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The standard Dynamic Programming (DP) formulation can be used to solve Multi-Stage Optimization
Problems (MSOP’s) with additively separable objective functions. In this paper we consider a larger
class of MSOP’s with monotonically backward separable objective functions; additively separable
functions being a special case of monotonically backward separable functions. We propose a necessary
and sufficient condition, utilizing a generalization of Bellman’s equation, for a solution of a MSOP,
with a monotonically backward separable cost function, to be optimal. Moreover, we show that this
proposed condition can be used to efficiently compute optimal solutions for two important MSOP’s;
the optimal path for Dubin’s car with obstacle avoidance, and the maximal invariant set for discrete
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1. Introduction

Throughout Engineering, Economics, and Mathematics many
problems can be formulated as Multi-Stage Optimization Prob-
lems (MSOP’s):

min{j(u(O), oo u(T —1),x(0), ... ,x(T))}

x(0) = xq, x(t + 1) = f(x(t), u(t),t)fort =0,..., T —1
x(t)eX, CcR", u(t)eUcCR"fort=0,...,T.

Such problems consist of (1) a cost function J : R™*T x R?*(T+1)
R, (2) an underlying discrete-time dynamical system governed by
the plant equation f : R" x R™ x N — R", (3) a state space
X; C R" (4) an admissible input space U C R™, and (5) a
terminal time T > 0. Examples of such optimization problems
include: optimal battery scheduling to minimize consumer elec-
tricity bills (Jones & Peet, 2017); energy-optimal speed planning
for road vehicles (Zeng & Wang, 2018); optimal maintenance of
manufacturing systems (Liu, Dong, Lv, & Ye, 2019); etc.

MSOP’s are members of the class of constrained nonlinear op-
timization problems. Such optimization problems can be solved
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using nonlinear solvers such as SNOPT (Gill, Murray, & Saun-
ders, 2005) over small time horizons. However, the most com-
monly used class of methods for solving MSOP’s is Dynamic
Programming (DP) (Bertsekas, 1995). DP methods exploit the
structure of MSOP’s to decompose the optimization problem into
lower dimensional sub-problems that can be solved recursively
to give the solution to the original higher dimensional MSOP.
Typically, DP is used to solve problems with cost functions of
the form J(u, x) = L_Ol ce(x(t), u(t)) + cr(x(T)). These functions
(Definition 2) are called additively separable functions, as they
can be additively separated into sub-functions, each of which only
depend on a single time-stage, t € {0, ..., T}. In the additively
separable case it was shown in Bellman (1966) that if we can find
a function F that satisfies Bellman’s Equation,

F(x,T) =cr(x) forallx € Xr

F(x,t) = inf {ct(x, u)+ F(f(x,u, t), t + 1)}

uely

forallx e X;,t €{0,...,T — 1},

where Iy, = {u € U : f(x,u,t) € X}, then a necessary
and sufficient condition for a feasible input and state sequence,
u = (u(0),...,u(T—1))and x = (x(0), ..., x(T)), to be optimal is

u(t) € arg inf {ct(x(t), u)+ F(f(x(t), u, t), t + 1)}

uerxmyf
forallt € {0,..., T —1}.
We consider MSOP’s with cost functions of the more general

form J(u, X) = ¢o(x(0), u(0), ¢1(x(1), u(1), ... ¢r(x(T)). . ), where
maps ¢; : X; x U x R — R are monotonic in their third argument
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fort = 0,...,T — 1. Such functions are called monotonically
backward separable, defined in Definition 3, and shown to contain
the class of additively separable functions in Lemma 4. For MSOP's
with monotonically backward separable cost functions we show
in Theorem 9 that if we can find a function V that satisfies

V(x,T) = ¢r(x) forall x € Xt (1)
V(x, t) = él}f {q&t(x, u, V(f(x,u, t), t + 1))}

forallx e X;,t €{0,...,T — 1},

where Iy, = {u € U : f(x,u,t) € X}, then a necessary
and sufficient for a feasible input and state sequence, u =
(u(0), ..., u(T — 1)) and x = (x(0), ..., x(T)), to be optimal is

u(t) € arg inf {q)t x(t), u, V(f(x(t), u, t), t + 1))}

UEFX([)J

forallt €{0,..., T —1}.

Eq. (1) can be thought of as a generalization of Bellman’s Equa-
tion; as it is shown in Corollary 10 that in the special case
when the cost function is additively separable Eq. (1) reduces to
Bellman’s Equation. We therefore refer to Eq. (1) as the Gener-
alized Bellman’s Equation (GBE). Through several examples we
show a solution, V, to the GBE can be obtained numerically by
recursively solving the GBE backwards in time for each element of
X;, the same way Bellman’s Equation is solved, thereby extending
traditional DP methods to solve a larger class of MSOP’s with non-
additively separable cost functions. Moreover, in Section 4 it is
shown how Approximate Dynamic Programming (ADP) methods
can be modified to solve the GBE.

By recursively solving the GBE (1) it is possible to synthesize
optimal input sequences for many important practical problems.
In this paper we consider two such problems; path planning with
obstacle avoidance and maximal invariant sets. First, we define
the path planning problem as the search for a sequence of inputs
that drives a dynamical system to a target set in minimum time
while avoiding obstacles defined by subsets of the state-space.
In Section 5 we show that such problems can be formulated as
an MSOP with monotonically backward separable objective, of
form J(u,x) = min {inf{t € [0, T]: x(t) € S}, T}, implying that
the solution to the path planning problem can be found using
the solution to the GBE. Similarly, in Section 6 we show that
computation of maximal invariant sets can be formulated as an
MSOP with monotonically backward separable objective of form
J(u, x) = max{maxo<k<r_1{ck(u(k), x(k))}, cr(x(T))}.

Path planning with obstacle avoidance has been extensively
studied (see surveys Dreyfus, 1969; Gallo & Pallottino, 1988) and
has many applications; including UAV surveillance (Xie, Jin, &
Garcia Carrillo, 2019). In Rippel, Bar-Gill, and Shimkin (2005)
the path planning problem is separated into two separate prob-
lems: the “geometric problem*, in which the shortest curve,
X(t), between the initial set and target set is calculated, and the
“tracking problem*, in which a controller, u(t), is synthesized
so that Y/_, [Ix(t) — X(t)|? is minimized, where x(t + 1) =
f(x(t), u(t), t) and || - ||o is the Euclidean norm. Separating the
path planning problem allows for the use of efficient algorithms
such as A*-search or tangent graphs (Liu & Arimoto, 1992) to solve
the “geometric problem* and LQR control to solve the “tracking
problem*, however, there is no guaranteed that this method will
produce the true solution to the original path planning problem.
The same approach is used in Cowlagi and Tsiotras (2011), where
it is shown through numerical examples that a controller closer
to optimality can be derived when the state space is augmented
with historic trajectory information. Our approach of using the
GBE to solve the path planning does not separate the problem
into the “geometric or “tracking” problem and thus does not
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require any state augmentation. For systems described in contin-
uous time (rather than the discrete systems considered in this
paper) with obstacles that satisfy certain boundary curvature
assumptions, assumptions not made in this paper, it has been
shown in Savkin and Hoy (2013) that a path planning sliding
mode controller can be efficiently computed. Furthermore, this
sliding mode controller can be used for effective path planning in
unknown environments, a case not considered in this paper.

The GBE can also be used in the application of computing the
Finite Time Horizon Maximal Invariant Set (FTHMIS), defined as
the largest set of initial conditions for a discrete time process
such that there exists a feasible input sequence for which the
state of the system never violates a time-varying constraint.
Knowledge of this set can be used to design controllers that
ensure the system never violates given safety constraints. We
show that FTHMIS's are equivalent to the sublevel set of solutions
to the GBE. To the best of the authors knowledge the problem
of computing FTHMIS’s has not previously been addressed in
the literature. However, a proposed methodology for computing
maximal invariant sets over infinite time horizons can be found
in Esterhuizen, Aschenbruck, and Streif (2019), Wang, Jungers,
and Ong (2019) and Xue and Zhan (2018). Similar continuous-
time formulations of this problem can be found in Jones and Peet
(2019, 2019Db).

Substantial work on generalizations of Bellman’s Equation for
both infinite and finite time MSOP’s can be found in Bertsekas
(2018). Our work differs from Bertsekas (2018) as rather than
attempting to generalize the “Bellman’s operator*, as Bertsekas
(2018) does, we consider a wider class of cost functions associ-
ated with MSOP’s, introducing monotonically backward separable
cost functions, leading to a derivation of the GBE (1). Unlike
in Bertsekas (2018), we formalize the link between the cost func-
tion of an MSOP and the GBE (1). Other examples in the literature
of MSOP’s with non-additively separable cost functions can be
found in the pioneering work of Li (1990) and Li and Haimes
(1990a, 1990b, 1991). Li considered MSOP’s with k-separable cost
functions; functions of the form J(u, X) = H(J1(u, X), ..., Ji(u, X)),
where H : R¥ — R is strictly increasing and differentiable,
and each of the functions, J;, are differentiable monotonically
backward separable functions. Li showed that for problems in
this class of MSOP, an equivalent multi-objective optimization
problem with k-separable cost functions can be constructed. The
multi-objective optimization problem can then be analytically
solved, using methods relying of the differentiability of the cost
function, to find the optimal input sequence for the MSOP. We
do not assume, as in Li, that the cost function is differentiable or
k-separable and our solution does not require the solution of a
multi-objective optimization problem.

In related work, coherent risk measures, from Ruszczynski
(2010), Shapiro and Ugurlu (2016) and Shapiro (2009), result in
MSOP’s with non-additively separable cost functions of the form
Ju,x) = co(x(0), u(0)) + p1(c1(x(1), u(1)) + p2(c2(x(2), u(2)) +
-4 pr(cr(x(T)))....)). Such MSOP’s are solved recursively using
a modified Bellman’s Equation. Coherent risk measure functions
are a special case of monotonically backward separable functions;
in this case our GBE reduces to the previously proposed modified
Bellman'’s equation.

2. Multi-stage optimization problems with backward separa-
ble cost functions

In this section we will introduce a class of general Multi-
Stage Optimization Problems (MSOP’s). We show this class con-
tains problems that classical DP theory is able to solve; MSOP’s
with additively separable cost functions (Eq. (3)). We then pro-
pose a more general class of cost functions called monotonically
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backward separable functions (Eq. (4)) that contain the class
of additively separable functions. Using this framework we are
then able to derive necessary and sufficient conditions for an
input sequence to solve an MSOP with monotonically backward
separable cost function. Such conditions are shown to reduce to
the classical conditions proposed by Bellman (1966) in the special
case when the cost function is additively separable.

Definition 1. For a given initial condition xo € R", for every tuple
of the form {J, f, {X;Jo<t<r, U, T}, where J : R™T x R+ _ R,
fR"XR"xN— R" X, CR", U CR" and T € N, we associate
a MSOP of the following form

(u*, x*)e argminJ(u, X) subject to: (2)
ux

x(t+ 1) = f(x(t), u(t), t)fort =0,...,T—1
X(0) =xp, x(t)eX, CR"fort=0,...,T
ut)eUcCR™"fort=0,...,T—1
u=(u(0),...,u(T — 1)) and x = (x(0), ..., x(T))

Classical DP theory is concerned with the special case when
the cost function, J : R™T x R™T+D — R has an additively
separable structure defined as follows.

Definition 2. The function J : UT x IT[_ X, — R is said to be
additively separable if there exist functions, cr(x) : Xr — R, and
¢ : Xy xU—>Rfort=0,...,T — 1 such that,
T—1
Ju,x) =Y c(x(t), u(t) + cr(x(T)), (3)
t=l

where u = (u(0), ..., u(T — 1)) and x = (x(0), ..., x(T)).

We consider the class of “monotonic backward separable” cost
functions defined next. The definition of this class of functions
uses the image set of a function. Specifically, for f : X — Y we
denote the image set of the function as Image{f} = {y € Y :
there exists x € X such that f(x) = y}.

Definition 3. The function J : UT x Il X, — R, where
U C R™ and X; C R" is said to be monotonically backward
separable if there exist representation maps, ¢r : Xr — R, and
¢ Xe x U x Image{¢ps+1} — Rfort =0, ..., T — 1 such that the
following holds:

(1) The function J can be expressed as the composition of
representation maps, {q)t}fzo, ordered backwards in time.
That is J satisfies

J(u, x) = ¢o(x(0), u(0), $1(x(1), u(1), ... ¢r(x(T))...)), (4)

where u = (u(0), ..., u(T — 1)) and x = (x(0), ..., x(T)).

(2) Each representation map, ¢, is monotonic in its third ar-
gument. That is if z, w € Image{¢;,1} are such that z > w
then

de(x,u,z) > ¢e(x, u, w) for all (x,u) € Xy x U (5)

Moreover if | also satisfies the following properties than we say
J is naturally monotonically backward separable:

(1) Each representation map, ¢, is upper semi-continuous in
its third argument. That is for any t € {0,...,T — 1},
x € X, u € U and any monotonically decreasing sequence
{za}nen C Image{¢;1}, such that z,,1 < z, for all n € N,
then

lim ¢¢(x, u, z,) = ¢e(x, u, lim z,). (6)
n—oo n—oo
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(2) Each representation map, ¢, satisfies the following bound-
edness property. Forany t € {0, ..., T — 1} and (x,u, z) €
X; x U x Image{¢¢,1} we have |¢.(x, u, z)| < oo and for all
X € Xt we have |¢r(x)| < oo; thatis foreacht € {0, ..., T}
there exists R > 0 such that

Image{¢;} C {x e R: |x| < R}. (7)

We show in Section 3 that monotonically backward separable
functions share a deep connection with Bellman’s Principle of
Optimality (Definition 11). However, we also consider naturally
monotonically backward separable functions as the added semi-
continuity and boundedness properties are used in the derivation
of necessary and sufficient conditions for an input sequence to
solve an MSOP with naturally monotonically backward separable
cost function (Theorem 9).

We next show the class of MSOP’s with monotonically back-
ward separable cost functions includes the class of MSOP’s with
additively separable cost functions as a special case.

Lemma4. Suppose] : U x ITT_ X, — R is an additively separable
function (Definition 2), with associated cost functions {ct}fzo. Then
J is a monotonically backward separable function (Definition 3).
Moreover, if the functions {ct}fzo are bounded over X; x U then | is

naturally monotonically backward separable function.

Proof. Please see extended Arxiv paper (Jones & Peet, 2020a). ®

Further examples of monotonically backward separable func-
tions, including instances where the representation maps are
non-differentiable, are given in Section 2.3.

2.1. Exchanging the order of composition and infimum for monoton-
ically backward separable functions

As we will show in Lemma 5, monotonically backward sep-
arable functions have the special property that the order of an
infimum and composition of representation maps can be inter-
changed.

Before stating Lemma 5 we introduce notation for the set of
feasible controls. Given a tuple {J, f, {X¢}o<t<r, U, T} for x € X;
and s € [0, T — 1] we denote

s ={ueU:fxus)eXu}

Moreover we say,  (u(s), ..., u(T — 1)) € Iy s,7-1] (8)

ifu(t) € Iy, forallt € {s,..., T — 1}, where x(s) = xo and
x(k + 1) = f(x(k), u(k), k) for k € {s, ..., T — 1}.

Lemma 5. Consider an MSOP of Form (2) associated with
U,f, {XcJo<t<r, U, T}. Suppose | : UT x O X, — Risa
naturally monotonically backward separable function (Definition 3)
with representation maps {¢t}f:0 and I'yy # O for all (x,t) €
X x{0,...,T—1}. Then for k € {0, ..., T — 1} and any x € X; we
have

inf { o (x(k), u(k),

u(k)ely k

x(k 4+ 1), u(k + 1), drpa(x(k + 2), u(k + 2), ... ¢r(x(T))...)) }) }

rr1(

inf
(u(k+l)..4.ﬂu(T—1))€Fx(k+1)~[k+1_r,]]

= inf { 9)

(u(k),...,u(T—=1))elx [k, T—1]
(k) u(K), P (x( + 1), u(k + 1), ... $r(x(T))...)) }
where X(t+1) = f(X(t), u(t), O) fort € {k, ..., T—1} and x(k) = x.

Proof. Please see extended Arxiv paper (Jones & Peet, 2020a).
|
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2.2. Main result: A generalization of Bellman’s equation

When ] is additively separable, the MSOP, given in Eq. (2),
associated with the tuple {J,f, {X¢}o<t<r, U, T}, can be solved
recursively using Bellman’s Equation (Bellman, 1966). In this sec-
tion we show that a similar approach can be used to solve MSOP’s
with naturally monotonically backward separable cost functions.

We next define conditions under which a function, V, is said
to be a value function for an associated MSOP.

Definition 6. Consider a monotonically backward separable
function J : R™T x R™(T+1) _ R with representation functions
{pe)o<t<r, f i R" X R" x N - R", X C R", U C R™,and T € N.
We say the function V : R" x [0, T] — R is a value function of
the MSOP associated with the tuple {J, f, {X¢}o<t<r, U, T} if for all
x € Xr

V(x,T) = ¢r(x), (10)
and forallx e X; and t € [0, T — 1]

V(x, t) = inf [ (11)

u(t)elx tse W(T=1)E YT -1),T—1
Be(x(), u(t), pera(x(t + 1), u(t + 1), ... ¢r(x(T))...)) }

where x(t) = x and x(k+1) = f(x(k), u(k), k) for k € {¢t,..., T—1}.

We note that the value function has the special property that
V(xg, 0) = J*, where J* is the minimum value of the cost function
of the MSOP (2). In the special case when J is an additively
separable function the value function defined in this way reduces
to the optimal cost-to-go function.

Proposition 7 (Generalized Bellman’s Equation (GBE)). Consider an
MSOP of Form (2) associated with {J, f, {X¢}o<t<r, U, T}. Suppose
J : U" x 0L X, — R is a naturally monotonically backward
separable function (Definition 3) with representation maps {q&t}tT:O
and I'y; # @ for all (x,t) € Xy x {0,...,T — 1}. Then if F :
R" x [0, T] — R satisfies

F(x,T) = ¢r(x) for all x € Xy, and (12)

F(x,t) = ui'}ft{‘bf("’ u, F(f(x, u, t), t + 1))}
forallxe X,,t €{0,..., T —1},

then F is a value function (Definition 6) of the MSOP associated with
U.f, Xebo<e<r, U, T}

Proof. Please see extended Arxiv paper (Jones & Peet, 2020a). ®

We next propose sufficient conditions showing an input se-
quence is optimal if it recursively minimizes the right hand side
of the GBE (12). Later in Theorem 9 we propose necessary and
sufficient conditions involving the GBE (12).

Proposition 8 (Sufficient Conditions). Consider an MSOP of Form
(2) associated with {J, f, {X;}o<¢<r. U, T}. Suppose J : UT x IT_ X;
— R is a naturally monotonically backward separable function
(Definition 3) with representation maps {¢[}[T:0, Iy # O for all
(x,t) € Xy x{0,...,T — 1}, V : R" x [0,T] — R satisfies the
GBE (12), and the state sequence x* = (x*(0), ..., x*(T)) and input
sequence u* = (u*(0), ..., u*(T — 1)) satisfy

u*(k) € arg inf

:d)t(x*(k), u, V(f(x*(k), u, k), k + 1))}

uel‘x*(k).k
forke{0,...,T —1}. (13)
X*(0) =xg, x"(k+ 1) =f(x*(k), u*(k), k)
forkef0,..., T —1}. (14)
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Then (u*, x*) solve the MSOP given in Eq. (2), associated with the
tuple {J, f, {Xt}o<e<r, U, T}

Proof. Please see extended Arxiv paper (Jones & Peet, 2020a). ®

Consider an MSOP associated with {J, f, {X¢}o<t<r, U, T}, where
J is  naturally monotonically  backward  separable
(Definition 3). As we will show next, if the representation maps
{¢>[}th0, associated with J are strictly monotonic (Eq. (15)) then
Eqgs. (13) and (14) of Proposition 8 become sufficient and neces-
sary for optimality. In Section 2.3 we will give several examples
of naturally monotonically backward functions with associated
strictly monotonic representation maps.

Theorem 9 (Necessary and Sufficient Conditions). Consider an
MSOP of Form (2) associated with {J, f, {X;}o<t<r, U, T}. Suppose
J : U" x O X, — R is a naturally monotonically backward
separable function (Definition 3) with representation maps {qﬁt}[T:O,
and Iyy # O for all (x,t) € X x {0,...,T — 1}. Furthermore,
suppose the representation maps are strictly monotonic in their third
argument. That is if z, w € Image{¢$,} are such that z > w then

de(x, U, z) > Pe(x, u, w) for all (x,u) € Xy x U. (15)

Then (u*, x*) solve the MSOP if and only if (u*, x*) satisfy Egs. (13)
and (14).

Proof. Please see extended Arxiv paper (Jones & Peet, 2020a). ®

In the next corollary we show that when the cost function, J, is
additively separable, the GBE (12) reduces to Bellman’s Eq. (16);
thus showing Bellman’s Equation is an implication of the GBE.
Therefore we have generalized the necessary and sufficient con-
ditions for optimality encapsulated in Bellman’s Equation to the
GBE. The GBE provides optimality conditions for a larger class of
MSOP’s with monotonically backward separable cost functions;
that no longer need be additively separable.

Corollary 10 (Bellman’s Equation). Consider an MSOP of Form (2)
associated with {J, f, {X¢}o<¢<r. U, T}. Suppose J : UT x T X, —
R is an additively separable function (Definition 2), with associated
cost functions {Cr}tho that are bounded over X; x U. Then if F :
R" x [0, T] — R satisfies

F(x,T)=cr(x) forall x € Xr, (16)

uelxt

F(x,t) = inf {ct(x, u)+ F(f(x,u, t), t + 1)}
forallx e X, te{0,..., T — 1},

then F is a value function for the MSOP associated with the tuple
U.f, X}o<e<r, U, T}

Moreover, if Iy, # @ for all (x,t) € X; x {0,...,T} then
xX* = (x*(0),...,x*(T)) and u* = (u*(0), ..., u*(T — 1)) solve the
MSOP if and only if the following is satisfied

inf {cp(x*(k), u) + F(F(x*(k), u, k), k+ 1)}, (17)
UET (k) ke
X"(0) = xo, x"(k+ 1) = f(x*(k), u*(k), k) (18)

forkef{0,..., T —1}.

u*(k) € arg

Proof. Please see extended Arxiv paper (Jones & Peet, 2020a). ®
2.3. Examples: Backward separable functions
In Section 2.2, we have shown that MSOP’s with cost functions

that are naturally monotonically backward separable
(Definition 3) can be solved efficiently using the GBE (12). We



M. Jones and M.M. Peet

now give examples of non-additively separable, yet monotoni-
cally backward separable functions, which may be of significant
interest. This is not a complete list of all monotonically backward
separable functions. Currently little is known about size and
structure of the set of all monotonically backward separable
functions.

The first function we consider is the point-wise maximum
function. This function occurs in MSOP’s when demand charges
are present (Jones & Peet, 2018) and in maximal invariant set
estimation (Xue & Zhan, 2018).

Example 1 (Point Wise Maximum Function). Suppose | : UT x
' X, — Ris of the form

J(u, X) = max {0 max _{ci(x(k), u(k))}, CT(X(T))} ,
where u = (u(0),...,u(T — 1)), x = (x(0),...,x(T)), U C
R X, € R ¢k : Xy x U — Rand ¢t : Xr — R. Then

J is a monotonically backward separable function. Moreover, if
{c[}tT:0 are bounded functions, then J is naturally monotonically
backward separable.

Proof. Please see extended Arxiv paper (Jones & Peet, 2020a). ®

In the next example we consider multiplicative costs. A special
case of this cost function, of the form J(u,x) = Il*:v,,[exp(zttol
ce(x(t), u(t), w(t)) + cr(X(T), w(t))] = [ exp(}_;—y ce(x(t), u(t),
w(t)) + cr(x(T), w(t)))p(w)dw, where p(w) is the probability
density function of w = (w(0), ..., w(T)), has previously ap-
peared (Glover & Doyle, 1988; Jacobson, 1973).

Example 2 (Multiplicative Function). Suppose J : UT x IT[_ X, — R
is of the form

J(u, X) = Ewler(x(T), w(T)ITZy c(x(t), u(t), w(t))]
= / er(x(T), w(T)TZ ce(x(t), u(t), w(t))
Iox..IT

Pr(X(T), w(T)IT ' pe(x(t), u(t), w(t))dw(0)...dw(T),

where u = (u(0),...,u(T — 1)), x = (x(0),...,x(T)), w =
(w),...,w(T), U c R"and X; ¢ R, I; € R¥ ¢ : X x
UxIl; - Rtfor0 <t <T-—1¢ : Xr xIt — R, and
pr i XexUxI, — R, pr : XpxIp — Rsatisfyf, pe(x, u, w)dw = 1
andf, pr(x, w)dw = 1for0 <t <T—1andany (x,u) € X; x U.
Then ] isa monotomcally backward separable function. Moreover,
if {C[}t o and {pt} _o are bounded functions, and sets {It}t
have finite measure, then J is naturally monotonically backward
separable. Furthermore, 1ff, pi(x, u, w)ci(x, u, w)dw #* 0 for all
(x,u,i) e X;xUx{0,...,T— 1} then the associated representation
maps are strictly monotomc (Eq. (15)).

Proof. Please see extended Arxiv paper (Jones & Peet, 2020a). ®

In the next example we consider a function that can be in-
terpreted as the expectation of cumulative stochastically stopped
additive costs, where at each time stage, t € {0,...,T — 1}, a
cost c;(x(t), u(t)) is added and there is an independent probability,
pe(x(t), u(t)) € [0, 1], of stopping and incurring no further future
costs. For a state and input trajectory, (u,x) € UT x ML X,
let us denote the stopping time by T(u, X); it then follows the
distribution of this random variable is given as

P(T(u,X) = T) = pr(x(T )T (1 — pi(x(i), u(i))),
and for all t € N, (19)
P(T(u, X) = t) = pe(x(t), u(t))ITZ] (1 — pix(@), u(i))),
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where we slightly abuse notation to write 1"[,.;11( 1—pi(x(i), u(i))) =
1 so P(T(u,x) = 0) = po(x(0), u(0)). The stopped additive
function is then given as

min{T(u,x),T—1}

J(u, X) = Erqux) [ Z

t=0

ce(x(t), u(t)) (20)

T LwweuT <a1l_oxerx=r) (W X)er(X(T)) ] -

To show the function in Eq. (20) is monotonically backward sep-
arable we will assume the probability of the stopping time occur-
ring inside the finite time horizon {0, ..., T} is one; this gives us
the following “law of total probability* equation ZLO P(T(u,x) =
t) = 1forall (u,x) € U" x IT_ X, which can be rewritten in
terms of its probability density functions as,

Zpt

+ pr(x(T)IT' (1 — pi(x(i), u(i)) = 1. (21)

Note, if pr(x(T)) = 1 then it can be trivially shown that Eq. (21)
holds for any functions p; : X; x U — [0, 1].

Assuming Eq. (21) holds and using the law of total expectation,
conditioning on the probability of each stopping time, it follows

EOMTZ (1 — pix(D), u(i))

min{T(u,x),T—1}

J(u, X) = Erqux) [ Z

t=0

ce(x(t), u(t)) (22)

F Lo < m?_xerux=r) (W X)er (X(T)) ]

T—

t
= Z( cs(X(s), u(s)))]P(T(u, X)=1t)

t=0 “s=0

—_

+ (Z Cs(x(s), u(s)) + CT(X(T))>P(T(u, x)=T)
s=0
1 t

( Cs(x(s), u(S))) e(x(8), u(t) T2, (1 — pilx(i), u(i)))

t=0 =0
(Zc[ X(t), u(t)) + er(x(T )))

x pr((TNIZE (1 — pilx(i), w(i)).

We next state and prove that the J given in Eq. (22
ically backward separable.

T

) is monoton-

Example 3 (Stochastically Stopped Additive Cost). Suppose | : UT x
nr X, — Ris of the form

J(u,x) = (23)
T-1 t
> (Z &5 (x(s), u(s)))pt(x(r), ()T (1 = pilx(i), u(i)))
t=1 “s=0
T-1

+ (Z ce(x(t), u(t)) + CT(X(T))>
t=0

x pr(x(T) T, (1 — pix(D), u(i))),

where py : Xy x U — [0, 1] and pr : X7 — [0, 1] satisfy Eq. (21),
u = (u0),...,u(T — 1)), x = (x(0),...,x(T)), U C R" and X; C
R", ¢y : Xy x U > R and cr : Xf — R. Then J is a monotonically
backward separable function. Moreover, if {c[}[T:0 are bounded
functions, then J is naturally monotonically backward separable.
Furthermore, if p;(x, u) # 1for all (x, u,i) € X;xU x{0, ..., T—1}
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then the associated representation maps are strictly monotonic
(Eq. (15)).

Proof. Please see extended Arxiv paper (Jones & Peet, 2020a). ®

In the next example we introduce a function representing the
number of time-steps a trajectory spends outside some target set.
Later, in Section 5, we will use this function as the cost function
for path planning problems.

Example 4 (Minimum Time Set Entry Function). Suppose | : UT x
! X; — Ris of the form

Ju,x) = min{inf{t e[0,T]: x(t) € S}, T}, (24)

where u = (u(0), ..., u(T — 1)), u(t) € R™, x = (x(0), ..., x(T)),
X(t) € R, U ¢ R"and Xy € R and S C R If the set
{t € [0,T] : x(t) € S} is empty, we define the infimum to be
infinity. Then J is a naturally monotonically backward separable
function.

Proof. Please see extended Arxiv paper (Jones & Peet, 2020a). ®

3. The principle of optimality: A necessary condition for mono-
tonic backward separability

Given a function, | : R™T x R>*T+D) _ R, there is no
obvious way to determine whether J is monotonically backward
separable. Instead, in this section we will recall a necessary
condition proposed by Bellman (1966), called the Principle of Op-
timality (Definition 11), that we show all MSOP’s with monoton-
ically backward separable cost functions satisfy (Proposition 12).
Before recalling the definition of the Principle of Optimality
let us consider a family of MSOP’s, associated with the tuples
Uty f> Xedgg=e<r» U, T}tTO:O, each initialized at (xp,t) € R" X

{0, ...., T}, and of the form:
(u*, x*)e arg min J;,(u, X) subject to: (25)
ux

x(t+ 1) = f(x(t), u(t), t)fort =tg,..., T —1
X(to) =xo, x(t) eX; C R fort =ty,..., T
uit)eUCR"fort=ty,...,T—1

u = (u(tp),...,u(T — 1)) and x = (x(tp), ..., x(T))

Definition 11. We say the family of MSOP’s of Form (25) satisfies
the Principle of Optimality at x, € X, if the following holds.
Forany t with0 <t < T,ifu = (u(0),...,u(T — 1)) and
x = (x(0),...,x(T)) solve the MSOP initialized at (xq, 0) then
v =(u(t),...,u(T — 1)) and h = (x(t), ..., x(T)) solve the MSOP
initialized at (x(t), t).

Proposition 12. Consider a family of MSOP’s of Form (25) associ-
ated with {J;, f, {Xt}t<s<t, U, T}[TZO. Suppose the MSOP’s initialized
at (xo, 0) has a unique solution and J; : UT™" x IT_ X, — R is
monotonically backward separable (Definition 3). Then the family
of MSOP’s of Form (25) associated with {J;, f, {X¢}t<s<r, U, T}tT:0
satisfies the Principle of Optimality at xy € Xp.

Proof. Please see extended Arxiv paper (Jones & Peet, 2020a).
|

Proposition 12 shows the Principle of Optimality
(Definition 11) is a necessary condition that all families of MSOP’s
with unique solutions and monotonically backward separable
cost functions must satisfy. We now conjecture a necessary and
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sufficient condition. The following notation is used in this con-
jecture. Given J;, {X;}o<¢<r and U let us denote the set .#, where
(f,x) € & if xg € Xo and the MSOP associated with {Jo, f,
{Xt}o<t<r, U, T} initialized at (xo, 0) has a unique solution.

Conjecture 13.  Consider {Xi}o<c<r C R™T, U C R™ and
Jo 2 U x OL X, — R Then, for any (f,x) € & the
family of MSOP’s associated with {J;, f, {X;}t<s<1, U, T}[T:0 satisfy
the Principle of Optimality at xy € Xo if and only if ] is monotonically
backward separable.

Regardless of whether Conjecture 13 is true, Proposition 12
is useful. Proposition 12 provides a way of proving a function
Je : Ut x 0T X; — R is not monotonically backward separable.
Rather than showing J; does not satisfy Definition 3 for every
family of representation maps {¢s Sth, for which there are an
uncountably many, we find any f for which the family of MSOP’s
associated with {J;, f, {Xs}t<s<t, U, T}[T=0 has a unique solution for
some initialization (xg, 0) and does not satisfy the Principle of
Optimality. Then Proposition 12 shows J; is not monotonically
backward separable. We demonstrate this proof strategy in the
following lemma.

Lemma 14. The function J, : R™ (0 x RP>T+1-0 s R defined
as

T-1
Je(w, x) ==Y cs(u(s)) + max d(x(s)), (26)

t<s<T

is not monotonically backward separable (Definition 3) for all func-
tions ¢y : R™ — Rand di : R" — R.

Proof. Please see extended Arxiv paper (Jones & Peet, 2020a). ®

Remark 15. The function given in Eq. (26) can clearly be ex-
pressed as the addition of two monotonically backward separable
functions, Ji(u,x) = Zsttl cs(u(s)) (Lemma 4) and J(u, x) =
max;<s<r d(x(s)) (Example 1). Therefore, Lemma 14 shows that
the property of monotonically backward separability is not pre-
served under addition.

4. Comparison with state augmentation methods

We proposed an alternative method for solving MSOP’s with
non-additively separable costs in Jones and Peet (2018); where
cost functions are forward separable:

](u7 X) = I//lT(X(T)» ‘/’T—l(X(T - 1)7 U(T - 1)! 1//7'—2(---”
Y1(x(1), u(1), o(x(0), u(0)))), .....,)), (27)

where ¥ : Xo x U = R, ¥ : X; x U x Image{y_} — Rk for
te{l,...,T — 1}, and ¢ : Xr x Image{yrr_1} — R.

It was shown that for {J,f, {X;}o<t<r, U, T}, where J is of
the Form (27), an equivalent MSOP with additively separable
cost function, {J,f, {Xt}ost<r, U, T}, can be constructed, where
Ju,x) = Yr(x(T)), f(lx1. %217, u, t) = [f(x, u, t), Yelxq, u, )17,
and X; = X x Image{y}. The augmented MSOP,
{,f, {Xt}o<t<r, U, T}, can then be solved using the classical Bell-
man Eq. (16). This state augmentation method is particularly
useful when solving MSOP’s with cost functions that are not
monotonically backward separable, for instance the function in
Eq. (26). However, the augmented MSOP has a larger state space
dimension. Therefore, in the case when the cost function is both
forward separable, of Form (27), and monotonically backward
separable, of Form (4), it is computationally more efficient to
solve the GBE (12) rather than augmenting and solving Bellman’s



M. Jones and M.M. Peet

Eq. (16). We now demonstrate this in the following numerical
example.
Consider the MSOP

subject to: (28)

2ifu=05
““*Uzilﬁuzl

x(0)=2, x(t)e {1,2} fort =0,...,T,
u(t) € {0.5,1} fort =0,...,T — 1.

The cost function in the above MSOP is naturally monotonically
backward separable and can be written in the Form (4) with
representation maps

dr(x) = Vx, ¢, u,z) =xF+utzforte{0,...,T—1}. (29)

Moreover the cost function is also forward separable and can be
written in the Form (27) with representation maps

Volx, u) =[x, ul",  Ye(x,u,z) = [z,x,ul", (30)

Yr(x,z) = \/21 +2z;+ \/--n\/ Zor—1 + Zor + VX

We solved the MSOP in Eq. (28) using both the GBE and the state
augmentation method, plotting the computation time results in
Fig. 1. The green points represent the computation time required
to construct the value function by solving the GBE (12) with
representation maps given in Eq. (29), and then to synthesize the
optimal input sequence using Eq. (13). The red points represent
the computation time required to construct the value function
by solving Bellman’s Eq. (16) for the state augmented MSOP and
then to construct the optimal input sequence. The green points
increase linearly as a function of the terminal time, T € N, of
order ¢(T), whereas the red points increase exponentially with
respect to T, of order ¢(27) (due to the fact that using represen-
tation maps, given in Eq. (30), results in an augmented state space
of size 2T). Moreover, Fig. 1 also includes blue dots representing
computation times required to solve the GBE approximately, as
discussed in the next section.

fort=0,...,T,

4.1. Approximate dynamic programming using the GBE

Rather than solving the MSOP (28) exactly using the GBE,
as we did in the previous section, we now use an Approxi-
mate Dynamic Programming (ADP)/Reinforcement Learning (RL)
algorithm to heuristically solve the MSOP and numerically show
these algorithms can result in lower computational times when
compared to methods that solve the GBE exactly. This demon-
strates that MSOP’s with monotonically backward separable cost
functions can be heuristically solved using the same methods
developed in the ADP literature with the aid of the methodology
developed in this paper.

Typically ADP methods use parametric function fitting (neu-
ral networks, linear combinations of basis functions, decision
tree’s, etc.) to approximate the value function from data. The
approximated value function is then used to synthesize a sub-
optimal input sequence. To see how this works, suppose an
ADP algorithm constructs some approximate value function, de-
noted V(x, t), then an approximate optimal input sequence, =
(1(0), ..., u(T)), can be constructed by solving

(k) € arg inf {¢t(>~<(k), u, V(F(x(k), u, k), k + 1))}

UETy k

forke{0,...,T —1}.
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Fig. 1. Log log graph showing computation time for solving MSOP (28) using
state augmentation (red points), via exactly solving GBE (green points), and via
approximately solving the GBE using the rollout (blue points) algorithm versus
the terminal time of the problem.

X(0) =xo, X(k+ 1)=f(x(k), u(k), k)

forke{0,..., T —1}. (31)
One way to obtain an approximate value function, V, is to use the
rollout algorithm found in the textbook (Bertsekas, 1995). This

algorithm supposes a base policy is known fipge : R" x N — U
and approximates the value function as follows

V(x, £) =¢e(X(), u(t), geyr(x(t + 1), u(t + 1), ... ¢r(x(T))...)),

where x(t) =x and foralls e {t,..., T — 1},
X(s + 1) = f(x(s), u(s), t), u(s) = ppase(X(S), S)-
1ift/4eN

Using the base policy ppase(X, t) = we used the

0.5 otherwise

rollout algorithm to solve the MSOP (28) for terminal times T = 8
to 10°. Computation times are plotted as the blue points in Fig. 1
showing better performance than solving the GBE exactly or using
state augmentation.

5. Application: Path planning and obstacle avoidance

In this section we design a full state feedback controller
(Markov Policy) for a discrete time dynamical system with the
objective of reaching a target set in minimum time while avoiding
moving obstacles.

5.1. MSOP’s for path planning

We say the MSOP, associated with tuple {J, f, {X;}o<t<r, U, T},
defines a Path Planning DP problem if

e J(u,x)= min{inf{t e [0, T]:x(t) S}, T}.

e S={xeR":g(x) <0}, where g : R" — R.

e X, = R"/(UY ,0;;), where O;; = {x € R" : h;(x) < 0} and
ht,i (R" — R.

e There exists a feasible solution, (u, X), to the MSOP (2) asso-
ciated with the tuple {J, f, {X;}o<t<r, U, T} such that x(k) € S
for some k € {0, ..., T}.
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Fig. 2. Graph showing approximate optimal trajectories, shown as the gold,
black and green curves, with dynamics given in Eq. (32) and the goal of reaching
the target set, shown as the blue square, while avoiding obstacles, shown as red
circles.

Clearly, solving the MSOP (2) associated with a path planning
problem tuple, {J, f, {X¢}o<t<r, U, T}, is equivalent to finding the
input sequence that drives a discrete time system, governed by
the vector field f, to a target S in minimum time while avoiding
the moving obstacles, represented as sets O;; C R". Moreover,
as shown in Example 4, the cost function J is a naturally forward
separable function (Definition 3).

5.2. Path planning for Dubin’s car

We now solve the path planning problem with dynamics as
defined in Maidens, Barrau, Bonnabel, and Arcak (2018); also
known as the Dubin’s car dynamics.

f&xut)= [x1 + v cos(x3), X, + vsin(xs), X3 + % tan(u)]T , (32)

where (x1, x;) € R? is the position of the car, x; € R denotes the
angle the car is pointing, u € R is the steering angle input, v € R
is the fixed speed of the car, and L is a parameter that determines
the turning radius of the car.

We solve the path planning problem using a discretization
scheme, similar to Jones and Peet (2018); such discretization
schemes are known to be parallelizable (Maidens, Packard, &
Arcak, 2016). The target set, obstacles, state space, and input
constraint sets are given by

S ={(x1,%) e R*: —0.25 < x; — 0.75 < 0.25,
—0.25 < x, +0.75 < 0.25}
Ori = {(x1. %) € R? : (s = Xi)* + (x, — Vi) =R} < 0}
forie{1,...,15}and t € {0, ..., T}
Xe=[-1,1*xRforte{0,...,T}, U=[-1,1],

where X, Y, R € R" are randomly generated vectors. The param-
eters of the system are set to v = 0.1 and L = 1/6.

Fig. 2 shows three approximately optimal state sequences
starting from different initial conditions. These state sequences
are found by numerically solving the GBE (12), where {q&t}[T:0
are as in Example 4. To numerically solve the GBE (12) the state
space, X; C R3, is discretized as a 60 x 60 x 60-grid between
[—1, 1]*> x [0, 27] and the input space, U C R, is discretized
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as 100 grid points within [—1, 1]. The first state sequence was
chosen to have initial condition [—0.8, 1, —0.557]T € R> (the
furthest of the three trajectories from the target) and took 25
steps to reach its goal. The second state sequence was chosen
to have initial condition [0.275, 0.25, 0.757]" € R>; in this case
as x3(0) = 0.75x Dunbin’s car initially is directed towards the
top left corner. The input sequence successfully turns the car
downwards between two obstacles and into the target set, taking
18 steps. The third trajectory was chosen to have initial condition
[-0.2,0.95,0.57]" e R3-starting very closely to an obstacle
facing upwards. This trajectory had to use the full turning radius
of the car to navigate around the obstacle towards the target set
and took 10 steps.

5.3. Path planning in 3D

We now solve a three dimensional path planning problem
with dynamics given by

fxut) =[x +up, xp +up, x3 +us]”. (33)

The target set, obstacles, state space and input constraint set were
respectively are given by

S = {(x1, X2, x3) € R? : —0.25 < x; — 0.75 < 0.25,
—0.25 < X 4+ 0.75 < 0.25, —0.25 < X, 4+ 0.75 < 0.25}
Ori = {(X1,%2,%3) € R : (X1 — Aj — it * + (x2 — By — Bit)?
+ (o — G-yt —R: <0} forie(l,...,35),t€{0,...,T}
X, —[-1,1Pfort€{0,...,T}, U=[-0.05,0.05],

where A, B, C, a, B, ¥, R € R*® are randomly generated vectors.
Note, when «, 8, y are non-zero the centre of the spherical ob-
stacles moves with time. For presentation purposes in this paper
we consider stationary obstacles, selecting o« = g = y = 0,
however, a downloadable .gif file showing the numerical solution
for moving obstacles can be found at Jones and Peet (2020b).
This path planning problem can be numerically solved by
computing the solution to the GBE (12) using {¢r}tT:o as given in
Example 4. To numerically solve the GBE (12) we discretized the
state and input space, X, C R and U C R3, as a 40 x 40 x 40
uniform grid on [—1,1]> and a 5 x 5 x 5 uniform grid on
[—0.05, 0.05]3 respectively. Fig. 3 shows four optimal state se-
quences, shown as green lines, starting from various initial condi-
tions. All trajectories successfully avoid the obstacles, represented
as red spheres, and reach the target set, shown as a blue cube.

GPU Implementation All DP methods involving discretization
fall prey to the curse of dimensionality, where the number of
points required to sample a space increases exponentially with
respect to the dimension of the space. For this reason solving
MSOP’s in dimensions greater than three can be computationally
challenging. Fortunately, our discretization approach to solving
the GBE (12), can be parallelized at each time-step. To improve
the scalability of the proposed approach, we have therefore con-
structed in Matlab a GPU accelerated DP algorithm for solving the
3D path planning problem. This code is available for download at
Code Ocean (Jones & Peet, 2019a).

6. Application: Maximal invariant sets

The Finite Time Horizon Maximal Invariant Set (FTHMIS) is
the largest set of initial conditions such that there exists an
input sequence that produces a feasible state sequence over a
finite time period. Computation of the maximal robust invariant
sets over infinite time horizons was considered in Xue and Zhan
(2018). Before we define the FTHMIS we introduce some notation.
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1

Fig. 3. Graph showing approximate optimal trajectories, shown as the green
curves, with dynamics given in Eq. (33) and the goal of reaching the target set,
shown as the blue cube, while avoiding obstacles, shown as red spheres.

For f : R" x R™ x N — R" we say the map pf : R" x
R x R™T-1 — R" is the solution map associated with f if the
following holds for all (xg, t,u) € R" x {0, ..., T} x R™U~D

o5 (X0, t, u) = x(t),

where u = (u(0), ..., u(T — 1)), x(k + 1) = f(x(k), u(k), k) for all
ke {0,...,k— 1}, and x(0) = xo.

Definition 16. Forf : R" x R" x N — R", X; C R", U C R",
T € N, and &4 C R" we define the Finite Time Horizon Maximal
Invariant Set (FTHMIS), denoted by %, by

Z ={xg € R" : there exists u € Iy, 10,7—1) such that
pr(xo, t,u) € o forall t € {0,...,T}},
where the notation Iy j0,r—1) is as in Eq. (8).

We next show that the sublevel set of the value function
associated with a certain MSOP can completely characterize the
FTHMIS.

Theorem 17. Consider the sets o = {x € R" : g(x) < 0},
where g, : R" — R. Suppose V is a value function associated
with the MSOP, defined by the tuple {J, f, {X:}o<t<r, U, T}, where
J(u, X) = maxo<<r gk(x(k)). Then

Z = {x € R" : V(x,0) < 0}, (34)
where the set # C R" is the FTHMIS as in Definition 16.

Proof. Please see extended Arxiv paper (Jones & Peet, 2020a). ®
6.1. Numerical example: Maximal invariant sets

Value functions can characterize FTHMIS’s, as shown by
Theorem 17. We now approximate a FTHMIS by computing a
value function using a discretization scheme for solving the
GBE (12) using {¢¢ ;T:o as given in Example 1. Let us consider a
discrete time switching system, whose Robust Maximal Invariant
Set (RMIS) was previously computed in Xue and Zhan (2018):

X1 : 2.2
f1—(x—1)—-x<0
|:(0.5+u)x1 —0.1x2:| 1= =17 =% <

X2

fxu,t)=
|:O.2x1 —(0.1+ u)x; +x3

} otherwise.

(35)
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Time

Fig. 4. Figure showing an approximation of L(V,0) := {x € R" : V(x,0) < 0},
shown in the shaded orange region, where V is the value function of the MSOP
associated with Eq. (35). The z-axis represents time and the black circular lines
represent the boundary of = for t = 1,2, 3,4. Three sample trajectories,
shown in blue, start in L(V, 0) and remain in the sets o7 for the time-steps
t = 1,2, 3, 4; giving numerical evidence that L(V, 0) is indeed an approximation
of the FTHMIS.

We now compute the FTHMIS, denoted by %, associated with
g ={xeR*:g(x)<0}forallte{0,...,T},

. 2 2
gr(X)=<X1—(t41)) +<X2—(t:l)> — 1.5,

X;=[-1,1%forallt € {0,..., T},
U={ueR:u>*-001<0}, T=4

Fig. 4 shows the FTHMIS, %, found by using a discretization
scheme to solve the GBE (12) for 5 x 5 state grid points in
[—1, 1]%. To represent # in R?, once the value function, V, is
found at each grid point a polynomial function is fitted and its
zero-sublevel set, shown as the orange shaded region, approxi-
mately gives Z.

7. Conclusion

For MSOP’s with monotonically backward separable cost func-
tions we have derived necessary and sufficient conditions for
solutions to be optimal. We have shown that by solving the
Generalized Bellman’s Equation (GBE) one can derive an optimal
input sequence. Furthermore, we have demonstrated the GBE
can be numerically solved using a discretization scheme and
Approximate Dynamic Programming (ADP) techniques such as
Rollout. We have shown our numerical methods can solve current
practical problems of interest; such as path planning and the
computation of maximal invariant sets.
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