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Abstract

Persistent Memory (PM) can be used by applications to
directly and quickly persist any data structure, without the
overhead of a file system. However, writing PM applications
that are simultaneously correct and efficient is challenging. As
a result, PM applications contain correctness and performance
bugs. Prior work on testing PM systems has low bug coverage
as it relies primarily on extensive test cases and developer
annotations.

In this paper we aim to build a system for more thoroughly
testing PM applications. We inform our design using a de-
tailed study of 63 bugs from popular PM projects. We identify
two application-independent patterns of PM misuse which
account for the majority of bugs in our study and can be de-
tected automatically. The remaining application-specific bugs
can be detected using compact custom oracles provided by
developers.

We then present AGAMOTTO, a generic and extensible
system for discovering misuse of persistent memory in PM
applications. Unlike existing tools that rely on extensive test
cases or annotations, AGAMOTTO symbolically executes PM
systems to discover bugs. AGAMOTTO introduces a new sym-
bolic memory model that is able to represent whether or not
PM state has been made persistent. AGAMOTTO uses a state
space exploration algorithm, which drives symbolic execution
towards program locations that are susceptible to persistency
bugs. AGAMOTTO has so far identified 84 new bugs in 5 dif-
ferent PM applications and frameworks while incurring no
false positives.

1 Introduction

Persistent Memory (PM) is a promising new technology that
offers an appealing performance-cost tradeoff for application
developers. PM technologies, such as Intel Optane DC [36],
can offer persistent memory accesses with latencies that are
only 2-3x higher than the latencies of DRAM [70]. More-
over, such PM technologies are cheaper than DRAM per GB
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of capacity [3]. As byte-addressable memory, PM can also be
accessed via processor load and store instructions. Applica-
tion developers have already started building systems that use
PM directly, without relying on heavyweight system calls to
ensure durability, including ports of popular systems such as
memcached [24] and Redis [21].

While using PM directly via persistent data structures can
offer performance, it is challenging to write PM-based appli-
cations that are simultaneously correct and efficient [12, 18,
33,52,54,60,71,76]. Persistent memory writes in the CPU
cache must be explicitly flushed to PM using specific instruc-
tions or APIs. In certain cases, PM flush operations need to
be ordered using memory fences to enforce crash consistency.
Incorrect usage of these mechanisms can result in persistency
bugs which break crash-consistency guarantees or degrade
application performance. Persistency bugs are challenging
to diagnose because their symptoms are easily masked. For
example, crash-consistency bugs may be masked because PM
writes are implicitly flushed when dirty (or updated) cache
lines are evicted from the CPU—furthermore, flushes which
are required for proper crash consistency under one execu-
tion path may be redundant and unnecessary under a different
program execution path, leading to performance degradations.

Several systems have been built to aid with testing PM
applications; however, these existing approaches are either
specific to a target application or require significant manual
developer effort. Intel designed Yat [44] and pmemcheck [65]
specifically to test the crash consistency and durability of
PMFS (Persistent Memory File System) [27] and PMDK
(Persistent Memory Development Kit) [20], respectively. To
find bugs, Yat exhaustively tests all possible update orderings,
and pmemcheck tracks annotated updates. Both of these tools
are specific to a single system (PMFS and PMDK, respec-
tively) and are hard to generalize. Other tools like Persistency
Inspector [62], PMTest [50], and XFDetector [49] are applica-
ble to general PM systems, but require developer annotations
and extensive test suites to thoroughly test PM applications.

In order to determine the extent to which persistency bug
finding can be automated (i.e., not require program annota-
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tions) to test general systems, we perform a study of 63 bugs in
PM applications and frameworks. We identify two application-
independent patterns of PM misuse (missing flush/fence and
extra flush/fence) which cover the majority (89%, or 56 out
of 63) of bugs in our study and can be detected automati-
cally. The remaining bugs are application-specific; for ex-
ample, many of the remaining bugs involve misusing trans-
actions when updating data-structures. Existing PM testing
approaches do not identify application-independent patterns
of misuse, and therefore require annotations to detect any PM
bug. In addition to classifying bugs based on their pattern
of PM misuse, we also classify bugs based on whether they
affect performance or correctness.

Based on the insights gained through our study, we present
AGAMOTTO, a framework for detecting bugs in PM appli-
cations that does not rely on extensive test cases. Instead,
AGAMOTTO uses symbolic execution [8] to thoroughly ex-
plore the state space of a program. In addition to expanding
path coverage, symbolic execution also allows AGAMOTTO
to detect persistency bugs in an application without access to
underlying physical PM resources. AGAMOTTO introduces a
memory model to track updates made to PM by the explored
program paths, and supports bug oracles which use the PM
state to identify bugs in the program. AGAMOTTO automati-
cally detects persistency bugs using two universal persistency
bug oracles based on the common patterns of PM misuse
identified by our study. The first is an unflushed/unfenced ora-
cle that identifies modifications to PM cache lines that are not
flushed or fenced (both a correctness and performance issue)
and the second an extra-flushed/fenced oracle that identifies
duplicate flushes of the same cache line or unnecessary fences
(a performance issue [18,52,60,71,76]).

To identify application-specific persistency bugs, AG-
AMOTTO allows developers to provide custom persistency bug
oracles. To demonstrate the versatility of custom oracles, we
implemented two such oracles in AGAMOTTO to detect bugs
related to misuse of the PMDK transactional API [20,49,50].

Analyzing large PM applications using traditional symbolic
execution [8] leads to scalability issues since the state space
of possible executions grows exponentially with the size of
the analyzed program. AGAMOTTO uses a novel search algo-
rithm that prunes the execution states it analyzes, allowing
AGAMOTTO to discover more bugs. Prior to symbolic exe-
cution, AGAMOTTO uses a whole-program static analysis to
determine instructions that modify PM (stores, flushes, etc.)
and assigns a unit priority to them. AGAMOTTO then assigns
an aggregate priority to each instruction by back-propagating
the unit priorities from each PM-modifying instruction—this
makes the aggregate priority a measure of the number of PM-
modifying instructions reachable from a particular instruction.
AGAMOTTO uses priorities to steer symbolic execution into
program states that frequently modify PM.

We used AGAMOTTO to find 84 new persistency bugs
in real-world systems including PMDK (a mature PM li-

brary) [20], memcached-pm [24], Redis-pmem [21], NVM-
Direct [7], and RECIPE [45]. In particular, we found 13 new
correctness and 70 new performance bugs using the universal
persistency bug oracles, and 1 new correctness bug using a
custom persistency bug oracle. We report all bugs to their
authors, and so far 40 of them have been confirmed and none
denied.

In this paper we make the following contributions:

e We perform a detailed study of persistency bugs in
PMDK as well as bugs found by prior work, and present
a new taxonomy of persistency bugs.

e We build AGAMOTTO', a persistency bug detection tool
that can test real-world PM programs using a novel state
exploration algorithm. AGAMOTTO automatically de-
tects bugs using two universal persistency bug oracles,
without relying on user annotations or an extensive test
suite. AGAMOTTO is extensible with custom bug oracles
that can detect application-specific bugs.

e We use AGAMOTTO to find 84 new bugs in 5 applica-
tions and persistent memory libraries, compared to the 6
persistency bugs found in persistent applications by the
state of the art (PMTest [50], which finds 3 bugs, and
XFDetector [49], which finds 3 bugs). AGAMOTTO does
not incur any false positives in our evaluation.

In the rest of this paper, we first provide background on
PM programming and describe the challenges of PM bug
finding (§2). We then present the results of our PM bug study
and provide common patterns of PM misuse that identify PM
bugs (§3). Then, we discuss the persistency bug detection
algorithms and search techniques underlying AGAMOTTO
(§4). Next, we describe the high-level design of AGAMOTTO
and evaluate the system with respect to both the number of
bugs found and the impact of these bugs (§6). Finally, we
describe related PM bug detection work (§7).

2 Background and Challenges
We now provide a background on persistent memory (PM)

programming and difficulties associated with writing correct
and efficient PM programs.

2.1 Persistent Memory Programming

int *x = pm_alloc(), *y = pm_alloc();
*x = 1;
clwb (x)
sfence()
*y = 1;
clwb (y)
sfence()

R Y I IR R

Listing 1: A PM programming example.

PM implementations support a programming interface that di-
verges from that of conventional storage devices. Rather than

IReleased at https://github.com/efeslab/agamotto
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using comparatively slow system calls to access persistent
memory, applications can accelerate PM accesses by directly
mapping pages of PM into their address space and performing
byte-addressable load/store operations. Like volatile memory
accesses, PM IO may be cached and buffered in volatile mem-
ory (i.e., the CPU cache) in order to increase performance.

The added performance comes at the cost of increased
complexity for the application developer. Volatile memory
can retain updates to PM for an indefinite period of time (e.g.,
until a cache line gets evicted). Ensuring that stores to PM are
durable requires two steps. First, a developer must issue a flush
for the cache-line that contains the updated data. Then, the
developer orders flushes using existing fence operations (e.g.,
SFENCE). Note that an unordered flush may not be written to
persistent memory before a crash, so fences are required for
durability. Consider Listing 1, which allocates two integers in
persistent memory and issues ordered writes to the integers.
In order to guarantee that the write to x (line 2) is ordered
before the write to y (line 5), a flush and fence must occur
between the updates (lines 3 and 4). To ensure that the write
to y (line 5) is durable, a flush and fence must occur after the
write (lines 6 and 7).

The x86 instruction set architecture (ISA) provides two
flush instructions: CLFLUSHOPT and CLWB. CLWB differs from
CLFLUSHOPT in that CLWB hints the CPU to keep the cache
line in the cache whereas CLFLUSHOPT does not. x86 pro-
vides two fence instructions: MFENCE, which orders all loads,
stores, and flushes; and SFENCE, which orders all stores and
all flushes. Additionally, x86 provides CLFLUSH, which acts
as both a flush and fence for a specific cache line (i.e., only
orders the flush that the CLFLUSH itself issues, other CLWB
and CLFLUSHOPT instructions must be ordered by a separate
fence). Finally, x86 allows non-temporal stores, which bypass
the cache and thus do not require a flush but do require a fence
for durability. Note that the classification of PM instructions
into flush and fence operations is not x86-specific. For exam-
ple, ARM provides flush (e.g., DC CVAP) and fence (e.g., DSB)
operations [5,67] with similar semantics to x86 flushes and
fences.

2.2 Challenges of Detecting PM Bugs

PM interfaces for durability and performance are easy to
misuse [49, 50] and the resulting persistency bugs can be
challenging to detect. Persistency bugs exhibit many char-
acteristics that make them difficult to detect. First, finding a
persistency bug requires identifying whether PM cache-lines
are dirty, but the x86 ISA does not provide a mechanism to
determine the state of a cache-line. Thus, detecting a persis-
tency bug requires modeling PM state and instrumenting the
program for tracking state updates, which is challenging to
accomplish using traditional debugging tools. Second, in the
case of correctness bugs, the root cause and symptoms of
a persistency bug are often loosely tied together: while the

. Missin; Extra
Project Flush/Felglce Flush/Fence Other | Total
PMDK 49 6 2 57
PMTest 1 1 1 3
XFDetector - - 3 3
Total \ 50 | 6] 7] 63

Table 1: The results of our bug survey.

symptoms of a correctness persistency bug is only revealed
after a crash, the PM misuse (i.e., the root cause) may be
hundreds of thousands of instructions before the crash even
occurred. Finally, persistency bugs are easily masked by other
system behavior. For example, flushes which are redundant
in one execution path of the program may be necessary under
a slightly different execution path, while correctness persis-
tency bugs may be masked by the CPU when evicting a dirty
cache-line from its cache.

Unfortunately, developers cannot solely rely on PM frame-
works (e.g., PMDK [20]) to prevent these bugs. As we show
in §3, many applications use PM libraries incorrectly and
even these established libraries themselves may misuse PM.

3 PM Bug Study and Classification

In this section, we present a study of persistency bugs. We
construct a corpus of 63 persistency bugs from a mature PM
library, PMDK [20], and persistency bugs from PM projects
(PMFS [27] and Redis-pmem [21]) that were found by state-
of-the-art PM bug detection tools (PMTest [50] and XFDe-
tector [49]). We chose PMDK, because it is a mature project
with a thorough issue tracker [23] representing a large collec-
tion of existing bugs. We use this corpus to identify common
patterns of PM bugs.

Table | shows a summary of our results’. Overall, we find
that two application-independent PM patterns explain the vast
majority (56/63 bugs) of the reported persistency bugs. We
find that PM bugs can result in either correctness problems,
which may lead to data corruption, or performance problems.
In particular, the missing flush/fence pattern, in which an up-
date to persistent memory is missing subsequent flush and/or
fence operations, accounts for 50/63 bugs and can lead to ei-
ther correctness or performance issues. The extra flush/fence
pattern, in which a cache-line is redundantly flushed or a fence
instruction is issued that is not needed for PM durability, ac-
counts for 6/63 bugs and leads to performance degradation.
The remaining 7 are caused by application-specific violations,
most of which involve a misuse of the PMDK transaction
API. Note, our study may be biased towards bugs that are de-
tectable by existing PM bug detection tools, because PMDK

2We provide a link to our bug study results in the AGAMOTTO
GitHub repository: https://github.com/efeslab/agamotto/blob/
artifact-eval-osdi20/artifact/README.md
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developers extensively use pmcheck [65] to detect bugs. In
the rest of this section, we present examples of these bugs
together with more detailed descriptions.

3.1 Missing Flush/Fence Pattern

1 //oid is a pointer to PM
2 if (if_free != 0)

3 *oid = NULL;

4 // BUG: missing flush and fence

Listing 2: A missing flush/fence correctness bug adapted from
PMDK Issue #1103, Pull Request (PR) #3907.

The most common bug pattern in the bugs in our study
is the missing flush/fence pattern, in part because PMDK
developers extensively use pmemcheck [65] which identifies
this pattern of PM misuse. In this bug pattern, an update to
PM is not made durable because it is missing a subsequent
flush and/or fence operation. An example of the pattern is
shown in Listing 2. Here, a pointer to persistent memory, oid,
is not flushed when if_free != 0. If the program crashed
and restarted, the pointer might point to its old value, which
could lead to rogue writes or malformed data reads. This bug
is fixed by adding proper flush and fence operations after the
modification.

In contrast, the missing flush/fence pattern is detectable
without any application-specific information. In our study,
instances of the missing flush/fence pattern are correctness
issues, where the program is unable to recover from a crash
similar to the one in Listing 2. In our evaluation (see §6), we
also found instances of the missing flush/fence pattern which
are performance bugs. In these instances, an application uses
persistent memory to store volatile data, which hinders per-
formance due to the higher latency of PM accesses relative to
DRAM accesses. Existing studies suggest that placing volatile
data in PM can decrease application performance by as much
as 5% [26]. There are PM data structures that intentionally
include this pattern [53] as a programming simplification.
However, in the applications included in our study and eval-
uation, all instances of the missing flush/fence pattern are
persistency bugs.

3.2 Extra Flush/Fence Pattern

The other common pattern of persistent memory misuse which
we identify in our study is the extra flush/fence pattern. In
this pattern, a cache-line is redundantly flushed, or a fence
instruction which is not needed for PM durability is executed.
An example of this is shown in Listing 3. In this example, an
array located in persistent memory is resized in-place using
the call to resize_array, new elements are initialized to O,
and new elements are flushed to persistent memory. How-
ever, when the size of the array is reduced (i.e., new_size

//array is an array of integers in PM
//with length = size

//resizes array in-place
resize_array(array, new_size);

® N v AW —

// if size >= new_size, no copying occurs
for (size t i = size; i < new_size; i++)

9 array[i] = O0;

10

1 // BUG: when new _size < size, underflow!

12 for (size t i = 0; i < new_size - size; ++i)
13 clwb (array[i + size])

14 sfence();

Listing 3: An extra flush/fence performance bug adapted from
PMDK issue #1117, PR #3860 .

< size), an underflow in line 12 causes unnecessary flushes
and leads to a performance degradation [18,60,71,76] (e.g.,
an additional flush and fence can add an average of 250ns
of latency [51, 73], where the base latency of uncached PM
accesses can be as low as 96ns [37]).

Similar to the missing flush/fence pattern, the extra
flush/fence pattern is detectable without any application-
specific information. The extra flush/fence pattern results in
performance degradation. As flush and fence instructions are
used in non-PM contexts (e.g., fences provide semantics for
memory consistency), there may be instances of this pattern
that are not persitency bugs. However, in the applications in
our study and evaluation, all instances of the extra flush/fence
pattern are persistency bugs.

3.3 Other Bugs

// store pool’s header

/* BUG: header made valid before
pool data made valid */

header = ...

clwb (header) ;

sfence();

pool = ...

clwb (pool) ;

sfence();

o R - NIV I ST R

Listing 4: An example correctness bug adapted from PMDK
Issue #14.

The remaining 7 bugs in the study are application-specific;
i.e., in these cases, data is correctly flushed to PM and there
are no redundant flush operations, but the application misuses
PM, leading to performance or correctness issues. For exam-
ple, Listing 4 depicts a bug adapted from the memory pool
allocator in PMDK which results in a correctness issue. In
order to recover from a crash, the values in header and pool
must be consistent; however a crash at Line 7 will result in an
updated value of header without an updated value of pool.
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3.4 Summary and Insights

We summarize several key results we obtained and the insights
we gathered from this bug study which inform AGAMOTTO’s
design decisions.

e The missing flush/fence and extra flush patterns are
prevalent (56/63 of the bugs we found) and application-
independent. Hence, an automated approach (i.e., requir-
ing little to no developer effort or source modification)
could and should be used to detect them across a variety
of platforms.

e In our study, all instances of the missing flush/fence and
extra flush/fence patterns are persistency bugs; we hy-
pothesize that this trend will hold for general PM appli-
cations. In §6, we find that all instances of these patterns
are persistency bugs across a variety of PM libraries and
applications.

e The remaining bugs, while less prevalent in our survey,
are still potential sources of inconsistency and/or per-
formance loss. An ideal tool should allow developers to
specify application-specific patterns without requiring
extensive test cases and significant developer annota-
tions.

4 Design

In this section, we describe the design of AGAMOTTO. AG-
AMOTTO aims to achieve four high-level design principles:
Automation. Bug-finding can take a substantial amount of de-
veloper effort [56,68]; AGAMOTTO aims to automate as much
as possible to reduce this burden. For example, AGAMOTTO is
non-intrusive (i.e., requires no source-code modifications) and
leverages basic test cases (e.g., existing unit tests or example
code) to explore execution paths in an application.
Generality. AGAMOTTO can test any PM application.
High Accuracy. AGAMOTTO aims to report no false positives
(i-e., reporting a bug where there is none) while also reducing
false negatives (i.e., failure to find a bug).
Extensibility. AGAMOTTO can be easily extended to find
application-specific bugs.

The major components of AGAMOTTO are shown in Fig. 1
(green-shaded boxes represent the key components unique to

AGAMOTTO). AGAMOTTO relies on an existing symbolic exe-
cution engine (KLEE [8] in our prototype) to explore the state
space of a PM program. During this exploration, AGAMOTTO
uses a custom PM model to express and track updates to per-
sistent memory regions (i.e., writes, flushes and fences). Since
AGAMOTTO tracks PM symbolically, it does not need access
to PM resources in order to detect persistency bugs in a PM
application. As AGAMOTTO explores the state space of the
program, it checks for PM bugs using universal bug oracles,
as well as any custom bug oracles that users may provide.
Universal oracles check for the missing flush/fence pattern
and the extra flush/fence patterns of PM misuse identified in
our study. Custom oracles can check for application-specific
bugs, which may be correctness bugs (e.g., ordering bugs)
and/or performance bugs (e.g., redundant transaction opera-
tions) akin to prior work [49, 50].

At the heart of AGAMOTTO lies its PM-aware state space
exploration algorithm, which is effective in steering symbolic
execution towards program locations that exercise PM. In
symbolic execution, inputs are symbolic (unconstrained) val-
ues in a program’s initial state. When the program reaches
a branch depending on symbolic input, the current state is
forked and the constraints on input are updated depending on
the branch condition. As states increase by forking, symbolic
execution needs to employ a state-space exploration strategy.
Existing state space exploration strategies, such as maximiz-
ing code coverage, are not optimized for finding PM bugs,
and thus waste resources exploring uninteresting paths.

Instead, before symbolically executing the program, AG-
AMOTTO uses a custom static analysis to determine instruc-
tions that can modify persistent memory. AGAMOTTO then
uses a back-propagation algorithm to assign a weight to each
instruction equal to the number of PM-modifying instructions
that are reachable from that instruction. AGAMOTTO priori-
tizes exploring the program state whose currently-executed
instruction has the highest such weight. We find that the num-
ber of PM-modifying paths is much smaller than the total
number of execution paths in practice, allowing AGAMOTTO
to thoroughly explore the set of executions that lead to persis-
tency bugs (see §6).

When AGAMOTTO’s oracles detect a bug during state space
exploration, AGAMOTTO relies on its underlying symbolic
execution engine to invoke a constraint solver and determine
the inputs that led to the bug, thereby creating a test case that
a developer can use for debugging.

In the rest of this section we provide details regarding the
key components of AGAMOTTO.

4.1 PM Model and PM State Tracking

AGAMOTTO facilitates persistency bug detection by tracking
the state of persistent memory objects in the program. For
each PM allocation, AGAMOTTO tracks constraints on the
persistency state of the allocated cache lines. The persistency
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state of a cache-line indicates whether the cache line is dirty
(i.e., modified), pending (i.e., updates to the cache-line are
flushed but not ordered) or clean (i.e., updates to the cache-
line are both flushed and ordered). As AGAMOTTO symboli-
cally executes, it updates constraints on the persistency state
of PM cache-lines to reflect the behavior of the program. AG-
AMOTTO uses these constraints to identify execution paths
which contain persistency bugs, (i.e., when redundant flushes
are issued, or updates are not properly ordered).

Identifying PM allocations In order to be application-
agnostic and automated, AGAMOTTO tracks persistent mem-
ory allocations from the system level, rather than track-
ing high-level calls to persistent memory allocators (e.g.,
pmem_alloc) [50]. Tracking PM allocations at a system level
trades off performance in favor of automation, since this
approach over-approximates PM allocations. AGAMOTTO
marks all opened files that match a user-specified persistent
memory device regular expression (e.g., pmem/*) as PM files
and treats memory-mappings of PM files as persistent mem-
ory objects.

Tracking Persistent Memory State. When AGAMOTTO
symbolically executes an instruction that operates on a PM
object, it generates constraints on the persistency state of the
cache-lines that comprise the memory objects. A store instruc-
tion (e.g., x86 MOV) adds a constraint that the destination of
the store is in the dirty state. Flush instructions (e.g., CLWB and
CLFLUSHOPT) generate a constraint that denotes that the desti-
nation is in the pending state. Non-temporal stores (e.g., x86
MOVNT are similar to regular stores, except their destination
is immediately put into the pending state (i.e., non-temporal
stores are treated as a store+flush), as non-temporal stores
bypass the CPU cache but are weakly ordered (like flush
instructions) and still require some form of memory fence.
Global fences (e.g., SFENCE, MFENCE) add constraints to in-
dicate that all PM cache lines are clean, whereas cache-line
fences (e.g., CLFLUSH) add a constraint denoting that their
destination is clean.

4.2 Persistency Bug Oracles

AGAMOTTO uses the persistent memory state in order to
support two types of persistency bug oracles. First, AG-
AMOTTO provides two built-in Universal Peristency Bug Or-
acles, which check for bugs based on the patterns we identify
in §3. Second, AGAMOTTO allows developers to specify cus-
tom, application-specific persistency bug oracles, which we
have used to provide two oracles for the PMDK Transaction
interface [20].

1 // Unflushed Bug Oracle

2 def check_unflushed(state):

3 for pm_obj in state:

4 forall cachelines in pm_obj:

5 if not cacheline.is_clean:

6 raise error (correctness)
;

8

// Extra flush/fence Bug Oracle
9 def check_extra_flush(state, cacheline):
10 if cacheline in state is clean:
1 raise error (performance)
12 def check_extra_fence (state):
13 if state has no pending updates:
14 raise error (performance)

16 // Call Oracles on instructions:
17 def executelInstruction(state, inst):

18 if (state.terminated or state.unmapped) :
19 check_unflushed (state)

20 if inst is flush:

21 check_extra_flush(state,

22 inst.cacheline)

23 // do flush

24 if inst is fence:

25 check_extra_fence (state)

26 state.commit_pending ()

Listing 5: Pseudo-code for Universal Persistency Bug Oracles
and how they are used as AGAMOTTO explores the state space.

4.2.1 Universal Persistency Bug Oracles

AGAMOTTO provides two universal persistency bug oracles,
one that detects an instance of the missing flush/fence bug
pattern (indicating a correctness or performance bug), and
one that detects an instance of the extraneous flush/fence bug
pattern (indicating a performance bug). We sketch the algo-
rithms in Listing 5. AGAMOTTO reports a missing flush/fence
bug for each cache-line in a persistent memory object that is
not clean (i.e., the constraints on the persistent state indicate
that the cache-line may be dirty or pending) at the time when
the persistent memory is no longer addressable (due to either
munmap or program exit). AGAMOTTO identifies an extrane-
ous flush/fence operation bug on any flush (e.g., CLFLUSH) to
a cache-line which must already be pending or clean based on
the constraints on the persistent state. AGAMOTTO also identi-
fies an extraneous flush/fence bug on any fence (e.g., SFENCE
or MFENCE) which has no pending flushes to mark clean. For
both of these oracles, AGAMOTTO reports program location
information (e.g., stack frame and source code location) for
the most recent update to each cache line which violates the
conditions checked by the oracle. In our evaluation (see §6),
we show that these oracles do not incur any false positives
across a variety of PM frameworks and applications.

4.2.2 Custom Bug Oracles

In addition to the generic bug oracles, AGAMOTTO facilitates
the use of custom bug oracles. Custom bug oracles are defined
separately from the application, which allows them to be
versatile tools for detecting application-specific bugs. For
example, a developer might use a custom oracle to validate the
correct usage of PM frameworks (e.g., identifying duplicate
log entries in the PMDK libpmemlog) or assert that certain
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1 class PmemObjTxAddChecker

2 : public CustomChecker ({

3 bool in_tx;

4 // [address, address+size)

5 typedef pair<ref<Expr>, ref<Expr>> TxRange;
6 list<TxRange> added_ranges;

7

8

void checkTxBegin (Function *f,
9 ExecutionState &state) {
10 if ('in_tx && f->getName() == "
pmemobj_tx_begin")
1 in_tx = true;
12 }
13
14 void checkTxAdd (Function *f,

15 ExecutionState &state) {
16 if (f->getName() !=

17 "pmemobj_tx add common") return;

18 // 1. Get the address from the stack.
19 ref<Expr> address = f.getArgument (0);
20 ref<Expr> size = f.getArgument (1)

21 // 2. Get end bound

2 auto r_end = address + size;

23 auto new_range = TxRange (address, r_end);
2 // 3. Check for overlaps.

25 // If overlap, there’s a bug!

26 if (overlaps(state, new_range))

27 reportError (state, RedundantTxAdd) ;
28 // 4. Add the new range.

29 added_ranges.push_back (new_range) ;

30 }

32 void checkTxEnd (Function =f,

3 ExecutionState &state) {
34 if (f->getName() == "pmemobj_tx end")
35 in_tx = false;

36 }

37

33 public:

39 PmemObjTxAddChecker(...) {...}
40 // This is the entry point

41 virtual void operator() (

42 ExecutionState &state) override {

43 checkTxBegin (getFunction (state), state);
44 checkTxAdd (getFunction(state), state);
45 checkTxEnd (getFunction(state), state);
46

47 if (!in_tx) added ranges.clear();

48 }
49 };

Listing 6: An psuedo-code example of a custom oracle,
designed to check for redundant PMDK transaction “adds”
(i.e., redundant log updates).

structures are operated on in the correct way (e.g., checking
that PM referenced as struct foo is only ever modified in
a PMDK transaction). Custom bug oracles define a function
that takes as input an explored program state (i.e., the current
state of symbolic memory and variables in the program) and
an instruction; after each instruction is executed within this
state, AGAMOTTO calls all configured custom bug oracles.
We provide two case studies on designing and implementing
custom oracles, which we use to find 4 application-specific
bugs that were reported by prior work and 1 new application-
specific bug. Both of the custom oracles which we present are
precise, i.e., they do not introduce false positives. We describe
them at a high-level below, then discuss their implementation
in §5.

Redundant Undo Log Oracle. This oracle checks to en-
sure that data does not get logged in PMDK’s undo log mech-
anism multiple times. We show a pseudo-code example of an
oracle in Listing 6. PMDK’s transactional API implements an
undo log which is used to back up data before it is modified—
if a transaction is interrupted by a program error or a crash,
the data can be recovered from the log. A misuse of this API,
however, can lead to redundant entries being created in the
undo log, which degrades performance. To track these errors,
this oracle keeps track of transaction boundaries (TX_BEGIN,
TX_END) and the memory ranges backed up in the undo log. If
overlapping memory ranges are added during a single transac-
tion, the oracle signals a performance bug. We use this oracle
to reproduce the application-specific performance bug found
by PMTest in PMDK'’s example B-tree data structure.

Atomic Operation Oracle. This oracle ensures that a
developer-specified structure is crash-recoverable through
correct use of a PMDK transaction. In particular, the oracle
verifies that the structure is only updated within a PMDK
transaction and is properly added to the PMDK undo log.
We used this oracle to find 3 existing bugs; 2 in the PMDK
Atomic Hashmap and 1 in Redis-pmem.

4.3 PM-Aware Search Algorithm

AGAMOTTO uses symbolic execution to explore the state
space of the program. In order to analyze large persistent
memory applications, AGAMOTTO prioritizes exploring pro-
gram states that are most likely to modify persistent memory
using a PM-aware search algorithm. We now first explain the
static analysis that AGAMOTTO uses to compute exploration
priorities. We then explain the operation of AGAMOTTO’S
state space exploration and why AGAMOTTO’s approach is
more effective at finding persistency bugs than traditional
coverage-guided exploration heuristics.

4.3.1 Whole-Program Static Priority Computation

The goal of AGAMOTTO’s static analysis is to determine the
number of reachable PM-modifying instructions from each
instruction in the program. That way, AGAMOTTO can guide
symbolic execution towards program locations that are ex-
pected to access PM heavily, and uncover more bugs. This
technique can be effective as the number of overall instruc-
tions expected to modify PM is much smaller than the number
of instructions which modify volatile memory [59].

To achieve this, AGAMOTTO first identifies all PM-
modifying instructions in the program by leveraging a
sound, whole-program (i.e., interprocedural) pointer analy-
sis [4,14,31,32]. The analysis maps each pointer in the pro-
gram to a set of memory locations; soundness guarantees
that any two pointers which may alias will have a non-empty
intersection of these sets of memory locations.
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1 char xpbuf = mmap (<PM file>);

2 ... // (# of PM-modifying insts)
3 do_read = ... // (2)
4 if (do_read) // (0)
5 a = pbuf[x] // (0)
6 foo () // (0)
7 else // (2)
8 a= ... // (2)
9 pbuf([x] = a // (2)
10 clwb (pbuf[x]) // (1)
11 // BUG: Missing sfence!

2 exit (0) // (0)

Listing 7: An example of AGAMOTTO’s static analysis. All
PM-modifying instructions are highlighted. Each instruction
is annotated with a comment which denotes the result of the
priority calculation.

AGAMOTTO then determines whether a given memory lo-
cation may have been allocated as persistent memory. To do
this, AGAMOTTO conservatively assumes that all mmap calls
which accept a non-negative or variable file descriptor may
return a pointer to persistent memory. While this approach
over-approximates the persistent memory allocated by the
program, as we show in §6, it accelerates persistency bug
finding compared to default exploration strategies. Note that
this conservative approach only affects the PM-aware search
strategy, it does not introduce false positives in AGAMOTTO’s
PM state tracking.

Then, AGAMOTTO classifies each instruction in the pro-
gram as a persistent memory-modifying instruction if the in-
struction is a global fence (e.g., SFENCE), or, a store (e.g., X86
MOV), flush (e.g., CLWB), or cache-line fence (e.g., CLFLUSH)
that may point to a persistent memory location.

AGAMOTTO only computes points-to information for point-
ers which may alias PM. For shared libraries, AGAMOTTO
first statically links the binary, then computes the alias infor-
mation. If the shared library is used to modify PM (i.e., has
some shared memory modification function which is used to
modify PM), then that part of the shared library code will be
analyzed.

Finally, AGAMOTTO uses a back-propagation algorithm to
calculate the number of reachable PM modifying instructions
for each program location. AGAMOTTO iterates through the
interprocedural control flow graph from the exit points in the
program (e.g., calls to exit or return from main) to the first
instruction in the program. For each instruction, AGAMOTTO
assigns the priority of the instruction to be the sum of the
weight of the current instruction (1 if the current instruction is
a PM-modifying instruction, 0 otherwise) and the maximum
number of reachable PM-modifying instructions from the
current instruction.

We show a small example of this priority computation in
Listing 7, where each instruction is annotated with the result
of the priority calculation. Each PM-modifying instruction
(pbuf [x]=a and clwb (pbuf [x])) adds 1 to the priority and
the priorities are backpropagated to the entry point (Line 3).

KLEE-Default
AGAMOTTO

Figure 2: State space exploration with two strategies: (1)
KLEE-Default (based on code coverage), (2) AGAMOTTO’S
priority-driven exploration. This example corresponds with
the bug described in Listing 7.

4.3.2 State Exploration Strategy

AGAMOTTO relies on an existing symbolic execution engine
(KLEE [8]) to explore the possible states of the program.
Symbolic execution starts with an initial program state which
contains a current statement (similar to a program counter), a
symbolic memory (where memory values are unknown), and
symbolic inputs (e.g., an unknown integer value). As the
program statements are symbolically executed, the symbolic
execution engine simulates the effects of the program state-
ments on symbolic inputs and memory, and updates explored
program state accordingly. Moreover, the symbolic execution
engine forks the explored state into two every time a branch
that depends on symbolic values is encountered.

After executing a program statement in an explored state,
the symbolic execution engine selects a new state to advance
next. When selecting a state to explore, AGAMOTTO chooses
the state whose current statement has the highest statically-
computed aggregate priority (i.e., number of reachable PM
modifying statements from the current instruction).

Fig. 2 shows an example of state space exploration for the
the example code snippet in Listing 7, where Init represents
the initial state of the program and the buggy state where
the program omitted an sfence instruction is in the else
path. For brevity, foo is depicted as a single statement that is
explored at once.

The KLEE-Default strategy, which is a breadth-first explo-
ration strategy augmented by randomized, coverage-guided
prioritization, may explore states that are not useful to de-
tecting the bug. When applied to the code in Listing 7, the
KLEE-Default exploration strategy will explore the state in
the if branch for a single statement (a=pbuf [x]) and switch
to the state in the else branch for another statement (a=. . .).
This cycle will repeat once more in the if branch (foo())
and in the else branch (pbuf [x]=a, clwb (pbuf[x])); ex-
ploration will reach the bug in a total of 4 state transitions.

AGAMOTTO, on the other hand, directly explores the else
branch because its static analysis assigns the else branch
a high aggregate priority. Consequently, AGAMOTTO can
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discover the bug with a single state transition.

Although the number of explored states in our example
is small, in practice, the number of states in a program is
exponential in the number of branches that depend on sym-
bolic input. Consequently, AGAMOTTO’s exploration strategy
allows it to discover many more bugs compared to KLEE’s
default strategy, as we demonstrate in §6.

5 Implementation

AGAMOTTO comprises a persistent memory model (~400
LOC of C++), a static analysis component (~2600 LOC of
C++), and a state space exploration component (~100 LOC of
C++) built atop Klee [8]). AGAMOTTO also provides 2 custom
bug oracles for validating the use of the PMDK transaction
API (~180 LOC of C++ for both oracles and ~200 LOC of
C++ for shared custom oracle API functions).

Running real-world complex PM applications also required
expanding KLEE by ~4000 LOC of C++. These additional
changes were primarily to the environment model, which sym-
bolically simulates syscalls and operating system facilities,
such as a file system. AGAMOTTO targets the Intel x86 ISA
since it is the most broadly-used platform for PM program-
ming. Hence, AGAMOTTO adds support to KLEE for inter-
preting PM-specific x86 instructions (e.g., CLWB). Supporting
a different ISA or persistency model [34,42, 63] simply re-
quires identifying the flush and fence operations in the ISA.
In addition, AGAMOTTO adds to KLEE support for common
inline assembly functions such as atomic instructions, as well
as porting an extensive environment model for multithreading
(i.e., POSIX threads) from Cloud9 [16], which was built on
an older version of KLEE. AGAMOTTO adds support for sym-
bolic files to model and track the state of mapped persistent
memory and anonymous symbolic mmap. Finally, AGAMOTTO
adds symbolic socket traffic to the environment model, which
allows an application to receive symbolic input over a socket.
Symbolic socket traffic allows AGAMOTTO to model client
applications that send commands to a server process.

Developing an automated bug finding tool for persistent
memory presents key challenges. To identify persistent mem-
ory allocations in a PM framework agnostic way without
relying on developer annotations, AGAMOTTO tracks alloca-
tions at the system level (e.g., calls to map a persistent mem-
ory file). This represents a significant divergence from KLEE,
which tracks allocations at the libc interface (e.g., malloc and
free), and introduces performance challenges. Applications
often allocate MBs or GBs of persistent memory, but KLEE
is optimized for tracking memory objects that are KBs in size;
treating each persistent memory mapping as a single memory
object leads to poor performance when KLEE solves con-
straints. Instead, AGAMOTTO carefully partitions persistent
memory into separate, yet logically adjacent, objects (empiri-
cally, we find 16KB chunks to balance the tradeoff between
solver time and management overhead). AGAMOTTO also

tracks the set of live persistent memory objects to reduce time
resolving symbolic addresses for global fence operations.

AGAMOTTO supports custom persistency bug checkers
with a simple yet powerful interface. Specifically, a developer
implements a method that takes as input the state being ex-
plored symbolically and asserts pre- and post- conditions on
the state of persistent memory based on an understanding of
how their application should behave. AGAMOTTO provides
a library of basic utilities (e.g., error reporting, calls to the
symbolic solver) that comprise ~200 LOC and allows bug ora-
cles to use type information provided by LLVM. AGAMOTTO
provides 2 custom oracles to detect application-specific per-
sistency bugs in PMDK and Redis (§4.2.2). We implement the
Redundant Undo Log Oracle in 96 LOC and less than a day
of developer effort. The Atomic Operation Oracle extends the
Redundant Undo Log Oracle—it comprises an additional 86
LOC on top of the inherited functionality and also took less
than a day to implement.

6 Evaluation

In this section, we evaluate the effectiveness and usefulness
of AGAMOTTO. We start by giving an overview of the new
bugs AGAMOTTO has found (84)” and the insights we gather
from them (§6.1). We also discuss the positive responses
that we have received after reporting bugs to PM application
developers (§6.2). We then evaluate the performance of AG-
AMOTTO and how our novel search tactic compares to the
default symbolic execution search strategy in KLEE (§6.3).

Evaluation Targets. We evaluate AGAMOTTO by testing
representative state-of-the-art PM-application and libraries
consistent with the libraries and applications tested by prior
work [49,50]. We evaluate AGAMOTTO on two PM libraries.
First, we test the PMDK [20] library from Intel, the most
active and well-maintained open-source PM project, which
has been maintained for over 6 years. Consistent with ex-
isting tools [50], we use example data structures provided
with PMDK (e.g., B-tree, RB-tree and hashmap implemen-
tations) and an application provided by Intel [22] as drivers
for our testing. In addition to PMDK, we test NVM-Direct, a
PM library from Oracle that is under active development. To
drive our testing of NVM-Direct, we use their example test
application they provide for demonstrating the APL

We additionally evaluate AGAMOTTO by testing three real-
world PM applications. We test Redis-pmem, a port of Re-
dis, a popular in-memory database and memory caching ser-
vice, to PMDK that is maintained by Intel. We likewise se-
lect memcached-pm, a port of memcached, a popular high-
performance memory caching server, to PMDK that is main-

3We provide a link to our evaluations results in the AGAMOTTO
GitHub repository: https://github.com/efeslab/agamotto/blob/
artifact-eval-osdi20/artifact/README.md
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System Source (GitHub) Version
PMDK pmem/pmdk v1.8
RECIPE utsaslab/RECIPE/tree/pmdk | 53923cf
memcached-pm | lenovo/memcached-pmem | 8f121f6
NVM Direct oracle/nvm-direct 51f347¢
Redis-pmem pmem/pmem-redis cc54b55
pmem/redis v3.2

Table 2: Software configuration; we tested two versions of
Redis-pmem

tained by Lenovo. Finally we test RECIPE’s P-CLHT index,
a state-of-the-art persistent index representing a research pro-
totype. Note, we only test the P-CLHT index from RECIPE
because the other four indices all use a volatile allocator which
prevents crash-consistency. Since KLEE symbolically emu-
lates system calls without running real kernel code, we are
unable to test PMFS [27], an evaluation target that has been
considered by prior work [50].

We test each application by providing a symbolic environ-
ment model (e.g., providing symbolic arguments and files
with symbolic contents) rather than instrumenting the source
code to create symbolic variables. We test RECIPE’s P-CLHT
index using their example application, which manipulates the
basic structure of the index through standard insertion, dele-
tion, and lookup operations. We use symbolic socket traffic
(See §5) to test the Redis-pmem and memcached-pm server
daemons using partially symbolic packets (i.e., packets with
some concrete values, like the Redis command string, with
symbolic values for the keys and values).

When testing applications that use PMDK (PMDK, Redis-
pmem, and RECIPE), we enable both universal bug oracles
and our two custom bug oracles designed for PMDK (see
§4.2.2). When testing NVM-Direct, we only use the universal
bug oracles.

When using AGAMOTTO to test an application, AG-
AMOTTO also tracks all persistent memory use from the li-
braries used by the application. In the case that AGAMOTTO
finds a bug in PMDK while testing an application which uses
PMDK (e.g., memcached-pm, Redis-pmem, or RECIPE), we
report the bug as a bug in PMDK.

Evaluation Setup. We ran our experiments across two
servers, one with a Intel(R) Xeon(R) Silver 4114 CPU @
2.20GHz and one with a Intel(R) Xeon(R) Gold 6230 CPU
@ 2.10GHz. Each individual experiment (a single run of AG-
AMOTTO) was limited to a max of 10 GB of DRAM and
1 hour of runtime. We show our software configuration in
Table 2. Note that none of our experiments use persistent
memory hardware since AGAMOTTO symbolically models
all interactions with persistent memory.

MC | MP EP AS || Total
System N|K|N|K|N|K|IN|K|N|K
memcached-pm |1 |- [19]- |1 |- |- |- ||[21] -
NVM-Direct T 1-171-19 |- |-1]- 23] -
PMDK 1 |1 |14]-1]6 |- |13 (224
RECIPE 1 |- |7 |-|6 |- |-]-]14] -
Redis-pmem 3|1 |- 1]- |-|-]1] 4|1
Total 131 (48 |- [22|- |1 (4|84 5

Table 3: The Bugs found using AGAMOTTO. For each bug
class (MC: Missing flush/fence Correctness, MP: Missing
flush/fence Performance, EP: Extra flush/fence Performance,
and AS: Application-Specific), we report the number of new
bugs AGAMOTTO found, N, and the number of bugs detected
that were previously known, K.

6.1 Overview

We show a summary of our bug-finding results in Table 3*.
Overall, AGAMOTTO found 84 new bugs across our 5 main
test targets: 62 missing flush/fence bugs (13 correctness bugs
and 48 performance bugs), 22 extra flush/fence performance
bugs and 1 new application-specific correctness bug. We also
detect all 5 persistency bugs found by prior work in user-space
applications and confirm that we find no false positives with
our universal or custom oracles. Here, we describe the bugs
that we find in greater detail.

Missing flush/fence bugs. Using our built-in unflushed bug
oracle, we found 62 new bugs; we manually identified that
13 are correctness bugs and 48 are performance bugs. Of the
13 correctness bugs, 10 are caused by missing flushes and 3
are caused by missing fences—all of the missing fence bugs
are found in Redis-pmem. AGAMOTTO found the missing
flush/fence bug in PMDK that was reported by PMTest. Of
the correctness bugs, AGAMOTTO finds 1 in memcached-pm,
1 in PMDK, 1 in RECIPE’s P-CLHT index, 7 in NVM-Direct,
and 3 in Redis-pmem. Of the performance bugs, AGAMOTTO
finds 19 in memcached-pm, 14 in PMDK, 7 in RECIPE’s
P-CLHT index, 7 in NVM-Direct, and 1 in Redis-pmem.

Extra flush/fence bugs. We found 22 new bugs using the
extra flush/fence bug oracle. Of these bugs, AGAMOTTO
found 9 in NVM-Direct, 6 in PMDK library functions and 6
in RECIPE’s P-CLHT index.

Application-specific bugs. AGAMOTTO identified 1 new
application-specific correctness bug in the PMDK atomic
hashmap example using the extra flush/fence universal bug or-
acle. Using the atomic operation oracle, AGAMOTTO found all

4We provide the full detailed table in an online table avail-
able here: https://github.com/efeslab/agamotto/tree/
artifact-eval-osdi20/artifact#resources.
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3 application-specific correctness bugs which were reported
by XFDetector’ Using the redundant undo log oracle, AG-
AMOTTO detected the application-specific performance bug
in the PMDK example B-tree structure that was discovered by
PMTest. AGAMOTTO is unable to find the application-specific
performance bug that PMTest found in PMFS because AG-
AMOTTO is unable to execute kernel code.

6.2 AGAMOTTO Reporting

We presented our initial results to Intel’s PMDK team, Ora-
cle’s NVM-Direct team, and to the authors of RECIPE and
received overall positive feedback. At the time of writing, we
have not yet heard back from Lenovo developers regarding
bugs in memcached-pm. PMDK developers confirmed our
findings about performance issues. Oracle’s developers con-
firmed they were aware of some of the issues we reported and
noted that “Resources for software development are always
in short supply, so the open source version of NVM_Direct
has suffered. I wish it was not so, but it is. Your email may
be the push that gets us to do something about it. Thank
you.” RECIPE’s authors confirmed and started patching all
the bugs we reported to them and asked us to open-source
AGAMOTTO for continued testing. Despite existing tools for
testing PM (one of which was even built for RECIPE [45]),
one of RECIPE’s authors stated that “These are some really
good finds, since it was difficult to debug our own code with-
out having a proper tool.”

We conclude that AGAMOTTO has been successful in find-
ing bugs that developers care about.

6.3 Performance Analysis

Benefit of AGAMOTTO’s State Exploration Strategy.
We evaluate AGAMOTTO’s state exploration strategy com-
pared to the default search strategy in KLEE. We compare
these two strategies for all of our 5 test targets: memcached-
pm (Fig. 3a), NVM-Direct (Fig. 3b), RECIPE’s P-CLHT in-
dex (Fig. 3d), on PMDK’s libpmemobj examples (Fig. 3c),
and on Redis-pmem (Fig. 3e). We run each exploration strat-
egy for one hour, since one hour is short enough to integrate
into a development cycle but long enough to cover a substan-
tial number of execution paths. In all cases, AGAMOTTO’s
search strategy finds all reported bugs in less than 40 minutes.
For Redis-pmem, the bugs we detect were exposed quickly,
allowing both strategies to find all 4 in under 3 minutes. For
all of our tests, AGAMOTTO is able to find at least one bug
in under 5 minutes, which suggests that AGAMOTTO might
even be usable during interactive debugging sessions.

We conclude that AGAMOTTO’s static-analysis guided
search strategy is more effective in finding bugs than the
default state exploration strategy in KLEE.

SXFDetector reports 4 new bugs, but one of these bugs is unrelated to
persistent memory but detectable with their fault injection framework.

System Source Size | Dependencies | Static Analysis
(KLOC) (KLOC) Run time (min)

memcached-pm 18 36 2.20
NVM-Direct 1 14 0.02
PMDK 2 35 0.60
RECIPE 13 35 0.55
Redis-pmem 54 149 19.6

Table 4: The offline overhead of AGAMOTTO’s static analysis.
Thousand lines of code (KLOC) is provided for program
sources (the driver applications for NVM-Direct and PMDK)
and for shared libraries.

Static Analysis Run time. We show the run time of AG-
AMOTTO’s static analysis in Table 4. For most applications
we test, the overhead of static analysis is low (less than 4
minutes) relative to the length of time spent finding bugs.
Redis-pmem has a larger static analysis run time, particularly
due to the number of external libraries it links with—however,
the results of the static analysis can be cached across many
runs for external libraries.

6.4 Case Study: PM Performance Bugs

Prior works on PM argues for the importance of the perfor-
mance bugs that are identified by AGAMOTTO. For example,
Pelley et al. show that extra flush and fence operations are
detrimental to application performance [63], and a study of
memcached-pm found that storing volatile data in PM reduces
application performance by roughly 5% [26].

To further validate the importance of the performance bugs
identified by AGAMOTTO, we perform a performance case
study on the P-CLHT data structure from RECIPE. We man-
ually fix the performance bugs and then measure the perfor-
mance of the data structure on concurrent insert operations,
i.e., load operations (each thread inserts new keys into the
hash table). We chose insert operations, since they stress the
update path on which these bugs were found. We report the
performance in Fig. 4. The overall throughput increases dra-
matically, ranging between 24% to 47%. The main contributor
to this throughput increase is moving commonly used locks
from PM to DRAM.

7 Related Work

Persistent Memory Frameworks. Crash consistency
mechanisms for persistent memory have been considered
for years [6, 11, 15, 18, 64]. The difficulty of designing
crash-consistent programs for persistent memory has in-
spired many persistent memory specific crash-consistent
frameworks which ease the burden on PM application de-
velopers. These frameworks either provide a library inter-
face that can be used in standard programming languages
(PMDK [20], NV-Heaps [17], LSNVMM [35]), provide lan-
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Figure 3: Comparison of the KLEE default search strategy to AGAMOTTO.

guage extensions to augment C/C++ with persistent data types
(e.g., Mnemosyne [73], NVL-C [25]), or both (e.g., NVM-
Direct [7]). Some systems also use transactional hardware
mechanisms to provide more efficient updates to persistent
memory (NV-HTM [10], Crafty [30]). However, while these
mechanisms may make programming easier, they may still
contain persistency bugs. Furthermore, this plethora of PM
libraries and extensions motivate the need for generalizable,
automated debugging tools.

PM-optimized file systems offer some degree of crash con-
sistency as well [19,27,43,72,74,75], as many PM-optimized
file systems offer full-data consistency, rather than just main-
taining metadata consistency [9]. However, these mechanisms
require the application to use the POSIX interface, as data
journaling cannot be efficiently performed for direct-access
files. Additionally, applications can suffer from significant
performance degredations by acccessing PM through the file
system rather than through direct memory mappings [37].

Tools for Detecting Persistency Bugs. The state-of-the-
art tools for detecting persistency bugs are PMTest [50] and
XFDetector [49]. PMTest is a tracing system which trans-
forms updates to persistent memory into a trace of opera-
tions, which is asynchronously validated against programmer-
defined rules for persistent memory updates. PMTest is flexi-
ble and fast, but requires developer effort to generate persis-
tent memory rules and incurs a high rate of false negatives,
as it must be driven by concrete test cases. The authors of
PMTest [50] manually instrument applications to find two sim-
ilar patterns to AGAMOTTO application-independent patterns:
the extra flush/fence bug pattern and a delayed flush/fence
pattern, in which a delay in the durability of an PM update pre-
vents crash consistency. Delayed flush/fences are inherently
application-specific (and thus require developer effort), and
there were no delayed flush/fence bugs in our study. XFDe-
tector is a fault injection framework designed to detect cross-
failure bugs, which manifest when recovery code accesses
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Agamotto PMTest XFDetector  pmemcheck Persistency Inspector
Core Symbolic _ o Binar Binar
Mechanism E)}clecution Trace Validation | Fault Injection Instmmeni]ation Instmmeni]ation
Accuracy High Low Medium Low Low
Automation | High Low Medium Low Low
Generality | Medium | High Medium Very Low Low
Extensibility | High High Low Low Low

Table 5: A qualitative comparison between AGAMOTTO and related work, as measured by our design goals (§4).

Throughput (kops/sec)

I Original
1000
[ Patched
500 ﬂ
0
2 3 4

1
Number of threads

Figure 4: The write throughput (in kilo-operations per second)
of the P-CLHT data structure before and after patching per-
formance bugs. “Original” denotes the unmodified P-CLHT
structure and “Patched” denotes P-CLHT after we patch the
performance bugs.

data which was not guaranteed to be safely persisted before
a failure. While XFDetector is effective at detecting seman-
tic bugs with low developer effort, XFDetector still relies on
developer-provided concrete test cases. RECIPE [45] uses a
PIN-based tool for testing their converted PM indices, which
also incurs a high false positive rate due to requiring extensive
test cases. pmemcheck [65] and Persistence Inspector [62],
which are binary instrumentation tools built by Intel, require
a large amount of developer effort to use as they are heav-
ily annotation based. We summarize the high-level feature
differences between AGAMOTTO and other persistency bug
detection frameworks in Table 5.

Tools for Testing Crash Consistency. Crash consistency
testing has been the study of many works on both legacy file
systems and PM-optimized file systems [13,28,29,41,44,55,
58]. Many of these tools either test for semantic bugs specific
to file systems or are only targeted for block-based storage
devices. Yat [44] specifically targets crash consistency testing
for Intel’s persistent memory file system (PMFS [27]). How-
ever, Yat tests crash consistency by computing all possible
instruction orderings to find crash consistency bugs—a task
which can take over 5 years to fully test [44].

Bug Taxonomies. Many papers taxonomize software bugs
in other contexts. In the storage context, JUXTA [57]
draws a distinction between shallow (roughly equivalent to
application-independent) and semantic (application-specific)

bugs while CrashMonkey [55] studies the effects and num-
ber of operations required to induce crash consistency bugs
in file systems. More generally, Li et al. [47] and Liu et
al. [48] classify software bugs into universal bug classes (e.g.,
memory-related, concurrency and incorrect failure handling)
and semantic (application-specific) bugs. The key distinction
between our study and these prior studies is our focus on
persistent memory systems.

The Thread Between Concurrency and Consistency.
Several works have identified a similarity in data races [1, 39,
61] in concurrent programs and semantic crash consistency
bugs [45,49]. Traditional data races result in inconsistent data
being read across threads of execution, which many systems
have been designed to detect and fix [2,38,40,46,66,69]. Prin-
ciples from data race detection have been adapted to build
PM crash consistency mechanisms (i.e., in RECIPE [45]) and
PM semantic crash consistency detection tools (i.e., XFDe-
tector [49]). When applied to AGAMOTTO, these principles
inform the design of custom bug oracles.

8 Conclusion

Persistent Memory (PM) can be used by applications to di-
rectly and quickly persist data without the overhead of a file
system. However, writing PM applications that are simulta-
neously efficient and correct is challenging. In this paper,
we presented a system for more thoroughly testing PM ap-
plications. We informed our design using a detailed study
of 63 bugs from popular PM projects. We then identify two
application-independent (i.e., universal) patterns of PM mis-
use which are widespread in PM applications and can be
detected automatically.

We then presented AGAMOTTO, a generic and extensible
system that leverages symbolic execution for discovering mis-
use of persistent memory in PM applications. We introduced a
new symbolic memory model that is able to represent whether
or not PM state has been made persistent, as well as a state
space exploration algorithm which can drive AGAMOTTO
towards program locations that are susceptible to persistency
bugs. We used AGAMOTTO to identify 84 new bugs in 5 dif-
ferent applications and frameworks, all without incurring any
false positives and not requiring any source code modifica-
tions or extensive test suites.
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A Artifact Appendix

A.1 Abstract

We provide the public repository for AGAMOTTO, which is
a fork of KLEE available on GitHub. AGAMOTTO’s artifact
includes instructions for building and running AGAMOTTO,
as well as a pre-installed VM and scripts used to reproduce
the core results from our paper.

A.2 Artifact check-list

e Public repository link: https://github.com/
efeslab/agamotto/tree/artifact-eval-0sdi20/
artifact

e Data: Links to our bug study findings and to a
table describing new bugs found with AGAMOTTO:
https://github.com/efeslab/agamotto/tree/
artifact-eval-osdi20/artifact#resources

e Code licenses: AGAMOTTO inherits KLEE’S open
source license, which can be read in the repository here:
https://github.com/efeslab/agamotto/blob/
artifact-eval-o0sdi20/LICENSE. TXT.

A.3 Description

All information is available at our public GitHub repos-
itory. We have written a README specifically for
the Artifact Evaluation process, which can be found
here: https://github.com/efeslab/agamotto/tree/
artifact-eval-osdi20/artifact

A.3.1 How to access

We provide information on how to access our repository
and all relevant resources here: https://github.com/
efeslab/agamotto/tree/artifact-eval-0sdi20/
artifact#agamotto-osdi-20-artifact

A.4 Installation

The instructions for compiling AGAMOTTO and installing
the prerequisites can be found here: https://github.
com/efeslab/agamotto/tree/artifact-eval-o0sdi20/
artifact#artifacts-functional-criteria

A.5 Evaluation and expected result

We provide instructions for reproducing the main
results from our paper along with the expected
results here: https://github.com/efeslab/
agamotto/tree/artifact-eval-osdi20/artifact#
results-reproduced.

A.6 Notes

We are endeavoring to maintain AGAMOTTO as an open-
source tool for debugging PM applications and hope to en-
courage its use for a wide variety of applications. Any issues
that are found with the available artifact or any needed clarifi-
cations can be submitted as GitHub issues on our repository
(https://github.com/efeslab/agamotto/issues).
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