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Abstract

Persistent Memory (PM) can be used by applications to

directly and quickly persist any data structure, without the

overhead of a file system. However, writing PM applications

that are simultaneously correct and efficient is challenging. As

a result, PM applications contain correctness and performance

bugs. Prior work on testing PM systems has low bug coverage

as it relies primarily on extensive test cases and developer

annotations.

In this paper we aim to build a system for more thoroughly

testing PM applications. We inform our design using a de-

tailed study of 63 bugs from popular PM projects. We identify

two application-independent patterns of PM misuse which

account for the majority of bugs in our study and can be de-

tected automatically. The remaining application-specific bugs

can be detected using compact custom oracles provided by

developers.

We then present AGAMOTTO, a generic and extensible

system for discovering misuse of persistent memory in PM

applications. Unlike existing tools that rely on extensive test

cases or annotations, AGAMOTTO symbolically executes PM

systems to discover bugs. AGAMOTTO introduces a new sym-

bolic memory model that is able to represent whether or not

PM state has been made persistent. AGAMOTTO uses a state

space exploration algorithm, which drives symbolic execution

towards program locations that are susceptible to persistency

bugs. AGAMOTTO has so far identified 84 new bugs in 5 dif-

ferent PM applications and frameworks while incurring no

false positives.

1 Introduction

Persistent Memory (PM) is a promising new technology that

offers an appealing performance-cost tradeoff for application

developers. PM technologies, such as Intel Optane DC [36],

can offer persistent memory accesses with latencies that are

only 2–3× higher than the latencies of DRAM [70]. More-

over, such PM technologies are cheaper than DRAM per GB

of capacity [3]. As byte-addressable memory, PM can also be

accessed via processor load and store instructions. Applica-

tion developers have already started building systems that use

PM directly, without relying on heavyweight system calls to

ensure durability, including ports of popular systems such as

memcached [24] and Redis [21].

While using PM directly via persistent data structures can

offer performance, it is challenging to write PM-based appli-

cations that are simultaneously correct and efficient [12, 18,

33, 52, 54, 60, 71, 76]. Persistent memory writes in the CPU

cache must be explicitly flushed to PM using specific instruc-

tions or APIs. In certain cases, PM flush operations need to

be ordered using memory fences to enforce crash consistency.

Incorrect usage of these mechanisms can result in persistency

bugs which break crash-consistency guarantees or degrade

application performance. Persistency bugs are challenging

to diagnose because their symptoms are easily masked. For

example, crash-consistency bugs may be masked because PM

writes are implicitly flushed when dirty (or updated) cache

lines are evicted from the CPU—furthermore, flushes which

are required for proper crash consistency under one execu-

tion path may be redundant and unnecessary under a different

program execution path, leading to performance degradations.

Several systems have been built to aid with testing PM

applications; however, these existing approaches are either

specific to a target application or require significant manual

developer effort. Intel designed Yat [44] and pmemcheck [65]

specifically to test the crash consistency and durability of

PMFS (Persistent Memory File System) [27] and PMDK

(Persistent Memory Development Kit) [20], respectively. To

find bugs, Yat exhaustively tests all possible update orderings,

and pmemcheck tracks annotated updates. Both of these tools

are specific to a single system (PMFS and PMDK, respec-

tively) and are hard to generalize. Other tools like Persistency

Inspector [62], PMTest [50], and XFDetector [49] are applica-

ble to general PM systems, but require developer annotations

and extensive test suites to thoroughly test PM applications.

In order to determine the extent to which persistency bug

finding can be automated (i.e., not require program annota-
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tions) to test general systems, we perform a study of 63 bugs in

PM applications and frameworks. We identify two application-

independent patterns of PM misuse (missing flush/fence and

extra flush/fence) which cover the majority (89%, or 56 out

of 63) of bugs in our study and can be detected automati-

cally. The remaining bugs are application-specific; for ex-

ample, many of the remaining bugs involve misusing trans-

actions when updating data-structures. Existing PM testing

approaches do not identify application-independent patterns

of misuse, and therefore require annotations to detect any PM

bug. In addition to classifying bugs based on their pattern

of PM misuse, we also classify bugs based on whether they

affect performance or correctness.

Based on the insights gained through our study, we present

AGAMOTTO, a framework for detecting bugs in PM appli-

cations that does not rely on extensive test cases. Instead,

AGAMOTTO uses symbolic execution [8] to thoroughly ex-

plore the state space of a program. In addition to expanding

path coverage, symbolic execution also allows AGAMOTTO

to detect persistency bugs in an application without access to

underlying physical PM resources. AGAMOTTO introduces a

memory model to track updates made to PM by the explored

program paths, and supports bug oracles which use the PM

state to identify bugs in the program. AGAMOTTO automati-

cally detects persistency bugs using two universal persistency

bug oracles based on the common patterns of PM misuse

identified by our study. The first is an unflushed/unfenced ora-

cle that identifies modifications to PM cache lines that are not

flushed or fenced (both a correctness and performance issue)

and the second an extra-flushed/fenced oracle that identifies

duplicate flushes of the same cache line or unnecessary fences

(a performance issue [18, 52, 60, 71, 76]).

To identify application-specific persistency bugs, AG-

AMOTTO allows developers to provide custom persistency bug

oracles. To demonstrate the versatility of custom oracles, we

implemented two such oracles in AGAMOTTO to detect bugs

related to misuse of the PMDK transactional API [20, 49, 50].

Analyzing large PM applications using traditional symbolic

execution [8] leads to scalability issues since the state space

of possible executions grows exponentially with the size of

the analyzed program. AGAMOTTO uses a novel search algo-

rithm that prunes the execution states it analyzes, allowing

AGAMOTTO to discover more bugs. Prior to symbolic exe-

cution, AGAMOTTO uses a whole-program static analysis to

determine instructions that modify PM (stores, flushes, etc.)

and assigns a unit priority to them. AGAMOTTO then assigns

an aggregate priority to each instruction by back-propagating

the unit priorities from each PM-modifying instruction—this

makes the aggregate priority a measure of the number of PM-

modifying instructions reachable from a particular instruction.

AGAMOTTO uses priorities to steer symbolic execution into

program states that frequently modify PM.

We used AGAMOTTO to find 84 new persistency bugs

in real-world systems including PMDK (a mature PM li-

brary) [20], memcached-pm [24], Redis-pmem [21], NVM-

Direct [7], and RECIPE [45]. In particular, we found 13 new

correctness and 70 new performance bugs using the universal

persistency bug oracles, and 1 new correctness bug using a

custom persistency bug oracle. We report all bugs to their

authors, and so far 40 of them have been confirmed and none

denied.

In this paper we make the following contributions:

• We perform a detailed study of persistency bugs in

PMDK as well as bugs found by prior work, and present

a new taxonomy of persistency bugs.

• We build AGAMOTTO
1, a persistency bug detection tool

that can test real-world PM programs using a novel state

exploration algorithm. AGAMOTTO automatically de-

tects bugs using two universal persistency bug oracles,

without relying on user annotations or an extensive test

suite. AGAMOTTO is extensible with custom bug oracles

that can detect application-specific bugs.

• We use AGAMOTTO to find 84 new bugs in 5 applica-

tions and persistent memory libraries, compared to the 6

persistency bugs found in persistent applications by the

state of the art (PMTest [50], which finds 3 bugs, and

XFDetector [49], which finds 3 bugs). AGAMOTTO does

not incur any false positives in our evaluation.

In the rest of this paper, we first provide background on

PM programming and describe the challenges of PM bug

finding (§2). We then present the results of our PM bug study

and provide common patterns of PM misuse that identify PM

bugs (§3). Then, we discuss the persistency bug detection

algorithms and search techniques underlying AGAMOTTO

(§4). Next, we describe the high-level design of AGAMOTTO

and evaluate the system with respect to both the number of

bugs found and the impact of these bugs (§6). Finally, we

describe related PM bug detection work (§7).

2 Background and Challenges

We now provide a background on persistent memory (PM)

programming and difficulties associated with writing correct

and efficient PM programs.

2.1 Persistent Memory Programming

1 int *x = pm_alloc(), *y = pm_alloc();
2 *x = 1;
3 clwb(x)
4 sfence()
5 *y = 1;
6 clwb(y)
7 sfence()

Listing 1: A PM programming example.

PM implementations support a programming interface that di-

verges from that of conventional storage devices. Rather than

1Released at https://github.com/efeslab/agamotto
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using comparatively slow system calls to access persistent

memory, applications can accelerate PM accesses by directly

mapping pages of PM into their address space and performing

byte-addressable load/store operations. Like volatile memory

accesses, PM IO may be cached and buffered in volatile mem-

ory (i.e., the CPU cache) in order to increase performance.

The added performance comes at the cost of increased

complexity for the application developer. Volatile memory

can retain updates to PM for an indefinite period of time (e.g.,

until a cache line gets evicted). Ensuring that stores to PM are

durable requires two steps. First, a developer must issue a flush

for the cache-line that contains the updated data. Then, the

developer orders flushes using existing fence operations (e.g.,

SFENCE). Note that an unordered flush may not be written to

persistent memory before a crash, so fences are required for

durability. Consider Listing 1, which allocates two integers in

persistent memory and issues ordered writes to the integers.

In order to guarantee that the write to x (line 2) is ordered

before the write to y (line 5), a flush and fence must occur

between the updates (lines 3 and 4). To ensure that the write

to y (line 5) is durable, a flush and fence must occur after the

write (lines 6 and 7).

The x86 instruction set architecture (ISA) provides two

flush instructions: CLFLUSHOPT and CLWB. CLWB differs from

CLFLUSHOPT in that CLWB hints the CPU to keep the cache

line in the cache whereas CLFLUSHOPT does not. x86 pro-

vides two fence instructions: MFENCE, which orders all loads,

stores, and flushes; and SFENCE, which orders all stores and

all flushes. Additionally, x86 provides CLFLUSH, which acts

as both a flush and fence for a specific cache line (i.e., only

orders the flush that the CLFLUSH itself issues, other CLWB

and CLFLUSHOPT instructions must be ordered by a separate

fence). Finally, x86 allows non-temporal stores, which bypass

the cache and thus do not require a flush but do require a fence

for durability. Note that the classification of PM instructions

into flush and fence operations is not x86-specific. For exam-

ple, ARM provides flush (e.g., DC CVAP) and fence (e.g., DSB)

operations [5, 67] with similar semantics to x86 flushes and

fences.

2.2 Challenges of Detecting PM Bugs

PM interfaces for durability and performance are easy to

misuse [49, 50] and the resulting persistency bugs can be

challenging to detect. Persistency bugs exhibit many char-

acteristics that make them difficult to detect. First, finding a

persistency bug requires identifying whether PM cache-lines

are dirty, but the x86 ISA does not provide a mechanism to

determine the state of a cache-line. Thus, detecting a persis-

tency bug requires modeling PM state and instrumenting the

program for tracking state updates, which is challenging to

accomplish using traditional debugging tools. Second, in the

case of correctness bugs, the root cause and symptoms of

a persistency bug are often loosely tied together: while the

Project
Missing

Flush/Fence

Extra

Flush/Fence
Other Total

PMDK 49 6 2 57

PMTest 1 1 1 3

XFDetector - - 3 3

Total 50 6 7 63

Table 1: The results of our bug survey.

symptoms of a correctness persistency bug is only revealed

after a crash, the PM misuse (i.e., the root cause) may be

hundreds of thousands of instructions before the crash even

occurred. Finally, persistency bugs are easily masked by other

system behavior. For example, flushes which are redundant

in one execution path of the program may be necessary under

a slightly different execution path, while correctness persis-

tency bugs may be masked by the CPU when evicting a dirty

cache-line from its cache.

Unfortunately, developers cannot solely rely on PM frame-

works (e.g., PMDK [20]) to prevent these bugs. As we show

in §3, many applications use PM libraries incorrectly and

even these established libraries themselves may misuse PM.

3 PM Bug Study and Classification

In this section, we present a study of persistency bugs. We

construct a corpus of 63 persistency bugs from a mature PM

library, PMDK [20], and persistency bugs from PM projects

(PMFS [27] and Redis-pmem [21]) that were found by state-

of-the-art PM bug detection tools (PMTest [50] and XFDe-

tector [49]). We chose PMDK, because it is a mature project

with a thorough issue tracker [23] representing a large collec-

tion of existing bugs. We use this corpus to identify common

patterns of PM bugs.

Table 1 shows a summary of our results2. Overall, we find

that two application-independent PM patterns explain the vast

majority (56/63 bugs) of the reported persistency bugs. We

find that PM bugs can result in either correctness problems,

which may lead to data corruption, or performance problems.

In particular, the missing flush/fence pattern, in which an up-

date to persistent memory is missing subsequent flush and/or

fence operations, accounts for 50/63 bugs and can lead to ei-

ther correctness or performance issues. The extra flush/fence

pattern, in which a cache-line is redundantly flushed or a fence

instruction is issued that is not needed for PM durability, ac-

counts for 6/63 bugs and leads to performance degradation.

The remaining 7 are caused by application-specific violations,

most of which involve a misuse of the PMDK transaction

API. Note, our study may be biased towards bugs that are de-

tectable by existing PM bug detection tools, because PMDK

2We provide a link to our bug study results in the AGAMOTTO

GitHub repository: https://github.com/efeslab/agamotto/blob/

artifact-eval-osdi20/artifact/README.md

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation    1049



developers extensively use pmcheck [65] to detect bugs. In

the rest of this section, we present examples of these bugs

together with more detailed descriptions.

3.1 Missing Flush/Fence Pattern

1 //oid is a pointer to PM
2 if (if_free != 0)
3 *oid = NULL;
4 // BUG: missing flush and fence

Listing 2: A missing flush/fence correctness bug adapted from

PMDK Issue #1103, Pull Request (PR) #3907.

The most common bug pattern in the bugs in our study

is the missing flush/fence pattern, in part because PMDK

developers extensively use pmemcheck [65] which identifies

this pattern of PM misuse. In this bug pattern, an update to

PM is not made durable because it is missing a subsequent

flush and/or fence operation. An example of the pattern is

shown in Listing 2. Here, a pointer to persistent memory, oid,

is not flushed when if_free != 0. If the program crashed

and restarted, the pointer might point to its old value, which

could lead to rogue writes or malformed data reads. This bug

is fixed by adding proper flush and fence operations after the

modification.

In contrast, the missing flush/fence pattern is detectable

without any application-specific information. In our study,

instances of the missing flush/fence pattern are correctness

issues, where the program is unable to recover from a crash

similar to the one in Listing 2. In our evaluation (see §6), we

also found instances of the missing flush/fence pattern which

are performance bugs. In these instances, an application uses

persistent memory to store volatile data, which hinders per-

formance due to the higher latency of PM accesses relative to

DRAM accesses. Existing studies suggest that placing volatile

data in PM can decrease application performance by as much

as 5% [26]. There are PM data structures that intentionally

include this pattern [53] as a programming simplification.

However, in the applications included in our study and eval-

uation, all instances of the missing flush/fence pattern are

persistency bugs.

3.2 Extra Flush/Fence Pattern

The other common pattern of persistent memory misuse which

we identify in our study is the extra flush/fence pattern. In

this pattern, a cache-line is redundantly flushed, or a fence

instruction which is not needed for PM durability is executed.

An example of this is shown in Listing 3. In this example, an

array located in persistent memory is resized in-place using

the call to resize_array, new elements are initialized to 0,

and new elements are flushed to persistent memory. How-

ever, when the size of the array is reduced (i.e., new_size

1 //array is an array of integers in PM
2 //with length = size
3

4 //resizes array in-place
5 resize_array(array, new_size);
6

7 // if size >= new_size, no copying occurs
8 for (size_t i = size; i < new_size; i++)
9 array[i] = 0;

10

11 // BUG: when new_size < size, underflow!
12 for (size_t i = 0; i < new_size - size; ++i)
13 clwb(array[i + size])
14 sfence();

Listing 3: An extra flush/fence performance bug adapted from

PMDK issue #1117, PR #3860 .

< size), an underflow in line 12 causes unnecessary flushes

and leads to a performance degradation [18, 60, 71, 76] (e.g.,

an additional flush and fence can add an average of 250ns

of latency [51, 73], where the base latency of uncached PM

accesses can be as low as 96ns [37]).

Similar to the missing flush/fence pattern, the extra

flush/fence pattern is detectable without any application-

specific information. The extra flush/fence pattern results in

performance degradation. As flush and fence instructions are

used in non-PM contexts (e.g., fences provide semantics for

memory consistency), there may be instances of this pattern

that are not persitency bugs. However, in the applications in

our study and evaluation, all instances of the extra flush/fence

pattern are persistency bugs.

3.3 Other Bugs

1 // store pool’s header
2 /* BUG: header made valid before
3 pool data made valid */
4 header = ...
5 clwb(header);
6 sfence();
7 pool = ...
8 clwb(pool);
9 sfence();

Listing 4: An example correctness bug adapted from PMDK

Issue #14.

The remaining 7 bugs in the study are application-specific;

i.e., in these cases, data is correctly flushed to PM and there

are no redundant flush operations, but the application misuses

PM, leading to performance or correctness issues. For exam-

ple, Listing 4 depicts a bug adapted from the memory pool

allocator in PMDK which results in a correctness issue. In

order to recover from a crash, the values in header and pool

must be consistent; however a crash at Line 7 will result in an

updated value of header without an updated value of pool.

1050    14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association





state of a cache-line indicates whether the cache line is dirty

(i.e., modified), pending (i.e., updates to the cache-line are

flushed but not ordered) or clean (i.e., updates to the cache-

line are both flushed and ordered). As AGAMOTTO symboli-

cally executes, it updates constraints on the persistency state

of PM cache-lines to reflect the behavior of the program. AG-

AMOTTO uses these constraints to identify execution paths

which contain persistency bugs, (i.e., when redundant flushes

are issued, or updates are not properly ordered).

Identifying PM allocations In order to be application-

agnostic and automated, AGAMOTTO tracks persistent mem-

ory allocations from the system level, rather than track-

ing high-level calls to persistent memory allocators (e.g.,

pmem_alloc) [50]. Tracking PM allocations at a system level

trades off performance in favor of automation, since this

approach over-approximates PM allocations. AGAMOTTO

marks all opened files that match a user-specified persistent

memory device regular expression (e.g., pmem/*) as PM files

and treats memory-mappings of PM files as persistent mem-

ory objects.

Tracking Persistent Memory State. When AGAMOTTO

symbolically executes an instruction that operates on a PM

object, it generates constraints on the persistency state of the

cache-lines that comprise the memory objects. A store instruc-

tion (e.g., x86 MOV) adds a constraint that the destination of

the store is in the dirty state. Flush instructions (e.g., CLWB and

CLFLUSHOPT) generate a constraint that denotes that the desti-

nation is in the pending state. Non-temporal stores (e.g., x86

MOVNT are similar to regular stores, except their destination

is immediately put into the pending state (i.e., non-temporal

stores are treated as a store+flush), as non-temporal stores

bypass the CPU cache but are weakly ordered (like flush

instructions) and still require some form of memory fence.

Global fences (e.g., SFENCE, MFENCE) add constraints to in-

dicate that all PM cache lines are clean, whereas cache-line

fences (e.g., CLFLUSH) add a constraint denoting that their

destination is clean.

4.2 Persistency Bug Oracles

AGAMOTTO uses the persistent memory state in order to

support two types of persistency bug oracles. First, AG-

AMOTTO provides two built-in Universal Peristency Bug Or-

acles, which check for bugs based on the patterns we identify

in §3. Second, AGAMOTTO allows developers to specify cus-

tom, application-specific persistency bug oracles, which we

have used to provide two oracles for the PMDK Transaction

interface [20].

1 // Unflushed Bug Oracle
2 def check_unflushed(state):
3 for pm_obj in state:
4 forall cachelines in pm_obj:
5 if not cacheline.is_clean:
6 raise error(correctness)
7

8 // Extra flush/fence Bug Oracle
9 def check_extra_flush(state, cacheline):

10 if cacheline in state is clean:
11 raise error(performance)
12 def check_extra_fence(state):
13 if state has no pending updates:
14 raise error(performance)
15

16 // Call Oracles on instructions:
17 def executeInstruction(state, inst):
18 if (state.terminated or state.unmapped):
19 check_unflushed(state)
20 if inst is flush:
21 check_extra_flush(state,
22 inst.cacheline)
23 // do flush
24 if inst is fence:
25 check_extra_fence(state)
26 state.commit_pending()

Listing 5: Pseudo-code for Universal Persistency Bug Oracles

and how they are used as AGAMOTTO explores the state space.

4.2.1 Universal Persistency Bug Oracles

AGAMOTTO provides two universal persistency bug oracles,

one that detects an instance of the missing flush/fence bug

pattern (indicating a correctness or performance bug), and

one that detects an instance of the extraneous flush/fence bug

pattern (indicating a performance bug). We sketch the algo-

rithms in Listing 5. AGAMOTTO reports a missing flush/fence

bug for each cache-line in a persistent memory object that is

not clean (i.e., the constraints on the persistent state indicate

that the cache-line may be dirty or pending) at the time when

the persistent memory is no longer addressable (due to either

munmap or program exit). AGAMOTTO identifies an extrane-

ous flush/fence operation bug on any flush (e.g., CLFLUSH) to

a cache-line which must already be pending or clean based on

the constraints on the persistent state. AGAMOTTO also identi-

fies an extraneous flush/fence bug on any fence (e.g., SFENCE

or MFENCE) which has no pending flushes to mark clean. For

both of these oracles, AGAMOTTO reports program location

information (e.g., stack frame and source code location) for

the most recent update to each cache line which violates the

conditions checked by the oracle. In our evaluation (see §6),

we show that these oracles do not incur any false positives

across a variety of PM frameworks and applications.

4.2.2 Custom Bug Oracles

In addition to the generic bug oracles, AGAMOTTO facilitates

the use of custom bug oracles. Custom bug oracles are defined

separately from the application, which allows them to be

versatile tools for detecting application-specific bugs. For

example, a developer might use a custom oracle to validate the

correct usage of PM frameworks (e.g., identifying duplicate

log entries in the PMDK libpmemlog) or assert that certain
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1 class PmemObjTxAddChecker
2 : public CustomChecker {
3 bool in_tx;
4 // [address, address+size)
5 typedef pair<ref<Expr>, ref<Expr>> TxRange;
6 list<TxRange> added_ranges;
7

8 void checkTxBegin(Function *f,
9 ExecutionState &state) {

10 if (!in_tx && f->getName() == "
pmemobj_tx_begin")

11 in_tx = true;
12 }
13

14 void checkTxAdd(Function *f,
15 ExecutionState &state) {
16 if (f->getName() !=
17 "pmemobj_tx_add_common") return;
18 // 1. Get the address from the stack.
19 ref<Expr> address = f.getArgument(0);
20 ref<Expr> size = f.getArgument(1)
21 // 2. Get end bound
22 auto r_end = address + size;
23 auto new_range = TxRange(address, r_end);
24 // 3. Check for overlaps.
25 // If overlap, there’s a bug!
26 if (overlaps(state, new_range))
27 reportError(state, RedundantTxAdd);
28 // 4. Add the new range.
29 added_ranges.push_back(new_range);
30 }
31

32 void checkTxEnd(Function *f,
33 ExecutionState &state) {
34 if (f->getName() == "pmemobj_tx_end")
35 in_tx = false;
36 }
37

38 public:
39 PmemObjTxAddChecker(...) {...}
40 // This is the entry point
41 virtual void operator()(
42 ExecutionState &state) override {
43 checkTxBegin(getFunction(state), state);
44 checkTxAdd(getFunction(state), state);
45 checkTxEnd(getFunction(state), state);
46

47 if (!in_tx) added_ranges.clear();
48 }
49 };

Listing 6: An psuedo-code example of a custom oracle,

designed to check for redundant PMDK transaction “adds”

(i.e., redundant log updates).

structures are operated on in the correct way (e.g., checking

that PM referenced as struct foo is only ever modified in

a PMDK transaction). Custom bug oracles define a function

that takes as input an explored program state (i.e., the current

state of symbolic memory and variables in the program) and

an instruction; after each instruction is executed within this

state, AGAMOTTO calls all configured custom bug oracles.

We provide two case studies on designing and implementing

custom oracles, which we use to find 4 application-specific

bugs that were reported by prior work and 1 new application-

specific bug. Both of the custom oracles which we present are

precise, i.e., they do not introduce false positives. We describe

them at a high-level below, then discuss their implementation

in §5.

Redundant Undo Log Oracle. This oracle checks to en-

sure that data does not get logged in PMDK’s undo log mech-

anism multiple times. We show a pseudo-code example of an

oracle in Listing 6. PMDK’s transactional API implements an

undo log which is used to back up data before it is modified—

if a transaction is interrupted by a program error or a crash,

the data can be recovered from the log. A misuse of this API,

however, can lead to redundant entries being created in the

undo log, which degrades performance. To track these errors,

this oracle keeps track of transaction boundaries (TX_BEGIN,

TX_END) and the memory ranges backed up in the undo log. If

overlapping memory ranges are added during a single transac-

tion, the oracle signals a performance bug. We use this oracle

to reproduce the application-specific performance bug found

by PMTest in PMDK’s example B-tree data structure.

Atomic Operation Oracle. This oracle ensures that a

developer-specified structure is crash-recoverable through

correct use of a PMDK transaction. In particular, the oracle

verifies that the structure is only updated within a PMDK

transaction and is properly added to the PMDK undo log.

We used this oracle to find 3 existing bugs; 2 in the PMDK

Atomic Hashmap and 1 in Redis-pmem.

4.3 PM-Aware Search Algorithm

AGAMOTTO uses symbolic execution to explore the state

space of the program. In order to analyze large persistent

memory applications, AGAMOTTO prioritizes exploring pro-

gram states that are most likely to modify persistent memory

using a PM-aware search algorithm. We now first explain the

static analysis that AGAMOTTO uses to compute exploration

priorities. We then explain the operation of AGAMOTTO’s

state space exploration and why AGAMOTTO’s approach is

more effective at finding persistency bugs than traditional

coverage-guided exploration heuristics.

4.3.1 Whole-Program Static Priority Computation

The goal of AGAMOTTO’s static analysis is to determine the

number of reachable PM-modifying instructions from each

instruction in the program. That way, AGAMOTTO can guide

symbolic execution towards program locations that are ex-

pected to access PM heavily, and uncover more bugs. This

technique can be effective as the number of overall instruc-

tions expected to modify PM is much smaller than the number

of instructions which modify volatile memory [59].

To achieve this, AGAMOTTO first identifies all PM-

modifying instructions in the program by leveraging a

sound, whole-program (i.e., interprocedural) pointer analy-

sis [4, 14, 31, 32]. The analysis maps each pointer in the pro-

gram to a set of memory locations; soundness guarantees

that any two pointers which may alias will have a non-empty

intersection of these sets of memory locations.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation    1053



1 char *pbuf = mmap(<PM file>);
2 ... // (# of PM-modifying insts)
3 do_read = ... // (2)
4 if (do_read) // (0)
5 a = pbuf[x] // (0)
6 foo() // (0)
7 else // (2)
8 a = ... // (2)
9 pbuf[x] = a // (2)

10 clwb(pbuf[x]) // (1)
11 // BUG: Missing sfence!
12 exit(0) // (0)

Listing 7: An example of AGAMOTTO’s static analysis. All

PM-modifying instructions are highlighted. Each instruction

is annotated with a comment which denotes the result of the

priority calculation.

AGAMOTTO then determines whether a given memory lo-

cation may have been allocated as persistent memory. To do

this, AGAMOTTO conservatively assumes that all mmap calls

which accept a non-negative or variable file descriptor may

return a pointer to persistent memory. While this approach

over-approximates the persistent memory allocated by the

program, as we show in §6, it accelerates persistency bug

finding compared to default exploration strategies. Note that

this conservative approach only affects the PM-aware search

strategy, it does not introduce false positives in AGAMOTTO’s

PM state tracking.

Then, AGAMOTTO classifies each instruction in the pro-

gram as a persistent memory-modifying instruction if the in-

struction is a global fence (e.g., SFENCE), or, a store (e.g., x86

MOV), flush (e.g., CLWB), or cache-line fence (e.g., CLFLUSH)

that may point to a persistent memory location.

AGAMOTTO only computes points-to information for point-

ers which may alias PM. For shared libraries, AGAMOTTO

first statically links the binary, then computes the alias infor-

mation. If the shared library is used to modify PM (i.e., has

some shared memory modification function which is used to

modify PM), then that part of the shared library code will be

analyzed.

Finally, AGAMOTTO uses a back-propagation algorithm to

calculate the number of reachable PM modifying instructions

for each program location. AGAMOTTO iterates through the

interprocedural control flow graph from the exit points in the

program (e.g., calls to exit or return from main) to the first

instruction in the program. For each instruction, AGAMOTTO

assigns the priority of the instruction to be the sum of the

weight of the current instruction (1 if the current instruction is

a PM-modifying instruction, 0 otherwise) and the maximum

number of reachable PM-modifying instructions from the

current instruction.

We show a small example of this priority computation in

Listing 7, where each instruction is annotated with the result

of the priority calculation. Each PM-modifying instruction

(pbuf[x]=a and clwb(pbuf[x])) adds 1 to the priority and

the priorities are backpropagated to the entry point (Line 3).

Figure 2: State space exploration with two strategies: (1)

KLEE-Default (based on code coverage), (2) AGAMOTTO’s

priority-driven exploration. This example corresponds with

the bug described in Listing 7.

4.3.2 State Exploration Strategy

AGAMOTTO relies on an existing symbolic execution engine

(KLEE [8]) to explore the possible states of the program.

Symbolic execution starts with an initial program state which

contains a current statement (similar to a program counter), a

symbolic memory (where memory values are unknown), and

symbolic inputs (e.g., an unknown integer value). As the

program statements are symbolically executed, the symbolic

execution engine simulates the effects of the program state-

ments on symbolic inputs and memory, and updates explored

program state accordingly. Moreover, the symbolic execution

engine forks the explored state into two every time a branch

that depends on symbolic values is encountered.

After executing a program statement in an explored state,

the symbolic execution engine selects a new state to advance

next. When selecting a state to explore, AGAMOTTO chooses

the state whose current statement has the highest statically-

computed aggregate priority (i.e., number of reachable PM

modifying statements from the current instruction).

Fig. 2 shows an example of state space exploration for the

the example code snippet in Listing 7, where Init represents

the initial state of the program and the buggy state where

the program omitted an sfence instruction is in the else

path. For brevity, foo is depicted as a single statement that is

explored at once.

The KLEE-Default strategy, which is a breadth-first explo-

ration strategy augmented by randomized, coverage-guided

prioritization, may explore states that are not useful to de-

tecting the bug. When applied to the code in Listing 7, the

KLEE-Default exploration strategy will explore the state in

the if branch for a single statement (a=pbuf[x]) and switch

to the state in the else branch for another statement (a=...).

This cycle will repeat once more in the if branch (foo())

and in the else branch (pbuf[x]=a, clwb(pbuf[x])); ex-

ploration will reach the bug in a total of 4 state transitions.

AGAMOTTO, on the other hand, directly explores the else

branch because its static analysis assigns the else branch

a high aggregate priority. Consequently, AGAMOTTO can
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discover the bug with a single state transition.

Although the number of explored states in our example

is small, in practice, the number of states in a program is

exponential in the number of branches that depend on sym-

bolic input. Consequently, AGAMOTTO’s exploration strategy

allows it to discover many more bugs compared to KLEE’s

default strategy, as we demonstrate in §6.

5 Implementation

AGAMOTTO comprises a persistent memory model (~400

LOC of C++), a static analysis component (~2600 LOC of

C++), and a state space exploration component (~100 LOC of

C++) built atop Klee [8]). AGAMOTTO also provides 2 custom

bug oracles for validating the use of the PMDK transaction

API (~180 LOC of C++ for both oracles and ~200 LOC of

C++ for shared custom oracle API functions).

Running real-world complex PM applications also required

expanding KLEE by ~4000 LOC of C++. These additional

changes were primarily to the environment model, which sym-

bolically simulates syscalls and operating system facilities,

such as a file system. AGAMOTTO targets the Intel x86 ISA

since it is the most broadly-used platform for PM program-

ming. Hence, AGAMOTTO adds support to KLEE for inter-

preting PM-specific x86 instructions (e.g., CLWB). Supporting

a different ISA or persistency model [34, 42, 63] simply re-

quires identifying the flush and fence operations in the ISA.

In addition, AGAMOTTO adds to KLEE support for common

inline assembly functions such as atomic instructions, as well

as porting an extensive environment model for multithreading

(i.e., POSIX threads) from Cloud9 [16], which was built on

an older version of KLEE. AGAMOTTO adds support for sym-

bolic files to model and track the state of mapped persistent

memory and anonymous symbolic mmap. Finally, AGAMOTTO

adds symbolic socket traffic to the environment model, which

allows an application to receive symbolic input over a socket.

Symbolic socket traffic allows AGAMOTTO to model client

applications that send commands to a server process.

Developing an automated bug finding tool for persistent

memory presents key challenges. To identify persistent mem-

ory allocations in a PM framework agnostic way without

relying on developer annotations, AGAMOTTO tracks alloca-

tions at the system level (e.g., calls to map a persistent mem-

ory file). This represents a significant divergence from KLEE,

which tracks allocations at the libc interface (e.g., malloc and

free), and introduces performance challenges. Applications

often allocate MBs or GBs of persistent memory, but KLEE

is optimized for tracking memory objects that are KBs in size;

treating each persistent memory mapping as a single memory

object leads to poor performance when KLEE solves con-

straints. Instead, AGAMOTTO carefully partitions persistent

memory into separate, yet logically adjacent, objects (empiri-

cally, we find 16KB chunks to balance the tradeoff between

solver time and management overhead). AGAMOTTO also

tracks the set of live persistent memory objects to reduce time

resolving symbolic addresses for global fence operations.

AGAMOTTO supports custom persistency bug checkers

with a simple yet powerful interface. Specifically, a developer

implements a method that takes as input the state being ex-

plored symbolically and asserts pre- and post- conditions on

the state of persistent memory based on an understanding of

how their application should behave. AGAMOTTO provides

a library of basic utilities (e.g., error reporting, calls to the

symbolic solver) that comprise ~200 LOC and allows bug ora-

cles to use type information provided by LLVM. AGAMOTTO

provides 2 custom oracles to detect application-specific per-

sistency bugs in PMDK and Redis (§4.2.2). We implement the

Redundant Undo Log Oracle in 96 LOC and less than a day

of developer effort. The Atomic Operation Oracle extends the

Redundant Undo Log Oracle—it comprises an additional 86

LOC on top of the inherited functionality and also took less

than a day to implement.

6 Evaluation

In this section, we evaluate the effectiveness and usefulness

of AGAMOTTO. We start by giving an overview of the new

bugs AGAMOTTO has found (84)3 and the insights we gather

from them (§6.1). We also discuss the positive responses

that we have received after reporting bugs to PM application

developers (§6.2). We then evaluate the performance of AG-

AMOTTO and how our novel search tactic compares to the

default symbolic execution search strategy in KLEE (§6.3).

Evaluation Targets. We evaluate AGAMOTTO by testing

representative state-of-the-art PM-application and libraries

consistent with the libraries and applications tested by prior

work [49, 50]. We evaluate AGAMOTTO on two PM libraries.

First, we test the PMDK [20] library from Intel, the most

active and well-maintained open-source PM project, which

has been maintained for over 6 years. Consistent with ex-

isting tools [50], we use example data structures provided

with PMDK (e.g., B-tree, RB-tree and hashmap implemen-

tations) and an application provided by Intel [22] as drivers

for our testing. In addition to PMDK, we test NVM-Direct, a

PM library from Oracle that is under active development. To

drive our testing of NVM-Direct, we use their example test

application they provide for demonstrating the API.

We additionally evaluate AGAMOTTO by testing three real-

world PM applications. We test Redis-pmem, a port of Re-

dis, a popular in-memory database and memory caching ser-

vice, to PMDK that is maintained by Intel. We likewise se-

lect memcached-pm, a port of memcached, a popular high-

performance memory caching server, to PMDK that is main-

3We provide a link to our evaluations results in the AGAMOTTO

GitHub repository: https://github.com/efeslab/agamotto/blob/

artifact-eval-osdi20/artifact/README.md
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System Source (GitHub) Version

PMDK pmem/pmdk v1.8

RECIPE utsaslab/RECIPE/tree/pmdk 53923cf

memcached-pm lenovo/memcached-pmem 8f121f6

NVM Direct oracle/nvm-direct 51f347c

Redis-pmem pmem/pmem-redis cc54b55

pmem/redis v3.2

Table 2: Software configuration; we tested two versions of

Redis-pmem

tained by Lenovo. Finally we test RECIPE’s P-CLHT index,

a state-of-the-art persistent index representing a research pro-

totype. Note, we only test the P-CLHT index from RECIPE

because the other four indices all use a volatile allocator which

prevents crash-consistency. Since KLEE symbolically emu-

lates system calls without running real kernel code, we are

unable to test PMFS [27], an evaluation target that has been

considered by prior work [50].

We test each application by providing a symbolic environ-

ment model (e.g., providing symbolic arguments and files

with symbolic contents) rather than instrumenting the source

code to create symbolic variables. We test RECIPE’s P-CLHT

index using their example application, which manipulates the

basic structure of the index through standard insertion, dele-

tion, and lookup operations. We use symbolic socket traffic

(See §5) to test the Redis-pmem and memcached-pm server

daemons using partially symbolic packets (i.e., packets with

some concrete values, like the Redis command string, with

symbolic values for the keys and values).

When testing applications that use PMDK (PMDK, Redis-

pmem, and RECIPE), we enable both universal bug oracles

and our two custom bug oracles designed for PMDK (see

§4.2.2). When testing NVM-Direct, we only use the universal

bug oracles.

When using AGAMOTTO to test an application, AG-

AMOTTO also tracks all persistent memory use from the li-

braries used by the application. In the case that AGAMOTTO

finds a bug in PMDK while testing an application which uses

PMDK (e.g., memcached-pm, Redis-pmem, or RECIPE), we

report the bug as a bug in PMDK.

Evaluation Setup. We ran our experiments across two

servers, one with a Intel(R) Xeon(R) Silver 4114 CPU @

2.20GHz and one with a Intel(R) Xeon(R) Gold 6230 CPU

@ 2.10GHz. Each individual experiment (a single run of AG-

AMOTTO) was limited to a max of 10 GB of DRAM and

1 hour of runtime. We show our software configuration in

Table 2. Note that none of our experiments use persistent

memory hardware since AGAMOTTO symbolically models

all interactions with persistent memory.

MC MP EP AS Total

System N K N K N K N K N K

memcached-pm 1 - 19 - 1 - - - 21 -

NVM-Direct 7 - 7 - 9 - - - 23 -

PMDK 1 1 14 - 6 - 1 3 22 4

RECIPE 1 - 7 - 6 - - - 14 -

Redis-pmem 3 - 1 - - - - 1 4 1

Total 13 1 48 - 22 - 1 4 84 5

Table 3: The Bugs found using AGAMOTTO. For each bug

class (MC: Missing flush/fence Correctness, MP: Missing

flush/fence Performance, EP: Extra flush/fence Performance,

and AS: Application-Specific), we report the number of new

bugs AGAMOTTO found, N, and the number of bugs detected

that were previously known, K.

6.1 Overview

We show a summary of our bug-finding results in Table 34.

Overall, AGAMOTTO found 84 new bugs across our 5 main

test targets: 62 missing flush/fence bugs (13 correctness bugs

and 48 performance bugs), 22 extra flush/fence performance

bugs and 1 new application-specific correctness bug. We also

detect all 5 persistency bugs found by prior work in user-space

applications and confirm that we find no false positives with

our universal or custom oracles. Here, we describe the bugs

that we find in greater detail.

Missing flush/fence bugs. Using our built-in unflushed bug

oracle, we found 62 new bugs; we manually identified that

13 are correctness bugs and 48 are performance bugs. Of the

13 correctness bugs, 10 are caused by missing flushes and 3

are caused by missing fences—all of the missing fence bugs

are found in Redis-pmem. AGAMOTTO found the missing

flush/fence bug in PMDK that was reported by PMTest. Of

the correctness bugs, AGAMOTTO finds 1 in memcached-pm,

1 in PMDK, 1 in RECIPE’s P-CLHT index, 7 in NVM-Direct,

and 3 in Redis-pmem. Of the performance bugs, AGAMOTTO

finds 19 in memcached-pm, 14 in PMDK, 7 in RECIPE’s

P-CLHT index, 7 in NVM-Direct, and 1 in Redis-pmem.

Extra flush/fence bugs. We found 22 new bugs using the

extra flush/fence bug oracle. Of these bugs, AGAMOTTO

found 9 in NVM-Direct, 6 in PMDK library functions and 6

in RECIPE’s P-CLHT index.

Application-specific bugs. AGAMOTTO identified 1 new

application-specific correctness bug in the PMDK atomic

hashmap example using the extra flush/fence universal bug or-

acle. Using the atomic operation oracle, AGAMOTTO found all

4We provide the full detailed table in an online table avail-

able here: https://github.com/efeslab/agamotto/tree/

artifact-eval-osdi20/artifact#resources.
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3 application-specific correctness bugs which were reported

by XFDetector5 Using the redundant undo log oracle, AG-

AMOTTO detected the application-specific performance bug

in the PMDK example B-tree structure that was discovered by

PMTest. AGAMOTTO is unable to find the application-specific

performance bug that PMTest found in PMFS because AG-

AMOTTO is unable to execute kernel code.

6.2 AGAMOTTO Reporting

We presented our initial results to Intel’s PMDK team, Ora-

cle’s NVM-Direct team, and to the authors of RECIPE and

received overall positive feedback. At the time of writing, we

have not yet heard back from Lenovo developers regarding

bugs in memcached-pm. PMDK developers confirmed our

findings about performance issues. Oracle’s developers con-

firmed they were aware of some of the issues we reported and

noted that “Resources for software development are always

in short supply, so the open source version of NVM_Direct

has suffered. I wish it was not so, but it is. Your email may

be the push that gets us to do something about it. Thank

you.” RECIPE’s authors confirmed and started patching all

the bugs we reported to them and asked us to open-source

AGAMOTTO for continued testing. Despite existing tools for

testing PM (one of which was even built for RECIPE [45]),

one of RECIPE’s authors stated that “These are some really

good finds, since it was difficult to debug our own code with-

out having a proper tool.”

We conclude that AGAMOTTO has been successful in find-

ing bugs that developers care about.

6.3 Performance Analysis

Benefit of AGAMOTTO’s State Exploration Strategy.

We evaluate AGAMOTTO’s state exploration strategy com-

pared to the default search strategy in KLEE. We compare

these two strategies for all of our 5 test targets: memcached-

pm (Fig. 3a), NVM-Direct (Fig. 3b), RECIPE’s P-CLHT in-

dex (Fig. 3d), on PMDK’s libpmemobj examples (Fig. 3c),

and on Redis-pmem (Fig. 3e). We run each exploration strat-

egy for one hour, since one hour is short enough to integrate

into a development cycle but long enough to cover a substan-

tial number of execution paths. In all cases, AGAMOTTO’s

search strategy finds all reported bugs in less than 40 minutes.

For Redis-pmem, the bugs we detect were exposed quickly,

allowing both strategies to find all 4 in under 3 minutes. For

all of our tests, AGAMOTTO is able to find at least one bug

in under 5 minutes, which suggests that AGAMOTTO might

even be usable during interactive debugging sessions.

We conclude that AGAMOTTO’s static-analysis guided

search strategy is more effective in finding bugs than the

default state exploration strategy in KLEE.

5XFDetector reports 4 new bugs, but one of these bugs is unrelated to

persistent memory but detectable with their fault injection framework.

System
Source Size

(KLOC)

Dependencies

(KLOC)

Static Analysis

Run time (min)

memcached-pm 18 36 2.20

NVM-Direct 1 14 0.02

PMDK 2 35 0.60

RECIPE 13 35 0.55

Redis-pmem 54 149 19.6

Table 4: The offline overhead of AGAMOTTO’s static analysis.

Thousand lines of code (KLOC) is provided for program

sources (the driver applications for NVM-Direct and PMDK)

and for shared libraries.

Static Analysis Run time. We show the run time of AG-

AMOTTO’s static analysis in Table 4. For most applications

we test, the overhead of static analysis is low (less than 4

minutes) relative to the length of time spent finding bugs.

Redis-pmem has a larger static analysis run time, particularly

due to the number of external libraries it links with—however,

the results of the static analysis can be cached across many

runs for external libraries.

6.4 Case Study: PM Performance Bugs

Prior works on PM argues for the importance of the perfor-

mance bugs that are identified by AGAMOTTO. For example,

Pelley et al. show that extra flush and fence operations are

detrimental to application performance [63], and a study of

memcached-pm found that storing volatile data in PM reduces

application performance by roughly 5% [26].

To further validate the importance of the performance bugs

identified by AGAMOTTO, we perform a performance case

study on the P-CLHT data structure from RECIPE. We man-

ually fix the performance bugs and then measure the perfor-

mance of the data structure on concurrent insert operations,

i.e., load operations (each thread inserts new keys into the

hash table). We chose insert operations, since they stress the

update path on which these bugs were found. We report the

performance in Fig. 4. The overall throughput increases dra-

matically, ranging between 24% to 47%. The main contributor

to this throughput increase is moving commonly used locks

from PM to DRAM.

7 Related Work

Persistent Memory Frameworks. Crash consistency

mechanisms for persistent memory have been considered

for years [6, 11, 15, 18, 64]. The difficulty of designing

crash-consistent programs for persistent memory has in-

spired many persistent memory specific crash-consistent

frameworks which ease the burden on PM application de-

velopers. These frameworks either provide a library inter-

face that can be used in standard programming languages

(PMDK [20], NV-Heaps [17], LSNVMM [35]), provide lan-
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A Artifact Appendix

A.1 Abstract

We provide the public repository for AGAMOTTO, which is

a fork of KLEE available on GitHub. AGAMOTTO’s artifact

includes instructions for building and running AGAMOTTO,

as well as a pre-installed VM and scripts used to reproduce

the core results from our paper.

A.2 Artifact check-list

• Public repository link: https://github.com/

efeslab/agamotto/tree/artifact-eval-osdi20/

artifact

• Data: Links to our bug study findings and to a

table describing new bugs found with AGAMOTTO:

https://github.com/efeslab/agamotto/tree/

artifact-eval-osdi20/artifact#resources

• Code licenses: AGAMOTTO inherits KLEE’s open

source license, which can be read in the repository here:

https://github.com/efeslab/agamotto/blob/

artifact-eval-osdi20/LICENSE.TXT.

A.3 Description

All information is available at our public GitHub repos-

itory. We have written a README specifically for

the Artifact Evaluation process, which can be found

here: https://github.com/efeslab/agamotto/tree/

artifact-eval-osdi20/artifact

A.3.1 How to access

We provide information on how to access our repository

and all relevant resources here: https://github.com/

efeslab/agamotto/tree/artifact-eval-osdi20/

artifact#agamotto-osdi-20-artifact

A.4 Installation

The instructions for compiling AGAMOTTO and installing

the prerequisites can be found here: https://github.

com/efeslab/agamotto/tree/artifact-eval-osdi20/

artifact#artifacts-functional-criteria

A.5 Evaluation and expected result

We provide instructions for reproducing the main

results from our paper along with the expected

results here: https://github.com/efeslab/

agamotto/tree/artifact-eval-osdi20/artifact#

results-reproduced.

A.6 Notes

We are endeavoring to maintain AGAMOTTO as an open-

source tool for debugging PM applications and hope to en-

courage its use for a wide variety of applications. Any issues

that are found with the available artifact or any needed clarifi-

cations can be submitted as GitHub issues on our repository

(https://github.com/efeslab/agamotto/issues).
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