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ABSTRACT Non-parametric and distribution-free two-sample tests have been the foundation of many
change point detection algorithms. However, randomness in the test statistic as a function of time makes them
susceptible to false positives and localization ambiguity. We address these issues by deriving and applying
filters matched to the expecfed temporal signatures of a change for various sliding window, two-sample
tests under IID assumptions on the data. These filters are derived asymptotically with respect to the window
size for the Wasserstein quantile test, the Wasserstein-1 distance test, Maximum Mean Discrepancy squared
(MMDE), and the Kolmogorov-Smirnov (KS) test. The matched filters are shown to have two important
properties. First, they are distribution-free, and thus can be applied without prior knowledge of the underlying
data distributions. Second, they are peak-preserving, which allows the filtered signal produced by our
methods to maintain expected statistical significance. Through experiments on synthetic data as well as
activity recognition benchmarks, we demonstrate the utility of this approach for mitigating false positives
and improving the test precision. Our method allows for the localization of change points without the use of
ad-hoc post-processing to remove redundant detections common to current methods. We further highlight the
performance of statistical tests based on the Quantile-Quantile (Q-Q) function and show how the invariance
property of the Q-Q function to order-preserving transformations allows these tests to detect change points
of different scales with a single threshold within the same dataset.

INDEX TERMS Change point detection, matched filter, Wasserstein distance, Kolmogorov-Smirnov, maxi-
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mum mean discrepancy quantile-quantile tests, human activity data.

I. INTRODUCTION
Given a time-varying signal, the problem of change point
detection (CPD) is to identify specific points in time where
the signal exhibits a significant change either in its deter-
ministic content or underlying stochastic distribution. Having
been studied for nearly a century by researchers, CPD was
originally motivated in problems of fault detection and quality
control [1]. Since then, a wide range of CPD methods has been
developed and applied across a diverse set of applications
including finance [2], human activity analysis [3], ECG and
EEG processing [4], [5], speech [6], sensor networks [7], [8],
and climate change [9].

A common framework for CPD is to compute a univariate
statistic measuring the similarity between two windows of

data to either side of a purported change point. Methods reliant
on this similarity-based framework process an entire signal by
iteratively “sliding™ the pair of adjacent windows forward in
time over the data, computing a test statistic typically derived
from the Empirical Distribution Functions (EDFs), Quantile
Functions (QFs), or Quantile-Quantile (Q-Q) function asso-
ciated wiht the data in a given pair of windows. Then a hy-
pothesis test can be applied to this statistic where the null
hypothesis posits that no change point exists between the
current two windows and thus the empirical distributions of
the adjacent windows are drawn from the same distribution.
If the null is true, the derived statistic should be small in
some sense. At a change point, the data in the two windows
come from different distributions and thus the expected value
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of the derived statistic peaks. Therefore, it is common under
this framework to only consider local maxima as candidate
change points for hypothesis testing. If the distribution of the
statistic’s value under the null hypothesis is known, the null
can be rejected and a change point declared with a certain
confidence should the peak value exceed some corresponding
threshold. In contexts where the distribution under the null
cannot be attained, this peak thresholding method can still be
used to make detections but lacks formal guarantees.

Two concepts central to the ideas in this paper are the
notion of a distribution-free test and a peak-preserving trans-
formation. Non-parametric tests that are distribution-free have
their probabilistic distribution of the test statistic under the
null hypothesis independent of the distribution generating the
data. Therefore, if a test is distribution-free, threshold values
that correspond to rejection of the null at a fixed false-alarm
rate can be applied regardless of the change in distribution
to be detected; thus, one does not require methods such as
density estimation to derive the distribution under the null.
Peak-preservation applies to any method that preserves the
expected value of the test statistic at a candidate change point.
Since the change point statistic is expected to peak at a true
change point, any peak-preserving post-processing method
will maintain the statistical significance of the test statistic at
the change points.

One issue that is not well studied in multiple change-point
detection is the exact determination of change points once
the appropriate statistic is computed. Because the test statistic
time series is itself random (since it is a function of the under-
lying random observations), one tends to see multiple local
maxima in the vicinity of a change resulting in either a large
number of false alarms or the need for ad-hoc post processing
to identify true change points. Current state-of-the-art meth-
ods simply consider local maxima above a specified threshold
as change points [10], [6], and remove duplicate detections
within a specified window [11]. However, it is clear that the
sliding window methods produce a correlated test statistic
where the effects of the change at a given point in time are
spread over an interval which contains the change point.

Motivated by this fact, we draw on the classical signal
processing idea of a matched filter [12] as a tool to better
identify change points. More specifically, the asymptotic (as
window length goes to infinity) forms of the expected “signa-
tures” produced by sliding window methods are derived for
the Wasserstein-1 Distance (W1-DT), Wasserstein Quantile
Test (WQT), Sliced Wasserstein Quantile Test (SWQT), Max-
imum Mean Discrepancy squared (MMD?), and Kolmogorov-
Smirnov (KS) distance. Under a commonly-used assumption
that the data in each segment is independent and identically
distributed (1ID) [2], [10], we propose a novel model for ana-
lyzing similarity-based tests in the sliding window framework
using mixture models, and prove that the expected signature of
each statistical test converges to a function that is independent
(up to a scale factor) of the data distribution prior to and
following the change point. Thus, distinct from the tests them-
selves being distribution-free, these filters are shown to be
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distribution-free in that they can be applied without knowing
the distribution of the data.

Using the asymptotically derived signature, we construct
finite length filters in a manner that is peak-preserving. In
summary of our main findings, the filters for the KS and
WI1-DT are piecewise linear while those of the WQT and
MMD?, which are based on a square distance, are quadratic.
While the matched filters for these statistics are of linear or
quadratic form, there is no reason to believe that matched
filter derived for other statistics are guaranteed to be in these
forms.

Matched filters are generally known to be time-reversed
versions of the signal to be detected, and are considered opti-
mal with respect to signal to noise ratio when, for example, the
noise is additive, white, and Gaussian. We do not claim that
the stochasticity in the test statistic for these sliding window
methods is of the form for which the matched filtering process
is in any sense optimal. In addition, the IID condition in
which the matched filters are derived rarely applies to real-
world data. In our evaluation, we first consider simulated data
where samples are generated IID from scalar and multivari-
ate Gaussians and show that the matched filter simplifies the
peak-detection process and improves CPD performance when
considering precision-recall based metrics. We then demon-
strate similar performance improvements when extended to
real-world activity data where the IID condition does not hold.

Finally, exploration of the performance of these filters
across the five non-parametric test statistics identified above
brings to light interesting properties of tests derived from the
Quantile-Quantile (Q-Q) function, which include the WQT
and SWQT. Specifically, it is well known that the Q-Q func-
tion is both invariant to order-preserving transformations of
the data [13] and we show that it is also is highly sensitive
to small changes in the support of the data. In the context
of CPD, these properties allow Q-Q tests to detect relatively
small changes in a manner that is practically independent of
the overall scale of the data. Whether this characteristic is
useful or a source of false alarms depends heavily on the
underlying application, an issue that is examined in this work
using both simulated and real-world data.

In summary, the main contributions of this paper are as
follows:

® We develop a novel principled methodology for deriving

and applying matched filters for similarity-based change
point detection . We prove that our proposed matched
filters are distribution-free and peak-preserving, which
preserves the guarantees provided by standard hypoth-
esis tests when used to detect change points given the
filtered signal.

® We offer formal proofs deriving the asymptotically

matched filter for four common statistical tests: the
Kolmogorov-Smirnov test (KS), Maximum Mean Dis-
crepancy squared (MMD?), Wasserstein-1 distance (W1-
DT), Wasserstein quantile test (WQT), and propose the
sliced Wasserstein quantile test (SWQT) as a multivari-
ate extension of the WQT.
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® We demonstrate empirical benefits for the above theo-
retical contribution in both simulation studies and real-
world multivariate change point benchmarks. We show
how matched filters with suitable finite-length approx-
imations can deliver improved performance evaluated
using precision-recall based metrics including the reduc-
tion in false positives, and importantly, remove any need
for additional post-processing for duplicate detection re-
moval common to other methods.

® We provide insight into how the choice of test statistic

impacts empirical performance, specifically highlight-
ing differences in sensitivity between statistics based on
the Quantile-Quantile (Q-Q) function compared statis-
tics derived from the Empirical Distribution Function
(EDF) or Quantile Function (QF). These insights are
justified through theory and demonstrated in simulated
and real-world human activity datasets.

The remainder of this paper is organized as follows. Sec-
tion III introduces the CPD problem and setup the basic
framework for CPD with statistical tests on sliding windows.
In addition, we outline the main properties that differentiate
Q-Q tests from other statistical tests. Section IV-A motivates
and outlines our simple but novel approach of deriving and
applying matched filters and states the main theorems for
the asymptotically matched filters for WQT, MMD?, KS, and
WI1-DT tests. Details of each proof are left to the appendix.
Section V shows that the empirically computed matched fil-
ters and properties of Q-Q based tests match our theoret-
ical results. Furthermore we demonstrate the improvement
in detection as shown through false alarm rates, and the re-
lated metrics of precision and recall evaluating on simulated
data as well as real-world benchmarks based on human ac-
tivity (HASC [14], MASTRE [15]) and honeybee activity
(Beedance) [16].

Il. RELATED WORK

Change point detection methods are classified along a number
of different dimensions [10], [17], such as whether labels are
available at training (supervised or unsupervised), the detec-
tion setting (offline or online), the number of change points
assumed, the dimensionality of the signal, and the existence of
modeling assumptions on the data (model-based or similarity-
based). Supervised CPD methods require an annotated train-
ing corpus where each time-varying signal has associated,
labeled change points. Once the method is “trained” on these
examples, it can be used to process new signals whose change
points are unknown. In contrast, unsupervised CPD methods
require only a set of signals to make detections. Online CPD
methods make detections using only historical data and thus
are useful in streaming or real-time settings. Offline meth-
ods process an entire sequence retrospectively. Single change
point problems terminate after one change is detected while
multiple change point methods focus on time series where
many changes may occur and are further divided based on
whether or not the number of change points is known a-priori.
While recent benchmarks [18] indicate that many competitive

VOLUME 1, 2020

CPD methods are only capable of processing univariate sig-
nals, a growing number can handle multivariate signals.

CPD methods can also be classified as either primar-
ily model-based or similarity-based. We define model-based
techniques as those that make specific probabilistic assump-
tions about underlying distributions of data, such as by char-
acterizing changes in the values of known [19] or learned [20]
parameters. Model-based efforts originate from the landmark
works by [1], [21], [22]. The pioneering use of state-space dy-
namical models [23] formed the basis for work in hierarchical
Bayesian models such as switching linear-dynamical systems
(SLDS) [24]. A competitive model-based method in recent
benchmarks [18] is “Bayesian Online Change Point Detec-
tion” (BOCPD) [2], which estimates the probability of change
at each time via a switching state model that assumes within
a segment that data arises IID from an exponential family
likelihood. Other model-based efforts have pursued Bayesian
nonparametric approaches using Gaussian processes [25] to
avoid this restrictive IID assumption and achieve more flexible
within-segment data models.

Generally, model-based methods for CPD are effective
when the modelling assumptions hold and are able to cap-
ture the key characteristics of the signal change. In contrast,
similarity-based methods employ a test statistic derived di-
rectly from computing some suitable similarity or “distance™
between windows of data samples without underlying as-
sumptions concerning the specific generating distribution of
the data. Therefore, similarity-based methods can be applied
even if the proper assumptions about transitions between seg-
ments or the data distribution within a single segment are
unknown or not easily expressed in a tractable probabilistic
model.

For similarity-based methods, three broad classes of tests
have been applied for CPD. The first class is likelihood ra-
tio tests of the estimated distribution functions from the re-
spective windows [3], [8], [11]. The second class is non-
parametric statistical tests, such as the Kolmogorov-Smirnov
(KS), Cramer-von Mises, and Mann-Whitney statistics [26],
[27]. The last class is tests based on distance metrics be-
tween empirical probability distributions. Prominent among
them is the family of integral probability metrics [28] which
includes the Maximum Mean Discrepancy (MMD) [29], and
the Wasserstein distance [30], which is closely related to the
Q-Q based Wasserstein Quantile Test (WQT) [31], [32].

Our proposed method expands on the similarity-based
framework by applying matched filters to commonly used
statistical tests, and is capable of handling multivariate sig-
nals for unsupervised, multiple CPD where the number of
changes is not assumed known. This setting is motivated by
intended applications in human activity analysis in the modern
era, where large volumes of highly sampled sensor data are
affordable but annotation is prohibitively expensive and suit-
able probabilistic assumptions for this data are challenging.
To address CPD in these contexts we propose a simple but
effective method that has few hyperparameters and makes
minimal assumptions on the data.
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I1l. CHANGE POINT DETECTION

A. PROBLEM STATEMENT

Assume a time series, X[f] € C,t = 1, 2, ..., where C C R4
represents a compact set, is constructed with the following
model.

1) The data consists of distinct time segments [0, 7], [t} +

1, o, ooy [t + 1, T;H_]], ... with 71 < 19 < ..., such
that within each time segment, X[f],f € [ty + 1, T4 1]
are IID samples from a fixed but unknown distribution.

2) The distributions in successive time segments are differ-

ent but in general two non-adjacent segments can have
samples from the same distribution.

The set of time points {ry, 12, ...}, are referred to as the
change points. Given these conditions, the problem of un-
supervised Change Point Detection (CPD) is to estimate
the (possibly empty) set of change points purely from the
provided X[f] data without any information or assumptions
about the number or location of change points.

B. NOTATION AND BACKGROUND

A set of n total samples, P, = {X1, X2, ..., X,;}, each drawn
IID from some distribution P, has an associated Empirical
Distribution Function (EDF), and Quantile Function (QF) de-
fined as,

EDF : Py(x) & 1 2 1x;<x C — [0,1]
n
i=1

QF : Pn_](x) = inf{y : Pa(y) = x} [0,1] = C (€))]

where the indicator function is,

1 X;<x
j— t= 2
Xizx {0 X > x. @

Given another set @, of m IID samples, drawn from distribu-
tion @, the Quantile-Quantile (Q-Q) function is as follows,

s 1y
Pu(Qp ))& = Dxisintpygueza (0,11 10,11 (3)

i=1

The EDF, QF and Q-Q functions represent stochastic pro-
cesses on their respective domains [33]. Thus in this work,
almost sure convergence (—,s) and weak convergence or
convergence in distribution (— ), refers to convergence of
stochastic processes. While the relevant background is cov-
ered in the appendix, we point the readers to additional works
[33]-[36] for more comprehensive coverage in this area.

C. QUANTILE-QUANTILE TESTS

On real valued data, many of the two-sample tests discussed
in this paper directly compare EDFs or QFs (Table 1). In the
Q-Q case, the comparison is made to the uniform distribution.
Indeed, when two distributions are equal, as under the CPD
null, the resulting Q-Q function matches the uniform distribu-
tion on [0,1]. Thus, we designate statistics of this form as Q-0
tests.
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TABLE 1 Summary Table Comparing the Two-Sample Tests Discussed in
This Paper. EDF: Empirical Distribution Function, QF: Quantile Function,
Q-Q: Quantile-Quantile. DF: Distribution-Free

Test WQT SWQT W1-DT KS MMD?
Type of Test F, EDF EDF N/A
T Q-Q 0Q Q N7

Distributh

Under Null DF [31] DF not DF [30] | DF [34] | not DF [29]
Data Dimension Rl R® Rl RI R?
Matched filter N 2 2
Afg € [-nn) | (1-4)7 | (1- &) I T )
{our contribution)

Since the Q-Q function is non-decreasing from [0, 1] —
[0, 1], Q-Q tests are inherently bounded. The maximum is
achieved when the open intervals covering the respective sup-
ports of P and Q are disjoint, as shown in Appendix G for the
WQT. Q-Q functions are also known to be invariant to any
transformation on the data that is order-preserving, or in other
words, monotonically increasing [13], such as positive affine
transforms.

The bounded property of the Q-Q function makes Q-Q
based tests particularly sensitive to small shifts in support. In
addition, the invariance of Q-Q functions to order-preserving
transformations makes Q-Q tests rather insensitive to such
transformations of the data. More precisely, the Q-Q test
statistic will be identical for a given a time series X[f] and
f(X[t]) where f(x) is an order-preserving function. For Q-Q
tests applied to multiple change point detection problems,
these properties imply that a single threshold can be used
to detect changes of widely varying magnitudes; at least
those changes induced by shifts in support or order-preserving
transformations. We verify this claim using simulated data in
Section V-B. In the case of real-world data, we discuss how
the empirical results in Section V-C may be interpreted in light
of the properties of Q-Q test.

D. STATISTICAL TESTS FOR CHANGE POINT DETECTION
Our general framework for CPD generates a test statistic by
sliding adjacent windows of a constant size n and computing
a two-sample test from samples within each window ( Fig. 2).

At each time ¢ > n, we define two windows of samples of
size n; one to the left of ¢, {X[f — n], X[f —n+ 1], .., X[t —
1]} with distribution F,[f] and the other from the n samples to
the right {X[r], X[t + 11, .., X[t + (n — 1)]}, with distribution
Gplt]. A statistical test Dy (Fy[f], G,[t]) is then applied to
these two windows. We use notation D, to represent a general
statistical test. This can be substituted for the various specific
statistical tests defined in Section IV.

The nominal approach for identifying change points given
a test statistic is to label local maxima of a computed statistic
above some threshold parameter [6]. However, as is evident in
Fig. 1, randomness in the statistic can adversely affect CPD
methods that use thresholds for detection. Furthermore, in
the presence of change points, multiple peaks complicate the
exact localization of change points. These problems, along
with the fact that sliding windows produce a correlated statis-
tic, motivate the application of matched filtering of the test
statistic for CPD.
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FIGURE 1. Result of change point detection using the WQT on sliding windows of size n = 150 on simulated data outlined in V. The noisy unfiltered
change point statistic can cause false detections, and complicate localization of change points. The data alternates between two normal distributions
N(0, 1), N(0.25, 1). The detection threshold corresponds to rejection of the null with 95% confidence.

t=r1t
X[t]~P « - X[t]~e@
X[t]
m=1 mn n
¢ ]

1y = 05 . mn -mn /'~ = ,

L 1 ]
M =0 h L it I >

E,~mP+(1—-m)Q
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FIGURE 2. Diagram of the assumed modeling setting for the test statistic response as function of time around a true change point. Top: The observed
signal is assumed to arise from two distinct distributions, P and Q, with change point at time { = . Before r, data is sampled 11D from P. After ¢, data is
11D from Q. Bottom: Our sliding window framework computes a test statistic between adjacent windows F and G of size n at each time ¢. We consider the
expected value of the statistic changes from the true change point r moving right to = + n (without loss of generality, moving left is the same as moving
right assuming the proposed test is symmetric). The left window F represents a mixture of samples from P and Q with mixture proportion =,. The right
window G will be purely sampled from Q. Takeaway: Formally characterizing the test statistic response as a function of =, is the goal of our

asymptotically matched filter.

IV. MATCHED FILTERS FOR STATISTICAL TESTS

A. ASYMPTOTICALLY MATCHED FILTERS

As shown in Fig. 2, for the sliding window framework with
constant window size n, the effect of a change point located
at t = v will be reflected in the test statistic on the interval
[t —n, T 4 (n — 1)]. Consequently, the matched filter is de-
rived from the expected response of the test statistic on this
interval.

In this change point scenario, samples are assumed to be
drawn IID from a distribution P for (r —2n) <f < t, and
from another distribution Q for T <t < (tr 4+ 2n). We then
generate the EDFs from adjacent sliding windows and the test
statistic D, as described in section III-D. Data in the windows
that span the change point can be modeled as coming from a
mixture distribution between P and Q.

Without loss of generality (as long as D, is shown to be
symmetric), we consider the case starting at f = 7 and sliding
the window to the right such that the change point is located
in the left set of samples. In this setup, samples from the left
window can be modeled as IID samples from the mixture
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Filt] ~ ((1 — E5)P + (=5)Q) and the distribution of the
samples in the right window remains constant, G,[t] ~ Q. We
redefine these distributions in terms of a mixture parameter
T =(1— @) where t € {tr,t + 1, ..., T 4 n} corresponds
to mp e {1,(1 — %), . ﬁ,O}. In this mixture view, our left
window F; and right window G, distributions are,

Fm)~@mP+ A —-m)Q), Gum)~Q. (4
This reformulation allows us to analyze the expected response
of the statistic asymptotically, as n goes to infinity. In this
case, the possible values of w become countably infinite on
the interval [1, 0].

Given that F, and G, are derived from n samples drawn IID
from the distributions defined in (4), we prove that as n — oo
for m1 € [1, 0], the expected value of each similarity statistic
discussed in this paper converges to a deterministic function
of the following form,

E[Dy(Fy(m1), Gn(m1))] = dy(P, Q)h(1). )
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Here, d.(P, Q) is a constant for a given D,(-,-), P, and Q,
while h(sry) is only a function of ;. From (5) we can con-
clude two main properties. First, the time dependent compo-
nent of the response; that is A, is independent of the distri-
butions P and Q. Second, P and Q impact the response only
through a constant scale factor. These two properties allow us
to construct a matched filter whose shape is distribution-free
and peak-preserving which we precisely define in Section I'V-
B.

Moving back to the case where n is finite, (5) suggests that
the expected value of the test statistic around a change point
atf =t fort = (r —n), ..., (r + n) be approximated as,

E [Du(F,lt], Galf )] ~ du(P, Q) (1 _k - ") )

Since Dy(-, -) is symmetric in its arguments, (5) holds when
Fyu(m1), Gp(mry) are reversed, which corresponds to the analo-
gous setup with the windows slid to the left. Therefore, the re-
sponse of the statistic is mirrored about f = r. For shorthand,
change point statistic is denoted as D[f] ES Dy (F,[t], Gult]).

Therefore, with a slight abuse of notation, we can define the
matched filter h[f],

h[r]:[g(m:(l_%l)) TEIER g

otherwise.

B. PEAK-PRESERVING, DISTRIBUTION-FREE MATCHED
FILTERS
The matched filter defined above can be applied to the test
statistic signal D,[f] to produce a peak-preserving filtered
signal F,[f] suitable for CPD:
1

Filt] = Dy[t] ® ahlt], « AN ®)
Here, o = 0 is a scalar factor ensuring that the filter is in fact
peak-preserving and ® denotes the convolution operation.!
We note that this filtering process is distribution-free since (8)
does not depend on P or Q. This means that A[f] is the matched
filter regardless of the distributions defining the signal change
and can be applied globally without any knowledge of proba-
bilistic model of the change point.

It also follows from (8) that since the expected value of the
test statistic E[D,[f]] in the region of a change point at t =
t reflects (5), then E[D,[t = t]] = E[E.[t = t]] = d.(P, Q).
Thus the resulting peak value of the statistic at the change
point is preserved in expectation through the filtering process.
This peak-preservation property is important for statistical
tests where the resulting values are compared to a threshold in
order to reject of the null hypothesis with a certain statistical
confidence.

With the application of the matched filter, change points
are detected at local maxima above a threshold of the filtered

!boundary conditions handled through zero-padding
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statistic, where no further post-processing of the local max-
ima is required. The proposed algorithm is detailed in full in
Algorithm I'V-B.

In the next few sections, we state the main theorem regard-
ing the asymptotic expected value around a change point for
each of the statistical tests of concern in this paper. Proofs of
these theorems are provided in Appendices B-F.

Algorithm 1: Matched Filtered Statistical CPD.
Input :X|[t]: data, t € 1.T
n : window size
7 : detection threshold
D, (-,) : statistical test, with
h[t] : corresponding matched filter
Output : F,[t]: change point statistic
{71, 72,...}: change points
for t =n: (T —n) do
Fult] « {X[t—n],.., X[t — 1]}
Galt] « {X[t], .., X[t + (n — 1)]}
D.[t] = D.(Fult], Galt])
end
o —

F.lt] < Biff]"c:)[i:h[t]
{r1,72,.. .}« {t: EL[t] > max(n, F,[t—1], Fi[t+1])}

Sliding Window

t— |Rlt]

6] ~ Elt]
0.0, 6D SR —— [\

L — 3

U Test Statistic

i Peak and Threshold
Sliding Window

Normalized
Matched Filter

Change Points

C. WASSERSTEIN-1 DISTANCE TEST (W1-DT)
Given two probability distributions F,G on RY the
Wasserstein-p distance W, (F, G) is defined as,

Wy(F. G) = (HE““'“G Excn [IX — Yu)*’])” O

I(F,G)

where II(F, G) denotes the set of all joint distributions with
marginals F, G. For d = 1, p = 1, the Wasserstein-1 distance
has the closed form [37], [38],

1
Dut—ar(Fa, Go) 2 fo F () — 67 (0)ldx

= fCIFn(x)—Gn(X)IdI- (10)
We note the following theorem.

Theorem 1: Let F,, G, be derived from IID samples
drawn from (mP + (1 — m1)Q), and Q respectively, where
P, Q are continuous on a compact domain, and constant
dw1-at(P, @) = [, |(P(x) — Q(x))|dx, then

Dy1—dgr(Fn, Gn) —w midy1—g¢ (P, Q). (11)
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Assuming that the samples live on a compact set, the test
statistic is bounded. Thus it follows from the Portmanteau the-
orem [33] that E[Dy4:_1(F,, Gn)] = m1dwai—1(P, Q), which
has the form of (5). Thus by the process described in Sec-
tion IV-A the matched filter for the operational case when n is
sufficiently larﬁ: (but finite) is a piecewise linear function of
t,hlt]=(1— ;).

D. WASSERSTEIN QUANTILE TEST (WQT)

The WQT is a distribution-free variant of the Wasserstein
distance that measures the Wasserstein distance of the Q-Q
function to the uniform measure [31],

n
Dyt (Fn, Gp) 2 sz(F,,G;‘, uUlo, 11)2

1
_2 f (F(G () — xPdx.  (12)
2 Jo

For the WQT we note the following theorem.

Theorem 2: Let F,, G, be derived from IID samples
drawn from (7P + (1 —m)Q@), and Q respectively, where
P, Q are continuous on a compact domain, and dyg (P, Q) =

3 fol (P(Q'(x) — x)*dx, then

(13)

Analogous to Section I'V-C, assuming that the samples live
on a compact set, the test statistic is bounded. Thus it follows
from the Portmanteau theorem that ]E[%qu,(Fﬂ, Gp)] —
:rrlzdwq,_l (P, Q), which has the form of (5). Then, by process
described in Section IV-A, the matched filter for the WQT in
the operational case when n is finite is A[f] = (1 — J%L)z_

Theorem 2 adds a % factor to the definition of the WQT
in (12) that removes a distribution dependent O(1) term in
the WQT. In the operational case, we approximate this term
by considering the case where P = Q, "dyg (P, Q) = 0, where
the O(1) term would have the most impact. This acts as a
constant bias term that is removed from the signal prior to
matched filter convolution when using the WQT. Details of
this can be found in Appendix C.

1
;qur(Fm Gn) —w n'lzdwqt(Ps Q)

E. SLICED WASSERSTEIN QUANTILE TEST (SWQT)

Since the WQT is only defined in one dimension, the naive
approach for an extension to multiple dimensions is to average
the WQT across each dimension independently. Alternatively,
we propose to use the sliced Wasserstein quantile test (SWQT)
using a similar approach to the sliced Wasserstein distance
[39], that averages the WQT over one-dimensional projections
of the data. Given a two sets of n samples, F,, G, the SWQT
is,

Dyugt(Fay Gn) 2 f o Dot B G0 (14)
where d# is the uniform measure on S?~! - the unit sphere in
R4, and Fﬂa, G‘; are the respective EDFs computed from the
projections of the samples on the unit vector 6.

With this definition we state the following,
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Theorem 3: Let sets J,, G, each consisting of n samples
drawn IID from (1P + (1 — 71)Q) and Q respectively, where
P, Q are continuous on a compact domain, and dsye (P, Q) =
Jsi-1 duwq:(P?, 07)d6. Then,

(15)

Assuming that the samples live on a compact set, the test
statistic is bounded. Thus it follows from the Portmanteau
theorem that ]E[%Dswq, (Fu, Gp)] — Jrlzdswq, (P, Q), which has
the form of (5). Then, by process described in Section IV-A,
the matched filter for the SWQT in the operational case when
nis finite is A[r] = (1 — L)2.

As with the WQT in Section IV-D, Theorem 3 is stated
with a % factor that removes an O(1) term. This O(1) term
is approximated to by considering the case of P = Q where
dgwq (P, @) = 0. This acts as a constant bias (and is identical
to the bias of the WQT) which is removed from the signal
prior to matched filter convolution. Details of this can be
found in Appendix D.

1
;Dswqr (Fns Gn) —w Jrlzdswqt(Ps Q).

F. KOLMOGOROV-SMIRNOV (KS)

The two-sample KS test [40] computes the maximum devia-
tion between the respective empirical distribution functions,

Dis(Fn, Gn) < sup |[Fn(x) — Ga(x)). (16)
x

Under continuity assumptions on the distributions F, G, it is

known to be distribution-free under the null hypothesis [41].

We note the following theorem for the KS test.

Theorem 4: Let F,, G, be derived from IID samples
drawn from (mP + (1 —m)Q), and Q respectively, where
P, Q are continuous on a compact domain, and dgs(P, Q) =
sup, |P(x) — Q(x)|. Then,

Dgs(Pn, Qn) —as m1dks(P, Q). an

Assuming that the samples live on a compact set, the test
statistic is bounded. Thus it follows from the Portmanteau
theorem that E[Dgs(F,, G,)] — m1dks(P, @), which has the
form of (5). Then, by process described in Section IV-A, the
matched filter for the KS test in the operational case when n
is finite is A[r] = (1 — L),

G. MAXIMUM MEAN DISCREPANCY SQUARED (MMD?)
The MMD between two distributions F, G, represents the
largest difference in expectations over functions in the unit
ball of a Reproducing Kernel Hilbert Space (RKHS) with
kernel? k(-, -),

MMD(F, G, k) = sup
¥ eRKHS(k): |/l <1

Erly]—Eglv]

In this work we will consider MMD? statistic for CPD.
Given two sets of samples, F, = {fi, ...fn} Gu = {g1, .-, &n}

ZWe will assume that the RKHS is universal. In this case the MMD is a
metric [29].
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sampled IID from F and G respectively, the MMD? has an
unbiased estimator [29] given by,

2

i,j=ln

i#Jj

1
D, a2 (Fn, Gn, k) = . (k(fi, fi)

+k(gisgj)_k(fx'sgj)_k(gisfj)) (18)
Note that under the null hypothesis, the (appropriately
scaled) limiting distribution of this unbiased estimator is not
distribution-free [29]. We have the following theorem.

Theorem 5: Let sets F,, G, each consisting of n samples
drawn IID from (1P + (1 — 71)Q) and Q respectively, where
P, Q are continuous on a compact domain, and d,,,,42(P, Q) =
Epxplk(p, p')1 + Egxolk(q, )] — 2Epxglk(p, q')] where
p,p ~ Pandgq,q ~ Q. Then,

lim E [D,,,,42(Fn, Gn. k)] = 7 dppi2(P. Q). (19)

Since (19) has the form of (5), by the process described in
Section IV-A, the matched filter for the MMD? distance in the
operational case when n is finite is 2[f] = (1 — I;—I)z.

V. EVALUATION

The only algorithmic hyperparameters required for the non-
parametric statistical change point methods described in this
paper are the window size n and the detection threshold pa-
rameter 7. For each experiment, we compare filtered and unfil-
tered version of each statistical test using under the same win-
dow parameter. For all real data experiments, we use domain
knowledge of the frequency at which change points should
be detected to set the window size. Since not all tests have
the same statistical guarantees, we evaluate using metrics that
vary the threshold parameter n over all possible values.

Early applications of change point detection in failure de-
tection focused on metrics such as average run length and
detection delay as key metrics of CPD [42], [43]. Recent
applications frame the problem of multiple CPD as a classifi-
cation problem at each time step (change point vs. no change
point) where there is a severe class imbalance as only a small
fraction of time steps is regarded as true change points. Here
we follow the work of [18] moving toward metrics based on
the confusion matrix. We also consider performance over a
range of thresholds to allow the end-user maximum control of
these trade-offs. To these ends, when possible, we report the
full Precision-Recall (PR) curve, as well as the Area Under
the PR Curve (AU-PRC), and best-F1 score (harmonic mean
of precision and recall) over across all threshold values.

One motivation for the matched filter approach is to disam-
biguate multiple local maxima near potential change points.
Prior CPD works address this issue by removing from consid-
eration duplicate peaks that are within a pre-specified distance
§ of one another[3], keeping only the highest peak. For a fair
comparison to unfiltered methods including prior work, we
apply this post-processing to all unfiltered methods, but not
the matched filtered methods. For clarity, all methods where
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duplicate local maxima are removed are labeled with (8-), and
all matched filtered methods where no such post-processing is
applied are labeled as (F-).

Thus, for evaluation purposes, we include two additional
parameters; § is the minimum distance between detected
change points applied to the unfiltered methods, and € de-
fines the tolerated distance for scoring detected change points.
Specifically, a detected change point is a True Positive (TP) if
there exists a true change point within € samples, otherwise
it is considered a False Positive (FP). False Negatives (FN)
are true change points that do not contain any detected change
point within € samples. Precision (P), Recall (R), and F1 are
then defined as,

TP

P TP R-P
TP+ FP’

R=——, =2—
TP+ FN

rip 20

A. SIMULATION DATA

First, we verify our proposed matched filters with simulated
data. Given two known distributions P and Q, the exact mix-
ture scenario in Fig. 2 is simulated where F, ~ mP + (1 —
m1)Q and G, ~ Q. The test statistic Dy(F,(m1), Gp(m1)) is
computed for all values of the mixture parameter 1 and for
various window sizes n. Each test was averaged over 10,000
repetitions using different random seeds.

Next, we validate the benefits of matched filters for change
point detection on simulated sequences using AU-PRC and
best-F1 metrics. Separate evaluations are performed for tests
defined for scalar and vector valued data. For the scalar case,
we generate 40 IID data sequences of length 800 with a sin-
gle change point uniformly distributed between 300 and 500.
Samples prior to the change point are drawn from distribu-
tion P ~ A (0, 1), whereas samples after the change point are
drawn from Q ~ N(0.25, 1).

For the multivariate case, an identical simulation setup is
used but P and Q are defined with a shared covariance ¥ and
a difference in mean:

oo N( [—0.12] 1 ):), 0~ N( [+0.12} ’ z),
40.12 —0.12
s [ 1 0.9]_
09 1

The SWQT is computed via Monte Carlo simulations by
randomly sampling vectors 8 ~ S§%-1, and averaging the re-
sults over each linear projection. The Gaussian kernel with
unit variance is used for computation of the MMD. With these
datasets, we compare the performance between the filtered
and unfiltered test statistics for various window lengths and
evaluate with parameters € = § = n.

Finally, the difference in the regions of sensitivity of the
Q-Q tests versus the scalability of non-Q-Q tests is illustrated.
First we compute the WQT and WI1-DT for two uniform
distributions, U[0, 1] and Uld,d + 1] for d < [0, 2], mod-
eling the behavior of these tests for distributions with shift-
ing supports. Then, we verify the invariance of the WQT to
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FIGURE 3. Empirical results of simulating the filter for the W1-DT (top left), WQT scaled by 1 (top middle), SWQT scaled by 1 (top right), KS (bottom left)
and MMD? (bottom right) test statistics as a function of mixture parameter =, for various window sizes n, along with expected asymptotic result (black).

order-preserving transformations by simulating a time series
with a sequence of 4 distributions, N(0.1,0.1), N(0.2,0.4),
N(0.4,0.16), N(0.8,6.4) each with 500 samples. We note
that by construction, the relative scale at each change point
is equal, where each successive segment models the data be-
ing scaled by a factor of 2. Thus, if X represents a random
variable in the first segment, a random variable in the fol-
lowing three segments would be 2X, 4X, 8X respectively. Two
additional scenarios are considered; one leaves the data as is,
and the other transforms the data by a cubic X [t]3, which is a
monotonically increasing, order-preserving function. We then
compute the filtered change point statistic using a window of
n = 100 samples comparing the WQT and the W1-DT. The
test results were aggregated over 10 independent iterations
using AU-PRC as a measure of change point performance.

B. SIMULATED RESULTS

The plots in Fig. 3 confirm the results from our theorems and
show the convergence of the signature for each of the statisti-
cal tests to the expected functional form. Generally speaking,
even for sample sizes on the order of 100 show convergence
towards the expected signature.

In the simulated change point tests on R! (Table 2), and R?
(Table 3) show that the application of our proposed matched
filters to the corresponding test statistic yields consistent im-
provement in the AU-PRC and best-F1 metrics thus result-
ing in an improved true positive to false positive ratio. As
expected, when window size increases, overall detection per-
formance also increases. In this controlled setting, the perfor-
mance across all four possible statistical tests is comparable
in the univariate case. However, in the two-dimensional case
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TABLE 2 Simulated Matched Filter Results for Statistical Tests on & for
Filtered (Denoted by F-) and Unfiltered Statistics on a Series of Single
Change Point Simulated Time Series as Described in V-A. Both AU-PRC and
Best-F1 Scores Increase With the Inclusion of the Matched Filter. As
Expected, Performance Also Improves With Increased Window Length n

AU-PRC Best-F1
n=50 | 100 | 150 50 100 | 150
0-WQT 052 | 0.76 | 050 || 046 [ 0.69 | 0.82
F-WQT 054 | 0.80 | 0.93 || 049 | 0.73 | 0.87
§-MMD- | 047 | 0.75 | 0.88 [[ 045 | 0.67 | 0.83
F-MMD? | 053 | 0.78 | 0.89 || 0.50 | 0.70 | 0.84
0-MW1 051 | 0.78 | 0.89 ([ 049 [ 0.70 | 0.83
F-MW1 054 | 0.89 | 0.94 || 046 | 0.75 | 0.84
4-KS 053 | 070 | 0.86 || 046 [ 0.66 | 0.79
F-KS 054 | 0.88 | 098 || 046 | 0.72 | 1.0

TABLE 3 Simulated Performance of Matched Filter on &2 Given the
Experimental Setup Described in V-A. Both AU-PRC and Best-F1 Scores
Increase With the Inclusion of Matched Filtering. SWQT Generally
Outperforms MMD? for This Simulated Example

AU-PRC Best-F1
n=50 | 100 | 150 50 100 | 150
5-MMD? | 0.19 | 067 | 085 [[ 0.36 | 0.65 | 0.88
F-MMD? | 027 | 0.85 1.0 048 |1 086 | 1.0
4-SWQT | 052 | 095 [ 097 || 0.56 | 0.95 1.0
F-SWQT | 0.73 1.0 1.0 072 1 1.0 1.0

the SWQT has a better overall performance compared to the
MMD? across all window sizes.

Other commonly used CPD evaluation metrics consider
detection error between the true and labeled change points
(e.g. mean absolute error, or mean squared error [17]). In
our simulated and real-world experiments, we found no sig-
nificant improvement in detection error-based metrics when
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FIGURE 4. Simulated CPD comparing the W1-DT (EDF/QF test) with the
WQT (Q-Q test). Sample output (top) of matched filtered WQT and W1-DT
output for simulated data with and without cubic transformation. We note
the two traces for the F-WQT are coincident. AU-PRC values (bottom left)
averaged over 10 runs. Clearly, as all 3 change points are labeled as true
changes, the WQT vastly out-performs the W1-DT. Comparison of WQT and
W1-DT (bottom right) on uniform distributions with shifting supports
computed based on their definitions in Section IV-C, Section IV-D exhibiting
the differences in sensitivity of the two tests in different regions.

applying the matched filter. For example, in this single change
point simulated context, for WQT n = 150, the MAE for the
unfiltered and filtered is 46.8 and 45.5 samples respectively.

Since the data matches all of our assumptions, we are also
able to empirically verify the peak-preserving property of the
matched filter as shown in Fig. 1, where the data is generated
by sampling IID alternating between two normal distributions
N(0, 1), N(0.25, 1) with a window size of n = 150.

The difference between the WQT (Q-Q based), with the
WI1-DT (EDF, QF based), for CPD are highlighted using
simulated data in Fig. 4. In the simulated time series, at each
successive segment where the mean and standard deviation of
the data is doubled, the WQT detects each change with es-
sentially the same magnitude, thus a single threshold suffices
to detect these three change points as the relative change is
constant. Conversely, the change point response of the W1-DT
scales with the absolute magnitude of the change in the signal.
Furthermore, since the Q-Q is invariant to order-preserving
transformations, the change point statistic of the WQT under
the cubic transform on the data remains identical but the W1-
DT statistics shifts drastically.

When comparing the WQT and W1-DT on uniform distri-
butions of shifting supports, Fig. 4 shows both the bounded
property of the WQT, saturating when the supports of the two
distributions become disjoint (d > 1), and the difference in
sensitivity (slope of the response) of the two tests. Straightfor-
ward calculations show that the W1-DT is equally sensitive
(constant slope) regardless of the shift in 4. In contrast, the
WQT shows different regions of sensitivity. Specifically, the
WQT it is more sensitive to small changes in support but
is insensitive to any additional change once the supports are
disjoint. While the scales of these two tests differ as evident
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from the left and right axes labels, all evaluation in this pa-
per is based on local maxima and precision-recall curves the
structure of which is independent of the absolute amplitude of
the test statistic. We return to this point in the discussion of
the real-world data below.

In summary, two properties of Q-Q tests for CPD are (1) the
ability to use a single threshold to detect changes at different
scales, and (2) the high sensitivity of these tests to small
changes in data support. In some applications where these
characteristics are desirable, change point methods built on
Q-Q tests will provide better results as seen from the clear
benefits in AU-PRC in Fig. 4. However, in cases where per-
haps the absolute magnitude of the change significant, tests
based on the EDF or QF would produce better results. For
comparison, the reported results in the table of Fig. 4 uses
all three change points as true change points. If only the
change with the greatest magnitude (that is, the third one)
was considered a “true” change, the performance would be
reverse with an AU-PRC of 0.256 for the F-WQT and 0.687
for F-W1DT.

C. REAL-WORLD DATA
We compare the filtered and unfiltered versions of the sta-
tistical tests described in this paper with prior work using
identical windowing parameters where applicable. The M-
statistic [3] is a sliding window CPD algorithm based on the
MMD. BOCPD-MS [44], is a parametric Bayesian method
that extends [2] through model selection. Here we utilize
the algorithms default parameters® and set the change point
statistic as the log probability that the run length equals zero.
RuLSIF [3] uses direct density ratio estimates between sliding
windows.* KL-CPD [45] applies the MMD on sliding win-
dows with a kernel trained as a neural network in a supervised
setting. We note that KL-CPD is the only supervised method
included in our evaluation. In this supervised setting, since
data is required for training and validation, KL-CPD is tested
on a subset of the available evaluation data. The default setup?
is used where 60% of the each sequence is used for training,
20% for validation, and 20% for testing. Therefore, compari-
son of KL-CPD to all other unsupervised methods should be
considered carefully. To each of these methods, we remove
duplicate peaks within § samples of each other.

To provide a detailed analysis of performance, we plot the
PR curve for each method evaluated on the following datasets:

HASC-PAC2016 [14] n = 200, § = 150, € = 150: A raw
dataset that consists of over 700 three-axis accelerometer se-
quences sampled at 100 Hz of subjects performing six actions:
‘stay’, ‘walk’, ‘jog’, ‘skip’, ‘stairs up’, and ‘stairs down’. The
92 longest sequences where each of the six actions are rep-
resented are used for evaluation. Time series have an average
length of 17,775 samples and 15.2 change points.

3Code from https://github.com/alan-turing-institute/bocpdms.
“4Code from https://riken- yamada.github.io/RuLSIE.html.
3Code from hitps://github.com/OctoberChang/klcpd_code.
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FIGURE 5. Precision vs recall evaluated on HASC (left column, window size n = 200), MASTRE (middle column, n = 200), and Beedance (right column,
n = 20) benchmark tasks. For each dataset we compare (top row), unfiltered (dashed) and matched filtered (solid) statistics using SWQT, WDT, MMD?, and
KS statistical tests. We also compare (bottom row) the matched filtered statistic with results from using the M-Statistic, RulSIF, BOCPD-MS, and KL-CPD

(supervised). Our proposed matched filtered versions (denoted with prefix “F-") do not require duplicate detection post-processing. The unfiltered
versions (denoted with prefix “5—") are post-processed to remove any detections within 5 samples (HASC 5 = 150, MASTRE 3 = 150, Beedance 3 = 16).

MASTRE [15] n = 200, § = 150, € = 150: In this propri-
etary dataset, soldiers move between a series of stations to
perform various physical tasks. The nature of the tasks varies
from marksmanship to aerobic exercises. Subjects are instru-
mented with a three-axis accelerometer sampled at 100 Hz,
and change points are labeled from video as the subject tran-
sitions into and out of tasks. A total of three time sequences
were evaluated with an average length of 92,097 samples and
65.3 change points

Beedance [16] n =20, § = 16, € = 16: A dataset con-
taining movements of dancing honeybees who communicate
through three actions: “turn left”, “turn right” and “waggle”.
A total of 6 time sequences are evaluated, each one containing
3-dimensional signal of the X,Y location and heading angle of
the bee as captured in an overhead image. The time series have
on average a length of 787 samples, and 18.8 change points.
We obtained the positions and angles from the original data
release.

For datasets with multiple dimensions, methods inherently
defined for univariate signals (X[f] € R) are extended to
higher dimensions by averaging their respective test statistic
over each dimension. This applies to WQT, W1-DT, KS, and
RuLSIF.

D. REAL-WORLD RESULTS

For HASC dataset, where the window size is large (n = 200),
the left column of Fig. 5 shows the improvement in perfor-
mance provided by the matched filter. At each possible fixed
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recall, there is consistently about a 5% increase in precision
with the matched filter applied up to a recall of about 0.78,
indicating that in this region, the matched filter decreases false
positives without increasing false negatives. However, recall
values past a certain point are not achievable by the matched
filtered methods under the given algorithm parameter n and
evaluation parameter €. This is especially true as the threshold
n becomes small. In this regime, the stochastic nature of the
unfiltered test statistics often produces what are essentially
spurious, local maxima someplace within ¢ of a true change
point. The matched filter however serves as a low-pass filter,
removing these peaks resulting in recall values less than unity.
In these cases, the higher achievable recall of the unfiltered
statistical tests is attributed to the prevalence of local maxima
due to randomness rather than the inherent properties of the
test. Interestingly, the best-F1 scores are comparable between
the filtered and unfiltered methods in the HASC dataset, and
are achieved around where the two curves cross. Thus, up to
a certain recall, the application of matched filtering improves
detection precision and F1 score. Past this recall, only achiev-
able by unfiltered methods, the use of matched filtering does
not provide benefits in terms of F1 score.

For MASTRE, the performance of matched filtered statis-
tics in Fig. 5 (middle column) compared to unfiltered methods
shows similar trends to HASC where for lower recall values,
matched filtered statistics consistently produce higher preci-
sion values. However unlike HASC, the recall value at which
the filtered methods fall off differ significantly between each
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of the test statistics. This discrepancy is due to the differ-
ence in how true change points are labeled between the two
datasets, discussed in depth below.

Referring to the right column in Fig. 5, for the Beedance
dataset, the matched filter does not seem to offer clear benefits
compared to the baseline test statistic signals. In fact, we
might expect this because the small window size required
for this dataset (n = 20) likely means we are far from the
asymptotic regime of n — oo in which the matched filters
are derived. We thus include this result as a known limitation
as we expect matched filters to show benefits only for large
window sizes.

As seen in the bottom row of Fig. 5, compared to prior
work, the relative performance of sliding window statistical
tests discussed in this work varies depending on the dataset.
For the HASC data, all statistical tests show better results
compared to all other evaluated methods. In the cases of
MASTRE, RuLSIF shows the overall best results. Notably,
mStat performs comparably to the unfiltered SWQT for both
HASC and MASTRE. For Beedance, KL-CPD (supervised)
shows the best results. Of the prior methods evaluated, Rul-
SIF performs most consistently over the three datasets.

Furthermore, we note that for the MASTRE data set, there
is a significant improvement in the SWQT compared to the
WQT averaged across each dimension whereas for HASC,
there is only a slight improvement. From this we can deduce
that the change points of HASC can be observed through the
analysis of each dimension independently, whereas for MAS-
TRE performance is improved by considering vector valued
methods.

The HASC and MASTRE datasets represent human activity
measured through accelerometry under different contexts. The
HASC experiment measures human activity in a controlled
setting where subjects are instructed to hold an action until
switching to another one of the six allowed actions. On the
other hand, MASTRE is collected in a task-oriented setting
where transitions between individual actions are more fluid,
which is one reason why overall performance on MASTRE is
lower. Furthermore, while there are running and walking tasks
similar to that of HASC, the MASTRE data also encompass
changes where the individual is not moving their feet, such as
standing-to-kneeling posture changes.

The characteristics of the HASC and MASTRE data sets
noted in the previous paragraph lead to differences in perfor-
mance among the tests. In the HASC precision-recall curve,
the performance of the statistical tests varies. Given a certain
recall value, W1-DT and MMD? have the highest precision,
KS is in the middle, and the WQT and SWQT generally have
the lowest precision. The WQT and SWQT results arise from
the fact that the Q-Q tests on the HASC data false alarm
more often compare to the other tests. Although the WQT
and SWQT achieve a slightly higher recall (for example at
a precision level of 0.45), this benefit does not outweigh the
loss in precision. However, for the MASTRE PR curves, the
story is different. For low recall values (0.2-0.6) there is a
similar trend where the MMD? and KS have higher precision
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values than the SWQT. However, the discrepancy between
the recall values (for example at a precision level of 0.3)
is much more pronounced where SWQT achieves a recall
significantly higher than that of the other statistical tests, es-
pecially the W1-DT which overall performs very poorly on
this dataset. These differences in performance of the W1-DT
and the WQT/SWQT between HASC and MASTRE can be
explained by two factors: (1) the properties of Q-Q tests as
discussed in the context of simulated data and (2) how true
labels are assigned in the respective datasets.

As seen from the sample HASC time series (Fig. 6 left) the
WQT generally has peaks of equal height whereas the peaks
of the W1-DT scale with the observed magnitude of changes.
This behavior is consistent with the discussion surrounding
Fig. 4 concerning the manner in which these tests respond
to changes that vary in scale. Furthermore, while it appears
that the WQT false alarms in the stationary regions where
the subject is motionless, closer inspection into one of these
regions (Fig. 6, middle) shows that the signal has a slight shift
in mean perhaps due to a shift in posture. As discussed above
(Fig. 4), the WQT is highly sensitive to these small change in
the support of the data resulting in a clear peak in the Q-Q test
statistic in Fig. 6. This change in the data is small relative to
others across the full time series. Thus, consistent with the
relative insensitivity of EDF/QF tests, it is not reflected in
the W1-DT. The ground truth change point labels of HASC
focuses more on the large-scale activity changes, therefore
change points are not labeled for these small changes, which
contributes to the poor precision of the Q-Q tests.

Change points in the MASTRE dataset correspond to enter-
ing and exiting stations where tasks are performed, not neces-
sarily based on specific action the subject is taking. Therefore,
true change point labels correspond to both large changes
in action and subtle changes in posture (Fig. 6, right); the
latter of which would not be labeled as a true change point in
HASC setting. As shown earlier and seen in Fig. 4, the WQT
is sensitive to both these changes, and therefore achieves a
higher precision and recall.

These two human activity datasets provide an example of
how the application dictates the suitability Q-Q tests. We have
shown how the WQT is particularly sensitive to small changes
and support, and that Q-Q tests equally detect changes at
different scales. In applications where these properties reflect
true change points, as is in the case of MASTRE, Q-Q tests
will yield better results. However, in applications similar to
the HASC dataset, where subtle shifts in posture are con-
sidered false alarms, the W1-DT would be preferred as they
would be dwarfed by the larger changes in the time series.

V1. CONCLUSION AND FUTURE WORK

While many methods of change point detection have been
proposed over the years, the issue of change point localization
for a noisy distribution-free statistic has not been thoroughly
considered. To address this issue, we introduce asymptotically
matched filters. For various non-parametric tests that have
been used as the foundation of multiple CPD algorithms, we
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FIGURE 6. Sample output for HASC-PAC2016 (left, middle) and MASTRE (right) human activity accelerometer data sequence (grey) and the ground truth
change points (yellow), with the filtered (solid) and unfiltered (dashed) SWQT (blue), and W1-DT (purple). For comparison, each statistic is normalized
based on the maximum value of their respective unfiltered statistic over the entire sequence. While it appears that the SWQT false alarms frequently
(left), zooming into one such region (middle) shows a small shift in support resulting in a change in the data at a smaller scale which HASC does not
consider a true change point. The example sequence from the MASTRE data (right) shows a similar small shift that is a true change point that are

detected by the SWQT but not the W1-DT.

derive these filters under the simple observation that sliding
windows over a change point will cause samples from one
window to be drawn from a mixture distribution. With asymp-
totic analysis, we are able to derive the expected response
of the test statistic in the region of a change point which is
then used to compute the matched filter in the operational
(non-asymptotic) case. While in this paper we only consider a
subset of tests, the proposed analysis methodology for deriv-
ing matched filters can be applied to other methods in change
point detection.

The discussed framework for change point detection
through the use of a two-sample test of sliding windows is
both simple and easily deployed in practice. Once a test statis-
tic is chosen, the only hyperparameters required are the win-
dow size and detection threshold. We build on this methodol-
ogy by applying matched filtering which results in improved
change point precision, and also simplifies the of the process
of identifying change points given a statistic, removing any
need for ad-hoc processing to remove duplicate peaks. While
similar smoothing effects can be achieved from other low-pass
filters, these filters are not guaranteed to be distribution-free
or peak-preserving which are properties of matched filters
that ensure that statistical guarantees are preserved for statis-
tics where (5) applies. Furthermore, if the test statistic is
itself distribution-free, these guarantees are preserved with a
constant threshold. While simple, this method of detecting
changes points by testing for changes in distribution through
two sample tests demonstrates competitive performance with
other state-of-the-art approaches.

In understanding the trade-offs between various CPD meth-
ods, we build on two properties of Q-Q based statistical tests;
namely their invariance to order-preserving transformations
and their sensitivity especially to small changes in support of
the data (or equivalently, small changes in the mean). For CPD
applications these properties result in differences in response.
Specifically, Q-Q tests can detect changes at different scales
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of the data using a single threshold while tests based on quan-
tile functions or empirical distribution functions tend to be
“tuned” to changes of a specific magnitude. As evidenced by
our real-world data examples, these differences can be lever-
aged to properly select the appropriate test for an application,
and certainly motivate further rigorous investigation.

Despite the fact that the derivations for the filters in this
paper assume that the data is IID, based on real-world results,
we see that the benefits still hold on non-IID data when the
window size is sufficiently large. Nonetheless, in future work,
we hope to consider analysis under non-IID conditions and
evaluate if matched filters can be applied to other change
point methods. Furthermore, while the primary application
of our work focuses on activity data in an offline setting, it
is amenable to online applications where some delay can be
tolerated. To this end, future work would be needed both in
terms of simulation analysis and a sequential mathematical
framework for quantifying the performance of our methods
in terms of common online CPD metrics such as average
run length, and detection delay. Additional applications of
this work can be explored in both offline and online contexts
with similar data models including but not limited to sensor
networks [46], and sonar systems [47].

APPENDIX
A. MATHEMATICAL BACKGROUND
The empirical distribution functions, quantile functions and
quantile-quantile functions (1), (3) discussed in this work are
each cadlag functions (right continuous functions, with left
hand limits) over their respective domains. Equipped with
the Skorohod metric, the set A of all cadlag functions on
a compact domain is a separable metric space. Let P,, P be
probability measures belonging to (X', S) where S represents
the Borel o -field generated by open sets.

Weak convergence on metric spaces is defined as,
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Definition [35] P, —, P iff fodP,, — fodP for all
f € C(X), where C(X') denotes the set of all bounded, con-
tinuous, real functions on X.

To understand the behavior of stochastic processes under
mappings, we utilize the continuous mapping, Slutsky’s, and
the Portmanteau theorems stated below.

Theorem A.1: Continuous Mapping Theorem: (2.7 from
[33]), Suppose there exists a sequence of measures P, and P
that belong (X, S). Given a mapping h from X to X’ such
that i(P,), h(P) € X', and Dy, is the set of discontinuities of
in X, if P, =, P, and PD, = 0, then P,h—! —,, Ph~!

Theorem A.2: Slutsky’s theorem: (1.4.7 from [35]), If
P, -, P and Y, —, ¢ where X € & is separable, and c is
a constant, then (P,, Y,) — (X, ¢). Furthermore, if X is a
topological vector space then,

i) P, +Y, =y P+c
il) PY, = cP

iii) P,/¥Y, —w X/c  provided ¢ # 0.

Theorem A.3: Portmanteau theorem: (2.1 from [33]) For
probability measures P,, P on (X,S&)), the following are
equi\e'allv:nl:6

i) X, =, P
ii) E[f(X,)] — E[f(X)] for all bounded uniformly con-
tinuous f

We state the Glivenko-Cantelli theorem often used in con-
junction with the Kolmogorov-Smirnov test. Here, — 4, de-
notes almost-sure convergence which is a stronger condition
than weak convergence.

Theorem A.4: Glivenko-Cantelli Theorem: (19.1 from
[34]), If X1, X>, ... are IID random variables with distribution
function F, then ||F, — F||oc — s O-

Finally, we state some recent results for the Wasserstein
quantile test.

Theorem A.5: (From [31]) For CDF’s F, G with respective

-1
densities f,g such that f(;— ((“;))) <, for all x € [0, 1], and
for empirical distributions F, and G,, of n, m samples respec-

= i
tively, where .- = A € [0, 00) as n, m — o0,

nm

— (GnE7() = GETI())

[ A -1 [ 1 gF1(-)
—w mBI(G'F )+ mWBZ(')

2n

where Bj(x), B2(x) are independent Brownian bridges on the
interval [0,1].

With this background we prove the asymptotic results for
our various statistical two-sample tests.

SWe only state 2 of the 5 equivalent statements of the theorem.
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B. PROOF OF THEOREM 1: WASSERSTEIN-1 DISTANCE IN
R

Proof: The W1-DT can be expressed as,

D (P, Go) = [ 15 = Gy dx. @2
c — —
An(x)
By Glivenko-Cantelli,

sup [Fp(x) — F(X)| —as 0 (23)
sup [Gn(x) — G(X)| —as 0. (24)

With the triangle inequality,
0 < sup |(F,(x) — F(x)) — (Gp(x) — G(x))| (25)
(26)

= sup |An(x) — (F(x) — G(x))|
< sup | (Fa(x) — F(xX)) | 4 [ (Ga(x) — G(X)) | —>as 0. (27)

Therefore,
Ap(x) =45 (F(x) — G(x)) (28)

Since almost sure convergence implies weak convergence,
we can apply the continuous mapping theorem for the function

Je f(x)dx [48] (Theorem A.1)

Dyw1(Fyp, Gy) = fc 1A, (0)ldx

- [g (P(x) — Q(x))\dx

= mdy1—at(P, Q). (29)

O

Since F,, G, map from C — [0, 1], the distance (22) is

also bounded. By Theorem 1 and the Portmaneau theorem,
it follows that,

E [Dyi—at(Fy. Gp)| = w m1dwi—at (P, Q).

Lastly, we see that the W1-DT is symmetric since |F,(x) —
G (x)| = |Ga(x) — Fp(x)].

(30)

C. PROOF OF THEOREM 2: WASSERSTEIN QUANTILE TEST
Proof: By definition of the WQT [31],

1 1! _1 2
L Dot (Fpy Gy = = f (F(G;'(x)) — x)2dx
n 2 0

1 ! —1 —1
=5 fo ( (G, ) — F(G™ )
Ap(x)
2
+(F(G7'(x)) —x)) dx. (31)
e — e —

B(x)
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For a given P and Q, B(x) is deterministic. To A, we apply
Theorem A.5,

o 1 =y gF~'())
\5420) 2w [ 3BIG o F ())+‘/ TTED
(32)

Given that the sequence \/% — 0, we apply Slutsky’s theorem
to (32),

Ap —>w On (33)
where 0,, denotes a function that is O over its domain.
Therefore, since F = miP + (1 —m)Q,and G = Q,
An+B—y, F(GT'(x)—x (34)

(An(®) + BX))2 =y (P + (1 —71)Q) 0 07" (x) —x)’
= (JnP (') +2(0'w)
2
-mQ (') —x)
=2 (P(Q7') —x)°

Therefore, by the continuous mapping theorem for the contin-
uous function fol f(x)dx [48],

(35)

—qur(Fn,Gn) —w _[ Q (x)) _I)

= {dygu(P, Q). (36)

[ |

Once again, because Fj,,G,:C — [0,1], the WQT is

bounded. Thus, by Theorem 2 and the Portmanteau Theorem,
it follows that,

1
E [;DW(FH, Gn)] — ldyg(P, Q). 37)

In this proof we used Slutsky’s theorem for the sequence
\/% to asymptotically remove an O(1) term A,. This suggests

that for a finite window size n, E[Dyg (F, Gn)] = n:rrlzdwqf +
O(1). We note that this O(1) is not distribution-free, but is
bounded given that the conditions of the theorem are met.
However, we note that this term only becomes a significant
factor when n and dyg are small.

Operationally, we estimate the O(1) term by considering
where dyg (P, @) = 0 (or P = Q), since it is under this condi-
tion where its effect is most prominent. This case is identical
to the null hypothesis of the WQT. [31] shows that under the
null hypothesis that P = Q. Dyge(Pn, ) = [ B(x)%dx,
where B is a Brownian bridge on [0,1], and [49] shows
that E[ fol B(x)zdx] = pp, ~ 0.166. Therefore, the expected
asymptotic behavior of the WQT can be approximated as
follows,

E [qut(Fm Gﬂ)] ~ nrr]zdwqr + uB,- (38)
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In our simulation and real-world tests, the bias term is re-
moved prior to filtering.

To prove that the WQT is asymptotically symmet-
ric, it suffices to prove that _fOI(F(G“(x)) —x)%dx =
fol (G(F~1(x)) — x)2dx. This result can be attained by ap-

plying the inverse function theorem [50] to F (G‘l(x))2 and
G(F~'(x))%.

D. PROOF OF THEOREM 3: SLICED WASSERSTEIN
QUANTILE TEST
Proof: From the definition of the SWQT,

1
- swqt(fn, gn)

[z ) (@

where F,, G, denote sets of n IID samples, F,?, Gﬁ denotes the
one-dimensional CDF attained from projecting the samples of
Fn, G, onto the unit vector 8, and §é-1 represents the uniform
measure over unit circle in R¢. Once again, given that the
distributions of the samples of F,, G, are mP + (1 —m1)Q
and Q respectively, we apply Theorem 2 to the inner integral,

) (x) — x)z dxdo (39)

1
E swqt(fm GJ'.I)

—w

fsd 1 2
2
.

- JT] dswqt

P" o (QG)_I) (x) —x)zdxdﬂ
dugt (P", 0%)do
1

(40)

dswqr €Xists because 1) Pa, Q9 are continuous with respect
to 6 because P, Q are continuous, and 2) dyq (PG, QB) is
bounded for all & since P, Q live on a compact set. ]

By the Portmanteau theorem, E[%Dswqf (Fn, Gu)l —
:rrlzquf (Fus Gn). In Appendix C we showed that in the opera-
tional case where the window size n is finite, E[Dyg (P, Q)] =~
:rrlzdwqf(P, Q) + O(1), where the O(1) term arises from the ap-
plication of Slutsky’s theorem. Applying the same reasoning
to (40), we have that,

EDuuqeFro G~ [ | ncdduq (P, &) +0(1) .
(41)

Therefore,  E[Dswgt(Fn, Gn)] = 72 dswgt (P, Q) + [ga-1
O(1)d®. We estimate the O(1) term by considering the
expected value of the WQT under the null hypothesis that
P = Q. In this case, E[dyg (P, P%)] = g, for all , thus it
follows that f gd—1 O(1)d8 = pp,. This extra factor is treated
as a bias that is removed prior to matched filtering.

Therefore, the expected asymptotic behavior of the SWQT
can be approximated as follows,

E [Dswqt (-Fm Gn )] ~ nﬂlzdswqt + 1B, (42)
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FIGURE 7. Decomposition of the expected value of the empirical MMD? between 7, and G, in (48). dpp = Ep.plk(p, p')], dpg = EP x Q[k(p. q')].

dgq = EQ x Q[k(g, g")] where p; ~ P, and q; ~ Q.

Since the WQT is asymptotically symmetric, the SWQT is
also asymptotically symmetric.

E. PROOF OF THEOREM 4: KOLMOGOROV-SMIRNOV
Proof: From (16), and the Glivenko-Cantelli theorem (Theo-
rem A.4),

Dis(Fn, Gn) = sUp |Fa(x) = Gu(x)]
—as SUp [F () = G)l. (43)
Then, since F = m P + (1 — 71)Qand G = Q,
Dis(Fa, Gn) = as 1 5Up |P(x) — O(x)]
= mdks(P, Q). (44)
o

Therefore, since almost sure convergence implies weak
convergence, it follows from the Portmanteau theorem that the
expected value of the KS tests converges to,

E [Dks(Fn, Gn)] — midks(P, Q) 45)

The symmetric propoerty of the KS tests is easily seen since

[Pa(x) — On(xX)] = |@n(x) — Pu(x)].

F. PROOF OF THEOREM 5: MAXIMUM MEAN
DISCREPANCY SQUARED

Proof: Given a positive definite kernel, k(x, y), and follow-
ing the setup as shown in Fig. 2, consider two sets of n
samples F, = {f1, ...fa} Gn = {1, .., gn}. Fn Will have min
samples drawn from P and (n — mn) samples drawn from
Q whereas G, will have all n samples drawn from Q. Since
m=(1- f_Tr ), min is always an integer for integer values of
t. We denote samples that are drawn from P as p; and samples
drawn from Q as g;. Therefore,

-Fn = {pl,---spn|mqn|n+ls
gﬂ = {qis "'7q;|}'

We decompose the unbiased empirical estimator of the
MMD? distance as stated in (19) between F,,, G, as visualized

(46)
47)

'Jqﬂ}
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in Fig. 7.

Dmde (Im gn)

1

=—— || X kpird+ Y Kpig))
i=l..mn i=1..mn
j=17{1|]'.l j=7:|n+1|...n
i#]
+ ) kpagp+ Y. kg qj))
i=mn+l..n i=mn+l..n
j=l..mn j=}rl'n—i‘-l...n
i#j
-2 Y kpidp+ ). kai.q)
i=l..mn i=mn+l..n
j=l..n j=l.n
i#] i#]
+| D kd.q) (48)
1:=]1...n
j=l..n
i#] J
We define  Epyplk(p, pP)l =dpp, Epxolk(p,q)l =
]EQXP[k(q? PF)] = dpq, and EQxQ[k(q,s Cj’)] = dqq- The
expectation of the estimator becomes:
E[D g2 (Fn, Ga)l
1 2
= W2 —n) ([Grin)® — min] dpp
+ [271(1 = m)n? — 2(min® — min)] dpq (49)
+[(1 =m)*n* — (1 —7i)n
— 2((1 —7)n? — (1 — 7)n) + (n* — n)] dgq)
(n*n} — min)
= (et dag — 2pg) (50)
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nlgg(}E I:Dmdz(fn, gn):l = 77 (dpp + dgq — 2dpq)

=nld, p(P,Q). (51)

O
The symmetric property of the MMD? follows from the fact
that k(-, -) is symmetric.

G. MAXIMUM VALUE FOR WASSERSTEIN QUANTILE TEST
From the definition of the WQT,

1
Dy (Fy, G,) = ; f . (F (G'@)) —x)dx.  (52)

The quantile-quantile map F(G~'(x)) is a non-decreasing
function where F(G~1(0)) =0 and F(G~1(1)) = 1. There-
fore, the WQT is maximized in two cases: when F (G~ (x)) =
O forallx € [0, l)orF(G_l(x)) = lforallx € (0, 1]. Ineach
case,

n
5
This occurs only when the 0-th quantile of F maps to the 100-
th quantile of G or vice versa.

Wagr = (53)
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