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Disentangling intrinsic and extrinsic gene expression noise in growing cells
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Gene expression is a stochastic process. Despite the increase of protein numbers in growing cells,
the protein concentrations are often found to be confined within small ranges throughout the cell
cycle. Generally, the noise in protein concentration can be decomposed into an intrinsic and an
extrinsic component, where the former vanishes for high expression levels. Considering the time
trajectory of protein concentration as a random walker in the concentration space, an effective
restoring force (with a corresponding “spring constant”) must exist to prevent the divergence of
concentration due to random fluctuations. In this work, we prove that the magnitude of the effective
spring constant is directly related to the fraction of intrinsic noise in the total protein concentration
noise. We show that one can infer the magnitude of intrinsic, extrinsic, and measurement noises of
gene expression solely based on time-resolved data of protein concentration, without any a priori
knowledge of the underlying gene expression dynamics. We apply this method to experimental data
of single-cell bacterial gene expression. The results allow us to estimate the average copy numbers
and the translation burst parameters of the studied proteins.

INTRODUCTION
Gene expression in all forms of life is subject to noise
[1-7]. Experimentally, stochastic gene expression has

been intensively studied, mostly in growing cells with ex-
ponentially growing cell volume [8-12] in which the copy
numbers of mRNAs and proteins in general double on
average during the cell cycle, as widely observed in bac-
terial and eukaryotic cells [8, 13-15]. To reduce cell cycle
effects, a more biologically relevant protocol to quantify
the stochastic degree of gene expression is to calculate the
variability of concentration because most genes in prolif-
erating cells exhibit approximately constant protein con-
centrations throughout the cell cycle over multiple gen-
erations [13, 16-21]. In yeast and mammalian cells, most
genes also exhibit approximately constant mRNA con-
centrations throughout the cell cycle [14, 22, 23].

Considering the time trajectory of protein concentra-
tion as a one dimensional random walker in the space of
concentration, it must be subject to an effective restor-
ing force to prevent the divergence of concentration in
the long time limit (note that cell growth contributes to
this restoring force via the effect of dilution, as discussed
extensively in Ref. [19]). However, little is known about
how the strength of this restoring force is related to the
stochastic nature of protein concentration. In this work
we show that one can in fact infer the contribution of
intrinsic and extrinsic noise (which we will define later)
to the total gene expression noise from the properties of
the restoring force. Previous works on solving this chal-
lenge often rely on particular models of the underlying
dynamics of gene expression [24-27]. Here we develop a
novel protocol which is, in contrast, insensitive to many
of the details of the gene expression dynamics, and is
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thus applicable to a broad class of models. The proto-
col only relies on analysis of time-series data of protein
concentrations. We expect it to be applicable to expo-
nentially growing cells such as bacteria, yeast and cancer
cells [8-12].

In the following, we first introduce a general framework
to study the variability of mRNA and protein concentra-
tions in growing cells. Within the framework, the initi-
ation rates of transcription and translation can be age-
dependent (here, we define age as the elapsed time since
cell birth), e.g., due to gene dosage effects as well as more
complex cell cycle dependencies [15]. We show that inde-
pendent of the details of the gene expression dynamics,
the variances of mRNA and protein concentrations can
always be decomposed into an extrinsic component and
an intrinsic component. In the large cell volume limit, the
intrinsic noise vanishes while the extrinsic noise remains
finite [28]. We then introduce our protocol to extract the
fraction of intrinsic noise, extrinsic noise and measure-
ment noise in the total noise of protein concentrations
and finally apply the method to experimental data of
bacterial gene expression.

Decomposition of noise.—For simplicity, we consider a
cell growing exponentially at a constant growth rate p
with a constant doubling time 7' = In(2)/u, see Fig. 1.
When the cell divides, the cell volume divides symmet-
rically, therefore the molecules are assumed to be seg-
regated binomially and symmetrically between the two
daughter cells [3]. Since for both bacterial and eukary-
otic cells the degradation times of many proteins are
longer than the cell cycle duration [29], we consider a
non-degradable protein in the main text. Our results
are equally valid for proteins with a finite degradation
rate after some slight modifications (Supplementary In-
formation, ST A) [30]. Our results are also robust against
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FIG. 1. The cell volume V' grows exponentially in time with
a growth rate p and 7 is the cell age. ki and k2 are the
transcription rate and translation rate per cell volume which
can be age-dependent. The chemical reactions of gene ex-
pression are summarized on the right. N, and N, are the
absolute mRNA and protein copy numbers respectively. 7,
is the lifetime of mRNA using which one can define the trans-
lation burst parameter 87, (the average number of proteins
produced in the lifetime of a single mRNA).

fluctuating growth rates and doubling times as we show
in SI B. We allow the initiation rates of transcription and
translation per cell volume, k1, ko, to be time dependent
and, for example, they can exhibit stochastic dynamics.
One can further express ko = fm where m is the mRNA
concentration and [ is the initiation rate of translation
per mRNA. Mechanistically g is determined by the bind-
ing rate of ribosomes to mRNAs and largely determined
by the concentration of ribosomes, which is roughly con-
stant throughout the cell cycle [20].

Consider an experiment where one tracks a single lin-
eage of cells over multiple generations, records the data
of protein concentrations p uniformly in time with reso-
lution At, and finally computes the resulting variance of
concentrations based on all collected data. We find that
the resulting variance of protein concentration o2 can be

P
generally decomposed into three components (SI A):

2 _ cov(ky,p) k p(T)
= ; * <2uzv> YOI (1)
—— N—_——

Upstream noise  Poisson noise  Partitioning noise

Here cov(ka, p) = (kap) — (k2)(p) and (--) represents aver-
age over time. The first part represents the noise due to
a fluctuating upstream factor, namely, the initiation rate
of translation per cell volume. One important source of
upstream noise is the fluctuation in mRNA copy num-
ber [28]. The second term represents the noise due to
the stochastic production process which we denote as
Poisson noise here. The last term stems from the ran-
dom partitioning during cell division where T'=1n 2/ is
the doubling time. The Poisson noise and the partition-
ing noise scale with the inverse of cell volume and their
contributions to the square of the coefficient of variation
(variance/mean?) vanish for highly expressed proteins.
In contrast, the upstream noise stems from the fluctua-
tion in the translation rate per cell volume and it does not
vanish in the large cell volume limit. We therefore define
the sum of the Poisson noise and the partitioning noise as
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intrinsic and the upstream noise as extrinsic, consistent
with previous works [28, 31]. We numerically confirm the
validity of the noise decomposition for multiple gene ex-
pression dynamics including stochastic transcription and
translation rate (SI B, Fig. S1).

We remark that the definition of extrinsic noise in our
framework is different from the extrinsic noise inferred
from the dual-reporter setup [1, 32], which is defined
as the correlated noise of two identical genes controlled
by the same promoters. The possible sources of extrin-
sic noise in the dual-reporter setup belong to a subset
of those of the extrinsic noise in our framework which
includes all possible upstream factors correlated or not
across genes. Therefore, the extrinsic noise from the
dual-reporter method is typically smaller than the ex-
trinsic noise defined in our current framework, as we will
discuss further later.

(b) Without measurement noise
_ slope
"~ growth rate

(a) Computing the protein production rate
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FIG. 2. (a) Given a time series of protein concentration, we
first compute the discrete time derivative of protein concen-
tration Ap/At with a time interval At. (b) Next, we perform
a linear fit of Ap/At against the current protein concentration
p and consider the absolute value of the fitted slope. In the
case of negligible measurement noise, the fraction of intrin-
sic noise is the ratio between the slope and growth rate. (c)
For experimental data with measurement noise, we compute
Ap/At for multiple time intervals At and repeat the protocol
in (b) for each time interval. Finally, we perform a linear fit
of the normalized slopes against 1/At and infer the fraction
of intrinsic noise from the intercept.

Ezxtracting the fraction of intrinsic and extrinsic
noise.—In the following, we discuss a protocol to dis-
entangle the contribution of intrinsic and extrinsic noise
to the total noise based on the time trajectory of con-
centration [Fig. 2(a, b)]. We consider a discrete incre-
ment of protein concentration over a small time window,
Ap(t) = p(t + At) — p(t), which can be expressed as

_AN,()

Ap(t) V)

— mp(t)At, (2)
where AN, (t) is a random variable from a Poisson dis-

tribution with mean ko(¢)V At assumed constant within
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FIG. 3. (a) Simulation of a constitutively expressed gene.

(Upper) We compare the predicted fraction of intrinsic noise
(y axis) to the measured value (z axis). (Bottom) An example
of the raw numerical data with the binned data shown as well
(red circles). The dashed line is the linear fit of the raw data.
The same analysis also applies to panel (b). Here ki = 10.
(b) Simulation of a transcriptional bursting gene with kon =
10, kog = 10, k1 = 20. In all upper panels, the doubling
time T" = 60, 7, = 10, and 3 is varied so that log,, 8 =
—2,-1.5,—1,—-0.5. In all bottom panels, log,, 8 = —0.5. We
compute the time-derivative of protein concentration with a
time interval A¢ = 0.5. The errorbars are computed as the
standard deviation of 5 independent simulations and in each
simulation, 103 cell cycles are tracked.

139 the small time interval At. The second term on the right
1o side arises from dilution due to cell growth. The pro-
11 tein concentration fluctuates but does not diverge in the
122 long time limit, therefore we can make an analogy with
13 a Brownian particle attracted to a fixed point with a
1 linear restoring force equal to —kx where k is the spring
s constant and x is the particle position relative to its equi-
s librium point. In the case of a Brownian particle, one can
17 find the spring constant of the restoring force as the slope
1s in the linear fitting of the discrete velocity Ax/At vs. x.
19 In the case of protein concentration, one can do a similar
150 analysis by linearly fitting the discrete time derivative of
1 protein concentration Ap/At vs. p. Considering a least
152 square linear fitting, the slope of the linear fitting is found
153 to be

S_cov<A%§;>,p<t>) _ conlla@p®)

15« where we have used Eq. (2). If the covariance between
155 the translation rate and protein concentration vanishes,
16 the spring constant of the restoring force is simply the
157 growth rate. Combined with Eq. (1), we find that the
158 slope is proportional to the growth rate and the propor-
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tional constant is precisely the fraction of intrinsic noise
in the total protein concentration noise variance:

 cov(ka(t),p(1))

S = u(l MU;% (4)

) = ffin-
The above equation shows that we can extract the frac-
tion of intrinsic noise fi, in the total noise by linearly
fitting the time derivative of the protein concentration
against the current protein concentration without any a
priori knowledge of the underlying gene expression dy-
namics. Extrinsic noise reduces the slope in the lin-
ear fitting which precisely equals the growth rate g in
the absence of extrinsic noise. An extended discussion
along with an intuitive argument on the effects of extrin-
sic noise based on a Langevin equation is provided in SI
F. We remark that our protocols are also applicable to
nongrowing cells with a constant cell volume given the
lifetime of the studied protein is known (SI A).

Analysis of synthetic data.—We test Eq. (4) on syn-
thetic data, first considering a constitutively expressed
gene where the initiation rate of transcription per cell
volume kp is constant as is the initiation rate of trans-
lation per mRNA 3. This assumption corresponds to
the case in which both RNA polymerase and ribosomes
are limiting for gene expression, as discussed in detail in
Ref. [19]. We compute f;, numerically using Eq. (1)
and compare it with the prediction from Eq. (4), finding
excellent agreement [Fig. 3(a)]. To test the robustness of
our protocol, we also verify our theoretical results on var-
ious other gene expression dynamics: (1) the scenario of
transcriptional bursting where a gene switches from “off”
state to “on” state with rate k., and vice versa with rate
kogr [Fig. 3(b)]; (2) a gene with a constant transcription
rate proportional to the gene number which doubles in
the middle of the cell cycle [Fig. S2(a)]; this scenario
corresponds to the situation when the gene copy num-
ber is the sole limiting factor of transcription [19]; (3)
a gene with a transcription rate modulated throughout
the cell cycle due to a finite period of DNA replication
[Fig. S2(b), see details in ST EJ; (4) a gene with a fluc-
tuating transcription rate [Fig. S2(c)]; (5) a gene with a
fluctuating translation rate per mRNA [Fig. S2(d)]. In
all cases, the predicted fractions of intrinsic noise match
the actual values well. We also find that in all cases in-
creasing the translation rate per mRNA [ increases the
fraction of extrinsic noise as the effects of upstream noise
are amplified, consistent with the analytical results of
constitutively expressed genes (SI C, D). We have also
confirmed the robustness of our results against the num-
ber of cell cycles sampled and the effects of fluctuating
growth rates and division volumes (Fig. S3). Note that
in the case of a fluctuating growth rate one also has to
account for the correlation between the protein concen-
tration and growth rate, as discussed in SI B.

In our framework the extrinsic noise is extracted from
the time trajectory of the protein concentration of a sin-
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FIG. 4. (a) We compute the time derivative of protein concentration as a function of the current protein concentration using
data from Ref. [33] and the measured slope normalized by the growth rate is 1.90. The time interval used is At = 1 min and
the growth rate is © = 0.0213 min~?. (b) We repeat the analysis using another data from Ref. [8] where the measured slope
normalized by the growth rate is 0.45. Here At = 1 min and g = 0.0327 min~"'. (c) We adjust the time interval to compute
the time derivative of protein concentration and compute the slope in the linear fit of Ap/At vs. p. The normalized slope is
linearly fitted as a function of the inverse of the time interval. The fraction of intrinsic noise in the total noise can be calculated
from the intercept of the linear fit. We also infer the fraction of measurement noise in the total noise from the slope of the
linear fit. (d) We summarize the calculated fractions of different noise for the two data sets. fin: the fraction of intrinsic noise.
fex: the fraction of extrinsic noise. fme: the fraction of measurement noise.

gle gene, which is distinct from that of the dual-reporter
method. If the two genes in the dual-reporter setup share
the same fluctuating translation rate ks (t), the two defi-
nitions of extrinsic noise will coincide [SI G, Fig. S6(a)].
However, if the correlated noise between the two genes
is at the transcriptional level, the extrinsic noise inferred
from the dual-reporter will be smaller than the one ex-
tracted from our protocol, which we confirm numerically
[Fig. S6(Db)].

Analysis of experimental data.—FExperimentally, the
measured protein concentration is always augmented by
measurement noise. To model the effects of measurement
noise, we assume the measured protein concentration at
time ¢ to equal

()

where po(t) is the actual protein concentration and 7(t)
is the measurement noise term assumed uncorrelated be-
tween different measurements. We will revisit this as-
sumption later on and show that the datasets we an-
alyzed are consistent with it. The covariance between
Ap/At and p becomes cov(%m) = COV(%J)O) -
0’% /At. Compared with Eq. (4), the slope in the lin-
ear fitting of Ap/At vs. p is modified to

p(t) = po(t) +n(t)

2

A
cov(xZ,p) b )
po2 At

2
p

We confirm Eq. (6) using numerical simulations with
artificial measurement noise. In this case since o2 is as-
signed and fi, is known, we can directly compare the left
and right sides of Eq. (6), obtaining good agreement (SI
H, Fig. S7). Experimentally, the fluorescence level may
not accurately reflect the instantaneous protein number
due to a finite maturation time of the fluorescent protein.
We have confirmed that the effects of a finite maturation
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time does not affect our results for experimentally rele-
vant values of the maturation times [34] (SI I, Fig. S8).

We analyze two datasets of F. coli growth. In both,
cells are exponentially growing and a fluorescent protein
is constitutively expressed [8, 33]. A single lineage of
cells is tracked for about 100 generations with cell vol-
ume and fluorescence level measured simultaneously. In
both cases, the time interval between two consecutive
data points is 1 min. To compute fi,, we increase the
time interval to compute Ap/At and find the slopes in
the linear fitting of Ap/At vs. p for each time interval
[see examples for At = 1 min in Fig. 4(a, b)]. We then
linearly fit the resulting slopes as a function of 1/At [Fig.
2(c)] and the results agree well with the prediction of Eq.
(6) [Fig. 4(c)]. Notably, this allows us to infer both f;, as
the intercept of the linear fit, and the fraction of measure-
ment noise from the slope. The results are summarized
in Fig. 4(d). To justify the assumption of uncorrelated
measurement noise, we show that the scaling with At in
Eq. (6) is violated for correlated measurement noise (SI
H, Fig. S7).

In this way we find that the ratio between the mea-
surement noise and the total noise in the two data sets
are respectively 17% and 10% in terms of their standard
deviations, which are the square roots of the numbers
in Figure 4(d). We can further use our analytic results
for constitutively expressed genes as used in these exper-
iments to estimate the average copy numbers of proteins
at cell birth and the translation burst parameter 87, (see
Egs. 528,529 in SI C) [31]. We find that N, ~ 230 at cell
birth, f7,, ~ 1.37 for Data in Fig. 4(a), and N, ~ 210 at
cell birth, 87, ~ 2.81 for Data in Fig. 4(b). The differ-
ences between the two data sets are presumably due to
the different strains and promoters. We note that if the
normalization constant to convert the fluorescence level
to protein number is known, one can also compute the
partitioning noise based on Eq. (1) and the Poisson noise
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as the remaining component of the intrinsic noise, which
is confirmed using the synthetic data [Fig. S1(g)].

Summary and outlook.—In this work, we start from a
general framework of stochastic gene expression in expo-
nentially growing cells. Our approach allows us to take
into account the cell growth and division explicitly and
study the variability in protein concentrations, directly
relevant to experiments on proliferating cells such as bac-
teria, yeast or cancer cells. We derive a broadly appli-
cable decomposition of the protein concentration noise,
finding that the total noise can be expressed as the sum
of the noise due to upstream factors, the Poisson noise
due to the random process of production and degrada-
tion, and the noise due to random partitioning during cell
division. These results are independent of the underlying
details of the particular dynamics of mRNA and protein
synthesis. Given a time trajectory of protein concentra-
tion, one may linearly fit the discrete time derivative of
protein concentration as a function of the protein con-
centration. We find that the slope of the fit, normalized
by the growth rate, equals the fraction of intrinsic noise
in the total protein concentration noise in the absence of
measurement noise. We verify our theoretical framework
on synthetic data of protein concentrations for genes with
various underlying gene expression dynamics.

Importantly, we generalize our protocol to analyze ex-
perimental data of E. coli gene expression and show how
a generalization of the method can simultaneously reveal
the fraction of measurement noise in addition to that
of intrinsic and extrinsic noise. Our framework predicts
that the slope in the linear fitting of the time deriva-
tive of protein concentration vs. the current protein con-
centration has a linear dependence on the inverse of the
time interval used to compute the time derivative, which
agrees well with the experimental results. Assuming a
model of a constitutively expressed protein as used in
these experiments, our approach also allows us to infer
the average copy numbers of proteins at cell birth as well
as the translation burst parameter.

The generality of our approach and the agreement be-
tween experiments and theoretical predictions suggests
that the method should be broadly applicable and will
serve as a useful tool for gene expression analysis includ-
ing mammalian cells and other non-microbial eukaryotes
as long as a sufficient number of cell cycles are sampled.
Our protocol to extract the intrinsic and extrinsic noise
relies only on the time trajectory of protein concentration
of a single gene, in contrast to the dual-reporter proto-
col which relies on measuring protein concentrations of
two identical genes. Combing our method with the dual-
reporter method, one can further decompose the extrinsic
noise into correlated and uncorrelated components. The-
oretically, our work paves the way to further studies on
the nature of the widely-observed yet poorly understood
extrinsic noise in gene expression.
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A. Derivation of the noise decomposition

For any chemical reaction in which the number of particle ¢ changes d,; in reaction o with rate r, [1], the time
dependence of the covariance of the numbers of particle ¢ and j is

d i T . o _
W = Zda@(l“ﬂ"a —T; Ta) + do j(TiTa — Ti 7o) + da,ida,jTa. (S1)
Here cov(z,y) = Ty — T §. Based on the chemical reactions of gene expression we introduced in Fig. 1 of the main
text,
Ny 25 N, 41, (S2)
JYELTALNG (S3)
N, 2% N, 41, (S4)

one can find the time-dependence of the variance of protein concentration using p = N,/V (7):

do?(t ko(T
57(_ ) = 2cov(ka(7),p) + ]:/%((T)) — 2u0y (1), (55)

2

Here we use o,(7) to represent the instantaneous variances of protein concentrations as functions of the age (where

the variance is taken over an ensemble of cell cycles conditioned on the same age). The average T(7) is over different
cell cycles conditioned on the same age, 02(7) = 22(7) —z2(7), and cov(z,y)(7) = z(7)y(7) —Z(7) 7(7). We integrate
Eq. (S5) within a cell cycle from 0 to T and what is left on the left side of Eq. (S5) is simply proportional to

02(T) —07(0) where T is the doubling time. Because of the random partitioning of molecules, the variances of protein

concentrations at cell division and at cell birth are related by 02(0) = 02(T) + p(T)/2V} [1]. In the following, we will
use (-}, to represent averaging over age uniformly within a cell cycle. Finally, we obtain the general expression of
the variance of protein concentration:

o vy _ [ covka(r),p(7)) Fa(7) p(T)
o3 (T))r = < P >T+ < 2V >T T oTew, (S6)
——
Upstream noise Poisson noise  Partitioning noise

p
side of Eq. (S6) are defined similarly.

In practice, in order to use Eq. (S6) one needs to accurately know the age of each cell within the cell cycle. We
will now derive a variant of Eq. (S6) where the variance is taken over all collected data points uniformly sampled
in time. This version is easier to use on experimental data, and in the main text all of our analysis of synthetic
and experimental data are performed using this “pooled average” rather than the age-average discussed above. For
example, the protein variance would take the simple form o2 = (p®) — (p)* where (--) represents average over all data
uniformly sampled in time over multiple cell cycles (note that this protocol is not valid for data from a snapshot of a
population of growing cells in which the age distribution is non-uniform [2, 3]).

Here (0%(7)), = fOT ol (r)dr/T = (p2(7))7 — (P*(7))~ is the age-averaged 02(7), and the first two terms on the right



Since uniform in time sampling of a trajectory can be thought of as integrating over age, this implies that (f(7)), =
(f) for any random variable. This immediately tells us that the last two terms on the RHS of Eq. (S6) are identical
in the age-average and the pooled average. The subtlety arises in the first term on the RHS and the LHS, where we
shall shortly see the two averaging methods are distinct - and nonetheless the structure of the equation is maintained.
Consider first the LHS. (02(7)); = (p?(1))r — (p*(7))+ while 02 = (p®) — (p)2. The first term clearly is identical
by our previous logic (where the random variable considered is p?). The second term is different though, and we

find that o2 = (02(7))r + (0°(7))r — (p(7))2. In a similar fashion we find that cov(ka,p) = (cov(ka(7),p(7))r +

(ko (T)D(T)) /11— (k2 (7)) (B(T))+ /1t where cov(kg, p) = (kap)—(k2)(p) is calculated using the pooled average. According
to Eq. (S4) and the exponential growth of cell volume, it is straightforward to find that dp(r)/dr = ko(7) — up(7)
and therefore, dp(7)?/dr = 2ko(7)p(7) — 2up*. By integrating the time derivative of p(7)? from 0 to 7" and using the
boundary condition p(0) = p(T), we find that (ko(7)p(7)),/p = (p(7)?),. Similarly, it is straightforward to find that
((7))r = (ka(7))+ /1. Therefore, Eq. (S6) is valid for the pooled average as well,

o cov(ka,p) ko p(T)
»= —, °t <2m/> T oTwew, (87)
—_—— —— ——

Upstream noise  Poisson noise  Partitioning noise

Note that Eq. (S6) and Eq. (S7) are equivalent for proteins with p(7) constant throughout the cell cycle and the
above derivation is also valid for proteins with a finite lifetime.

Using Eq. (S1), we also obtain the time-dependence of the covariance of mRNA and protein concentrations, and
the variance of mRNA concentration using m = N,,,/V (1), p = N, /V(7):

deov(mP)T) _ oy (7), m) + cov(kn (7),p) — (24 + —=)eov(m, p)(r), (58)
dr Tm
2T scov(la(r),m) + s s = 2+ ) (1) (59)

2

= (1) to represent the instantaneous variance of mRNA concentration as a function of the age. The

Here we use o tra
average Z(7) is over different cell cycles conditioned on the same age, 02(7) = 22 — T2, and cov(z,y)(T) =Ty — T 7.
Using a similar argument for mRNAs, we integrate Eq. (S9) from 0 to T within a cell cycle. Using the boundary

condition of mRNA concentration, we obtain

; _ colium) | EDARO Y i) 510
Om = :
op+ 2u+ V() Au+ o)W
Upstream noise Poisson noise Partitioning noise
Similar logic leads to the following equation for proteins with a finite lifetime 7,
p(t)
2 covlkap) g G R (p(T))
Ip = 1 T T : (S11)
o Au+ V@A) Ap+ )T
——
Upstream noise Poisson noise Partitioning noise

Our protocol to extract the fraction of intrinsic noise is equally valid for a degradable protein if its lifetime 7, is
known. In this case, one should replace p by p+ 1/7, in Egs. 4, 6 in the main text. If the cell does not grow, =0
and the intrinsic noise only includes the Poisson noise.

B. Numerical confirmation of the noise decomposition and extraction of intrinsic noise

We test the decomposition of noise for protein concentration, Eq. (1) in the main text, by simulating genes with
various underlying dynamics. In all panels of Fig. S1, T'= 60, 7,,, = 10, and k; = 10 if not specified. In Fig. S1(a),
we simulate a constitutively expressed gene with constant transcription rate k; and constant translation rate per
mRNA S. In Fig. S1(b), we simulate a gene with transcriptional bursting such that transcription only occurs in the
“on” state. kon = 10, kog = 10, k3 = 20. In Fig. S1(c), we simulate a gene with a transcription rate proportional
to the gene copy number which doubles in the middle of the cell cycle. The transcription rate changes from ki to
2k, in the middle of the cell cycle and k; is chosen such that the average mRNA number at cell birth is the same as



the constitutively expressed gene. In Fig. S1(d), we simulate a gene with a transcription rate that depends on the
cell cycle due to a finite period of DNA replication (section E). In Fig. S1(e), we simulate a gene with a fluctuating
transcription rate such that ki (t) = (k1) + &1 (¢) and the autocorrelation function of the noise decays exponentially in
time, (¢&1(8)&1(t)) = Ay exp(—|t—t'|/71). We take A; = 0.01k% and 7, = T'/2 in the simulation where 7T is the cell cycle
duration. In Fig. S1(f), we simulate a gene with a fluctuating translation rate per mRNA such that § = (8) + & (¢)
where (£5(t)&(t)) = Agexp(—|t — t/|/72). We take Ay = 0.01(3)? and 75 = T'/2 in the simulation. log;,(8) = —1 in
the upper panel of Fig. S1(f). log,,(8) = —2, —1.5,—1, —0.5 in the bottom panel of Fig. S1(f). The same simulations
discussed above are used to confirm the validity of extraction of intrinsic noise, Eq. (4) in the main text, shown in
Fig. S2. In Figure S1(g), we consider an alternative method to decompose the noise directly from the data by first
extracting the total intrinsic noise from the slope S in the linear fitting of Ap/At vs. p, and then computing the
partitioning noise using the last term of Eq. (S7). Since the sum of Poisson and partitioning noise is the total intrinsic
noise, which is known, we can next infer the magnitude of the Poisson noise. This decomposition of noise agrees with
our calculation of noise based on Eq. (S7), as shown in Figure S1(g).

In most of our simulations, 103 cell cycles are tracked. We have also tested the effects of the number of sampled
cell cycles on the robustness of our methods. We find that as long as the number of sampled cell cycles is above or
comparable to 50, the data statistics appears to suffice to test our methods [Fig. S3(a)].

Within our model we assume that the growth rate is constant and the cell division is symmetric. We also tested the
effects of fluctuating growth rates and division volumes. Note that the above two noises both contribute to fluctuations
in the generation times. To add noise in division volumes, we consider the adder model so that the division volume is
Vi =Vo+ A, + &y where A, is constant and &y is a Gaussian noise with a standard deviation equal to 0.1A,, (similar
to the value observed in nature for E. coli [6]). We find that our prediction for the fraction of intrinsic noise works
well [Fig. S3(b)].

We also consider the scenario in which the growth rate fluctuates. We introduce a Gaussian noise in the growth
rate so that the growth rate of each cell cycle can be different and we set the CV of growth rates as 0.1, motivated
by the magnitude of the fluctuations in E. coli [6]. We considered the scenario that the growth rate fluctuation is
uncorrelated with the translation rate per mRNA, as would be the case if the growth rate fluctuations are associated
with those in the numbers of cell wall growth proteins. We find that in this case, the growth rate will be negatively
correlated with the protein concentration as a higher growth rate dilutes the protein concentration faster. We extend
our model to this scenario by taking the correlation between the growth rate and the protein concentration into
account. In this scenario, the slope in the linear fit between the time derivative of the protein concentration and the
current protein concentration becomes

A
5 cov(z5.p) _ cov(up,p)  cov(kz,p)  cov(up,p) 519
- 2 - 2 - 2 - 2 - fext7 ( )
9 9 9 9

where feyt is the fraction of extrinsic noise due to the upstream factors in the total noise of protein concentration. We
confirm this prediction in Figure S3(c). Note that the first term on the right hand side can be directly extracted from
experimental data where protein levels and cell volume are measured, hence our method for extracting the fraction of
intrinsic and extrinsic noise from time-series data remains intact. Finally, we also checked the correlation between the
growth rate and protein concentration for the experimental data and found that the Pearson correlation coefficients
are very small for both data sets [Figure S3(d, €)]. This result suggests that our analysis of the experimental data in
the main text remains valid.

C. Mathematical derivations for a constitutively expressed gene

Using the fact that k; is constant for a constitutively expressed gene, Eqs. (S9, S8, S5) are simplified to

dUTQn - <m> ]{)1 1 2

dr V(1) + V(r) —2(p+ a)gm? (S13)
d

w = o2 — (2u+ Tim)cov(m,p)7 (S14)
d 2

% = 2fcov(m,p) + m - 2;wf,. (S15)

For a constitutively expressed gene, the instantaneous averaged mRNA concentration follows dm/dt = ki — (u +
1/7m)m according to Egs. (S2, S3), therefore T in the steady state is constant and equal to to the time-averaged



4

value (m) = k1/(p + 1/7m). We solve Eq. (S13) relying on the exponential growth of cell volume V() = Ve and
find

1

(e7hT — ¢ 2ts)m), (S16)

02,(7) = 02, (0)e~ 2707 4 7%7’” Tz

Tm

We now take 7 = log(2)/p and use the boundary condition o2, (0) — o2,(T) = (m)/(2V}) to obtain

b+ 1 1 (m)
2 (T — o2 9—2(1+ ) Tm (e ) 2 . 1
Tn(T) = O )+ = (5 - () = b0 - g (s17)

from which we obtain

(m) 2
Mt 1 (1 (D) + {m
Vi l‘+% 2 2 2Vy

2 —
(m)
Using the expression of (m), it is straightforward to verify that Ij:z = (m), which leads to
o2 (r) = T e (S19)

Given the time dependence of 2 (7) we can further solve for cov(m, p) using Eq. (S14) and find the general solution
as

1 1
= _ g)e-Cur Ty Blm) —ur o= @ut T S20
cov(m, p) = cov(m, p)(r )e + v, wd (e e ) (S20)

Blm) 1 5—(3)""m
cov(m,p)(r =0) = S21
mpr =0) = S A (s21)
Therefore,
1 (e 1
cov(m, p) = B{m) - 2 —(3) ’1 e CutaT B{m) - (e_’” _67(2;&%)7) (S22)
Vo pt -1 (3)* Vi p+ -
_ﬁ<m> 1 21+u7m —(2p+ )T 6<m> 1 —uT
= il 1 € Tm 1 €
Vb N+Tm22+“"m*1 Vb M+Tm
= Ae~Crt=p)T 4 Be™ T,
with A = _ﬂgb’” ;H-l%m 222+:fj’"_1 and B = %ﬁ Given the time dependence of cov(m,p) we can rewrite Eq.
(S15) as
d0’2 1 B<m>
p _ —(2 +-)T — QT FANTY —pT 2
—f = 2BAe Crtz0)T 4 28Be M + T " 202, (S23)
Its general solution is
) 283B + B{(m)
oo (1) = 05(0)e” T + 28 A7, (e — e~ Gty 4 TVZ’(e_‘” — e 2T, (S24)
We now take 7 = log(2)/p and use the boundary condition ¢2(0) — o2(T') = (p)/(2V}) so that
2 B{m)
2 7,(0) (1 1 2+%) 26B + = 2 (p)
T)= 2ATm (= — (2) #mm = - - 2
o3T) = T 4 28T (3= ()T )+ T = 30— o (525)



We find that

. 28B + 5 .
2<p> + 28AT1, <1 . (%)Hfm) + BB+ Ve <p> 28A7y, (1 _ (%)m) + 2§7B (826)

3 A 3

2 _ 7
0 =3y 3

where we have used (p) = 8(m)/p.

We now compute the upstream noise, the Poisson noise and the partitioning noise for a constitutively expressed
gene using Eq. (S7). In this case, the Poisson noise is equal to the partitioning noise and

o? =02 _ (S27)

p,poisson p,partitioning — 4111(2)‘/1) .

In the limit g7, < 1, we find

cov(m,p) = Bm) T ur (S28)
Vo
Therefore, the upstream noise becomes
T
52 _ ﬁfo cov(m, p)dt _ (p) BTm (829)
p,upstream T‘LL 2111(2) Vb .
We can also rewrite Egs. (S27, S29) in terms of CV? (variance/mean?) as
) T —_— ($30)
intrinsic 9 1n(2) <Np,b> ’
V2 B (S31)

extrinsic — m7

here (N, ;) is the average protein number at cell birth. The above calculation can be easily generalized to a consti-
tutively expressed protein with a finite lifetime 7,. Eqgs. (S14, S15) are modified as

d

%mm) = Bo2, — (2u+ % + :p)cov(m,}?)v (S32)
do? Jé] 1

=2 = 2Bcov(m,p) + V<Z)> =2+ )y, (833)

Therefore the solution of Eq. (S14) is valid for Eq. (S32) as well after replacing 1/7,, by 1/7,, + 1/7,. In the limit
Uy < 1, we find

B{m) Tm o kT

0 ,D) = S34
cov(m,p) = (534)
The upstream noise becomes
T
2 _ 5[0 cov(m,p)dt _ <p> BTmTp
Up,upstream - 1 - 1 . (835)
Te+L) @)+ %) Vet T 77)
Similarly, it is straightforward to find that in this case
2
. W)
Up,poisson - 1 ) (836)
4In(2)(1 + E)VL
o2 (p) . (S37)

p,partitioning — 41H(2)(1 + ﬁ)%



D. Noise strength of a constitutively expressed gene

To quantify the noise strength of protein concentration, one can either use the CV? (variance/mean?) or the Fano
factor (variance/mean). While the CV? is dimensionless, the Fano factor has dimensions of concentration. To make
the Fano factor of protein concentration dimensionless, one needs to multiply the Fano factor of protein concentration
by an arbitrary volume scale V. A common way is to use the average cell volume V [7]. For uniform-time sampling,
the average cell volume is simply V = fOT Vyettdt)T = V,/In2. Assuming a non-degradable protein and ur, < 1, we
obtain

1+ B7m
cvVZi=_—_—_°-"™ | S38
2I(2) )V (538)
_ 1+B7—m*_ 1+5Tm -
Fano = w2, 2m2)e 1.04(1 + Brm). (S39)

Experimentally, it is also common to sample the data by taking a snapshot of a population of cells. In this protocol,
the distribution of age is non-uniform and decays exponentially, P(7) = 2ue #". The average cell volume is V =

oV & dV = 21n2Vj. Using Bq. (S24), we find that
13 2L + By, 1.04 + Komy
CV2=_226 "M o gqp T2 S40
50V Ve (540)
]- ﬂ m 17
Fano = —3¢V~ 1.04 + B7p. (S41)
b

Interestingly, the Fano factors derived here are very close to the Fano factor 1 4+ 87, one would obtain from the
constant cell volume model [8].

E. Cell cycle with a finite DNA replication period

We relax the assumption of instantaneous DNA replication in the main text to take into account the effects of a
finite DNA replication period on the transcription rate per cell volume k1. We assume a doubling time of 60 mins. The
gene is constitutively expressed and replicated in the middle of the cell cycle at 7 = 30 mins. DNA replication starts
from 7 = 20 mins with a duration 20 mins. Because of the competition between genes for the limiting resource such
as RNA polymerase [9, 10], the transcription rate of the gene under consideration decreases during DNA replication
with a jump right after the gene is duplicated (Fig. S4). Our predictions regarding the decomposition of the noise of
protein concentration and its magnitude [Eq. (1) in the main text], and the extraction of intrinsic noise [Eq. (4) in
the main text] are nicely confirmed in this case as well [Fig. S1(d) and Fig. S2(b)].

F. Simplified model based on the Langevin equation

To better understand the effects of extrinsic noise, we consider a simplified version of the model in the main text
by taking a time interval such that koVét > 1 but also small enough that the change of k5 is negligible. On such a
time scale, the chemical reaction Eq. (S4) can be approximated by a discrete Langevin equation [12]:

dp = (ko — pp)dt + @W (S42)
Here the noise stemming from the random production becomes white noise where W is a Gaussian random variable
with variance 1. For simplicity, we have neglected the partitioning noise. Since the time interval 6t can be arbitrarily
small in the large volume limit, the upstream noise in the translation rate ko should be considered as a continuous
random variable (i.e., it has a finite correlation time). Finally, we obtain the following continuous Langevin equation
as an approximation for the dynamics of protein concentration:

&= —px+n+E, (543)

where z is the deviation of the protein concentration from its average. ¢ is a white noise term such that (£(¢)&(¢')) =
2D¢6(t —t'). m corresponds to the upstream noise in the translation rate which is a continuous random variable. For

concreteness, we assume the autocorrelation function of 1 decays exponentially so that (n(¢)n(t')) = Ane_‘t_t/‘/ ™,



Before we move on to the theoretical analysis of the above equation, we first present an intuitive argument why
the extrinsic noise reduces the slope in the linear fitting of Az /At vs. x. Consider the limit 7, > 1/u so that  can
be approximated as a constant for many generations of cell cycle. For a constant n the slope is simply the growth
rate p. Combining multiple sets of data with different 7’s, it is evident that the slope becomes smaller than p [Fig.
S5(a)]. Note that this effect is essentially due to “Simpson’s paradox”, where correlations can dramatically change
when pooling together different sub-populations [11, 13]. While this argument is based on the assumption of a very
slow time dependence of 7, the conclusion is generally valid as we show in the following.

From Eq. (S43), the solution of x can be formally written as

o / IO (t') + £(t)dt (844)

where the term associated with the initial condition is neglected since we are interested in the steady state. It is
straightforward to find the variance of x as

A 1 D
i L DU S (S45)
pol+pm o p

where the first term can be considered as the upstream noise in the main text and the second term can be considered

as the intrinsic noise. We now calculate the covariance between % and x:

A
cov(fgtc,x) = —po? 4 cov(n, ). (S46)

Therefore, the slope (S) in the linear regression of %”t” vs. x becomes

cov(RL, x) cov(n,x
s;_gjggfzﬂ_gégl. (547)

We now calculate cov(n, )

_AnTy

t
_ —p(t—t") / I
cov(n.z) = [ e o yar = 00

Combining with Eq. (S45, S47), we find that the relative slope indeed tells us the relative fraction of intrinsic noise
in the total noise

S _ De¢/w

2
pwoo o3

(948)

Note that when D,, > 0 and D, = 0 the noise of z is all coming from 1 and S = 0, while the variance of x is still finite.
The above calculation is valid even in the limit 7,, < 1/p, which is beyond the simple argument assuming 7, > 1/p.
We numerically test this situation and find a zero slope in the linear fitting of Az/At v.s. = [Fig. S5(b)].

G. Comparison with the dual-reporter setup

As we discuss in the main text, the extrinsic noise inferred from the dual-reporter setup is in general smaller
than the one inferred from the time trajectory of protein concentration based on our protocol. We first consider
two identical genes that share the same fluctuating translation rates ks(t) and compute the uncorrelated noise as

T2 incorrelated = ((P1(t) — p2(t))?)/2 (which is referred to as the intrinsic noise in the dual-reporter setup). We then
2 _ 2

compute the fraction of correlated noise as fex, dual = (05 — 7, uncorrelated)/ o7 (which is referred to as the extrinsic
noise in the dual-reporter setup). We compare it with the one inferred from the slope in the linear fitting of Ap/At
VS. P, fex, slope and find excellent agreement [Fig. S6(a)].

We also consider two identical genes that share the same fluctuating transcription rates ki (¢). In this scenario, the
translation rates kz(t) of the two genes are correlated but not identical due to the randomness of mRNA production

and degradation. Therefore, fex dual < fex, slope s we confirm numerically [Fig. S6(b)].



H. Numerical simulation with artificial measurement noise

We simulate a constitutively expressed gene and add measurement noise to the protein concentration. We first
consider the case of uncorrelated measurement noise. We vary the time interval At to compute Ap/At and compare
the measured slopes in the linear fit of Ap/At vs. p with the theoretical prediction, Eq. (6) in the main text. The
prediction is nicely confirmed [Fig. S7]. We also consider the case of correlated noise and assume the autocorrelation
function of the measurement noise decays exponentially in time with a decay time 7,,. In this case, the simulation
results do not agree with Eq. (6) in the main text. The agreement of Eq. (6) in the main text and the experimental
data therefore supports our assumption of uncorrelated measurement noise.

I. Effects of finite maturation time of fluorescent protein

We consider the effects of a finite maturation time of fluorescent protein to our theoretical predictions. We will
consider two models for the maturation process: a Poisson process, following Ref. [14], and later on, a model in which
the maturation process takes a constant (fixed) time. For the former, we modify Eqgs. 1-3 in the main text and define
N, as the number of immature fluorescent proteins and Ny as the number of maturated fluorescent proteins:

Ny 2V N+ 1, S49

(
EACTALNG VS (S50
k¥ (S51

(

552

)

)

N, 2% N, 41, )
RN,

Ny, Ny 225 N, + 1, Ny — 1. )

Here R is the maturation rate. In experiments, what one can actually measure is the concentration of maturated
fluorescent proteins, f. We compute the inferred fraction of intrinsic noise from the maturated fluorescent proteins as

Sy _ 7cov(A£Sf), ()

K MU?‘,time , (853)
and compare it to the result of Eq. (3) in the main text using the concentration of total protein p. We compare the
two slopes (Sy vs. S) using synthetic data where both can be accessed. As expected, when the maturation rate is
large (corresponding to a maturation time short compared with the cell cycle duration), they are approximately equal
and as the maturation rate decreases, the fraction of intrinsic noise inferred from the maturated fluorescent protein
deviates from its true value, and is larger than it [Fig. S8(a)]. Typical maturation times range from several minutes
to several tens of minutes [14]. The results of Fig. S8(a) therefore suggest that our protocol should provide accurate
results for the majority of experimental scenarios.

We also consider an alternative model of maturation process, assuming that the fluorescent proteins maturate after
a fixed amount of time 7 [Fig. S8(b)]. We find that in this case, the inferred fractions of intrinsic noise obtained
using the maturated fluorescent protein levels match closely the true values even for large maturation times. Taken
together with the results for the Poisson model of protein maturation, we conclude that maturation times should not
significantly affect our analysis.
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Supplementary Figure S1 Decomposition of the noise of protein concentration.

(a) Simulation of a constitutively expressed gene. (Upper) Total measured noise of protein concentration and the
three sources of noise, which are calculated using Eq. (S7). (Bottom) The translation rate per mRNA 3 is varied
and the predicted variance of protein concentration (Eq. (1) in the main text) is compared with the measured value.
The same analysis applies to the following panels. (b) Simulation of a transcriptional bursting gene. (c¢) Simulation
of a scenario where the transcription rate is proportional to the gene copy number. (d) Simulation of a gene with
transcription rate modulated throughout the cell cycle. (e) Simulation of a gene with a fluctuating transcription rate
such that k1 (t) = (k1) + £1(t) where & (¢) is the noise term. (f) Simulation of a gene with a fluctuating translation
rate per mRNA such that 8(t) = (8) + &2(t) where &(t) is the noise term. In all panels, T' = 60, 7,,, = 10, and

k1 = 10 if not specified. In all upper panels, 8 = 0.1 and in all bottom panels, § is varied so that

logy = —2,—1.5,—1,—0.5. Other simulation details are explained in the text. The errorbars are computed as the
population standard deviation of 5 independent simulations. (g) An alternative decomposition of noise. We first
compute the total intrinsic noise from the slope in the linear fitting of Ap/At vs. p. We then compute the
partitioning noise from Eq. (S7), which immediately informs us of the contribution of the Poisson noise as well. The

results quantitatively agree with those shown in Fig. S1(a)-(f).
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Supplementary Figure S2 Extraction of the fraction of intrinsic noise based on synthetic data.

(a) Simulation of a scenario where the transcription rate is proportional to the gene copy number. (b) Simulation of
a gene with transcription rate modulated throughout the cell cycle. (¢) Simulation of a gene with a fluctuating
transcription rate ki (¢). (d) Simulation of a gene with a fluctuating translation rate per mRNA S3(¢). In all upper
panels, 3 is varied so that log;, 8 = —2,—1.5, -1, —0.5. In all bottom panels, log,, 5 = —0.5. We compute the
time-derivative of protein concentration with a time interval At = 0.5. Other simulation details are explained in
Methods. The errorbars are computed as the population standard deviation of 5 independent simulations.
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Supplementary Figure S3 Effects of finite number of cell cycles, and effects of fluctuating growth
rates and division volumes.

(a) A constitutively expressed gene is simulated, with the results averaged over 10 independent simulations. In each
simulation, neycle cell cycles are tracked. We compare the predicted fraction of intrinsic noise (y axis) to the
measured value (x axis). The errorbars are computed as the population standard deviation of 10 independent
simulations. (b) Simulation of a constitutively expressed gene where fluctuations in division volumes are considered.
The errorbars are computed as the population standard deviation of 5 independent simulations. (c¢) Simulation of a
constitutively expressed gene where fluctuations in growth rates are considered. The errorbars are computed as the
population standard deviation of 5 independent simulations. The results agree well with Eq. (S12). (d, e) We find
small Pearson correlation coefficients p(u, p) between the growth rate and the protein concentration for both data
sets. (d) is for data from Ref. [4]. (e) is for data from Ref. [5]. For each cell cycle, we fit the cell size as an
exponential function of time to find the growth rate.

Transcription rate per volume

Supplementary Figure S4 Numerical simulation of a cell cycle with a finite DNA replication period.
The time dependence of the transcription rate per cell volume k;.
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Supplementary Figure S5 Simplified model based on the Langevin equation.

(a) Schematic illustration of the lowering of the slope due to extrinsic noise; In essence, this is due to Simpson’s
paradox [11]. (b) Numerical test of the simplified model. Here, =1, 7, = 0.01, A,, = 100, D¢ = 0 and the time
interval of the simulation At = 0.001. The red circles are binned data and the dashed line has a zero slope.
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Supplementary Figure S6 Numerical test of dual-reporter setup.

(a) We simulate two identical genes that share the same fluctuating translation rate ks (t) and set the translation
rate per mRNA as 8 = (8) + &2(t) where £3(t) is the noise term. We assume (€2(¢)€2(t")) = Az exp(—|t — ¢'|/72) with
Ay =0.018% and 75 = T/2. T = 60, k; = 10 and 7,, = 10. (Upper) We show the raw synthetic data from
simulations of two identical genes with (8) = 0.1. (Bottom) We compare the fractions of extrinsic noise inferred
from the dual-reporter setup and from the slope in the linear fitting of Ap/At vs. p. § is varied so that

log,o(8) = —2,—1.5,—1, —0.5. The errorbars are computed as the population standard deviation of 5 independent
simulations. (b) We simulate two identical genes that share the same fluctuating transcription rate k1 (t) and set the
transcription rate as ki (t) = (k1) + &1 (¢) where & (t) is the noise term. We assume (&1 (¢)&1(t)) = Ay exp(—|t —t'|/71)
with A; = 0.01k% and 7, = T/2. T = 60, (k1) = 10 and 7,,, = 10. (Upper) we show the original data of the two
identical genes with 8 = 0.1. (Bottom) § is varied so that log;, 8 = =2, —1.5, =1, —0.5. The errorbars are computed
as the population standard deviation of 5 independent simulations.
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Supplementary Figure S7 Numerical test of synthetic data with artificial measurement noise.

We simulate a constitutively expressed gene and add Gaussian noise to every recorded protein concentration
(circles). T =60, ky = 10, 8 = 0.1, 7, = 10. The time interval At is varied from 1 to 5 and for each time interval we
compute the slope from the linear fitting of Ap/At vs. p. The dashed line is the theoretical prediction (Eq. (6) in
the main text). fin = 0.50, U% = 100, and Ug ~ 1.14 x 103. We repeat the analysis for correlated measurement noise
(squares). The autocorrelation function of the measurement noise decays exponentially with a decay time 7,, = 7/2
with other parameters kept the same as uncorrelated noise.
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Supplementary Figure S8 Numerical simulation of a fluorescent protein with a finite maturation time.
(a) We simulate a constitutively expressed gene with 7' = 30 min, 7, = 10 min, k; = 10 min~! and adjust 3 so that
log;o 8 = —2,—1.5,—1,—0.5 min~!. We model the maturation process as a Poisson process and compare the
inferred fractions of intrinsic noise (Eq. (3) in the main text) and Eq. (S53) here for three different maturation
rates. The dashed line is the y = = line. The errorbars are computed as the population standard deviation of 5
independent simulations. (b) The same analysis for a maturation process with a fixed maturation time 7. The
errorbars are computed as the population standard deviation of 5 independent simulations.



