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Abstract

Two of the Coronavirus Disease 2019 (COVID-19) vaccines currently approved in the United

States require 2 doses, administered 3 to 4 weeks apart. Constraints in vaccine supply and

distribution capacity, together with a deadly wave of COVID-19 from November 2020 to Janu-

ary 2021 and the emergence of highly contagious Severe Acute Respiratory Syndrome Coro-

navirus 2 (SARS-CoV-2) variants, sparked a policy debate on whether to vaccinate more

individuals with the first dose of available vaccines and delay the second dose or to continue

with the recommended 2-dose series as tested in clinical trials. We developed an agent-

based model of COVID-19 transmission to compare the impact of these 2 vaccination strate-

gies, while varying the temporal waning of vaccine efficacy following the first dose and the

level of preexisting immunity in the population. Our results show that for Moderna vaccines,

a delay of at least 9 weeks could maximize vaccination program effectiveness and avert at

least an additional 17.3 (95% credible interval [CrI]: 7.8–29.7) infections, 0.69 (95% CrI: 0.52–

0.97) hospitalizations, and 0.34 (95% CrI: 0.25–0.44) deaths per 10,000 population compared

to the recommended 4-week interval between the 2 doses. Pfizer-BioNTech vaccines also

averted an additional 0.60 (95% CrI: 0.37–0.89) hospitalizations and 0.32 (95% CrI: 0.23–

0.45) deaths per 10,000 population in a 9-week delayed second dose (DSD) strategy com-

pared to the 3-week recommended schedule between doses. However, there was no clear

advantage of delaying the second dose with Pfizer-BioNTech vaccines in reducing infections,

unless the efficacy of the first dose did not wane over time. Our findings underscore the impor-

tance of quantifying the characteristics and durability of vaccine-induced protection after the

first dose in order to determine the optimal time interval between the 2 doses.

Introduction

The spread of Coronavirus Disease 2019 (COVID-19) has ravaged global health and sup-

pressed economic activity despite the range of mitigation measures implemented by countries

worldwide [1]. A number of vaccines, including those developed by Pfizer-BioNTech,
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Moderna, and Oxford-AstraZeneca, have received emergency use authorization from regula-

tory bodies in different countries [2]. Clinical trials and evaluations of mass vaccination cam-

paigns have demonstrated that these vaccines can provide high levels of protection against

symptomatic and severe disease with 2 doses administered 3 to 4 weeks apart [3–6]. In contrast

to the remarkable speed of development, vaccine delivery has proven to be challenging due to

supply shortages and limited distribution capacity in several countries [7,8].

The emergence of novel, more contagious Severe Acute Respiratory Syndrome Coronavirus

2 (SARS-CoV-2) variants in several countries [9–13] and the potential for their widespread

transmission have led to a public health conundrum regarding whether to vaccinate more

individuals with the first dose of available vaccines and delay the second dose or to prioritize

completion of the 2-dose series based on tested schedules in clinical trials [14–17]. Broader

population-level protection against COVID-19 in a delayed second dose (DSD) strategy, even

with lower individual-level efficacy from the first dose in the short term, may improve the

impact of vaccination compared to the recommended 2-dose strategy that provides more com-

plete protection to a smaller subset of the population [14, 17]. However, the conditions under

which this improvement is achievable remain unexamined [18], such as the durability of first-

dose efficacy and protection against infection [19–21].

Here, we employed an agent-based model of COVID-19 transmission and vaccination to

compare the epidemiological impact of tested and DSD vaccination schedules, considering a

range of preexisting immunity accrued since the emergence of COVID-19. We determined the

optimal timing for administering the second dose based on vaccine efficacy estimated in clini-

cal trials and population-level studies following first and second doses [3,4,6,22–24]. For Mod-

erna’s 2-dose vaccine, we show that a DSD strategy would outperform the recommended

interval between doses in terms of reducing the number of hospitalizations and deaths. The

maximum benefits would be achieved with a delay of at least 9 weeks from the recommended

schedule for administering the second dose. A DSD strategy with Pfizer-BioNTech vaccines is

comparatively inferior to Moderna vaccines, and the delay to achieve maximum benefits

depends on the durability of the first-dose efficacy.

Methods

Model structure

We extended our previous model of agent-based COVID-19 transmission to include vaccina-

tion [25]. The model encapsulates the natural history of COVID-19 with classes of individuals

including susceptible; vaccinated; latently infected (not yet infectious); asymptomatic (and

infectious); presymptomatic (and infectious); symptomatic with either mild or severe illness;

recovered; and dead. Model population was stratified into 6 age groups of 0 to 4, 5 to 19, 20 to

49, 50 to 64, 65 to 79, and 80+ years based on United States census data [26]. We sampled daily

contacts within and between age groups from a negative binomial distribution parameterized

using an empirically determined contact network (Table A in S1 Text) [27].

Disease dynamics

In our agent-based model, the risk of infection for people susceptible to COVID-19 depended

on contact with infectious individuals that could be in asymptomatic, presymptomatic, or

symptomatic stages of the disease. Using recent estimates, we parameterized the infectivity of

asymptomatic, mild symptomatic, and severe symptomatic individuals to be 26%, 44%, and

89% relative to the presymptomatic stage [28–30]. For each infected individual, the incubation

period was sampled from a Gamma distribution with a mean of 5.2 days [31]. A proportion of

infected individuals developed symptomatic disease following a presymptomatic stage. The
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duration of the presymptomatic stage and infectious period following symptom onset was

sampled from a Gamma distribution with a mean of 2.3 days and 3.2 days, respectively

[29,32,33]. Those who did not develop symptomatic disease remained asymptomatic until

recovery, with an infectious period that was sampled from a Gamma distribution with a

mean of 5 days [33,34]. We assumed that recovered individuals are immune against reinfec-

tion for the remainder of simulation timelines. Model parameters are summarized in

Table B in S1 Text.

Infection outcomes

A proportion of severe symptomatic cases were hospitalized within 2 to 5 days of symptom

onset [25,35], and thereafter did not contribute to the spread of infection. We assumed that all

mild symptomatic cases and severely ill (not hospitalized) individuals self-isolated within 24

hours of symptom onset. The daily number of contacts during self-isolation was reduced by an

average of 74%, based on a matrix derived from a representative sample population during

COVID-19 lockdown [36]. Intensive care unit (ICU) and non-ICU admissions were parame-

terized based on age-stratified data for COVID-19 hospitalizations and the presence of comor-

bidities [37,38]. The lengths of non-ICU and ICU stays were sampled from Gamma

distributions with means of 12.4 and 14.4 days, respectively [39,40].

Vaccination

We implemented a 2-dose vaccination campaign and simulated a rollout strategy with a daily

rate of 30 vaccine doses per 10,000 population, corresponding to 1 million vaccine doses per

day for the entire US population. This rate corresponds to the goal of administering approxi-

mately 100 million vaccine doses in the first 100 days, as outlined by the Biden administration.

As an additional scenario, we extended our analysis to a daily vaccination rate of 45 doses per

10,000 population, corresponding to 1.5 million daily doses in the US. In all scenarios, prioriti-

zation was sequentially set to (i) healthcare workers (5% of the total population) [41], adults

with comorbidities, and those aged 65 and older; and (ii) other individuals aged 18 to 64 [42].

We assumed that the maximum achievable coverage was 95% among healthcare workers and

those aged 65 and older. This maximum coverage was set to 70% among other age groups,

with an age-dependent distribution (Table C in S1 Text).

For Moderna vaccines, the interval between the first and second doses in the recommended

schedule (i.e., tested in clinical trials) was 28 days [3]. This interval was 21 days for Pfizer-

BioNTech vaccines [4]. Vaccine coverage of the entire population with 2 doses under the rec-

ommended schedules reached 51% and 76% for Moderna, and 52% and 77% for Pfizer-BioN-

Tech with vaccination rates of 30 and 45 doses per day, respectively, within 1 year.

We performed a review of published studies and the US Food and Drug Administration

(FDA) briefing documents on the efficacy of Moderna and Pfizer-BioNTech vaccines in

preventing infection, symptomatic disease, and severe disease [3,4,6,22–24]. We extracted

reported estimates for vaccine efficacies and associated timelines, as presented in Fig 1.

These estimates indicate no statistically significant difference between the protection of

vaccinated and unvaccinated cohorts for the first 10 to 14 days following the first dose of

vaccines.

In order to evaluate the impact of vaccination with DSD relative to the tested schedules in

clinical trials, in the base-case scenario, we assumed that the efficacy of the first dose for both

Moderna and Pfizer-BioNTech vaccines would be maintained for up to 18 weeks without a

second dose. As a sensitivity analysis, we considered a waning rate of 5% per week for first-

dose vaccine efficacy starting from week 7 after the first dose. We assumed that the full 2-dose
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efficacy was achieved regardless of delay in the administration of the second dose from the rec-

ommended schedule [43]. We simulated the model with the mean, lower bound, and upper

bound of the 95% CIs for vaccine efficacy of the first and second doses against infection, symp-

tomatic disease, and severe disease.

Model scenarios

We considered a range of 10% to 30% preexisting immunity (i.e., seropositivity prior to vac-

cination) in the population, with 20% for the base-case scenario [44,45]. To parameterize the

model at a given level of preexisting immunity, we ran simulations in the absence of vaccina-

tion and derived the infection rates in different age groups once the overall attack rate

reached the prespecified level. The corresponding age distributions of recovered (i.e.,

immune against reinfection) individuals were used for the initial population at the start of

vaccination. We simulated the model with a 10,000 population for a time horizon of 1 year

to evaluate the impact of DSD vaccination compared with the recommended schedule of

28-day interval for Moderna vaccines and 21-day interval for Pfizer-BioNTech vaccines. For

the results presented here, outcomes of infections, hospitalizations, and deaths were aver-

aged over 1,000 independent replications of each scenario. Credible intervals (CrIs) at the

5% significance level were generated using the bias-corrected and accelerated bootstrap

method (with 500 replications).

Fig 1. Efficacy of Moderna and Pfizer-BioNTech vaccines against all infection, symptomatic disease, and severe disease, derived from published

studies and US FDA briefing documents [3,4,6,22–24]. (�) During the first 14 days following the first dose of vaccines, there was no statistically significant

difference between the protection in the vaccinated and unvaccinated cohorts. (#) Conservatively assumed to be the same as efficacy against infection

during the preceding 14 days (prior to the second dose). (†) Conservatively assumed to be the same as efficacy against severe disease during the preceding

14 days (prior to the second dose). (§) Assumed to be the same as efficacy against symptomatic COVID-19. COVID-19, Coronavirus Disease 2019; FDA,

Food and Drug Administration.

https://doi.org/10.1371/journal.pbio.3001211.g001
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Results

DSD vaccination without waning efficacy of the first dose

When the efficacy of the first dose did not wane for up to 18 weeks after being administered,

we found that the DSD strategy with the daily rate of 30 vaccine doses per 10,000 population

averted more infections, hospitalizations, and deaths, compared to the recommended schedules

for both Moderna and Pfizer-BioNTech vaccines (Fig 2). The largest reduction of severe

Fig 2. Projected number of infections, hospitalizations, and deaths averted per 10,000 population in a DSD vaccination program compared to the

recommended schedule of 2 doses of Moderna (with a 28-day interval) and Pfizer-BioNTech (with a 21-day interval) vaccines. The daily vaccination

rate was (A, B, and C) 30 doses and (D, E, and F) 45 doses per 10,000 population. Vaccine efficacy was set to the mean of estimated ranges (Fig 1) without

waning of the first-dose efficacy prior to the administration of the second dose. The individual numerical values for A–C and D–F are listed in S1 and S2

Datas, respectively. DSD, delayed second dose.

https://doi.org/10.1371/journal.pbio.3001211.g002
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outcomes was achieved with a 12- to 15-week delay in administering the second dose. At 20%

preexisting immunity, for example, a 12-week DSD strategy with mean efficacy of Moderna

vaccines would avert an additional 0.85 (95% CrI: 0.62 to 1.07) hospitalizations and 0.41 (95%

CrI: 0.33 to 0.52) deaths per 10,000 population, compared to the recommended vaccination

schedule (Fig 2B and 2C). We observed similar benefits of a DSD strategy for Pfizer-BioNTech

vaccines, averting 0.74 (95% CrI: 0.48 to 1.04) hospitalizations and 0.41 (95% CrI: 0.31 to 0.54)

deaths per 10,000 population in a 12-week delay scenario. As the daily number of vaccine doses

increases, the maximum benefits of a DSD strategy in averting hospitalizations and deaths

would be achieved with a shorter delay in administering the second dose (Fig 2E and 2F).

When simulating the model with upper bounds of vaccine efficacy, we found that the

benefits of a DSD strategy in terms of reducing infections, hospitalizations, and deaths were

comparable to those obtained in scenarios with mean efficacy for both Moderna and Pfizer-

BioNTech vaccines (Fig A in S1 Text). However, when vaccine efficacy was at the lower

bounds of estimated ranges, there was no clear advantage with a DSD strategy compared to

the recommended schedules in terms of reducing infections (Fig B in S1 Text). While both

vaccines averted more hospitalizations and deaths in a DSD strategy, Moderna vaccines out-

performed Pfizer-BioNTech vaccines in all scenarios of preexisting immunity at the lower

bounds of vaccine efficacy. The largest reduction of severe outcomes was achieved with a 9- to

15-week delay in the second dose (Fig B in S1 Text). These benefits are due to the prioritization

of elderly and individuals with comorbidities receiving the first dose, thus increasing their vac-

cine coverage and reducing severe outcomes among these high-risk individuals.

DSD vaccination with waning efficacy of the first dose

We found that Moderna vaccines in a DSD strategy averted more infections compared to the

recommended schedule of 28 days between doses (Fig 3). However, there was no advantage of

DSD using Pfizer-BioNTech vaccines in reducing infections. Both vaccines averted more hos-

pitalizations and deaths with DSD. The largest reduction of hospitalizations and deaths using

Moderna vaccines was still achieved with a 12- to 15-week delay in administering the second

dose. With Pfizer-BioNTech vaccines, the highest benefits in reducing the same outcomes

would be attained with a shorter delay of 6 to 12 weeks in a DSD strategy. Overall, Moderna

vaccines outperformed Pfizer-BioNTech vaccines with regard to achieving the maximum ben-

efits with a DSD strategy. For example, with 20% preexisting immunity and a daily vaccination

rate of 30 doses, Moderna vaccines averted an additional 0.72 (95% CrI: 0.54 to 0.96) hospitali-

zations per 10,000 population with a 12-week DSD strategy (Fig 3B). For Pfizer-BioNTech vac-

cines, this maximum benefit was achieved with a 9-week DSD which averted 0.44 (95% CrI:

0.16 to 0.72) hospitalizations. Similarly, we projected that Moderna and Pfizer-BioNTech vac-

cines would avert an additional 0.39 (95% CrI: 0.29 to 0.49) and 0.26 (95% CrI: 0.16 to 0.39)

deaths per 10,000 population with a 12-week delay of administering the second dose, respec-

tively (Fig 3C).

When the daily vaccination rate increased to 45 doses, we observed similar outcomes of a

DSD strategy with Moderna vaccines outperforming Pfizer-BioNTech vaccines in the corre-

sponding scenarios (Fig 3D–3F). The largest benefits of Moderna vaccines in terms of averting

hospitalizations and deaths were achieved with a shorter delay of 9 to 12 weeks in administer-

ing the second dose, but still outperformed those obtained using Pfizer-BioNTech vaccines in

all scenarios of preexisting immunity (Fig 3E and 3F).

When simulating the model with upper bounds of vaccine efficacy with waning, we found

that the performance of a DSD strategy in terms of reducing infections, hospitalizations, and

deaths was qualitatively similar to those obtained in scenarios with mean efficacy for both
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Moderna and Pfizer-BioNTech vaccines (Fig E in S1 Text). However, when vaccine efficacy was

at the lower bounds of estimated ranges, the impact of a DSD strategy was reduced significantly

in both vaccines (Fig F in S1 Text). There was no advantage in reducing infections with DSD

compared to the recommended schedules. We found that, while the performance of a DSD strat-

egy in averting hospitalization and deaths depends on the level of preexisting immunity, Moderna

vaccines still outperformed Pfizer-BioNTech vaccines in most scenarios of preexisting immunity

with a delay of longer than 6 weeks from the recommended schedules (Fig F in S1 Text).

Fig 3. Projected number of infections, hospitalizations, and deaths averted per 10,000 population in a DSD vaccination program compared to the

recommended schedule of 2 doses of Moderna (with a 28-day interval) and Pfizer-BioNTech (with a 21-day interval) vaccines. The daily vaccination

rate was (A, B, and C) 30 doses and (D, E, and F) 45 doses per 10,000 population. Vaccine efficacy was set to the mean of estimated ranges (Fig 1), and the

waning rate of first-dose efficacy was 5% per week, starting from week 7 after the first dose prior to the administration of the second dose. The individual

numerical values for A–C and D–F are listed in S3 and S4 Datas, respectively. DSD, delayed second dose.

https://doi.org/10.1371/journal.pbio.3001211.g003
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Discussion

Vaccination can have a substantial impact on mitigating COVID-19 outbreaks [46]. However,

vaccine distribution in the US did not meet the initial goal set by federal officials due to signifi-

cant shortfalls in distribution [47]. Challenges with vaccine supply and rollout, coupled with a

deadly wave of outbreaks that overwhelmed hospitals [48–50], and the emergence of highly

transmissible SARS-CoV-2 variants [12,51], sparked a debate as to whether available vaccines

should be used to rapidly increase the coverage with the first dose [14–17] or be distributed

according to tested schedules. While the US has committed to delivering the second dose on

time for those who receive the first dose [52], a few countries have approved guidelines for

DSD, including the United Kingdom and Canada, to defer the second dose by up to 12 and 16

weeks, respectively [53,54].

In this study, we evaluated whether deferral of the second dose beyond the recommended

schedules of 3 and 4 weeks for Pfizer-BioNTech and Moderna vaccines, respectively, could

improve the effectiveness of vaccination programs in reducing infections, hospitalizations, and

deaths. We found that if the efficacy of the first dose did not wane until the administration of the

second dose, then the DSD strategy will be more effective than the recommended schedules for

both Pfizer-BioNTech and Moderna vaccines, achieving maximum benefits with a delay of 12 to

15 weeks. If the efficacy of the first dose wanes over time, our results show that delaying the sec-

ond dose of Moderna vaccines could prevent more infections, hospitalizations, and deaths com-

pared to the recommended 4-week interval between the 2 doses. The maximum benefits for

averting severe outcomes were achieved with a DSD of 9 to 15 weeks. A DSD strategy with Pfi-

zer-BioNTech vaccines beyond the 3-week tested schedule, on the other hand, may lead to a

higher number of infections compared to the recommended schedule, if the first-dose efficacy

waned over time. However, depending on the level of preexisting immunity, additional hospitali-

zations and deaths could be averted with DSD as a result of vaccine prioritization for individuals

at higher risk of severe outcomes. While our study aimed to compare the outcomes of vaccina-

tion between the recommended schedules and DSD, we note that the reduction in disease bur-

den by DSD strategy would be even higher when compared to a scenario of no vaccination.

Our results are based on available evidence and estimated vaccine efficacy in published stud-

ies of clinical trials, FDA briefing documents, and vaccination campaigns [3,4,6,22–24]. Key

data on the durability of vaccine-induced immunity following the first (if the second dose is

delayed) and second doses and the rate of temporal decline of immunity post-vaccination are

still lacking. Our model assumptions were conservative and based on limited empirical evi-

dence available thus far. For example, in the base-case scenario, we assumed that the estimated

protection efficacy of vaccines against infection and symptomatic/severe disease remained

intact until the administration of the second dose. Further, we assumed that the protection

efficacies after 2 doses in a DSD strategy will be the same as those estimated with 2 doses in

schedules tested in clinical trials. As sensitivity analyses, we also considered scenarios in which

vaccine efficacy of the first dose waned over time when the second dose was delayed. Currently,

there are no data that quantify the decline of vaccine-induced immunity under different sched-

ules of a DSD strategy. However, as clinical investigations on vaccine performance continue

and more estimates on population-wide effectiveness of vaccination campaigns become avail-

able, our assumptions may need to be revised. Should any future evidence alter these assump-

tions, further analyses would be warranted, and conclusions of our study might change.

Our findings highlight 2 important parameters in the evaluation of vaccination programs

with DSD. First and foremost is the durability of vaccine efficacy [20,21], which requires clini-

cal and epidemiological studies monitoring vaccinated individuals for several weeks after inoc-

ulation with the first dose. Second is the ability of vaccines to block transmission. In addition

PLOS BIOLOGY COVID-19 vaccination with a delayed second dose

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001211 April 21, 2021 8 / 13

https://doi.org/10.1371/journal.pbio.3001211


to these parameters, vaccine supply and many other factors, such as the potential for the emer-

gence of vaccine-resistant strains under low individual-level protection; public confidence in

vaccines; risk behavior of individuals following vaccination; and the possibility of a drop in

uptake of the second dose with a delay significantly longer than the recommended schedules,

would be important considerations in public health decision-making regarding DSD vaccina-

tion [19]. However, given the relatively high vaccine efficacies estimated after the first dose

against severe outcomes (i.e., over 50% in most end points), broader population-level protec-

tion would be expected to further reduce the disease burden, even with limited vaccine sup-

plies in the near term. When racing against a burgeoning outbreak, our results show that

prioritizing vaccine coverage with rapid distribution of the first dose would be critical to miti-

gating adverse outcomes and allow the healthcare system to also address non-COVID-19

medical needs of the population. In the case of low incidence, it would still be important to

accelerate vaccination with the first dose to protect the maximum number of individuals

ahead of any outbreak surge.
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