for a degradable protein if its lifetime τp is
known. In this case, one should replace µ by µ+ 1/τp in Eqs. 4, 6 in the main text. If the cell does not grow, µ = 0
and the intrinsic noise only includes the Poisson noise.

B. Numerical confirmation of the noise decomposition and extraction of intrinsic noise

We test the decomposition of noise for protein concentration, Eq. (1) in the main text, by simulating genes with
various underlying dynamics. In all panels of Fig. S1, T = 60, τm = 10, and k1 = 10 if not specified. In Fig. S1(a),
we simulate a constitutively expressed gene with constant transcription rate k1 and constant translation rate per
mRNA β. In Fig. S1(b), we simulate a gene with transcriptional bursting such that transcription only occurs in the
“on” state. kon = 10, koff = 10, k1 = 20. In Fig. S1(c), we simulate a gene with a transcription rate proportional
to the gene copy number which doubles in the middle of the cell cycle. The transcription rate changes from k1 to
2k1 in the middle of the cell cycle and k1 is chosen such that the average mRNA number at cell birth is the same as
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the constitutively expressed gene. In Fig. S1(d), we simulate a gene with a transcription rate that depends on the
cell cycle due to a finite period of DNA replication (section E). In Fig. S1(e), we simulate a gene with a fluctuating
transcription rate such that k1(t) = 〈k1〉+ ξ1(t) and the autocorrelation function of the noise decays exponentially in
time, 〈ξ1(t)ξ1(t′)〉 = A1 exp(−|t−t′|/τ1). We take A1 = 0.01k2

1 and τ1 = T/2 in the simulation where T is the cell cycle
duration. In Fig. S1(f), we simulate a gene with a fluctuating translation rate per mRNA such that β = 〈β〉+ ξ2(t)
where 〈ξ2(t)ξ2(t′)〉 = A2 exp(−|t− t′|/τ2). We take A2 = 0.01〈β〉2 and τ2 = T/2 in the simulation. log10〈β〉 = −1 in
the upper panel of Fig. S1(f). log10〈β〉 = −2,−1.5,−1,−0.5 in the bottom panel of Fig. S1(f). The same simulations
discussed above are used to confirm the validity of extraction of intrinsic noise, Eq. (4) in the main text, shown in
Fig. S2. In Figure S1(g), we consider an alternative method to decompose the noise directly from the data by first
extracting the total intrinsic noise from the slope S in the linear fitting of ∆p/∆t vs. p, and then computing the
partitioning noise using the last term of Eq. (S7). Since the sum of Poisson and partitioning noise is the total intrinsic
noise, which is known, we can next infer the magnitude of the Poisson noise. This decomposition of noise agrees with
our calculation of noise based on Eq. (S7), as shown in Figure S1(g).

In most of our simulations, 103 cell cycles are tracked. We have also tested the effects of the number of sampled
cell cycles on the robustness of our methods. We find that as long as the number of sampled cell cycles is above or
comparable to 50, the data statistics appears to suffice to test our methods [Fig. S3(a)].

Within our model we assume that the growth rate is constant and the cell division is symmetric. We also tested the
effects of fluctuating growth rates and division volumes. Note that the above two noises both contribute to fluctuations
in the generation times. To add noise in division volumes, we consider the adder model so that the division volume is
Vd = Vb+ ∆v + ξV where ∆v is constant and ξV is a Gaussian noise with a standard deviation equal to 0.1∆v (similar
to the value observed in nature for E. coli [6]). We find that our prediction for the fraction of intrinsic noise works
well [Fig. S3(b)].

We also consider the scenario in which the growth rate fluctuates. We introduce a Gaussian noise in the growth
rate so that the growth rate of each cell cycle can be different and we set the CV of growth rates as 0.1, motivated
by the magnitude of the fluctuations in E. coli [6]. We considered the scenario that the growth rate fluctuation is
uncorrelated with the translation rate per mRNA, as would be the case if the growth rate fluctuations are associated
with those in the numbers of cell wall growth proteins. We find that in this case, the growth rate will be negatively
correlated with the protein concentration as a higher growth rate dilutes the protein concentration faster. We extend
our model to this scenario by taking the correlation between the growth rate and the protein concentration into
account. In this scenario, the slope in the linear fit between the time derivative of the protein concentration and the
current protein concentration becomes

S = −
cov(∆p

∆t , p)

σ2
p

=
cov(µp, p)

σ2
p

− cov(k2, p)

σ2
p

=
cov(µp, p)

σ2
p

− fext, (S12)

where fext is the fraction of extrinsic noise due to the upstream factors in the total noise of protein concentration. We
confirm this prediction in Figure S3(c). Note that the first term on the right hand side can be directly extracted from
experimental data where protein levels and cell volume are measured, hence our method for extracting the fraction of
intrinsic and extrinsic noise from time-series data remains intact. Finally, we also checked the correlation between the
growth rate and protein concentration for the experimental data and found that the Pearson correlation coefficients
are very small for both data sets [Figure S3(d, e)]. This result suggests that our analysis of the experimental data in
the main text remains valid.

C. Mathematical derivations for a constitutively expressed gene

Using the fact that k1 is constant for a constitutively expressed gene, Eqs. (S9, S8, S5) are simplified to

dσ2
m

dτ
=

〈m〉
τmV (τ)

+
k1

V (τ)
− 2(µ+

1

τm
)σ2
m, (S13)

dcov(m, p)

dτ
= βσ2

m − (2µ+
1

τm
)cov(m, p), (S14)

dσ2
p

dτ
= 2βcov(m, p) +

β〈m〉
V (τ)

− 2µσ2
p. (S15)

For a constitutively expressed gene, the instantaneous averaged mRNA concentration follows dm/dt = k1m − (µ +
1/τm)m according to Eqs. (S2, S3), therefore m in the steady state is constant and equal to to the time-averaged
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value 〈m〉 = k1/(µ+ 1/τm). We solve Eq. (S13) relying on the exponential growth of cell volume V (τ) = Vbe
µτ and

find

σ2
m(τ) = σ2

m(0)e−2(µ+ 1
τm

)τ +
k1 + 〈m〉

τm

Vb

1

µ+ 2
τm

(e−µτ − e−2(µ+ 1
τm

)τ ). (S16)

We now take τ = log(2)/µ and use the boundary condition σ2
m(0)− σ2

m(T ) = 〈m〉/(2Vb) to obtain

σ2
m(T ) = σ2

m(0)2−2(1+ 1
µτm

) +
k1 + 〈m〉

τm

Vb

1

µ+ 2
τm

(1

2
−
(1

2

)2+ 2
µτm

)
= σ2

m(0)− 〈m〉
2Vb

, (S17)

from which we obtain

σ2
m(0) =

k1+
〈m〉
τm

Vb
1

µ+ 2
τm

(
1
2 −

(
1
2

)2+ 2
µτm

)
+ 〈m〉

2Vb

1− 2−2(1+ 1
µτm

)
. (S18)

Using the expression of 〈m〉, it is straightforward to verify that
k1+

〈m〉
τm

µ+ 2
τm

= 〈m〉, which leads to

σ2
m(τ) =

〈m〉
Vb

e−µτ . (S19)

Given the time dependence of σ2
m(τ) we can further solve for cov(m, p) using Eq. (S14) and find the general solution

as

cov(m, p) = cov(m, p)(τ = 0)e−(2µ+ 1
τm

)τ +
β〈m〉
Vb

1

µ+ 1
τm

(
e−µτ − e−(2µ+ 1

τm
)τ
)
. (S20)

Using the boundary condition cov(m, p)(τ = 0) = cov(m, p)(τ = T ), we find that

cov(m, p)(τ = 0) =
β〈m〉
Vb

1

µ+ 1
τm

1
2 − ( 1

2 )2+ 1
µτm

1− ( 1
2 )2+ 1

µτm

. (S21)

Therefore,

cov(m, p) =
β〈m〉
Vb

1

µ+ 1
τm

1
2 − ( 1

2 )2+ 1
µτm

1− ( 1
2 )2+ 1

µτm

e−(2µ+ 1
τm

)τ +
β〈m〉
Vb

1

µ+ 1
τm

(
e−µτ − e−(2µ+ 1

τm
)τ
)

(S22)

= −β〈m〉
Vb

1

µ+ 1
τm

21+ 1
µτm

22+ 1
µτm − 1

e−(2µ+ 1
τm

)τ +
β〈m〉
Vb

1

µ+ 1
τm

e−µτ

= Ae−(2µ+ 1
τm

)τ +Be−µτ ,

with A = −β〈m〉Vb
1

µ+ 1
τm

2
1+ 1

µτm

2
2+ 1

µτm −1
and B = β〈m〉

Vb
1

µ+ 1
τm

. Given the time dependence of cov(m, p) we can rewrite Eq.

(S15) as

dσ2
p

dt
= 2βAe−(2µ+ 1

τm
)τ + 2βBe−µτ +

β〈m〉
Vb

e−µτ − 2µσ2
p. (S23)

Its general solution is

σ2
p(τ) = σ2

p(0)e−2µτ + 2βAτm(e−2µτ − e−(2µ+ 1
τm

)τ ) +
2βB + β〈m〉

Vb

µ
(e−µτ − e−2µτ ). (S24)

We now take τ = log(2)/µ and use the boundary condition σ2
p(0)− σ2

p(T ) = 〈p〉/(2Vb) so that

σ2
p(T ) =

σ2
p(0)

4
+ 2βAτm

(1

4
−
(1

2

)2+ 1
µτm

)
+

2βB + β〈m〉
Vb

4µ
= σ2

p(0)− 〈p〉
2Vb

. (S25)



5

We find that

σ2
p(0) =

2〈p〉
3Vb

+
2βAτm

3

(
1−

(1

2

) 1
µτm

)
+

2βB + β〈m〉
Vb

3µ
=
〈p〉
Vb

+
2βAτm

3

(
1−

(1

2

) 1
µτm

)
+

2βB

3µ
(S26)

where we have used 〈p〉 = β〈m〉/µ.

We now compute the upstream noise, the Poisson noise and the partitioning noise for a constitutively expressed
gene using Eq. (S7). In this case, the Poisson noise is equal to the partitioning noise and

σ2
p,poisson = σ2

p,partitioning =
〈p〉

4 ln(2)Vb
. (S27)

In the limit µτm � 1, we find

cov(m, p) =
β〈m〉τm
Vb

e−µτ . (S28)

Therefore, the upstream noise becomes

σ2
p,upstream =

β
∫ T

0
cov(m, p)dt

Tµ
=
〈p〉

2 ln(2)

βτm
Vb

. (S29)

We can also rewrite Eqs. (S27, S29) in terms of CV2 (variance/mean2) as

CV2
intrinsic =

1

2 ln(2)〈Np,b〉
, (S30)

CV2
extrinsic =

βτm
2 ln(2)〈Np,b〉

, (S31)

here 〈Np,b〉 is the average protein number at cell birth. The above calculation can be easily generalized to a consti-
tutively expressed protein with a finite lifetime τp. Eqs. (S14, S15) are modified as

dcov(m, p)

dτ
= βσ2

m − (2µ+
1

τm
+

1

τp
)cov(m, p), (S32)

dσ2
p

dτ
= 2βcov(m, p) +

β〈m〉
V (τ)

− 2(µ+
1

τp
)σ2
p. (S33)

Therefore the solution of Eq. (S14) is valid for Eq. (S32) as well after replacing 1/τm by 1/τm + 1/τp. In the limit
µτm � 1, we find

cov(m, p) =
β〈m〉τmτp
Vb(τm + τp)

e−µτ . (S34)

The upstream noise becomes

σ2
p,upstream =

β
∫ T

0
cov(m, p)dt

T (µ+ 1
τp

)
=

〈p〉
2 ln(2)(1 + 1

µτp
)

βτmτp
Vb(τm + τp)

. (S35)

Similarly, it is straightforward to find that in this case

σ2
p,poisson =

〈p〉(1 + 2
µτp

)

4 ln(2)(1 + 1
µτp

)Vb
, (S36)

σ2
p,partitioning =

〈p〉
4 ln(2)(1 + 1

µτp
)Vb

. (S37)
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D. Noise strength of a constitutively expressed gene

To quantify the noise strength of protein concentration, one can either use the CV2 (variance/mean2) or the Fano
factor (variance/mean). While the CV2 is dimensionless, the Fano factor has dimensions of concentration. To make
the Fano factor of protein concentration dimensionless, one needs to multiply the Fano factor of protein concentration
by an arbitrary volume scale Ṽ . A common way is to use the average cell volume V [7]. For uniform-time sampling,

the average cell volume is simply V =
∫ T

0
Vbe

µtdt/T = Vb/ ln 2. Assuming a non-degradable protein and µτm � 1, we
obtain

CV2 =
1 + βτm

2 ln(2)〈p〉Vb
, (S38)

Fano =
1 + βτm
2 ln 2Vb

V =
1 + βτm
2(ln 2)2

≈ 1.04(1 + βτm). (S39)

Experimentally, it is also common to sample the data by taking a snapshot of a population of cells. In this protocol,
the distribution of age is non-uniform and decays exponentially, P (τ) = 2µe−µτ . The average cell volume is V =∫ 2Vb
Vb

V 2
V 2 dV = 2 ln 2Vb. Using Eq. (S24), we find that

CV2 =
13

18

27
26 + βτm

〈p〉Vb
≈ 0.72

1.04 + κ2τ1
〈p〉Vb

, (S40)

Fano =
13

18

27
26 + βτm

Vb
V ≈ 1.04 + βτm. (S41)

Interestingly, the Fano factors derived here are very close to the Fano factor 1 + βτm one would obtain from the
constant cell volume model [8].

E. Cell cycle with a finite DNA replication period

We relax the assumption of instantaneous DNA replication in the main text to take into account the effects of a
finite DNA replication period on the transcription rate per cell volume k1. We assume a doubling time of 60 mins. The
gene is constitutively expressed and replicated in the middle of the cell cycle at τ = 30 mins. DNA replication starts
from τ = 20 mins with a duration 20 mins. Because of the competition between genes for the limiting resource such
as RNA polymerase [9, 10], the transcription rate of the gene under consideration decreases during DNA replication
with a jump right after the gene is duplicated (Fig. S4). Our predictions regarding the decomposition of the noise of
protein concentration and its magnitude [Eq. (1) in the main text], and the extraction of intrinsic noise [Eq. (4) in
the main text] are nicely confirmed in this case as well [Fig. S1(d) and Fig. S2(b)].

F. Simplified model based on the Langevin equation

To better understand the effects of extrinsic noise, we consider a simplified version of the model in the main text
by taking a time interval such that k2V δt � 1 but also small enough that the change of k2 is negligible. On such a
time scale, the chemical reaction Eq. (S4) can be approximated by a discrete Langevin equation [12]:

δp = (k2 − µp)δt+

√
k2δt

V
W. (S42)

Here the noise stemming from the random production becomes white noise where W is a Gaussian random variable
with variance 1. For simplicity, we have neglected the partitioning noise. Since the time interval δt can be arbitrarily
small in the large volume limit, the upstream noise in the translation rate k2 should be considered as a continuous
random variable (i.e., it has a finite correlation time). Finally, we obtain the following continuous Langevin equation
as an approximation for the dynamics of protein concentration:

ẋ = −µx+ η + ξ, (S43)

where x is the deviation of the protein concentration from its average. ξ is a white noise term such that 〈ξ(t)ξ(t′)〉 =
2Dξδ(t− t′). η corresponds to the upstream noise in the translation rate which is a continuous random variable. For

concreteness, we assume the autocorrelation function of η decays exponentially so that 〈η(t)η(t′)〉 = Aηe
−|t−t′|/τη .
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Before we move on to the theoretical analysis of the above equation, we first present an intuitive argument why
the extrinsic noise reduces the slope in the linear fitting of ∆x/∆t vs. x. Consider the limit τη � 1/µ so that η can
be approximated as a constant for many generations of cell cycle. For a constant η the slope is simply the growth
rate µ. Combining multiple sets of data with different η’s, it is evident that the slope becomes smaller than µ [Fig.
S5(a)]. Note that this effect is essentially due to “Simpson’s paradox”, where correlations can dramatically change
when pooling together different sub-populations [11, 13]. While this argument is based on the assumption of a very
slow time dependence of η, the conclusion is generally valid as we show in the following.

From Eq. (S43), the solution of x can be formally written as

x =

∫ t

0

e−µ(t−t′)[η(t′) + ξ(t′)]dt′, (S44)

where the term associated with the initial condition is neglected since we are interested in the steady state. It is
straightforward to find the variance of x as

σ2
x =

Aητη
µ

1

1 + µτη
+
Dξ

µ
, (S45)

where the first term can be considered as the upstream noise in the main text and the second term can be considered
as the intrinsic noise. We now calculate the covariance between ∆x

∆t and x:

cov(
∆x

∆t
, x) = −µσ2

x + cov(η, x). (S46)

Therefore, the slope (S) in the linear regression of ∆x
∆t vs. x becomes

S ≡ −
cov(∆x

∆t , x)

σ2
x

= µ− cov(η, x)

σ2
x

. (S47)

We now calculate cov(η, x)

cov(η, x) =

∫ t

0

e−µ(t−t′)〈η(t)η(t′)〉dt′ =
Aητη

1 + µτη
.

Combining with Eq. (S45, S47), we find that the relative slope indeed tells us the relative fraction of intrinsic noise
in the total noise

S

µ
=
Dξ/µ

σ2
x

. (S48)

Note that when Dη > 0 and Dξ = 0 the noise of x is all coming from η and S = 0, while the variance of x is still finite.
The above calculation is valid even in the limit τη � 1/µ, which is beyond the simple argument assuming τη � 1/µ.
We numerically test this situation and find a zero slope in the linear fitting of ∆x/∆t v.s. x [Fig. S5(b)].

G. Comparison with the dual-reporter setup

As we discuss in the main text, the extrinsic noise inferred from the dual-reporter setup is in general smaller
than the one inferred from the time trajectory of protein concentration based on our protocol. We first consider
two identical genes that share the same fluctuating translation rates k2(t) and compute the uncorrelated noise as
σ2
p,uncorrelated = 〈(p1(t) − p2(t))2〉/2 (which is referred to as the intrinsic noise in the dual-reporter setup). We then

compute the fraction of correlated noise as fex, dual = (σ2
p − σ2

p,uncorrelated)/σ2
p (which is referred to as the extrinsic

noise in the dual-reporter setup). We compare it with the one inferred from the slope in the linear fitting of ∆p/∆t
vs. p, fex, slope and find excellent agreement [Fig. S6(a)].

We also consider two identical genes that share the same fluctuating transcription rates k1(t). In this scenario, the
translation rates k2(t) of the two genes are correlated but not identical due to the randomness of mRNA production
and degradation. Therefore, fex, dual < fex, slope as we confirm numerically [Fig. S6(b)].
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H. Numerical simulation with artificial measurement noise

We simulate a constitutively expressed gene and add measurement noise to the protein concentration. We first
consider the case of uncorrelated measurement noise. We vary the time interval ∆t to compute ∆p/∆t and compare
the measured slopes in the linear fit of ∆p/∆t vs. p with the theoretical prediction, Eq. (6) in the main text. The
prediction is nicely confirmed [Fig. S7]. We also consider the case of correlated noise and assume the autocorrelation
function of the measurement noise decays exponentially in time with a decay time τη. In this case, the simulation
results do not agree with Eq. (6) in the main text. The agreement of Eq. (6) in the main text and the experimental
data therefore supports our assumption of uncorrelated measurement noise.

I. Effects of finite maturation time of fluorescent protein

We consider the effects of a finite maturation time of fluorescent protein to our theoretical predictions. We will
consider two models for the maturation process: a Poisson process, following Ref. [14], and later on, a model in which
the maturation process takes a constant (fixed) time. For the former, we modify Eqs. 1-3 in the main text and define
Nu as the number of immature fluorescent proteins and Nf as the number of maturated fluorescent proteins:

Nm
k1V−−→ Nm + 1, (S49)

Nm
Nm/τm−−−−−→ Nm − 1, (S50)

Nu
k2V−−→ Nu + 1, (S51)

Nu, Nf
RNu−−−→ Nu + 1, Nf − 1. (S52)

Here R is the maturation rate. In experiments, what one can actually measure is the concentration of maturated
fluorescent proteins, f . We compute the inferred fraction of intrinsic noise from the maturated fluorescent proteins as

Sf
µ
≡ −

cov
(∆f(t)

∆t , f(t)
)

µσ2
f,time

, (S53)

and compare it to the result of Eq. (3) in the main text using the concentration of total protein p. We compare the
two slopes (Sf vs. S) using synthetic data where both can be accessed. As expected, when the maturation rate is
large (corresponding to a maturation time short compared with the cell cycle duration), they are approximately equal
and as the maturation rate decreases, the fraction of intrinsic noise inferred from the maturated fluorescent protein
deviates from its true value, and is larger than it [Fig. S8(a)]. Typical maturation times range from several minutes
to several tens of minutes [14]. The results of Fig. S8(a) therefore suggest that our protocol should provide accurate
results for the majority of experimental scenarios.

We also consider an alternative model of maturation process, assuming that the fluorescent proteins maturate after
a fixed amount of time τ [Fig. S8(b)]. We find that in this case, the inferred fractions of intrinsic noise obtained
using the maturated fluorescent protein levels match closely the true values even for large maturation times. Taken
together with the results for the Poisson model of protein maturation, we conclude that maturation times should not
significantly affect our analysis.
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Supplementary Figure S1 Decomposition of the noise of protein concentration.
(a) Simulation of a constitutively expressed gene. (Upper) Total measured noise of protein concentration and the
three sources of noise, which are calculated using Eq. (S7). (Bottom) The translation rate per mRNA β is varied
and the predicted variance of protein concentration (Eq. (1) in the main text) is compared with the measured value.
The same analysis applies to the following panels. (b) Simulation of a transcriptional bursting gene. (c) Simulation
of a scenario where the transcription rate is proportional to the gene copy number. (d) Simulation of a gene with
transcription rate modulated throughout the cell cycle. (e) Simulation of a gene with a fluctuating transcription rate
such that k1(t) = 〈k1〉+ ξ1(t) where ξ1(t) is the noise term. (f) Simulation of a gene with a fluctuating translation
rate per mRNA such that β(t) = 〈β〉+ ξ2(t) where ξ2(t) is the noise term. In all panels, T = 60, τm = 10, and
k1 = 10 if not specified. In all upper panels, β = 0.1 and in all bottom panels, β is varied so that
log10 β = −2,−1.5,−1,−0.5. Other simulation details are explained in the text. The errorbars are computed as the
population standard deviation of 5 independent simulations. (g) An alternative decomposition of noise. We first
compute the total intrinsic noise from the slope in the linear fitting of ∆p/∆t vs. p. We then compute the
partitioning noise from Eq. (S7), which immediately informs us of the contribution of the Poisson noise as well. The
results quantitatively agree with those shown in Fig. S1(a)-(f).
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Supplementary Figure S2 Extraction of the fraction of intrinsic noise based on synthetic data.
(a) Simulation of a scenario where the transcription rate is proportional to the gene copy number. (b) Simulation of
a gene with transcription rate modulated throughout the cell cycle. (c) Simulation of a gene with a fluctuating
transcription rate k1(t). (d) Simulation of a gene with a fluctuating translation rate per mRNA β(t). In all upper
panels, β is varied so that log10 β = −2,−1.5,−1,−0.5. In all bottom panels, log10 β = −0.5. We compute the
time-derivative of protein concentration with a time interval ∆t = 0.5. Other simulation details are explained in
Methods. The errorbars are computed as the population standard deviation of 5 independent simulations.
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Supplementary Figure S3 Effects of finite number of cell cycles, and effects of fluctuating growth
rates and division volumes.
(a) A constitutively expressed gene is simulated, with the results averaged over 10 independent simulations. In each
simulation, ncycle cell cycles are tracked. We compare the predicted fraction of intrinsic noise (y axis) to the
measured value (x axis). The errorbars are computed as the population standard deviation of 10 independent
simulations. (b) Simulation of a constitutively expressed gene where fluctuations in division volumes are considered.
The errorbars are computed as the population standard deviation of 5 independent simulations. (c) Simulation of a
constitutively expressed gene where fluctuations in growth rates are considered. The errorbars are computed as the
population standard deviation of 5 independent simulations. The results agree well with Eq. (S12). (d, e) We find
small Pearson correlation coefficients ρ(µ, p) between the growth rate and the protein concentration for both data
sets. (d) is for data from Ref. [4]. (e) is for data from Ref. [5]. For each cell cycle, we fit the cell size as an
exponential function of time to find the growth rate.
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Supplementary Figure S4 Numerical simulation of a cell cycle with a finite DNA replication period.
The time dependence of the transcription rate per cell volume k1.
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Supplementary Figure S5 Simplified model based on the Langevin equation.
(a) Schematic illustration of the lowering of the slope due to extrinsic noise; In essence, this is due to Simpson’s
paradox [11]. (b) Numerical test of the simplified model. Here, µ = 1, τη = 0.01, Aη = 100, Dξ = 0 and the time
interval of the simulation ∆t = 0.001. The red circles are binned data and the dashed line has a zero slope.
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Supplementary Figure S6 Numerical test of dual-reporter setup.
(a) We simulate two identical genes that share the same fluctuating translation rate k2(t) and set the translation
rate per mRNA as β = 〈β〉+ ξ2(t) where ξ2(t) is the noise term. We assume 〈ξ2(t)ξ2(t′)〉 = A2 exp(−|t− t′|/τ2) with
A2 = 0.01β2 and τ2 = T/2. T = 60, k1 = 10 and τm = 10. (Upper) We show the raw synthetic data from
simulations of two identical genes with 〈β〉 = 0.1. (Bottom) We compare the fractions of extrinsic noise inferred
from the dual-reporter setup and from the slope in the linear fitting of ∆p/∆t vs. p. β is varied so that
log10〈β〉 = −2,−1.5,−1,−0.5. The errorbars are computed as the population standard deviation of 5 independent
simulations. (b) We simulate two identical genes that share the same fluctuating transcription rate k1(t) and set the
transcription rate as k1(t) = 〈k1〉+ ξ1(t) where ξ1(t) is the noise term. We assume 〈ξ1(t)ξ1(t′)〉 = A1 exp(−|t− t′|/τ1)
with A1 = 0.01k2

1 and τ1 = T/2. T = 60, 〈k1〉 = 10 and τm = 10. (Upper) we show the original data of the two
identical genes with β = 0.1. (Bottom) β is varied so that log10 β = −2,−1.5,−1,−0.5. The errorbars are computed
as the population standard deviation of 5 independent simulations.
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Supplementary Figure S7 Numerical test of synthetic data with artificial measurement noise.
We simulate a constitutively expressed gene and add Gaussian noise to every recorded protein concentration
(circles). T = 60, k1 = 10, β = 0.1, τm = 10. The time interval ∆t is varied from 1 to 5 and for each time interval we
compute the slope from the linear fitting of ∆p/∆t vs. p. The dashed line is the theoretical prediction (Eq. (6) in
the main text). fin ≈ 0.50, σ2

η = 100, and σ2
p ≈ 1.14× 103. We repeat the analysis for correlated measurement noise

(squares). The autocorrelation function of the measurement noise decays exponentially with a decay time τη = T/2
with other parameters kept the same as uncorrelated noise.
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Supplementary Figure S8 Numerical simulation of a fluorescent protein with a finite maturation time.
(a) We simulate a constitutively expressed gene with T = 30 min, τm = 10 min, k1 = 10 min−1 and adjust β so that
log10 β = −2,−1.5,−1,−0.5 min−1. We model the maturation process as a Poisson process and compare the
inferred fractions of intrinsic noise (Eq. (3) in the main text) and Eq. (S53) here for three different maturation
rates. The dashed line is the y = x line. The errorbars are computed as the population standard deviation of 5
independent simulations. (b) The same analysis for a maturation process with a fixed maturation time τ . The
errorbars are computed as the population standard deviation of 5 independent simulations.


