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Abstract

Most phylogenetic analyses assume that a single evolutionary history underlies one gene. However, both biological
processes and errors can cause intragenic conflict. The extent to which this conflict is present in empirical data sets
is not well documented, but if common, could have far-reaching implications for phylogenetic analyses. We examined
several large phylogenomic data sets from diverse taxa using a fast and simple method to identify well-supported
intragenic conflict. We found conflict to be highly variable between data sets, from 1% to >92% of genes investigated.
We analyzed four exemplar genes in detail and analyzed simulated data under several scenarios. Our results suggest that
alignment error may be one major source of conflict, but other conflicts remain unexplained and may represent bio-
logical signal or other errors. Whether as part of data analysis pipelines or to explore biologically processes, analyses of
within-gene phylogenetic signal should become common.
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The sequencing and analysis of whole genomes, transcrip-
tomes, and thousands of individual genes has illustrated
that, throughout the tree of life, genomes are a composite
of evolutionary histories. This heterogeneity is a source of
biological insight (Mendes et al. 2019) as well as a source of
computational and analytical complexity (Kosakovsky Pond
et al. 2006a, 2006b; Boussau et al. 2013; Smith et al. 2015).
Though heterogeneity is found across the genome, research-
ers have primarily focused on conflict among trees inferred
using individual genes, in many cases limited to combined
exons, and the inferred species tree.

Driven primarily by an interest in identifying recombi-
nation break points, over the past two decades, researchers
have examined some sources of heterogeneous topological
signal within single-gene alignments. To facilitate this, sev-
eral methods have been developed (e.g., Salminen et al.
1995; Husmeier and McGuire 2003; Kosakovsky Pond
et al. 2006a, 2006b; Inagaki et al. 2006; Hobolth et al.
2007; Boussau et al. 2009; Suchard et al. 2002; An�e 2011;
Allman et al. 2017). Recombination plays a large role in
population genetics. However, at the species level, the im-
pact of recombination on phylogenetic inference remains
debated (Edwards 2009; Lanier and Knowles, 2012; Wu
et al. 2013). Scornavacca and Galtier (2017) showed that
exons within the same gene may present different geneal-
ogies, a pattern confirmed by Mendes et al. (2019). Despite
this proliferation of methods, many are not tractable for
phylogenomic data sets and/or assume the conflict arose
from a biological process.

Although biological processes can introduce phylogenetic
heterogeneity within gene sequence alignments, given the

data set size and automated nature of genomic analyses,
systematic error may also contribute to intragenic phyloge-
netic conflict in empirical data sets. These alignment and/or
assembly errors have become more common as data sets
have increased in both taxon sampling and regions of the
genome analyzed. The volume of data has made automation
a requirement of any phylogenomic pipeline. Inevitably, errors
make their way into alignments and, if not filtered, can lead to
phylogenetic conflict and downstream errors (Song et al.
2012; Gatesy and Springer 2013; Brown et al. 2017; Walker
et al. 2018).

Regardless of the source, incorrectly modeling intragenic
conflict will result in inaccurate phylogenies, biased branch
lengths, and erroneous selection analyses, among other errors.
Importantly, how common mixed signal is within genes is still
unknown. Whether due to computationally taxing methods
or because researchers assume that errors will be over-
whelmed by the signal from hundreds of other genes (but
see Brown et al. 2017; Shen et al. 2017; Walker et al 2018),
analyses of intragenic conflict are not common. Here, instead
of modeling the biological processes that generate conflicting
signal (e.g., recombination), we explore a rapid procedure that
allows users to assess violations of the underlying assump-
tions of phylogenetic reconstruction (e.g., mixed signal). We
evaluate this approach using simulated data to help isolate
and identify key aspects of phylogenetic analyses that con-
tribute to conflict within genes. We examine several empirical
data sets using a sliding-window approach and characterize
the extent to which single gene regions show evidence
for conflicting histories across a broad range of phylogenetic
data sets.

Letter

� The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved.
For permissions, please e-mail: journals.permissions@oup.com

3380 Mol. Biol. Evol. 37(11):3380–3388 doi:10.1093/molbev/msaa170 Advance Access publication September 8, 2020

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/37/11/3380/5870841 by guest on 09 August 2021



Materials and Methods

Empirical Data Sets
We gathered a broad sampling of nucleotide data sets across
the tree of life. Many of these include a mix of exons, introns,
and other genetic elements. For simplicity, when we refer to
gene, we mean a locus or set of genetic elements but not
necessarily a complete or protein-coding gene. This conforms
to typical naming conventions such as “gene tree,” which may
or may not refer to the tree of a coding sequence or complete
gene. The data sets examined here included those designed to
analyze contentious relationships broadly across mammals:
MAM1 consisting of 10,259 genes (Chen et al. 2017); MAM2
consisting of 424 genes (Song et al. 2012 as refined by Mirarab
et al. 2014); and MAM3 consisting of 183 ultra-conserved
element (UCE) loci (McCormack et al. 2012). We analyzed
an insect data set (BUGS) focused on analyzing relationships
in the Strepsiptera consisting of 4,485 genes (Niehuis et al.
2012). We examined three vertebrate data sets: VERT, con-
sisting of 1,113 genes (Wang et al. 2013); FISH, a data set
assembled to understand the relationships among ray finned
fish, consisting of 1,105 genes (Hughes et al. 2018); and FROG,
an data set of frogs, consisting of 95 genes (Feng et al. 2017).
We analyzed three plant data sets: PLAN, a data set generated
to investigate land plant evolution, consisting of 852 genes
(Wickett et al. 2014); MOS (Mitochondria [M], Nuclear [N],
Plastome[P]), a data set generated to analyze moss ordinal
relationships, consisting of three data sets of 40 (MOSM), 105
(MOSN), and 82 (MOSP) genes (Liu et al. 2019); and CARN, a
carnivorous plant data set, that consisted of 1,237 genes
(Walker et al. 2017). Finally, we gathered a fungal data set
(FUNG) consisting of 2,256 genes (Pizarro et al. 2018). As a
result of missing data and short alignment lengths that pro-
hibited division into at least two 1,000-bp segments (or
500 bp for data sets with very small alignments), the number
of genes analyzed was often lower than the number from the
original study (table 2).

Identification of Multiple Trees within a Gene
For each data set, we examined the conflicting signal inferred
from segments of each gene. For most data sets we used
1,000 bp for the segment length to increase phylogenetic sig-
nal per segment and reduce gap only taxa within segments.
However, for data sets with generally shorter alignments in-
cluding FISH, FROGS, and MOSS, we considered a segment
length of 500 bp. Phylogenetic trees were calculated for the
entire gene and for each gene segment using IQ-TREE
(Nguyen et al. 2015), the GTRþC model of molecular evo-
lution, 1,000 ultrafast bootstrap (UFB) replicates (Hoang et al.
2018), and SH-aLRT (Guindon et al 2010) analyses. Although
the UFB has been shown to be conservative with at a cutoff of
95% (Hoang et al. 2018), with any relationship whose support
value is below that is inferred to have low support, our initial
analyses demonstrated that this still generated support
(BS � 95%) for some poorly supported relationships. To be
more conservative, we therefore calculated both SH-aLRT
(with a cutoff of 80% used) and UFB. We then compared
the segment trees with the maximum likelihood (ML) tree for
the entire gene and gene segments found to contain strong-
supported conflicting signal (UFB � 95% and SH-aLRT
� 80%), for any given relationship were extracted to be ex-
amined using the sliding-window approach described below
(fig. 1A). These analyses were conducted with the python
program phynd (https://github.com/FePhyFoFum/phynd).

Simulations
We tested the sensitivity of the approach described above for
type I error rate under a variety of scenarios and for positive
identification of conflict when present. To do this, we simu-
lated several alignments and analyzed them using our proce-
dure. Each simulation was replicated 100 times.

First, to test for false-positive identification under no to-
pological conflict, we simulated 25-taxon trees using pxbdsim
with a birth rate of 1 and a death rate of 0. We then scaled the
tree to a root height of 0.75 and simulated 3000 bp under JC

A B

FIG 1. (A) Analysis of gene segments and comparisons between gene segment trees and the gene tree recorded in the table. Light boxes show no
support in the gene segment for the node in the gene tree. Shaded boxes show support in the gene segment for the gene tree node. Dark boxes
exhibit conflict between the gene tree and gene segment. These are nonoverlapping segments. There are three unique topologies found with
segments 1 and 2 displaying the same topology. (B) Sliding window analysis for a more detailed look at where clades display well-supported conflict
or concordance (shown here) between the gene tree and the segment trees. Support for clades in the three unique topologies are displayed across
the sliding-window lengths. The sliding window has overlapping portions.
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with INDELible (Fletcher and Yang 2009) on the same tree.
We conducted a similar simulation to test the influence of
taxon sampling with 50-taxon trees and a root height of 1,
and another simulation to test the influence of gene length
with 25 taxa and 1,500 bp. To increase model complexity and
test for the impact of differing molecular models, we con-
ducted a simulation with 25 taxa, 3,000 bp and different GTR
models for first 2,000 bp and final 1,000 bp (0.6, 0.4, 0.2, 0.8, 1.2
with state freqs 0.3, 0.4, 0.1, 0.2 vs. 0.2, 0.4, 0.6, 0.8, 1.2 with
state freqs 0.1, 0.2, 0.3, 0.4), simulated on the same tree. Finally,
to generalize this, we conducted a simulation with 25 taxa,
3,000 bp and different, randomly parameterized GTR models
for each 1,000-bp segment. We generated GTR parameters by
random draws from an exponential distribution with scale ¼
1, with base frequencies drawn randomly from a uniform
distribution and scaled to sum to 1.

For methods that use information criterion to determine
the existence and location of breakpoints (Kosakovsky Pond
et al. 2006a, 2006b), sectional rate shifts may mislead inference
because fit will be improved by separate models, which none-
theless correspond to the same topology. We therefore con-
ducted simulations to test the sensitivity of our approach to
sectional rate shifts. We generated 25 taxon trees and
3,000 bp in 1,000-bp segments, where each segment received
a different randomly parameterized GTR model as above.
Each segment was simulated on the same tree but scaled
such that the root height was 0.5, 0.75 and 1.0, respectively.

Alignment error could induce false-positives. So, in addi-
tion to testing our method on simulated alignments, we also
simulated alignments under a variety of indel parameters and
realigned using MAFFT with defaults (Katoh and Standley
2013), FSA with defaults (Bradley et al. 2009) and PRANK (-
iterate¼ 5) (Löytynoja and Goldman 2005). We conducted
three sets of simulations using a negative binomial indel
model following the geometric distribution with the number
of successes (r¼ 1) and the probability of success (P¼ 0.25)
and differing insertion and deletion rates. In each case, we
generated a 25-taxon tree as above, and then simulated three
1,000-bp segments under a randomly parameterized GTR
model, alongside the specified indel model. In the first set
of simulations, the insertion and deletion rate per site were
equal, with 0.03, 0.01, and 0.005, respectively. In the second
two sets of simulations, the insertion and deletion rate dif-
fered. In the first simulation, the first segment had insertion ¼
0.03 and deletion ¼ 0.04, the second 0.02 and 0.01, and the
third 0.003 and 0.006. In the second simulation, the first seg-
ment had insertion ¼ 0.04 and deletion ¼ 0.03, the second
0.01 and 0.02, and the third 0.006 and 0.003.

We conducted simulations with conflict to test the efficacy
of our method. In each, we simulated alignments under a
single randomly parameterized GTR, but one segment was
simulated on a separate conflicting 25-taxon tree. We con-
ducted four simulations. In the first, we simulated 3,000 bp
where the last 200 bp were simulated under a conflicting
topology. In the second, we simulated 3,000 bp where the
last 500 bp were simulated under a conflicting topology. In
the third, we simulated 3,000 bp where the last 1,000 bp were
simulated under a conflicting topology. Finally, we simulated

1,500 bp where the last 200 bp were simulated under a con-
flicting topology.

Specific Examples
To examine the patterns of conflict within genes in more
detail, we identified four examples where the conflict identi-
fied was not a result of obvious errors (i.e., the examples are
not representative of all the inferred conflicts). For each gene
examined in more detail, we conducted several additional
analyses. First, we calculated site-specific lnL for each tree
constructed from the 1,000-bp segments, called the segment
trees. These values were then compared with site-specific lnL
of the maximum-likelihood tree constructed from the entire
data set. The site-specific lnL calculates the likelihood each
site has for an ML topology (Castoe et al. 2009), the likelihood
of each site can then be compared between multiple topol-
ogies to identify the degree of which the likelihood supports
one topology over another (Delta SS lnL). By performing this
analysis, we were able to examine the degree to which each
site supports the segment trees vs. the ML tree. This allowed
us to both quantify the degree of significance a site has for an
ML tree and whether the regions of genes show bias in their
support across topologies. We also conducted sliding-
window analyses summing the site-specific lnL of the segment
trees for 100-bp windows every 20 bp (fig. 1B). This analysis
was performed to help determine the significance of the con-
flict. For each window, we calculated the difference between
the maximum and the minimum lnL of the window and if the
difference was <0.05, we considered the window to be unin-
formative. Otherwise, the segment trees that were within 2
lnL of the maximum lnL were recorded for the window and
concordant edges were summarized using bp from gophy and
reported for each window (Edwards 1984). We considered
these edges to be supported by the window. Finally, we also
calculated sliding-window analyses of the base composition
to determine if there were any biases in the alignments.

To compare our analyses with previously published meth-
ods, we also assessed these specific examples with GARD
(Kosakovsky Pond et al. 2006a, 2006b) and phyML_multi
(Boussau et al. 2009). GARD fits individual Neighbor-Joining
trees to subsections of the alignment and compares the AICc
(AIC with correction for small sample size) of a model allow-
ing separate trees to that with a single tree. It then imple-
ments a genetic algorithm to search for extra breakpoints,
using the same test. Finally, GARD compares the AICc of the
model allowing separate trees for each subsection to the
model fitting the same tree but independent branch lengths.
phyML_multi uses a mixed model or phylo-HMM approach
to calculate the likelihood of the alignment over multiple
topologies, each inferred from a distinct segment of the align-
ment. It then uses the Viterbi and Forward-Backward algo-
rithms to assign breakpoints along the alignment. For GARD,
we used GTRþ C and repeated each run in triplicate. Because
the outgroup in the respective studies was rarely monophy-
letic for inferred segment trees, we arbitrarily selected one
member of the outgroup to root each tree. Most runs were
conducted in HYPHY v2.5.5, but some could not complete
due to errors in likelihood calculation, and these were instead
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conducted in HYPHY v2.5.8. In all analyses, the final AICc for
the separate tree model was much lower than the alternative,
suggesting that at least one breakpoint reflected a true incon-
gruence. For phyML_multi, we analyzed each gene using
TN93þ C, because GTR þ C was not available. Following
our segment trees (above), we optimized three trees for
EOG2711, 2798 and ENSG00000074803, and two trees for
131. We ran phyML_multi using both the mixed-model and
HMM approach, but due to issues with the python library
used to process results only mixed-model results are pre-
sented here. To further explore the possible impact of align-
ment error in these specific examples, we realigned each gene
with FSA (–nucprot) and PRANK (-iterate¼ 5-translate) and
analyzed with GARD and phyML_multi as above. For
phyML_multi, we optimized two or three trees as above for
comparative purposes, even if the alignment was longer. Some
phyML_multi analyses and analyses using the detailed sliding-
window method (in fig 2) failed due to the significant addition
of gaps in the altered alignment.

Results

Simulation Results
Simulations results are presented in table 1. Our approach
had little to no false-positives in simple simulations where no
conflict is present within genes. This included the situation
where data were generated under two different GTR models
or under three randomly parameterized GTR models. Our
approach also produced no false-positives in the presence
of rate shifts on the same tree within a gene. Incorporating
indels in the simulation process also led to few false-positives.
However, realignment of sequences simulated under indel
models increased false-positive rates. MAFFT and PRANK
realignments showed consistently more false-positive results
with FSA realignments showing fewer false-positives.
Simulations with conflict indicated that our method was sen-
sitive in cases where conflicting signal made up a large pro-
portion of the overall alignment, with 98% true-positives in
the case where 1,000 bp were generated under a conflicting
tree in a 3,000-bp alignment. Our method was less sensitive
when conflicting signal made up a smaller proportion of the
alignment, with only 19.5% true-positives in the case where
200 bp were generated under a conflicting tree in a 3,000-bp
alignment, but 51% true-positives in the case where 200 bp
were generated under conflicting tree in a 1,500-bp align-
ment. Generally, this demonstrated that this method was
effective in identifying conflict when present and with a
very low false-positive rate.

Empirical Data Sets
We analyzed 13 data sets for intragenic conflict and found
variable results regarding the proportion of those genes with
conflict (table 2). We noted that as taxon sampling increased,
so did the inferred conflict. This is, in part, expected because
as the number of taxa increases, complexity due to potential
errors or biology may be assumed to increase. Nevertheless,
this should be explored further. Several data sets consisted of
genes that could not be analyzed due to short alignment

length. We analyzed four genes in more detail to better doc-
ument patterns that are not the result of obvious data as-
sembly errors.

Invertebrate Example
We analyzed the EOG2711 gene in the BUGS data set (fig. 2A).
This gene did not exhibit the pattern using the more conser-
vative tests presented in table 2. Although several relation-
ships disagree between the segment trees and the ML tree,
the primary difference involves the placement of Bombyx and
relatives. In the ML tree, Bombyx is placed in a clade with
Aedes, Culex, and Drosophila. This is consistent with the sec-
ond segment tree but conflicts with the first and third that
have Bombyx sister to Pediculus and sister to Acyrthosiphon,
respectively. In comparison, GARD inferred between 9 and 15
breakpoints. The different segment trees represent a diversity
of topologies, with several conflicting in the placement of
Bombyx and Acyrthosiphon among others (supplementary
figs. S1–S3, Supplementary Material online). phyML_multi
had optimal support for three trees over 86 segments (sup-
plementary fig. S4, Supplementary Material online). Most seg-
ments supported a tree with a placement of Bombyx sister to
a clade ofAedes, Culex, andDrosophila, whereas the other two
trees placed Bombyx sister to Drosophila and differed in the
placement of Harpegnathos and Trilobium, among others
(supplementary fig. S4, Supplementary Material online).

Mammal Examples
We analyzed the ENSG00000074803 gene in the MAM1 data
set (fig. 2B). The primary conflicts involved the placement of
Mus, Canis, Sorex, and Erinaceus. The ML tree for the entire
gene placed Mus sister to a clade of seven taxa, Sorex sister to
Erinaceus, and Canis sister to Ailuropda and Mustela.
However, the first 1,000 bp place Mus sister to Canis and
the second 1,000 bp place Sorex sister to Mus. Over three
runs, GARD inferred between five and eight breakpoints,
with a diversity of topologies (supplementary figs. S5–S7,
Supplementary Material online). Several conflicted in the
placement of Mus, Sorex, Erinaceus, Canis, among others.
phyML_multi had optimal support for only two of three trees
over three segments, with the majority supporting a tree that
placed Erinaceus sister to Sorex and Mus sister to Echinops
(supplementary fig. S8, Supplementary Material online). A
small number of sites supported a tree placing Mus sister
to Canis and Erinaceus sister to Echinops (supplementary
fig. S8, Supplementary Material online).

We analyzed the 131 gene in the MAM2 data set (fig. 2C).
This gene was not flagged by the conservative tested noted
above and reflects an instance where detailed analyses can
identify more subtle intragenic conflict. The second segment
conflicted with the ML tree in the placement of Pan with
Gorilla instead of Pan with Homo. Triplicate GARD runs de-
termined support for three trees in only one analysis, with
one placingGorilla similar to the ML tree, and another placing
it close to Echinops and Dasypus, among other conflicts (sup-
plementary fig. S9, Supplementary Material online).
phyML_multi optimized support for two trees over 28 seg-
ments (supplementary fig. S10, Supplementary Material
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online). These trees similarly conflicted with one another and
the ML tree in primate relationships, with the first placing Pan
sister to Homo as in the ML tree, and the second placing Pan,
Gorilla and Homo in a grade leading to Callithrix and Pongo,
among other conflicts.

Vertebrate Example
We analyzed the 2,798 gene in the VERT data set (fig. 2D). The
primary conflicts between the trees based on 1,000-bp seg-
ments and the ML analyses involved the placement of croc-
odile and sea turtle. The ML analyses supported sea turtle
(Chelonia mydas) as sister to soft-shell turtle (Pelodiscus

sinensis). However, the second 1,000-bp segment supported
sea turtle as sister to crocodile. The dramatic site likelihood
shift at �1,100–1,300 bp (fig. 2D) was not associated with any
notable homology or alignment problem. GARD inferred be-
tween 17 and 19 segments with topologies varying in the
placement of sea turtle, soft-shell turtle, and Anolis (supple-
mentary figs. S11–S13, Supplementary Material online).
phyML_multi had optimal support for three trees over 10
segments, with most sites supporting one of two trees placing
sea turtle sister to Anolis, and a small number of sites sup-
porting a topology sea turtle sister to crocodile (supplemen-
tary fig. S14, Supplementary Material online).

A B

C D

FIG 2. Detailed analysis of within-gene conflict. Delta site-specific lnL (DSSLL) for each site and the set of segment trees estimated for each data set
are shown. Shades represent the DSSLL for the tree estimated from the denoted segments. Major deviations for contiguous segments are denoted
in B, C, D. Below each plot are the results for the sliding window analysis (using 100-bp segments every 20 bp). Major clades that differ in these
segments are shown above the shade in abbreviated Newick. Light gray denotes that there was no strong support for any clade in that gene section.
For (B) only one sliding-window analysis was conducted; however, we show how the support changes through the alignment for two focal clades
(top includes Sorex, whereas the bottom shows the shift to MusþCanis). (A) EOG2711 gene from the BUGS data set. (B) ENSG00000074803 gene in
the MAM1 data set. (C) 131 gene in the MAM2 data set. (D) 2798 gene in the VERT data set.
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For all examples, analysis of realignments continued to
exhibit breakpoints featuring similar conflicts with the ML
tree (supplementary figs. S15–45, Supplementary Material
online). For 131, all three GARD runs detected multiple break-
points in both FSA and PRANK realignments. For GARD, the
positions at which breakpoints were inferred were relatively
consistent, considering changes in alignment length and the
noted stochasticity between different runs. For phyML_multi,
realignment could induce important differences in the results.
For example, in the FSA realignment of EOG2711, most sites
supported a tree with implausibly long branch lengths fea-
turing Bombyx sister to Drosophila (supplementary fig. S21,
Supplementary Material online), whereas in the PRANK re-
alignment most sites supported a tree featuring Bombyx as
sister to Aedes and Culex (supplementary fig. S22,
Supplementary Material online). For 2798, realignment with
FSA led to inference of three segments supporting only two of

the three possible trees (supplementary fig. S44,
Supplementary Material online), whereas PRANK realign-
ment showed similar numbers of inferred segments (12 vs.
10) but dissimilar positions (supplementary fig. S45,
Supplementary Material online).

Discussion
We have demonstrated that intragenic conflict can be com-
mon in empirical data sets. Some of the data sets analyzed
here overlap in taxon sampling but vary greatly in the fre-
quency of intragenic conflict (e.g., MAM1 and MAM2) sug-
gesting that although biological processes may play a role in
generating conflict (Mendes et al. 2019), nonbiological errors
are likely to be a major source of incongruence. For example,
MAM2 has been thoroughly analyzed to uncover that errors
such as issues with homology exist within the data set assem-
bly (Springer and Gatesy 2018). Importantly, all the

Table 1. Results from Simulation Analyses of Differing Alignment Lengths Simulated under Different Models with Different Within-Gene
Conflicts.

Type Description % Genes with Conflicts

No conflict 25 t 3,000 bp JC 0
50 t 3,000 bp JC 0
25 t 1,500 bp JC 0

25 t 3,000 bp diff. GTR 0
25 t 3,000 bp random GTR 1

Rate shift 25 t 3,000 bp random GTR diff. t height 0
Indel 25 t 3,000 bp random GTR indel equal 1

25 t 3,000 bp random GTR indel equal: MAFFT 10 (10% bad MLa)
25 t 3,000 bp random GTR indel equal: FSA 0 (2% bad ML)

25 t 3,000 bp random GTR indel equal: PRANK 6 (10% bad MLa)
25 t 3,000 bp random GTR indel diff. 1 1

25 t 3,000 bp random GTR indel diff. 1: MAFFT 11 (18% bad MLa)
25 t 3,000 bp random GTR indel diff. 1: FSA 1 (6% bad MLa)

25 t 3,000 bp random GTR indel diff. 1: PRANK 18 (19% bad MLa)
25 t 3,000 bp random GTR indel diff. 2 2

25 t 3,000 bp random GTR indel diff. 2: MAFFT 12 (14% bad MLa)
25 t 3,000 bp random GTR indel diff. 2: FSA 2 (2% bad ML)

25 t 3,000 bp random GTR indel diff. 2: PRANK 18 (11% bad MLa)
Conflict 25 t 3,000 bp random GTR 200 bp conf. 19.5

25 t 3,000 bp random GTR 500 bp conf. 68.4
25 t 3,000 bp random GTR 1,000 bp conf. 98
25 t 1,500 bp random GTR 200 bp conf. 51

NOTE.—The percentage of replicates where the ML tree for the whole alignment was incorrectly inferred are indicated by “bad ML.”
aNot all these replicates overlapped with cases where multiple trees were detected.

Table 2. Results from Analyses of Individual Data Sets Including the Number of Taxa and Number of Genes in the Original Study, the Number of
Genes Long Enough to Analyze, and the Proportion of Those Analyzed with Conflict.

Data Set No. of Taxa No. of Regions No. of Analyzed Regions % With Conflict

MAM1 (Chen et al. 2017) 22 10,259 3,666 6.5
MAM2 (Song et al. 2012) 37 424 293 27.7
MAM3 (McCormack et al. 2012) 29 183 1 100
VERT (Wang et al. 2013) 12 1,113 551 2.7
BUGS (Niehuis et al. 2012) 13 4,485 467 1.9
FISH (Hughes et al. 2018) 303 1105 118 92.4
FROG (Feng et al. 2017) 164 95 40 80
FUNG (Pizarro et al. 2018) 51 2,256 1,750 37.2
CARN (Walker et al. 2017) 13 1,237 343 0.6
MOSM (Liu et al. 2019) 134 40 11 100
MOSN (Liu et al. 2019) 134 105 81 85.2
MOSP (Liu et al. 2019) 134 82 23 87
PLAN (Wickett et al. 2014) 103 852 160 16.3
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phylogenetic methods from the original publications for each
data set in table 2 assumed a single topology underlying the
alignment. Our analyses suggest that for many gene regions,
this would represent model misspecification, as there are sev-
eral well-supported topologies underlying many genes that
may mislead analyses on these data. Several of the taxon-rich
data sets, including FISH and FROG, had very high levels of
intragenic conflict across the genes we analyzed. This points
to systematic errors in data set assembly, extensive recombi-
nation, or other biological processes that may introduce con-
flict. We note that, although there was a tendency for taxon-
rich data sets to exhibit these issues, the PLAN data set did
not exhibit a particularly high rate of conflicts. Nevertheless,
we expect that increasing taxon sampling may potentially
result in more intragenic conflict for biological or nonbiolog-
ical reasons as increasing sampling will necessarily increase
biological heterogeneity (e.g., the probability of sampling a
recombination event) and the potential for error.
Additionally, longer alignments would be expected to harbor
more recombination breakpoints. Our analyses filtered data
sets for regions that could produce at least two gene seg-
ments and so we could potentially bias upward our estimates
of within-gene conflict. However, we did not notice a trend of
data sets with longer gene regions to exhibit more conflict
overall, and much smaller genes are expected to yield poor-
quality phylogenetic inference. Nonetheless, the addition of
both more taxa and more sites will increase the potential for
biological and systematic within-gene conflict.

Nonbiological errors may arise from alignment inaccura-
cies, homology issues, and errors in data set assembly perhaps
exacerbated for large data sets assembled using significant
automation. However, although errors may be a major source
of intragenic conflict, the data examined in figure 2 did not
exhibit obvious errors (2798 from the VERT data set could
perhaps plausibly include misannotated sequence, but it is
difficult to confirm this without a more in-depth examination
of the soft-shell turtle genome), and breakpoints were
detected with multiple methods even after re-alignment
with different algorithms. Due to the differences in the goals
of different methods, it is difficult to assess the concordance
between approaches. By virtue of using segment trees to ex-
amine site-specific log-likelihoods as a metric for phylogenetic
signal, our in-depth examination is similar to several pub-
lished approaches (e.g., Likewind; Archibald and Roger
2002a, 2002b; Inagaki et al. 2006) including phyML_multi,
and in some cases our approach and phyML_multi yielded
nearly identical findings (e.g., support for a tree featuring
MusþCanis in supplementary fig. S8, Supplementary
Material online, between positions 500 and 700 in the align-
ment is similar to the pattern displayed in fig. 2). However, in
other cases, phyML_multi supported many more break-
points. GARD also yielded concordant findings, for example,
trees 2, 3, and 3 in supplementary figures S5–S7,
Supplementary Material online, all of which derive from a
segment located between positions 500 and 700 in the align-
ment and all of which featured the (Mus, Canis) relationship,
as above. Nonetheless, GARD commonly inferred many more
breakpoints supporting a wide diversity of topologies.

Because GARD commonly results in inferring trees from
very small subsections of the alignment, only a very small
number of sites could have dramatic influence on the inferred
topology, which might increase sensitivity to error. Regardless,
signals of multiple trees were still supported by all methods
and all alignments examined. It is still unclear what the source
of the conflict is in those specific examples. However, the
conflict we detected, without obvious systematic error, con-
tributes to a growing body of literature that is discovering
intragenic conflict due to biological processes such as recom-
bination (e.g., Scornavacca and Galtier 2016; Mendes et al.
2019). Without having generated the original data sets, in-
cluding assembly or alignment, it would be very difficult to
untangle what the source of conflict was in each case.
However, to ensure that biological conclusions were not
the result of noise and error, it would be important to deter-
mine whether intragenic heterogeneity was being properly
accounted for in these empirical data sets.

The importance of accurate alignment for tree inference is
well understood (Ogden and Rosenberg 2006). The results we
present here suggest that alignment error impacts not only
ML topology estimates but can also induce intragenic conflict.
Specifically, in our simulations, realignment of simulated data
containing indels led to increased false-positives. Realignment
with a progressive algorithm (MAFFT), which is known to
over-align (Katoh and Standley 2016; Vialle et al. 2018), pro-
duced greater numbers of false-positives. By contrast, FSA,
which typically under-aligns (Bradley et al. 2009), led to lower
rates of false-positives. This inference is supported by analysis
of empirical data sets. For example, the CARN data set from
Walker et al. (2017) was aligned with PRANK and cleaned for
column occupancy in the original study and showed com-
paratively lower rates of within-gene conflict. In our simula-
tions, PRANK admittedly induced relatively high rates of false-
positives particular in cases with asymmetric insertion and
deletion rates. However, it is still expected to under-align
relative to MAFFT (Vialle et al. 2018; Nute et al. 2019), sug-
gesting that the aforementioned alignment filtering may serve
to diminish false-positives. Conversely, although realignment
with more accurate aligners reduced false-positive occurrence
in simulations, multiple trees were still inferred for examples
when realigning, suggesting true signals of multiple trees that
are not due to alignment errors. Despite the overall simplicity
of our simulation process, our rate shift experiments and
changes in indel rates between segments should mimic
some of the more complex dynamics occurring in, for exam-
ple, genes encoding multi-domain proteins. Whether due to
biological processes or errors in data set assembly, intragenic
conflict should not be ignored. Intragenic conflict can drive
false-positives in positive selection analyses (Anisimova et al.
2003), influence branch length estimation, and bias phyloge-
netic reconstruction (e.g., Schierup and Hein 2000). These and
other errors are to be expected as intragenic conflict violates
typical phylogenetic models that assume a single tree for the
length of the alignment. Some have suggested that recombi-
nation may have a minimal impact on species tree inference
(Lanier and Knowles 2012). However, others have noted that
only a few conflicting sites can drive tree inference (Shen et al.
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2017). Furthermore, our results have implications for analyses
that assume that a gene region, regardless of data type, is the
most meaningful phylogenetic unit (e.g., summary coalescent
analyses). In the presence of intragenic conflict, an entire gene
may not be a meaningful unit for phylogenetic analysis.

What should practitioners do when confronted with
within-gene heterogeneity? In some cases, topologies and
breakpoints may be unambiguously supported by multiple
methods, suggesting a plausible biological source of conflict.
However, for many alignments and data sets, complex con-
flicting signals may be uncovered. Genes for which the as-
sumption of within-gene homogeneity is strongly violated
may need to be filtered from data sets prior to further infer-
ence, and our method provides a means to identify such
genes. However, we resist making exact recommendations
considering the uncertainty surrounding the impact of vio-
lating these assumptions (Lanier and Knowles 2012).
Undoubtedly, the decision whether or not to filter genes
will depend on proportion of the gene impacted and the
extent of conflict between within-gene trees. Nevertheless,
when entire data sets exhibit widespread intragenic conflict,
it warrants closer inspection of the underlying data or anal-
yses leading to multiple sequence alignment to ensure that
errors are not being introduced at some early step.

Our method presents one way to highlight general prob-
lems with data set assembly and to identify important mo-
lecular evolutionary patterns. Importantly, the method
presented here does not assume a particular source of con-
flict. Nevertheless, if a data set exhibits significant intragenic
conflict, it warrants further investigation regardless of the
source. Biological sources of intragenic conflict can provide
important information about molecular evolutionary pro-
cesses, but to better understand these processes, we need
to ensure that we identify biological conflict and not error.
Disentangling the sources of intragenic conflict will lead to
cleaner data sets, more robust species tree inferences, and a
greater understanding of the molecular evolutionary pro-
cesses shaping genomes.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Löytynoja A, Goldman N. 2005. An algorithm for progressive multiple
alignment of sequences with insertions. Proc Natl Acad Sci U S A.
102(30):10557–10562.

McCormack JE, Faircloth BC, Crawford NG, Gowaty PA, Brumfield RT,
Glenn TC. 2012. Ultraconserved elements are novel phylogenomic
markers that resolve placental mammal phylogeny when combined
with species-tree analysis. Genome Res. 22(4):746–754.

Mendes FK, Livera AP, Hahn MW. 2019. The perils of intralocus recom-
bination for inferences of molecular convergence. Phil Trans R Soc B.
374(1777):20180244.

Mirarab S, Reaz R, Bayzid MS, Zimmermann T, Swenson MS, Warnow T.
2014. ASTRAL: genome-scale coalescent-based species tree estima-
tion. Bioinformatics 30(17):i541–i548.

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast
and effective stochastic algorithm for estimating maximum-
likelihood phylogenies. Mol Biol Evol. 32(1):268–274.

Niehuis O, Hartig G, Grath S, Pohl H, Lehmann J, Tafer H, Donath A,
Krauss V, Eisenhardt C, Hertel J, et al. 2012. Genomic and morpho-
logical evidence converge to resolve the enigma of Strepsiptera. Curr
Biol. 22(14):1309–1313.

Nute M, Saleh E, Warnow T. 2019. Evaluating statistical multiple se-
quence alignment in comparison to other alignment methods on
protein data sets. Syst Biol. 68(3):396–411.

Ogden TH, Rosenberg MS. 2006. Multiple sequence alignment accuracy
and phylogenetic inference. Syst Biol. 55(2):314–328.

Pizarro D, Divakar PK, Grewe F, Leavitt SD, Huang J-P, Dal Grande F,
Schmitt I, Wedin M, Crespo A, Lumbsch HT. 2018. Phylogenomic
analysis of 2556 single-copy protein-coding genes resolves most

evolutionary relationships for the major clades in the most diverse
group of lichen-forming fungi. Fungal Divers. 92(1):31–41.

Salminen MO, Carr JK, Burke DS, McCutchan FE. 1995. Identification of
Breakpoints in Intergenotypic Recombinants of HIV Type 1 by
Bootscanning. AIDS Res Hum Retrov. 11(11):1423–1425.

Schierup MH, Hein J. 2000. Consequences of recombination ontradi-
tional phylogenetic analysis. Genetics 156(2):879–891.

Scornavacca C, Galtier N. 2016. Incomplete lineage sorting in mamma-
lian phylogenomics. Syst Biol. 66(1):112–120.

Shen X-X, Hittinger CT, Rokas A. 2017. Contentious relationships in
phylogenomic studies can be driven by a handful of genes. Nat
Ecol Evol. 1(5):0126.

Smith SA, Moore MJ, Brown JW, Yang Y. 2015. Analysis of phylogenomic
datasets reveals conflict, concordance, and gene duplications with
examples from animals and plants. BMC Evol Biol. 15(1):150.

Song S, Liu L, Edwards SV, Wu S. 2012. Resolving conflict in eutherian
mammal phylogeny using phylogenomics and the multispecies co-
alescent model. Proc Natl Acad Sci U S A. 109(37):14942–14947.

Springer MS, Gatesy J. 2018. On the importance of homology in the age
of phylogenomics. Syst Biodivers. 16(3):210–228.

Suchard MA, Weiss RE, Dorman KS, Sinsheimer JS. 2002. Oh brother,
where art thou? A Bayes factor test for recombination with uncer-
tain heritage. Syst Biol. 51(5):715–728.

Vialle RA, Tamuri AU, Goldman N. 2018. Alignment modulates ancestral
sequence reconstruction accuracy. Mol Biol Evol. 35(7):1783–1797.

Walker JF, Brown JW, Smith SA. 2018. Analyzing contentious rela-
tionships and outlier genes in phylogenomics. Syst Biol.
67(5):916–924.

Walker JF, Yang Y, Moore MJ, Mikenas J, Timoneda A, Brockington SF,
Smith SA. 2017. Widespread paleopolyploidy, gene tree conflict, and
recalcitrant relationships among the carnivorous Caryophyllales. Am
J Bot. 104(6):858–867.

Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y, Huang Z, Li C,
White S, Xiong Z, Fang D, et al. 2013. The draft genomes of soft-
shell turtle and green sea turtle yield insights into the develop-
ment and evolution of the turtle-specific body plan. Nat Genet.
45(6):701–706.

Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci
N, Ayyampalayam S, Barker MS, Burleigh JG, Gitzendanner MA,
et al. 2014. Phylotranscriptomic analysis of the origin and early
diversification of land plants. Proc Natl Acad Sci U S A.
111(45):E4859–E4868.

Wu S, Song S, Liu L, Edwards SV. 2013. Reply to Gatesy and Springer: the
multispecies coalescent model can effectively handle recombination
and gene tree heterogeneity. Proc Natl Acad Sci U S A.
110(13):E1180–E1180.

Smith et al. . doi:10.1093/molbev/msaa170 MBE

3388

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/37/11/3380/5870841 by guest on 09 August 2021


