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Abstract—Recent advances in computer vision and machine
learning, most notably deep convolutional neural networks
(CNNs), are exploited to identify and localize various plant species
in salt marsh images. Three different approaches are explored
that provide estimations of abundance and spatial distribution
at varying levels of granularity defined by spatial resolution. In
the coarsest-grained approach, CNNs are tasked with identifying
which of six plant species are present/absent in large patches
within the salt marsh images. CNNs with diverse topological
properties and attention mechanisms are shown capable of pro-
viding accurate estimations with > 90% precision and recall for
the more abundant plant species and reduced performance for
less common plant species. Estimation of percent cover of each
plant species is performed at a finer spatial resolution, where
smaller image patches are extracted and the CNNs tasked with
identifying the plant species or substrate at the center of the
image patch. For the percent cover estimation task, the CNNs are
observed to exhibit a performance profile similar to that for the
presence/absence estimation task, but with an ~ 5-10% reduction
in precision and recall. Finally, fine-grained estimation of the
spatial distribution of the various plant species is performed via
semantic segmentation. The DeepLab-V3 semantic segmentation
architecture is observed to provide very accurate estimations
for abundant plant species, but with significant performance
degradation for less abundant plant species; in extreme cases,
rare plant classes are seen to be ignored entirely. Overall, a clear
trade-off is observed between the CNN estimation quality and the
spatial resolution of the underlying estimation thereby offering
guidance for ecological applications of CNN-based approaches
to automated plant identification and localization in salt marsh
images.

Index Terms—Salt marsh monitoring, convolutional neural
networks, network topology, attention mechanism, deep learning,
ecological monitoring

I. INTRODUCTION

Ecological studies are often limited in spatial and tempo-
ral scale by the time needed to characterize the distribution
and abundance of the constituent species. For example, most
assessments of plant and invertebrate species distributions are
limited to analysis of abundance or presence/absence within
small areas of the study site (termed as guadrats). The quadrats
typically comprise < 1% of the total study area, due to the
intensive effort required to manually analyze these ecological
systems [29]. Computer vision and machine learning tools offer
the possibility of automating and accelerating this work, mak-
ing it possible to increase the spatial and temporal resolution of
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ecological surveys. In particular, deep learning approaches are
rapidly gaining popularity for these tasks since they provide
a unified computer vision and machine learning framework
whose performance typically exceeds that of previous ap-
proaches that use predetermined hand-crafted features [8].

In this paper, we examine deep learning approaches for iden-
tification, enumeration, and spatial localization of plant species
in salt marsh ecosystems. Salt marshes are highly productive,
inter-tidal marine habitats found along protected coastlines or
behind barrier islands spanning temperate to subpolar regions
[22]. Salt marsh sediments store high densities of organic car-
bon making them important blue carbon ecosystems, in which
carbon is sequestered that would otherwise be released to the
atmosphere increasing atmospheric COy concentrations [21].
Few species inhabit the salt marsh ecosystem due to its
harsh conditions. However, on account of the ecosystem’s
high productivity, the resident species capable of surviving
salt marsh conditions often exhibit high abundance. Given
their low biodiversity, salt marshes have for long served as
model ecosystems that are amenable to both experimental and
observational work [6].

Salt marsh plant communities on the east coast of the United
States are typically dominated by grasses in the genus Spartina,
especially at lower marsh elevations as only this genus is
capable of tolerating frequent flooding with salt water [23].
At higher marsh elevations, several additional species are also
found, many of which are succulents or otherwise adapted to
handle the harsh salt marsh conditions. The abundance and
distribution of these resident species is commonly assessed
using several semi-quantitative methods, employed either in
real time in the field or on archived images. One approach
is to simply indicate within a small quadrat (e.g. 0.25 m
x 0.25 m) which plant species are present and which are
absent. An alternative approach is to estimate the percent cover
within the quadrat, i.e., the percentage of space occupied by
each plant species or substrate, by randomly choosing points
(25-100) within a quadrat (on the ground or in the image)
and identifying the resident plant species (or substrate) at the
chosen point. In this paper, we explore and assess various
deep learning approaches to automate the aforementioned
tasks on salt marsh images. We specifically explore multi-
layer convolutional neural network (CNN) architectures such as



Fig. 1. Example images of marsh plant species (from left to right and top to
bottom): Sarcocornia, Spartina, Limonium, Borrichia, Batis and Juncus.

the ResNet [13], PyramidNet [12], residual attention network
(RAN) [28], DenseNet [15], ResNext [34], and Inception-
V3 [26] in the context of multi-label classification. These
CNN architectures are also employed for the percent cover
computation task, which is formulated as the more simple
image classification problem.

Going beyond what is done in typical time-constrained
ecological studies, we also assess the ability of CNN ar-
chitectures to perform semantic segmentation of salt marsh
images. Semantic image segmentation potentially provides
more accurate estimates of species abundance and the spatial
distribution of plants at a much finer spatial resolution. In
this paper, the DeepLab-V3 CNN architecture is employed
for the semantic image segmentation task. As is typically
encountered in studies of most ecological systems, the salt
marsh images are characterized by fine-grained interleaving
of classes, ambiguous class boundaries, and wide-variations
in lighting and viewing perspective that complicate automated
image analysis procedures, particularly those pertaining to
semantic image segmentation. The key contributions of the
paper can be summarized as follows: (a) we present a compar-
ison of three distinct approaches, based on presence/absence
determination, percent cover computation and semantic image
segmentation, to estimate the abundance and distribution of
various salt marsh plant species using CNNs, (b) we show
a clear trade-off between the precision and spatial resolution
of the resulting estimations, (c) we present a comparison
of various CNN architectures and show multi-path CNNs to
outperform other CNNs for analysis of salt marsh images and
finally, (d) we compute the variations in the distributions of
various salt marsh plant species across an elevation gradient.

II. BACKGROUND

A. Deep Learning Applications in Ecology

Previous applications of computer vision and machine learn-
ing to the analysis of ecosystem imagery has progressed from
traditional pipelines that extract predetermined, hand-crafted
features, followed by application of traditional classifiers such
as support vector machines (SVMs) to employing end-to-
end deep neural networks (DNNs) or deep learning (DL)

methods. Beijbom et al. [4], [5] present an excellent exam-
ple of the traditional approach to automated classification of
ecosystem images focusing on coral reef surveys. Employ-
ing a maximum response filter bank in conjunction with a
multiscale patch/texton dictionary to characterize the features
in underwater coral reef images, Beijbom et al. [4] use a
traditional SVM-based classifier to categorize image patches
as belonging to various reef organism classes. They also
outline the many challenges unique to the task of automated
analysis of ecological images such as extreme variations in
the size, color, shape, and texture of each of the taxa, the
organic and ambiguous nature of the class boundaries and
significant alterations in ambient lighting and image colors [5].
In the ecological remote sensing, classification approaches have
focused almost exclusively on pixel-level spectral information
ignoring spatial context, although there have been some notable
exceptions [14]. However, classifiers based primarily on pixel-
level spectral data are less applicable to local ecosystem
images which are typically acquired with consumer-grade RGB
cameras.

In recent times, CNNs (or ConvNets) and related deep
neural networks (DNNs) have revolutionized computer vision,
especially semantic image segmentation, feature extraction
and classification, and object detection and recognition [17],
[19]. The superior performance of CNN- and related DNN-
based approaches has led to their rapid adoption in ecological
research [8], [30]. CNNs have seen notable success in detection
of animals, such as hummingbirds [31] and shorebirds [7] and
have resulted in dramatically improved remote sensing methods
for specific tasks such as automatic identification and inventory
of termite mounds [8] and tree species [2], [32]. Brodrick
et al. [8] argue that CNNs may become essential tools for
ecologists due to their power, generality, and relative ease of
use.

In addition to tackling specific tasks, CNNs are also being
increasingly used to provide a broad-scale overview of com-
munity composition. Williams et al. [33] have employed CNNs
to assess the abundance of major taxa and substrates on coral
reefs, achieving classification accuracies similar to those at-
tained by human annotators. Traditional approaches to ecosys-
tem image analysis [4], [5] employ complex feature extraction
and classification algorithms that entail extensive knowledge
of computer vision and machine learning. In contrast, a CNN-
based computational pipeline provides an integrated image
analysis framework by leveraging existing, pre-trained CNNs
where the feature extractors and classifiers have been auto-
matically learned from training data. Their user-friendliness,
superior performance, and the fact that they require minimal
background in computer vision and machine learning suggest
that CNNs will be widely adopted to accelerate ecological
research in the near future.

B. Convolutional Neural Networks (CNNs)

CNNs have become a standard tool for several machine
vision tasks such as image classification, semantic image
segmentation and automated image captioning. The various



CNN architectures differ in their topological properties across
multiple dimensions such as, the type of convolution operation,
network depth, spatial dimensions of the network layers, and
the width and design of multiple network pathways [16].

1) Inception CNN: The Inception CNN employs the princi-
ples of variability and modularity to deal with increasing model
size and computational costs associated with scaling up of
CNNs to address real-world computer vision problems [26].
A key feature of the Inception CNN is the introduction of
inception layers comprising of multiple-size convolutional filter
kernels. Earlier versions of the Inception CNN use small-
size convolutional filters for computational efficiency whereas
subsequent versions construct deeper networks by effectively
combining blocks of varying filter sizes using split, transform
and merge strategies thereby ensuring an efficient multi-path
flow of information [26]. The varying filter sizes capture spatial
information at multiple scales which is subsequently combined
within a single block using 1 x 1 convolutional filters [20].
Additionally, the Inception CNN uses an auxiliary classifier
to deal with the problem of degradation of input between
successive network layers [25].

2) Residual Learning CNN: Construction of deeper CNNs
causes degradation of the input between successive network
layers leading to the vanishing gradient problem that severely
limits backpropagation learning [25]. Residual learning CNNss,
i.e., ResNets mitigate this problem by introducing skip con-
nections between CNN layers [13]. ResNets do not alter
the topology of the network connections, rather they simply
combine the outputs of alternating layers making it possible
to stack several network layers without overfitting the data or
having to deal with the vanishing gradient problem. ResNets
have been shown to be very effective for classification problems
on a variety of data sets [27].

3) Densely Connected CNN (DenseNet): Densely Con-
nected CNNs, i.e., DenseNets [15], unlike ResNets, concatenate
the output of every layer with the outputs of all previous
layers in a given block. DenseNets have compelling advantages
in that they alleviate the vanishing gradient problem while
strengthening feature propagation to address input degradation
between successive layers. Although the number of direct
connections increases quadratically in the number of layers,
DenseNets reduce the number of parameters substantially by
encouraging feature reuse.

4) Dual Path Network (DPN): The dual path network
(DPN) unifies the ResNet and DenseNet architectures to gen-
erate a higher-order recurrent neural network (HORNN) [10].
The HORNN architecture introduces recurrent connections
between non-neighboring units based on an order hyper-
parameter [24]. Since ResNets [13] allow for efficient feature
reuse whereas DenseNets [15] are particularly effective at fea-
ture discovery, a multi-path network comprising of DenseNets
and ResNets allows one to combine the advantages of both.

5) ResNext and Pyramid Networks: The ResNext [34] is a
simple, highly modularized network architecture constructed
by repeating a building block that aggregates a set of trans-
formations with the same topology. In essence, the ResNext

combines the best of the Inception [26] and ResNet [13]
architectures. The ResNext creates blocks with multiple path-
ways using group convolutions [17] which are later combined
using 1 x 1 convolutional filters [20]. The pyramidal network
PyramidNet [12] is an enchancement of the ResNet wherein
the dimensions of the feature map are increased gradually
following an arithmetic progression (additive PyramidNet)
or geometric progression (multiplicative PyramidNet). The
PyramidNet is shown to perform better than the ResNet on
image classification tasks since it circumvents loss of useful
information [12].

6) Semantic Image Segmentation: The aforementioned
CNNs are used primarily for image classification where an
entire image is classified as belonging to a certain category.
However, for more fine-grained analysis, one needs to perform
semantic image segmentation where each image pixel is clas-
sified as belonging to a certain category. In this paper, we
employ the DeepLab-V3 architecture which leverages atrous
convolution and atrous pyramid spatial pooling to generate
pixel-wise labels for semantic image segmentation [9]. Atrous
convolution is a special convolution operation that acts over a
dilated sub-grid of the input [9].

C. Attention Mechanisms

In order to speed up the CNN training procedure, it is
imperative that the CNN models focus on important portions
of the image while discarding the irrelevant portions. This can
be accomplished via incorporation of an attention mechanism
within the CNN training procedure. In this work, we employed
the residual attention network (RAN) architecture, which cre-
ates stacks of trunk and mask branches that are trained in an
end-to-end fashion. The mask branches perform downsampling
(i.e., convolution) and upsampling (i.e., deconvolution) to cre-
ate attention masks whereas the trunk branches performs only
convolution [28]. Upsampling effectively recreates the image
dimensions in the RAN after convolution has reduced them.

III. DESCRIPTION OF DATA SETS

Overhead images of a roughly rectangular section of a salt
marsh on Sapelo Island, Georgia, USA were collected in June
2014 using a consumer grade DSLR camera (Nikon D7100)
with a wide-angle lens (24 mm). The camera was attached
~ 1.5 m above the ground to a wheeled platform that was
pulled across the marsh while high-resolution images (4000
x 6000 pixels) were continuously acquired at a rate of 1 Hz
(1 frame/sec). After the camera had traversed ~ 20-40 m the
mobile platform was stopped, and the images acquired over
that distance were deemed to comprise a row. The imaging
platform was then moved ~ 1 m perpendicular to the previous
row and pulled again across the marsh to image an adjacent
row. A section of marsh covering 80 rows was imaged in this
manner moving from a higher marsh elevation (with a low row
number) to lower marsh elevations (with high row numbers).

Six plant species are commonly found in salt marshes on
Sapelo Island and all six were present in the images: Spartina
alterifora, Juncus roemerianus, Batis maritima, Sarcocornia



spp., Borrichia frutescens, and Limonium carolineanum, all
of which are subsequently identified by their genus (Fig. 1).
The only plant species found at low marsh elevations is
Spartina, but all species are found at high marsh elevations
with Spartina gradually disappearing from the assemblage at
the highest elevations giving way to a diverse mix of the
remaining species. Spartina is a medium to tall grass (height:
0.3-2 m) with wide blades that emerge from a thick stem.
The blades appear dark green to light green depending on
the time of the day and dead blades attached to the stems
are not uncommon. Juncus is a tall rush (height ~ 1 m)
with smooth cylindrical leaves that are gray-green in color.
Sarcocornia is a low growing succulent plant with branching
stems that lack leaves. Most of the stems are green but shade
into red. Batis is a dense, succulent shrub with alternate, green
to yellow leaves growing to ~ 0.3 m tall in the imaged section
of the marsh. Borrichia is a shrub with characteristic, grey-
green oval leaves and bright yellow flowers at the end of
each branch throughout most of the summer. We created three
separate data sets for training, validation, and testing for each
of the tasks, i.e., presence/absence determination, percent cover
computation and semantic image segmentation as shown in
Fig. 2.

A. Presence/Absence Determination

In the presence/absence determination task, the input images
were divided into 15 sections (3 rows X 5 columns) as shown
in Fig. 2. An expert human annotator then performed multi-
label classification, i.e., delineation of all the plants in each
image section for randomly selected images from the Sapelo
Island marsh image data set. The multi-label classification dealt
with seven classes, the six aforementioned plant classes and
one background class. The most dominant class encountered
in the presence/absence task was Spartina which was present
in more than half of the image sections. In contrast, Batis
and Sarcocornia were present in ~ 17% of the image sections
whereas Limonium, Batis and Juncus were observed to be rare
classes, each accounting for ~ 4% of the image sections.

B. Percent Cover Computation

Percent cover, the fraction of space occupied by a particular
plant species when viewed from overhead, provides a more
refined abundance metric than presence/absence. In the percent
cover computation task, 25-50 points were randomly selected
in an image. An image patch (512 x 512 pixels) surrounding
each point was presented to an expert human annotator who
performed single-label classification of the patch, i.e., labeled
the patch based on the class present at the selected point
(Fig. 2). There were 9 classes under consideration for this
task: the aforementioned six plant classes, Soil, Other, and
Unknown. The class Other was used to indicate an identifiable
entity that did not belong to one of the six plant classes or
Soil, such as invertebrates (crabs, snails, etc.) or portions of
the imaging platform captured by the camera. The Unknown
class denotes a situation where the class underlying the selected
point was not identifiable, which typically occurred when the

Fig. 2. Image analysis tasks from left to right and top to bottom: percent cover
computation, presence/absence determination, semantic image segmentation
and the corresponding segmentation masks.

image section was out of focus or heavily shadowed. The
dominant classes encountered in this task were Spartina, Batis
and Sarcocornia which collectively accounted for ~ 85% cover
in approximately equal proportion. Borrichia and Juncus were
deemed rare classes, each with ~ 6% cover and Limonium the
rarest class with ~ 3% cover.

C. Semantic Image Segmentation

The goal of semantic image segmentation is to classify
each pixel in an image into one of a set of predetermined
categories. To generate training data for the semantic image
segmentation task, we used a superpixel labeling tool described
in [1]. Each pixel was classified into one of nine classes, which
were slightly different than those used for percent cover com-
putation: the aforementioned six plant classes, dead Spartina
(due to its common occurrence and substantially different
appearance compared to live Spartina), background (which
accounts for the classes Soil and Unknown in percent cover
computation), and Other (which accounts for invertebrates, and
portions of imaging platform captured by the camera).

IV. EXPERIMENTAL RESULTS
A. Performance Evaluation Metrics

Precision, recall and f-1 scores were used as evaluation
metrics to compare the various deep learning models both
in terms of overall performance and performance on specific
classes. For overall performance assessment, both micro- and
macro-averaged metrics were computed. Macro-averaged met-
rics were computed by first computing the precision, recall and
f-1 score metrics for each individual class and then averaging
these metrics across all classes. In contrast, micro-averaged
metrics were computed by summing the true positives, false
positives, false negatives, and true negatives across the entire
data set regardless of class and then computing precision,
recall, and f-1 score metrics. In the case of single-label classi-
fication (as is done in percent cover computation and semantic
image segmentation) micro-averaged precision, recall, and f-7
score metrics are equal to overall accuracy.



B. Evaluation of Presence/Absence Computation

Approximately 17,000 salt marsh image sections (from
roughly 1150 images) were manually labeled for pres-
ence/absence of the six plant species. Images in the manually
annotated data set were split into training (60%), testing (20%)
and validation (20%) data sets. CNNs were trained for multi-
label classification on the training data set using the Adam
optimizer and binary cross entropy loss function. We initialized
the model weights with values pre-trained on ImageNet [11] for
all models and trained the weights until the loss value stopped
declining on the validation data set.

After an initial examination of the performance of a trial
model (ResNet) on the task, we found the classifier performed
reasonably well on most classes, but had trouble identifying
Juncus and falsely predicted the presence of Sarcocornia (and
occasionally Batis) in low-elevation marsh regions where only
Spartina was present. Juncus was rare and an examination of
the classifier showed that Juncus was being misclassified as the
more common Spartina grass. In an attempt to overcome this
issue, additional images containing Juncus were identified and
manually labeled to increase the representation of Juncus in
the training data set. To address the false positives associated
with Sarcocornia in the low-elevation marsh regions, additional
low-elevation marsh images containing only Spartina were
manually classified and added to the data sets. The addition
of targeted training data helped improve the performance of
the trial model (ResNet) and we proceeded to evaluate the
performance of the remainder of the CNN architectures under
consideration.

The seven CNN architectures that we assessed were gener-
ally observed to yield similar performance with micro-averaged
precision, recall, and f-1 scores, all exceeding 0.9 (Table I). The
macro-averaged metrics were somewhat lower due to poorer
performance on the rarer plant species (Table II). The relative
performance of individual models was generally consistent
across micro- and macro-averaged metrics with ResNext yield-
ing the best precision and f-1 score values and DPN the highest
recall values. Unlike the other CNN architectures, DPN and
ResNext both use a multi-path strategy which potentially helps
to generate complex feature combinations.

The performance of the CNN architectures on individual
classes was observed to vary significantly based on the relative
abundance of the plant species in the data set (Figs. 3 and 4).
Spartina, the most abundant species, was classified extremely
accurately with precision and recall values exceeding 0.95. The
recall value for Sarcocornia was also exceedingly high (>
0.95) but the precision was notably lower at ~ 0.9 due to the
presence of false positives despite attempts at improvement.
Although Sarcocornia is commonly present in most image
sections, it is often not very abundant with only a few stems
present in a given image section, which potentially contributes
to the difficulty in achieving high precision values for this class.
The quality of predictions for the remaining classes (Batis,
Borrichia, Limonium, and Juncus) was generally observed to
follow their occurrence frequency in the manually annotated
data sets. While the performance of different CNN architec-
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Fig. 3. Precision values for individual classes in presence/absence computation
for (a) ResNext, (b) Dual Path Network, and (c) ResNet

tures at the class level was generally similar, both the DPN
and ResNext exhibited uniquely high individual precision and
recall values for multiple plant categories (Figs. 3 and 4). The
recall values for DPN for Limonium and Juncus were at least
5% higher than those of all other CNN models. The precision
value for Limonium was the highest in the case of the ResNext,
showing an 8% difference from the next best CNN architecture.
The RAN performed the worst overall in terms of the f-1 score.
However, the RAN was observed to yield a precision value that
almost matched that of the ResNext. The attention mechanism
used in the RAN did not seem to hold any advantages for this
data set and task.

TABLE 1
PRESENCE/ABSENCE MICRO-AVERAGED RESULTS

CNN type Micro precision | Micro recall | Micro f-1 score
ResNet101 0.918 0.932 0.925
DenseNet121 0912 0.930 0.921
DPN92 0.906 0.938 0.922
ResNext101 0.928 0.931 0.930
Inception 0.910 0.923 0.916
RAN 0.924 0.889 0.906
PyramidNet101 0911 0.923 0.917

TABLE II
PRESENCE/ABSENCE MACRO-AVERAGED RESULTS

CNN type Macro precision | Macro recall | Macro f-1 score
ResNet101 0.844 0.872 0.858
DenseNet121 0.838 0.868 0.853
DPN92 0.827 0.884 0.855
ResNext101 0.861 0.867 0.864
Inception 0.834 0.845 0.839
RAN 0.848 0.761 0.802
PyramidNet101 0.820 0.840 0.830

C. Evaluation of Percent Cover Computation

To assess the ability of CNNs to automate percent cover
computation, approximately 7,500 points were manually la-
beled in ~ 250 images randomly sampled from the salt marsh
image data set. The manually annotated data set was split, at
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Fig. 4. Recall values for individual classes in presence/absence computation
for (a) ResNext, (b) Dual Path Network, and (c) ResNet

the level of an individual image, into training (60%), validation
(20%), and test (20%) data sets. The CNN models were trained
in a manner similar to that described for the presence/absence
computation task except that a multi-class cross entropy loss
function was used. Table III reports the results of the same
seven CNN architectures used in presence/absence computa-
tion, for the percent cover computation task. Since percent
cover is a multi-class, single-label classification problem, the
micro-averaged precision and recall values are equal and
denoted by the term accuracy. The values of the macro-
averaged precision, recall, and f-1 scores were observed to
be ~ 0.10 lower for percent cover computation compared
to presence/absence computation for each of the seven CNN
architectures.

A significant challenge for the percent cover computation is
the fine-grained interleaving of classes in salt marsh images.
Image patches extracted for percent cover computation often
contain multiple plant species and the classifier must learn
to classify the plant observed in the center of the image
patch. Recognizing this issue, we tested an attention-based
CNN, i.e., RAN, hypothesizing that RAN would learn to focus
attention on the center of the image patch for the purpose
of classification while using the outer regions of the patch
for context. However, the performance of RAN was generally
observed to be inferior to that of the other CNN architectures.
The initial patch size used (512 x 512 pixels) was relatively
large so we attempted to reduce the size of the patch to
256 x 256 pixels to limit the number of classes present in
image patches. However, the performance of all the CNN
architectures, in terms of recall, dropped precipitously by ~
0.20 on the smaller patches across all classes. This was likely
because the smaller patches did not provide sufficient context
that was critical for accurate classification, such as overall leaf
shape, instead, forcing the classifier to rely on small-scale
texture and color features. As shown in Table III, ResNext
was observed to achieve the highest overall accuracy and f-1
score closely followed by PyramidNet and DPN. The confusion
matrix in Fig. 5 resulting from the image patch classification
during percent cover computation shows that even the best
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Fig. 5. Confusion matrix for percent cover computation for ResNext

performing ResNext CNN had particular difficulty recognizing
lower abundance classes such as Juncus, Limnonium, and, in
some cases, Borrichia.

TABLE IIT
RESULTS OF PERCENT COVER COMPUTATION

CNN type precision | recall | f-1 score | Accuracy
ResNet101 0.742 0.700 0.720 0.833
DenseNet121 0.717 0.668 0.692 0.846
DPN92 0.743 0.732 0.737 0.843
ResNext101 0.767 0.736 0.751 0.857
Inception 0.738 0.672 0.703 0.833
RAN 0.713 0.618 0.662 0.851
PyramidNet101 0.751 0.743 0.748 0.844

D. Evaluation of Semantic Image Segmentation

Semantic image segmentation is not commonly employed
in ecological research due to the labour intensive nature of
labelling entire images at the pixel level. However, automated
semantic segmentation offers potentially unprecedented spatial
resolution in the field of ecology allowing novel insights into
spatial relationships amongst organisms as well as computation
of a more accurate abundance metric. We manually labeled ~
200 salt marsh image sections for semantic image segmentation
using a super-pixel segmentation and labeling tool developed
in [1]. The manually labeled data set was split into training
(60%), validation (20%), and testing (20%) sets. The DeepLab-
V3 CNN [9] was trained on the training data set for 100 epochs,
while retaining the model that performed best on the validation
set.

The training of the DeepLab-V3 CNN employed a stochastic
gradient descent optimizer with a learning schedule for weight
decay. The best mean Intersection-over-Union (mloU) measure
was achieved with the ResNet backbone of DeepLab-V3 which
was more than twice of that achieved using the Inception
backbone. The mloU measure achieved using the ResNet
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backbone on the test data set was 0.54 with an overall pixel
accuracy of 85%, and macro-averaged precision and macro-
averaged recall scores of 0.570 and 0.607 respectively. For
abundant classes such as Spartina, Sarcocornia and Batis, the
semantic segmentation was highly accurate as illustrated in
Fig. 6 and reflected in the high overall pixel-level accuracy
(Table 1V). However, the less abundant classes were either
poorly predicted (Borrichia) or neglected entirely (Limonium
and Juncus), which negatively impacted the macro precision
and macro recall metrics. The current performance of the
semantic segmentation approach is sufficiently accurate that
it could be applied in ecological research to estimate the
abundance and spatial distribution of abundant classes, but it
clearly needs to be further improved before it can be used
to study the rarer taxa. Additional training data on these
less abundant classes is likely the best way to improve the
performance of semantic image segmentation.

E. Comparison of Approaches

Three distinct tasks, i.e., presence/absence computation, per-
cent cover computation, and semantic image segmentation,
were evaluated as alternative approaches to assess the abun-
dance and distribution of plants in salt marsh images. There
are multiple potential scientific applications for these distinct
approaches and our intent was not necessarily to determine the
best approach but rather to explore the performance of these
approaches and identify the underlying trade-offs. When the
best performing CNN architecture was employed, all of the ap-
proaches performed reasonably well at classifying the abundant
classes, i.e., Spartina and Sarcocornia, with > 85% precision
and recall. The performance was observed to decline for less
abundant classes. The decline was more dramatic in the case of
percent cover computation and semantic image segmentation.
For example, semantic image segmentation was observed to
completely ignore the Limonium and Juncus classes whereas
presence/absence computation attained relatively high values
of precision and recall for both classes compared to the other
approaches. On many ecological tasks inter-agreement between
human annotators is 70-90% indicating that in many cases our
automated classifiers are likely to be as accurate as humans
[5].

In essence, there was a clear trade-off observed between
the performance (in terms of precision and recall) and spa-
tial resolution of estimation with higher-resolution approaches
exhibiting lower performance. Table IV illustrates this trade-

off showing that accuracy (i.e., micro-averaged f-I score)
and the f-1 score (macro-averaged f-I score) decrease from
the presence/absence computation task to the semantic image
segmentation task whereas the estimation resolution (i.e., esti-
mations per pixel) increases. One caveat of these comparisons
is that different data sets were used for each approach. We put
roughly the same effort in terms of human annotation hours
into producing each manually annotated data set. Consequently,
the comparison in Table IV represents trade-offs for a similar
amount of training data. It is expected that the performance of
any of the approaches could be increased, to some extent, with
additional training data. However, the difficulty of accurately
detecting salt marsh plants at high resolution might require
machine learning approaches capable of representing concepts
such as ambient lighting, object boundaries and object shapes.

TABLE IV
COMPARISON OF RESULTS FROM DIFFERENT APPROACHES

Approach Model Accuracy | f-1 score | Resolution
Presence/Absence ResNext 0.929 0.853 e-7
Percent Cover ResNext 0.857 0.770 e-3
Segmentation DeepLab-V3 0.849 0.587 1

FE. Application example: Plant distribution across an elevation
gradient

As a demonstration of the potential use of these methods,
we employed the ResNext101 classifier designed for pres-
ence/absence computation for all the images from the Sapelo
Island marsh data set. The images were split into 15 sections
(3 rows x 5 columns), as is done in the training procedure.
The presence/absence classifier was used to determine which
plant species were present in each image section. The total
number of image sections (ranging from 0 to 15) in which
a plant was present in each image was used as a semi-
quantitative metric of plant abundance. This semi-quantitative
index was averaged over all images for a given row to produce
an estimate of plant abundance as a function of the row
number, and plotted for all 80 rows as shown in Fig. 7. The
results show a diverse plant community in the high-elevation
marsh regions (row numbers < 25) transitioning to Spartina
dominance in the low-elevation marsh regions (row numbers >
35) which is consistent with the expected distribution. Some
spurious Sarcocornia predictions were observed in the low-
elevation marsh regions (row numbers > 35) and efforts are
currently underway to provide additional training data in this
section to improve the quality of estimations. Nonetheless, this
example illustrates the presence/absence computation method’s
potential to rapidly assess plant community structure across
environmental (i.e., elevation) gradients in a salt marsh. Future
work aims to apply these tools to assess changes in plant
community structure over time at this Sapelo Island site and
to extend the spatial scale of the sampling to additional sites.

V. FUTURE WORK

In future work, we plan to introduce cross-talk between
percent cover computation, presence/absence computation and
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semantic image segmentation. Rather than comparing these
approaches based on results on their individual test data sets,
we plan to devise a common testing data set to ascertain
the relative performance of these approaches on producing
a spatial plant class distribution. Since our plant classes are
interweaved and require deep understanding of many high-
order concepts, we argue that the best CNN models for our
approach must possess generality. We also hypothesize that
the best way to create neural networks capable of generality is
through neuromodulatory approaches [3]. Our proposed data
set will provide a test for novel image analysis approaches.
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