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RESOLUTION ANALYSIS OF INVERTING THE GENERALIZED
RADON TRANSFORM FROM DISCRETE DATA IN R3*
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Abstract. A number of practically important imaging problems involve inverting the generalized
Radon transform (GRT) R of a function f in R3. On the other hand, not much is known about the
spatial resolution of the reconstruction from discretized data. In this paper we study how accurately
and with what resolution the singularities of f are reconstructed. The GRT integrates over a fairly
general family of surfaces Sy in R3. Here y is the parameter in the data space, which runs over
an open set V C R3. Assume that the data g(y) = (Rf)(y) are known on a regular grid y; with
step-sizes O(¢€) along each axis, and suppose S = singsupp(f) is a piecewise smooth surface. Let fe
denote the result of reconstruction from the discrete data. We obtain explicitly the leading singular
behavior of fc in an O(¢)-neighborhood of a generic point zg € S, where f has a jump discontinuity.
We also prove that under some generic conditions on S (which include, e.g., a restriction on the
order of tangency of Sy and S), the singularities of f do not lead to nonlocal artifacts. For both
computations, a connection with the uniform distribution theory turns out to be important. Finally,
we present a numerical experiment, which demonstrates a good match between the theoretically
predicted behavior and actual reconstruction.
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1. Introduction. A large number of practically important imaging problems
involve inversion of the generalized Radon transform (GRT), i.e., recovering an un-
known function f from its integrals over a family of surfaces. The reconstruction
may involve finding f itself, or finding f modulo smoother terms. Most of the time,
the surfaces are not planes. Below is a list of some of the most common integral
transforms with some of the most prominent examples of their use.

1. Integration over spheres. Applications include ultrasound imaging and, in
particular, SONAR (see [17] and references therein), as well as thermoacoustic
and photoacoustic tomography [14, 23].

2. Integration over ellipses. This transform arises in linearized seismic imaging
with a common offset between the sources and receivers [7].

3. Integration over cones arises in Compton camera imaging. Applications are
single-scattering optical tomography, Compton camera medical imaging, and
homeland security (see [21] for a recent review).

In all of the above cases, one collects a discrete data set and reconstructs f using
a numerical algorithm. Frequently, reconstruction is achieved by applying a linear in-
version formula (as opposed to a nonlinear reconstruction algorithm based on fidelity
functional minimization). In all of the above examples it is of fundamental impor-
tance to know the resolution of the method as a function of (1) the data sampling
rate and (2) specific implementation of the inversion formula that is used. Despite the
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significance of this problem, not much is known about the resolution of reconstruction
from discrete data. The main reason for this is that the classical sampling theory,
which addresses such problems, can be applied only to the classical Radon transform
(CRT) and only under restricted conditions [16]. The known results are quite scarce,
and they are of a semiqualitative nature (see, e.g., pp. 784-786 in [6]). Very recently,
a more flexible approach to sampling based on semiclassical analysis was proposed in
[20]. Let A be a Fourier integral operator (FIO). The idea of [20] is to determine how
the data Af should be sampled to allow for accurate interpolation of its values on a
lattice provided that f is semiclassically bandlimited. If the sampling condition is vi-
olated, then reconstruction from the discrete values of Af (i.e., applying a parametrix
A~! to the interpolated Af) leads to aliasing artifacts, which are also analyzed
in [20].

An alternative approach to the analysis of resolution was proposed recently in
[11, 12]. The idea is to investigate how accurately and with what resolution the
singularities of f are reconstructed. For some of the above problems there is no exact
inversion formula, and inversion modulo smoother terms is the most one can hope for.
In such cases, spatial resolution of the recovery of singularities is all one needs. Note
that in this paper both f and g = Rf are assumed to have singularities in the sense of
a conventional, classical wavefront set (see, e.g., [8]). In contrast, the main assumption
in [20] is that f and, consequently, the data Af have only semiclassical singularities
(see, e.g., [25]). Tt is possible to apply the approach of [20] to the analysis of classical
singularities, but this would require summing a series over “folded” frequencies in the
Fourier domain, which is complicated.

In [11, 12] the author considers the inversion of the CRT of f in R? and R3.
The parametrization of the data is standard, i.e., in terms of the affine and angular
variables. Suppose the step-sizes along the angular and affine variables are O(e). Let
fe denote the result of reconstruction from the discrete data. The author picks a
point xg, where f has a jump singularity, and obtains explicitly the leading singular
behavior of f. in an O(e)-neighborhood of zy as € — 0. The obtained behavior, which
we call edge response, provides the desired resolution of the reconstruction algorithm.
It is shown also that convex parts of the singular support of f do not create non-
local artifacts. The case when f changes during the scan (so-called dynamic CT) is
considered in the two-dimensional setting as well [11].

In this paper we generalize the approach of [11, 12]. The reconstruction problem
is now formulated in terms of the GRT R, which integrates f over a fairly general
family of surfaces S, in R3. Here supp(f) C U, where & C R? is an open set, and
y is the parameter in the data space. For the problem to be well-determined, we
assume that y runs over an open set V C R3. As is seen, our setting is fairly general
and covers all the problems mentioned above. The GRT in this paper is very close
to that considered by Beylkin in [2], only the parametrization of the surfaces S, is
slightly different. This gives us more flexibility to connect our results with practical
applications, where GRTs arise.

Assume that the data ¢ = Rf are known on a regular grid y; with step-sizes
O(e) along each axis. Suppose S = singsupp(f) is a piecewise smooth surface. Sim-
ilarly to [11, 12], we obtain explicitly the leading singular behavior of f. in an O(e)-
neighborhood of a generic point xg € S, where f has a jump discontinuity. We also
prove that under some generic conditions on S (which include, e.g., a restriction on
the order of tangency of S, and S), the singularities of f do not lead to nonlocal
artifacts. For both computations, a connection with the uniform distribution theory
[15] turns out to be important. It is possible that violation of the imposed conditions
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leads to artifacts. Analysis of such artifacts and analysis of more general surfaces S
will be the subject of future research.

The reconstruction formula g — f, which contains a suitably adapted adjoint R*,
is one specific example of an FIO. Here f is such that f — f is smoother than f. Thus,
the reconstruction algorithm can be viewed as an application of an FIO to discrete
data (Rf)(y;). A number of methods for computing the action of FIOs on discrete
data have been proposed; see, e.g., [4, 5, 1, 24] and references therein. To the best of
the author’s knowledge, here we propose the first method to compute the resolution
of the reconstruction obtained by applying an FIO to discrete data that comes from
an image with classical singularities (jump discontinuities). Extension of the method
to more general FIOs and more general singularities will also be the subject of future
work. Some results along this direction are in [13].

The paper is organized as follows. In section 2 we define the GRT R via an
incidence relation C C U x V, list the properties of the function ®(x,y) that defines
the incidence relation, define generic points, and specify the continuous and discrete
inversion formulas that are used in the analysis. The main result is formulated in
section 3; see Theorem 3.1. In this theorem we give a simple and explicit expression
for the edge response of a reconstruction from (R f)(y;). Instead of some cumulative
characteristic of resolution represented by a single number (e.g., a common measure
is full width at half maximum, or FWHM for short), we compute the entire edge
response curve. Hence, this result constitutes a comprehensive answer to the question
of how accurately and with what resolution the jumps of f can be reconstructed from
discrete GRT data. Section 3 also contains the beginning of the proof of Theorem 3.1.
The entire proof spans sections 3—-7. In section 3 we obtain the behavior of g near
its singular support, which generalizes one of the results of [18, 19] from the CRT to
the GRT. The behavior of the interpolated data g. near singsupp(g) is obtained in
section 4. The contribution of the leading singular term to the edge response at a
generic point zy € S is computed in section 5. In section 6 we show that lower order
terms do not contribute to the edge reponse. In section 7 we prove that, under some
assumptions, remote singularities do not contribute to the edge response either. For
convenience of the reader, in section 8 we introduce a GRT that integrates over a
family of spheres tangent to a plane and obtain explicitly some of the key quantities
that arise in our derivation. The example is continued in section 9, where we work out
the details of the inversion formula for this transform. We also present the results of a
numerical experiment, which show a good match between the theoretically predicted
behavior and actual reconstruction. Finally, Appendix A contains the statement of
the Morse lemma and a short explanation of how it is used in our work.

2. Preliminary construction. Let ¢4,V C R? be two open connected sets,
where U is the image domain, and V is the data domain. Each y € V determines a
smooth surface S, C U. Let C be an incidence relation C € I x V', which is defined in
terms of a smooth function ®(z,y) € C>*U x V):

(2.1) C:={(z,y) eU xV: D(zx,y) =0}

Another way to state (2.1) is that « € S, if and only if ®(x,y) = 0. Define the
submanifold:

(2.2) T.:={yeV: ®(z,y) =0}, x €U.

Thus, 7 is the collection of all y € V such that S, contains z. The main assumptions
about @ are as follows (“DF” stands for defining function):
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DF1. ® is real-valued and nondegenerate, i.e.,

(2.3) B, (2,y) £ 0, B (2,y) # 0, (z,3) € C.

DF2. For each z € U, the map 7, — S? defined by y — +®/ (z,y)/|®,(z,y)|,
y € Tz, is surjective.

DF3. For each y € V, the vectors @, (z,y) and ®;(z,y) are not parallel whenever
z,2 €Sy, v F# 2.

DF4. The mixed Hessian of ® is nondegenerate,

2
(2.4) det (m) #0, (z,y) €C,

where 0/0x;, i = 1,2, and 0/dy;, j = 1,2, are basis vectors in the tangent

spaces to the submanifolds S, and 7, at = and y, respectively.
By DF1, S, and 7, are immersed submanifolds. Condition DF2 means that the
tomographic data are complete, i.e., any singularity is visible. Condition DF3 says
that there are no conjugate points. Condition DF4 is a local version of the Bolker
condition. Conditions DF3 and DF4 imply the (global) Bolker condition. Conditions
DF1-DF4 are analogous to Conditions (I)-(IV) in [2]. Conditions DF1 and DF4
combined are equivalent to the condition (cf. equation (4.23) in [22, p. 335]) that at
every point (z,y) € C,

(2.5) det (Z%, ((D%)T> #0.

Indeed, let W denote the matrix in (2.5). Pick any (z,y) € C. By DF1, we can
augment z;,7 = 1,2, and y;,j = 1,2 (cf. condition DF4), to local coordinates in U
and V, respectively, so that ®/ = (1,0,...,0) and ®} = (1,0,...,0). Subtracting the
appropriate multiples of the bottom row (®;,0) and the right column (&7, 0)” from
the rest of W transforms W to the matrix

0 0 1
(2.6) o7 W o], 0:=(0,0),
1 0 0

where T is the 2 x 2 matrix in (2.4). Hence conditions DF1 and DF4 are equivalent
to (2.5).
In the paper we consider functions, which can be represented as a finite sum

(2.7) flz) = ZxD,. fi@),

where xp, is the characteristic function of the domain D; C U. For each j,
1. Dj is compact,
2. Dj is bounded by finitely many smooth surfaces, i.e., D; C UZL:lejl, and
3. f; is C*° in a domain containing the closure of D;.

Denote S := U;0D;. By construction, singsupp(f) C S. Similarly to (2.2), let

(2.8) Ts :={y€V: S, is tangent to S}.

Generally, S is not necessarily smooth, so the notion of tangency in (2.8) needs to be
suitably generalized (see [18]). In this paper, we consider only the cases when S, is
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tangent to S at points where S is smooth. The GRT of f is given by

(2.9) o) = (Rf)(y) == / bz, y) f(z)dz, y €V,

Sy

where the weight b is smooth (i.e., C*°) and nonvanishing, and dx is the area element
on §,. The discrete data are given by

(2.10) glej), j € r+ 27

for some r € R3.
Even though (2.10) assumes that the step-size along each data axis equals ¢, this
is a nonrestrictive assumption. Indeed, consider a smooth diffeomorphism v: V — y
for some open V C R2, so that 1) maps an irregular grid covering V into a regular,
square grid covering V. Introducing a new defining function ®(z,§) := ®(z, (7)),
we can transform any smoothly sampled data set into the one with a square grid.
Clearly, if ® satisfies DF1-DF4, then ® satisfies DF1-DF4 as well.
Conditions DF1-DF4 imply that (cf. [2] and [22, sections VIIL.5 and VIIIL6]) the
following:
1. R is an FIO with phase function A®(z,y).
2. The corresponding canonical relation is

(2.11)
C = {((z, A0 (2, 9)), (y, — APy (2,9))) : ®(z,y) =0,A€R\ 0,2 €U,y € V},

which is a local canonical graph.
3. Any suitably modified adjoint of R, denoted R*, is also an FIO, whose canon-
ical relation C* is obtained from (2.11) by switching the (z,£) € T*U and
(y,m) € T*V variables.
4. The composition R*(...)R, where the dots denote a cut-off combined with
a suitable differential operator, is a pseudodifferential operator (¥YDO), i.e.,
C* o C is a subset of the diagonal in T*U.
Given a point z € S where S is smooth, find y = y(z) (which is locally smooth
under our assumptions; see assertion 1 of Lemma 3.4 below) such that S, is tangent
to S at . Denote

(2.12) N(z):=1Ils,(7) — s (x),

where IIs(z) is the matrix of the second fundamental form of S at € S written in
an orthonormal basis of T,S.
For any = € U, introduce the set (see Figure 1)

(2.13) I'y:={yeV:zeS,, S, is tangent to S at some z, z # z}.

DEFINITION 2.1. A pair (zo,Y0) € C is globally generic if whenever Sy, is tangent
to S at some z # xqg the following conditions hold:

GG1. S is smooth at z, and N(z) is either positive or negative definite.

GG2. Let I"mo be a nonvanishing at any point tangent vector field along I'y,,. There
exists an open set Vi, yo € V1 C V, such that for each m € Z3, |m| > 0, and
all § > 0 sufficiently small,

1. the set {y € oy NVy : |m-Tyy (y)| < 0} is contained in a finite number
of segments of Ty, (this number may depend on m and §), and
2. the sum of the lengths of these segments goes to zero as § — 0.
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Fic. 1. Illustration of the curve I'y, which is shown in red on the left. The red curve on the
right shows the points of tangency z(y) of S and Sy.

(I);/(XOJyO)

A%

F1G. 2. Illustration of the geometric setup in the definition of a locally generic pair (zo,yo) € C.

As is shown in section 7, conditions GG1 and DF3 imply that T',, is a smooth
curve, so condition GG2 makes sense.

An example when condition GG2 is violated is when I';, contains a straight line
segment and m - f‘wo (y) = 0 on this segment for some m € Z2, |m| > 0.

DEFINITION 2.2. A pair (xo,y0) € C, xo € S, is locally generic if, whenever Sy,
is tangent to S at xo (see Figure 2), the following conditions hold:
LG1. S8 is smooth at xq, and N(xq) is either positive or negative definite.
LG2. There is no A # 0 such that A} (xo,y0) € Z°.

DEFINITION 2.3. A pair (xo,y0) € C is generic if it is both locally and globally
generic.

Let ¢ be an interpolating kernel (IK), i.e., ¢(0) = 1 and ¢(j) = 0 for all j € Z,
j # 0. Suppose also that ¢ satisfies the following assumptions:
IK1. ¢ is exact up to the order 2, i.e.,

(2.14) > implu—j)=u", me(OUN), |m| <2, ueR®
€z

IK2. ¢ is compactly supported.
IK3. All partial derivatives of ¢ up to order 2 are continuous.
IK4. All partial derivatives of ¢ of order 3 are piecewise continuous and bounded.
IK5. ¢ is normalized, i.e., [ ¢(y)dy = 1.
The interpolated version of g can be written in the form

(2.15) 9e(y) == > glei)y (y_ee‘j)

jer+z3
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First, we derive a microlocal inversion formula for the GRT R, which reconstructs
exactly the leading singularities of f. Pick any (xg,y0) € C. Let ap be a unit vector
normal to S, at xo. For (z,a) € U x S? close to (zg, ap) and for ¢, |t| < 1, find the
local solution y = Y (e, t; ) such that z + ta € S, and « is normal to S, at x + ta.
By construction, yo = Y (g, t = 0;x0). Here we use the assumption that the data
are complete, i.e., such a solution exists. It is shown below (see (4.2)) that the map
(a,t) =y = Y(a,t;2) is a local diffeomorphism that depends smoothly on z.

Let V; be a small neighborhood of yo. Pick any x € C§°(V1) such that y = 1
near yo. The inversion formula with continuous data is given by

do.

(2.16) o) = - [ (e 02) (3

2
an? [z b(@,Y (o, 0:)) 8t> 9 (a,t:2))

t=0

This inversion formula emulates the CRT inversion formula by backprojecting a second
order derivative of the GRT. The affine variable ¢ is computed relative to x as opposed
to the origin, as is the case with the CRT. Hence the GRT analogue of the usual term
« -z is missing from (2.16), because it is absorbed by the function Y. Due to the
symmetry g(Y (o, t;2)) = g(Y(—a, —t;x)), in (2.16) we integrate over half of the unit
sphere Si.

Using consequences 1-4 of conditions DF1-DF4 (see above (2.12)), it is easy
to show that the map f — f, is a ¥YDO of degree zero with principal symbol 1
microlocally near (xg,a0) (see, e.g., [2, 10]). Thus, the singularities of f and f,
are the same to leading order (e.g., in the scale of Sobolev spaces) microlocally near
(z0, ). An inversion formula that recovers all the singularities of f can be obtained
by combining (2.16) with a microlocal partition of unity. In the case of discrete data,
we use the same inversion formula (2.16), but replace g with g.. The corresponding
reconstruction is denoted fy..

3. Statement of main result. Beginning of proof.

3.1. Statement of main result. Pick (z¢,yo) € C such that S is smooth at
zo € S, Sy, is tangent to S at x¢ (see Figure 3), and N(x¢) is either positive definite
or negative definite. Fix some orthonormal basis in the common plane tangent to
S and Sy, at xg. Let ag be the unit vector normal to & at xy. For convenience of
calculations, we sometime use the Cartesian coordinates (1, z") determined by

(3.1) r=xz100+ 2, 2t €af,

where ag is the plane through o and normal to ag. This plane is tangent to both S
and Sy, at zo (see Figure 3). The direction of ag is chosen so that N(z) is negative
definite. The side of S where o points is called interior. The other side of S is called
exterior. If necessary, multiply ® by (—1) so that &’ (xq,y0)/|®%(z0,y0)| = —o.

F1G. 3. Illustration of the surface Sy,, which is tangent to S at xo, and the associated plane a(J)-.
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Consider the point
(3.2) T =z +€X, T EU,

where U is a bounded set. Denote

Fulos) 1= lim f(moean), foi= lim (F(zo + eao) = flao — cao))

e—07t
(3:3) AR
V= s PO = 7,7
|| EA

Here and in what follows the convention is that if the arguments of ® and its deriva-
tives are omitted, then they are evaluated at xg, yo.
We also introduce local y-coordinates with the origin at yq:

(3.4) y=(yi,y") =yBo+y.

Thus, equation y; = 0 determines the plane tangent to the submanifold 7, at yo.
We frequently denote this plane 3y .
Finally, we use the extension of the CRT to all of R?\ 0 according to

(3.5) flu,s) = /f(a:)é(u x — s)dx, u € R*\ 0,

for a sufficiently smooth and rapidly decreasing f.
The main result of the paper is the following.

THEOREM 3.1. Pick a generic pair (x,yo) € C such that Sy, is tangent to S at
zo €S. Then

o0

(36) ltg Foo(e) = filloos) — fo [ @l s)ds,

h

where h = T - o, and ¢ is the CRT of .

By IK5, [, ¢(Bo,s)ds = 1. The inversion formula (2.16) reconstructs jumps of f
accurately, so fy(zo+) — fy(zo-) = fo and (3.6) can be written as follows:

vh

(37) lig foo(e) = Flwo )+ fo [ 660,

— 00

Theorem 3.1 implies that for small € > 0, the reconstructed image near a generic
jump discontinuity of f can be approximated by the right-hand side of (3.6) (or (3.7)).
Based on this formula one can perform various analyses of the accuracy of reconstruc-
tion, e.g., compute conventional measures of resolution like FWHM, investigate how
resolution and accuracy depend on location and orientation of the edge, and many
others. The integral on the right-hand side of (3.6), which represents the unit edge
response, is explicitly computable using fairly simple formulas. Indeed, only three
quantities are required for this: v and Sy, which are given in (3.3), and the CRT of
the interpolation kernel . See sections 8 and 9, where the edge response is computed
for a GRT that integrates over spheres.

Formulas (3.6), (3.7) can be understood intuitively as follows. Let 8(t) =0, ¢t < 0,
and 6(t) = 1, t > 1, be the Heaviside step function. As ¢ — 0, the reconstruction
points x. are confined to a shrinking neighborhood of zg € S. In this neighborhood,
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S is close to the tangent plane (z — xg) - g = 0, and the approximation f(z.) &
fzo-) + fob((xe — x0) - ap) is increasingly accurate as e — 0. Moreover, because
(2.16) preserves values of jumps, we can view the function 0((x. —x¢) - o) as the unit
edge response of the reconstruction from continuous data. Clearly,

vh P’
(3.8) /_DO &(Bo, s)ds = /RG (h - :(I)Z:s) &(Bo, s)ds.

Thus the unit edge response of the reconstruction from discrete data equals to the
convolution of the ideal, continuous data edge response with a smoothing kernel (see
also [13] for related results). Since (xg, ) € WF(f), analyzing the reconstruction
of f at xy probes the edge response along the direction agy. The canonical relation
C* of the FIO in (2.16) maps (yo, 50) to (xg, Aag) for some A # 0, so it is clear
that a vanishingly small conical neighborhood of (yg,89) should be contributing to
the discrete reconstruction at (zg,cp) as € — 0. This is indeed confirmed by our
derivation; see (4.3), (5.20), and (6.3) below. As g(y) is a conormal distribution and
(Yo, B0) € WF(g), in a small neighborhood of vy, g(y) can be approximated by a
function go((y — yo) - Bo), which is constant along planes perpendicular to 8y. The
interpolation kernel ¢ is applied to the data, so it is natural that the CRT of ¢ along
Bo appears in (3.8), and the convolution is with respect to the affine variable s along
Bo. The ratio |®]|/|®/| is a microlocal (i.e., depending on location and orientation)
“conversion factor,” which converts distances in the data domain V (e.g., s and the
sampling rate €) to distances in the image domain U.

By linearity, the proof of Theorem 3.1 can be split into two parts: local and
global. The local part is formulated as follows.

THEOREM 3.2. Pick a locally generic pair (xo,yo) € C such that Sy, is tangent to
S at xg € S. Suppose supp(f) is contained in a sufficiently small neighborhood of xg.
Then

o0

(39) lim ) = Fylaws) = fo | 6(Bs)ds.

h

where h = T - ay, and ¢ is the CRT of ¢.

Theorems 3.2 and 7.1 (see section 7) state that the edge response of the recon-
struction near g is determined only by the behavior of f near xg.

Since R is an FIO with canonical relation (2.11), g = R f is singular only when S,
is tangent to S. Therefore, we are interested in the behavior of g in a neighborhood
of yo.

Remark 3.3. Strictly speaking, one has to distinguish between the original coor-
dinates that describe points € U, y € V and those in (3.1), (3.4), respectively. For
example, one should write x = Z1a9 + #+ instead of x = z1ap + 1. Such notation
would emphasize that Z; is not the first component of x in the original coordinates,
ie, &1 # x;. Similarly, a derivative like 0®(x,y)/0xy, if written in full, becomes
0P (x(21,2%),y(91,9%))/021. To avoid burdensome notation, whenever the coordi-
nates (#1,4%) and (1, 9") are used, we will stick with the simplified notation and
assume that the above convention holds.

3.2. Behavior of g near its singular support. Because S is smooth in a
neighborhood of zy € S, there is a smooth local diffeomorphism = — (z,p) so that

(3.10) r=2z+pn(z), z€S, n(z) is normal to S at z, |n(z)| = 1.
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The normal n(z) is chosen so that N(z) is negative definite. Thus n(zo) = «g. Clearly,
we can extend the function n(z), z € S, to n(x) defined in a neighborhood of ¢ by the
formula n(z 4+ pn(z)) := n(z). With a slight abuse of notation, the extended function
will also be denoted n(-).

Using (3.10), define ¥(z + pn(z)) := p. Then ¥(z) = 0 is the equation of S near
Zo, and ¥ is smooth. By construction, ¥(z) > 0 on the interior side of S.

Consider the system of equations

(3.11) ! (2 +pn(z2),y) — In(z) =0, ®(z+pn(z),y) =0, ¥(z) =0.

If we set p = 0 and solve (3.11) for y, we find a local patch of the submanifold Ts
near yo. Recall that y € Ts implies that S, is tangent to S. We also need to solve
these equations for z,p, and A in terms of y.

LEMMA 3.4. Pick (x,y0) € C such that (1) S is smooth at zg, (2) Sy, is tangent
to S at xg € S, and (3) N(xp) is negative definite. Then
1. Ts C V is a smooth submanifold of codimension 1 near yo, and the vector
@}, (w0,90) is normal to Ts at yo;
2. the solutions z = Z(y), p = P(y), and X = A(y) to (3.11) depend smoothly
on y in a neighborhood of yg, and

(3.12) Py (yo) @, # 0;

1
A

3. equations (3.11) determine a smooth function y =Y (z,p), (z,p) € S xR, in
a neighborhood of (x0,0).

Proof. Differentiate (3.11) with respect to z, p, A\, and y, and set z = xg, p = 0,
y = yo to obtain the 5 x 8 matrix

O’ —Anl, OV ag —ag P

zy
(3.13) @/, a0 @
v’ 0 0 0

Here n/, is the derivative of the function n(x) extended to a neighborhood of zy as
described following (3.10). Since Sy, is tangent to S at zyp € S, we have @/, || , so
@ g = A = —|P!| # 0. This also gives the value of A to be used in (3.13). By (3.3),
;= |} |Bo. Also,

(3.14) V(2 +pn(z)) = n(z),

which implies that ¥/ (zg) = ap. Combining these observations, and dividing the
second from the bottom row by —|®’ |, and the bottom row — by |®’ |, the matrix in
(3.13) transforms to

(315) (7)) 1 0 (—I/V)Bo 5
Qg 0 0 0

where ag and By are row vectors.

To prove (3.14) note that, by construction, ¥(x(z,p)) = p. Here (z,p) — z is the
local diffeomorphism defined in (3.10). Suppose points z € S near z( are parametrized
by some two-dimensional parameter u = (uj,us). Differentiating with respect to u
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and p gives V) (v)z;, = 0 (because p and 2 are independent) and ¥} (z)z), = 1, where
x, = n(z). By construction, z(u) € S and |n(u)| = 1 (where we replaced n(z(u)) with
n(u) with a slight abuse of notation). Hence z, = 2, +pn;, , j = 1,2. Since 2,
is tangent to S at z and nj,, -n =0, we get n(z) -2, =0, and (3.14) immediately
follows.

To prove the first part of the first assertion of the lemma we need to show that
z,\, and y; are smooth functions of y*. Remove the columns corresponding to the
derivatives with respect to p (because p = 0 is fixed) and y* to obtain a 5 x 5
submatrix. By applying elementary row and column operations, it is clear that this
submatrix is full-rank if and only if the following matrix has rank two:

(3.16) DL 0+ [0 ()]

Here @, , : ag — ap is the appropriate submatrix of ®//_
and n' is the projection of n onto ag . Tt is easy to see that

(3.17) o+ P (0 )y = | PN (20).

in the coordinates (3.1),

The desired assertion follows from condition LG1 (see Definition 2.2).

Next, set p = 0 in (3.11) and assume that z,y; are functions of y*. Differentiating
the last two equations in (3.11) with respect to y* and using that @ - fo =Py #0
gives ®z) . =0 and Jy,/ dy* = 0. This proves the second part of the first assertion.

The first part of the second assertion follows by retaining the columns corre-
sponding to the derivatives with respect to z,p, and A. As before, the resulting 5 x 5
submatrix is full-rank because the matrix in (3.16) has rank two. The second part of
the second assertion follows by considering z, p, and A as functions of y, differentiating
the last two equations in (3.11) with respect to y, and using that @/, ®; # 0.

The function z = Z(y) leads to a shorter proof of the first assertion by noting
that ®(Z(y),y) = 0 is also a local equation of 7s near yo and, by construction,
dy®(Z(Y), Y)ly=yo = dy® (20, Y)ly=y,-

The third assertion follows immediately from data completeness and the Bolker
condition (conditions DF2 and DF4, respectively). 0

We need the following lemma, which generalizes one of the results of Ramm and
Zaslavsky [18, 19] from the CRT to the GRT.

LEMMA 3.5. Pick (x0,yo) € C such that (1) S is smooth at zg, (2) Sy, is tangent
to S at xg € S, and (3) N(xo) is negative definite. Suppose supp(f) is contained in
a small neighborhood of x¢. For any z € S and p in small neighborhoods of xy and 0,
respectively, one has

(318) 9(V(:) = pGle:p) + Ci(oop) and GL=,0) = o V02—

for some smooth G(z,p), G1(z,p).

Proof. Recall that Y (z, p) is the smooth function of (z,p) € S x R defined by the
conditions that z 4+ pn(z) € S, and n(z) be normal to S, at the point z + pn(z); see
assertion 3 of Lemma 3.4. By assumption, N(zg) is negative definite in coordinates
(3.1). By linearity, we may assume that f = 0 on the exterior side of S. In particular,
f(zo—eap) =0, e>0,in (3.3). In this case we have to prove (3.18) with G; = 0. By
construction,

(3.19) g(y)z/s f(z)b(z,y)0 (¥(z)) dz,
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where 6 is the unit step function (Heaviside function). Consider the system
(3.20) U, (2) — @y (z,y) =0, @(z,y) =0,

which we solve for x and p in terms of y. Equations (3.20) determine the stationary
point z,(y) of ¥(z) on the surface S, (the parameter p, which corresponds to 1/X in
(3.11), is the Lagrange multiplier). From (3.11) and the property of ¥/ the solution
2. (y), p(y) to (3.20) can be obtained from the solution z = Z(y),p = P(y), A = A(y)
0 (3.11): z.(y) = Z(y) + P(y)n(Z(y)), u(y) = 1/A(y). By assertion 2 of Lemma 3.4,
24 (y) is smooth near yjo.

As is easily checked when the matrix ¥ (zo) — p(yo) Py, (20, yo) is viewed as a
quadratic form on g, it coincides with N (z). The latter is negative definite, hence
z4(y) is the local maximum of ¥(x) on S,. By the Morse lemma (see Appendix A),
find local coordinates w on S, which depend smoothly on y, such that w(z.(y)) =0
and ¥(z) = ¥(z.(y)) — |w|?, @ = z(w;y) € Sy. Since f,b, and x(w;y) are all smooth,
we get from (3.19)

(3.21) o(y) = / 0 (U (2 (y)) — |f?) Flw. y)dw

for some smooth F. Expand F in the Taylor series around w = 0 and integrate in
spherical coordinates w = r©. Integration with respect to © removes all the odd
powers of r, i.e., only the even powers of r remain. By construction,

(3.22) U(z.(y)) = ¥(z+pn(z)) =p if y=Y(zp),

and the first statement in (3.18) follows.
To prove the second statement, we use the local coordinates (3.1). In these
coordinates, the local equation of S, becomes

1 1

(3.23) vy =wi(et,y) = o(y) +aly) -2+ + 5

for some smooth ¢, a, and A. By construction, y = Y (z0,p) implies that z.(y) =
Zo + pag. Substitute such a pair (z.(y),y) into (3.20) and use (3.23) to conclude
that ¢(y) = p, aly) =0, y = Y(xo,p). Let 21 = Q(z+) be the equation of S in
the coordinates (3.1). By construction, @'(0) = 0. Clearly, A(yp) and Q" (0) are
the matrices of the second fundamental form of S,, and S, respectively, at zy in the
coordinates (3.1). From (3.19),

. / @bz, )8 (bt 1) 1+ |Q (1) 2 dar,
d}( - xl( 7y) Q("I"L% T = (wl(xJ_vy)vxl)'

Setting y = Y (o, p) in (3.24), integrating by diagonalizing N (zo) = ¢, . (0,y0) and
changing variables, and taking the limit as p — 0 (hence y — yo), we find
2T

(3.25) G(20,0) = f(z0)b(o, yo)w-

By noting that instead of (xo,y0) € C one can take any (z,y) € C, where z € S is
sufficiently close to xy (and y = Y(z,0)), we finish the proof. d

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/08/20 to 5.198.137.25. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

4002 ALEXANDER KATSEVICH

It follows from the results obtained in this section that the properties of the
matrix function N(z) are very important for our analysis. The nondegeneracy of
N(z) ensures that 7s C V is a smooth submanifold of co-dimension 1 near zy. See
the proof of assertion 1 of Lemma 3.4. Also, the specific behavior of g(y) near its
singular support (recall that singsupp(g) C Ts) established in Lemma 3.5 holds only
when N (xg) < 0 (i.e., N(zg) is negative definite). The case N(xg) > 0 can be obtained
from the case N(zg) < 0 by a change of variables (cf. the paragraph following (3.1)).

4. Local behavior of interpolated data. Similarly to (3.11), consider the
equations

(4.1) P (z +ta,y) — Aa =0, (z +ta,y) =0,

which we solve to find y = Y(q,t;2) assuming («,t,x) is in a neighborhood of
(0,0, z0). Differentiating (4.1) with respect to A and y and setting = = zg, t = 0,
a = ag, A = —|P,|, we obtain similarly to (3.13) a matrix, which is nondegenerate.

As opposed to (3.13), the key reason why it is nondegenerate is the Bolker condition.
Hence Y (a, t; ) is a smooth function of «, ¢, and z. Next we substitute y = Y («, t; x)
into (4.1) and obtain a few useful properties of Y. The first one is that 9Y; /0at = 0.
Indeed, differentiate the second equation in (4.1) with respect to a’ and set x = o,
t =0, o = ag to obtain ®,dY/da’ = 0. The desired assertion follows from (3.4). In
a similar fashion, we have

(4.2) det(0Y+/0a™) # 0, 0Y1/0t = |®),|/|®)| # 0, det(dY/d(a™,t)) # 0.

The first result is obtained by differentiating the first equation in (4.1) with respect
to at and using the Bolker condition and that dY;/0a® = 0. The second result is
obtained by differentiating the second equation in (4.1) with respect to ¢ and using
the properties of the selected coordinates (3.1), (3.4). The last result is an obvious
consequence of the first two and that 9Y; /da’ = 0.

In view of (4.2), given any small w > 0, we can find a sufficiently small open set
V1, yo € V1 C V, such that Y(a,t;z.) € V; implies |a*| < w for all x, provided that e
is sufficiently small. This relationship between V; and w is assumed in what follows.
The results in (4.2) imply also that the inversion formula (2.16) requires finitely many
data points y; = €j (cf. (2.10)) for each fixed € U and € > 0.

Since supp(x) C V1, the domain of integration in (2.16) can be split into two sets:

(4.3) Q1 :={aeSt: o< Aet?} Q= {a e S3 . Ae'? <ot < w}

for some small (but fixed) w > 0. Here A > 0 is a large parameter. Let f;fe) denote the
result of integrating in (2.16) (with g replaced by g.) over Q;, j = 1,2. The behavior
of f&) is investigated first. This is done in section 5. In the remainder of this section
we lay the groundwork for that investigation by deriving the behavior of Y (a,t; )
and g.(y) in a neighborhood of (g, 0, xg) and yg, respectively.

4.1. Local behavior of Y («, t; ). The first step is to obtain the leading term
behavior of the function Y (o, ¢;x.) for t = O(e) and a € Qy, i.e., for |at| = O(¢'/?).
In this section we continue using the coordinates (3.1).

Expanding y = Y («, t; ) in the Taylor series around z = xg, t = 0, @ = ag and
using that |z. — zo| = O(e), t = O(e), |a’| = O(e*/?), and Y] /dat = 0 gives

(4.4) y1 = O0(e), [y*| = O(e'?).
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For z in an O(¢) neighborhood of the origin (i.e., zo) and for y in an O(e'/?) neigh-
borhood of the origin (i.e., yo) we have
-y

4O,

O(z,y) =0, w4+ Py y+
P (z,y) = & + D7y + Ofe).

To find y = Y (e, t; z), substitute z = z, into (4.5) and solve

(4.5)

Y-y _
2
P, + Py = A (1,at) (mod Ofe)).

x

Q! - (ex + ta) + ‘1321 cy+ 0(63/2),

(4.6)

Recall that h = & - ap. Switching to the coordinates (3.1), (3.4), using (4.4), and
keeping only the terms of order O(¢) in the first equation in (4.6) gives
1 yJ_ . yJ_

®
(4.7) ~(eh 1)L + [}y +

5 = 0(*?).

Projecting the second equation in (4.6) onto o and onto o implies

(4.8) A=—|0,[+O(e/?), ®2. y" = Aot + O(e),
leading to
(4.9) Y (a,tize) = —|@ (@), ) tat + O(e).

By the Bolker condition (2.4), @;’LyL is nondegenerate. Substitution into (4.7) now
yields

Mat - ot
Yila,t;z) = v (eh+t— =2 ") 4 0(/?),
(4.10) 1 ) ( 2 ) ()

M:= |(I);|((I)ZLyL)_T¢)IyILyL((I)ZlyL)_l, M : Oéé — Ozol.
Recall that v is defined in (3.3).

4.2. The leading local behavior of g(Y (a,t;2.)). We plan to substitute
y=Y(a,t =0;x.) into (2.15). Hence the second step is to find the leading behavior
of g(y) when |y — Y (,0;z.)| = O(¢) and |a*| = O(¢'/2). This is done by finding the
asymptotics of z = Z(y) and p = P(y), which are determined by solving (3.11).

Recall that the local equation of S in the coordinates (3.1) and the interior unit
normal are given by

"L L
a2 =Q@h) = T2 Logtp),

n(z) = 1+ 0(]24%), -Q"= + O(|=* %)), Q" :=Q"(0).

By (4.9), (4.10), |y1| = O(e), |y*| = O(¢'/?). From (3.12), dp/dy* = 0 at y = yo,
so this implies [p| = O(¢), 21 = O(¢), and |21, |zt| = O(e'/?), where = = 2z + pn(2).
Equation (4.11) leads to

(4.11)

Q//ZJ_ R 3/2 n 1/2 n o1
o= <2+0(e ), 2 )+p(1+0(e ), =Q"z" + O(e))
(4'12) Q//ZL . Zl
_ (p + T o), + 0<e3/2>) :
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From (4.12), 2t = 2+ + O(e¥/2).
Given that now |z| = O(e!/?), the expansion in the first line in (4.5) should
include additional terms. The second equation in (3.11) becomes

o', L xt.axt Y, Lyt oyt
(413) =@ s + [}y + — s @yt o = ().
Solving for z; we find
(4.14)
1 1 i ' xl 'JUL P yL . yL
= ;yl =+ |q>/ | { a:Lg,L2 + (I)ZJ_yJ_yJ_ -xJ‘ + yJ-yJ-2 _’_0(63/2).
x

Using (4.9) and that |y — Y («, 0;z.)| = O(€), we have

(4.15) yo =10 (®)L, ) et +0(e),

xly
and the unit normal vector to Sy is thus

" 1
(AT

(4.16) (1 + O(eY?), 0t — T O(e)) .

The big-O terms in (4.16) follow by noticing that differentiation with respect to x; in
(4.13) converts O(e*/?) into O(e'/?), and differentiation with respect to 2t converts
O(e%/?) into O(e). This follows by noticing that (a) the term O(e*/?) on the right in
(4.13) represents a smooth function (which is the difference between ®(z,y) and the
left-hand side of (4.13)), and (b) the Taylor expansion of this function starts with the
terms of order O(e%/2) (e.g., xlle, xlyjl, ylij, ylyjl7 S

From (4.11) and (4.16), the two normal vectors are parallel (the first equation in
(3.11)) if

1 q);c/imLzL _ L
(4.17) a | +0(e) = Q"2 + O(e),
which implies
(4.18) 2zt = Nylat 4+ 0(e), ot = Nytat +0(€), Ny := N(xo).

Matching the first components in (4.12) and using (4.14), (4.15), (4.18) gives after
simple transformations

1 Miat - at _
(4.19) p="- (yl + 12) +O(e¥?), My :=v(M — Ny 1),

where M is defined in (4.10). Summarizing (4.18) and (4.19) we have
1 Mot - ot
Z*+(y) = Nytat +O(e), P =< +1>+0 3/2),
oy 2 =N 000, Pl = (1 2 ()
|y =Y (a,0;z)| = O(e), |aL‘ = 0(61/2>‘
Substituting into (3.18) we find

(4.21) 9(y) =f(Z(y))b(Z(y)7y*)(mt]2Vﬂ(Z(y))P+(y) +0 (P(y),
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where y* = Y (z,p = 0) whenever y = Y (z, p).
From (4.11), (4.18) and (4.9), (4.10) it follows that |Z(y) — zo| = O(e/?) and
ly — yo| = O(e}/?) whenever |y — Y (a,0;2.)| = O(e), hence
f(Z(y)b(Z(y),y*) _ f(@o)b(xo, yo) +O(12),

(4.22) dtN(Z(y))  +/detN(zo)

4.3. Local behavior of the interpolated data. In this subsection we find the
behavior of the interpolated data near yo = 0. Combining (4.20)—(4.22) we get

o) =27 (L@obwovo) | sy (o, 4 Mao— o | e
w99 (R o) (s B o)
+0 (P(ed))

where M is defined in (4.19). From (4.10) and (4.20), |P(ej)| = O(e). Using (4.9),
(4.10), and (4.23) gives

(4.24)
ge(Y(a, t;z0))

_ 2me f(20)b(z0,Y0) /  Myat-at /
v 'EZ+Z'3 (\/(W]VQ + 0(61 2)) (.71 + f +0 (61 2)>
JET+Z

- Mat-at . ! 1 .
o (o (e e Y v () Mar e o)

+

+

2
+0(?), T:=t/e, a* :=at /2

Since ¢ is compactly supported, the number of terms in the sum in (4.24) is bounded.
Using additionally that || < A < oo, the two O (61/2) terms on the second line
of (4.24) are uniform in j, and the sum itself is bounded as well. Finally, combining
with the fact that |(a +O(e'/?))y —ay| = O(e'/?) uniformly in a € R and using (4.9)
and (4.10) gives
(4.25)

ge(Y(a, t;z0))

x0)b(zo,yo)2me/v . Mat - at
_ f(@0)b(wo, yo)2me/ Z<]1+ 1 )
+

VdetNo JEr+Z3 2
X p (V (h +1-— W) -n+0 (61/2> T L?/;J( h)Ttat =g+ 0(1))
+0(¥?).
In view of (4.25), denote
(4.26) Plaw) = D (G-Bota)spu—1j), R, ueR’.
jer+13

Here we will need a higher order approximation of Y («,¢; z.) than the one in (4.9),
(4.10):

Yt je=—|®L (@Y., ) rat + Ay(@t, @) + Aol + Ash + O(e'/?),

(4.27) _ Mat-at
Yi/e=v (h+t— M) + 0(61/2)7

2
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where A; is a bilinear map R? x R? — R2, and Aj, A3 € R2. Moreover, the two
O(e'/?) terms in (4.27) depend smoothly on £ and &*. In particular, differentiation

with respect to ¢ does not change the order of these terms as € — 0. Hence we rewrite
(4.25) as follows:

(4.28)
e - 1~
ge(Y (ot ze)) = %w (q(ah), u(@*, 1)) + O(e*?), q(a*) = Mﬂ%

Sl L
u(at,t) = <u (h—i—f— AM) +0 (61/2> ,

2
||
T )2

(@, )7 rat + Ag(@t,at) + Aot + Ash + 0(61/2)> .

We also have

Ou(at,8)/08,_y = v (1+0(2), Az /v + O(/)) |

(4.29)
82u(dL,t~)/8i‘2|t~:O = O(/?).

5. Estimating the term f)(cle) To study f&) we need the following lemma,
which follows immediately from (4.26) and the properties IK1-TK3 of .

LEMMA 5.1. Partial derivatives of 1(q,u) with respect to u up to the order two
are continuous. Also, one has

(5.1) ¥(gq,u) = ¥(g+m- fo,u—m) Vm € Z?,
and, for some ¢ > 0,
(5.2) Y(gu) =0 ifu-Bo+q<—c; Y(gu)=u-fo+qifu-Pot+q>ec

Denote
2

(5.3) U(q,u) :=— 32

(g, u+ (1, Az /v))

7=0

The following lemma is a direct consequence of Lemma 5.1 (see also properties IK3,
IK4 of ¢).

LEMMA 5.2. The function U(q,u) has piecewise continuous bounded first order
partial derivatives with respect to ¢ and u. Also,

(5.4) Ulg,u) =U(qg+m- Bo,u—m), ¥Ym € Z?,
and, for some ¢ > 0,
(5.5) Ulg,u) =0 if lu- o +q| >c

Note that the derivative in the inversion formula (2.16) is with respect to ¢. Using
that t = et (cf. (4.24)) and taking into account (4.29), (5.3), in the formula below we

will acquire the factor (¢/v)?. Thus, in terms of U, the expression for f)&) becomes
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after changing variables o — &+ (this brings the factor €), setting = 0, and using
(4.28), (4.29), (5.3),

(5.6)
M) () = 1 fo2me/v) € ab). e (@) dat l/2
H00) = 53 e T 7 (084 0@) 4+ 0(E),

Mat .6t P’
up(at) : = (y (h - 0‘2°‘> - Ll/g' (@7, ,.)7at + Ayat,at) + Agh) .

Two simplifications have been made in deriving (5.6). First, using that first and
second order derivatives of ¢ are bounded, it follows from (4.29) that

82 ~ 1 7
@l/f ('7u(a 7t)) B

t=0

ﬁ +O(€1/2).

(57) (~,’LL(C~¥J',O) +7—(]-7*42/1/))

7=0

Second, since the derivatives of U are bounded, the integral with respect to & is over
a bounded set, and the coefficient in front of the integral is bounded, using (5.7) and
then replacing u(a,0) with ug(&"') in the arguments of U leads to the term O(e'/?)
outside the integral.

Approximate the domain |&*| < A by a union of nonoverlapping small squares
of size 6. Let these squares be denoted By, k = 1,2,...,0(52). By (5.6),

uo(at) = up(ai) + Aug(at) + 0(9), at € By,

O At = (0,108, NG - a)/e?) € ot

where dé‘ is the center of By. By Lemma 5.2,
(5.9) U (q(@"),uo(@")) = U (qg(ay),uo(ay) + Aug(at)) + O(), & € By.

Therefore
(5.10)
/ U (g(at),uo(a™)) da*
By,
— [ 10 @@ w(@t) + Au@) + 00)] da*
By
= / [0 (aa7) + Luo(a7c) + Aur(@) ] - o, {uo(d7c) + Aux(@)}) + O(6)] dat
By,
— [ [V (@) + uo(ad) - o {un(ap) + Bun(@)} - o
By,
{uo(@y) + Aug(a™)}) +0(0)] da,
where we have used that Aug(a+)-Bo = 0. In (5.10) and below the fractional part of a
vector is computed componentwise: {u} = ({u}, {ua}, {us}), where {u;} = u; — |u;]
and |u;] is the largest integer not exceeding u;.
Pick any m € Z3, m # 0. Let m" be the projection of m onto the plane S;.

Condition LG2 in Definition 2.2 implies that m* # 0. By the local Bolker condition
DF4, ®”, | is nondegenerate, so the vector (®”, ,)~Tm* € R? is not zero. Using
zty zly
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(5.8), a Weyl-type argument (cf. [15]) implies that

lim [ U (q(@™),uo(at)) da*
e— By
(5.11)

= (/[0 » U (‘I(dlj{) +uo(dj) - Bo —w- Bo,w) dw + O(5)> Vol(By,).

Indeed, consider the function Us (¢, w) := U(¢—w- By, w). Clearly, U;(g,w) is periodic:
Ui(q,w) = Ur(q,w +m), m € Z3. Expand U;(q,w) in a Fourier series:

(5.12) Z A (q) exp(2mim - w).

mezZ3

By the argument preceding (5.11),

. (0, ~1@LI(@]1,) M @F = aF)) = ~|@LI(@] ) Tmt - (@t - ap),
( ZLyi)iTmJ_ #£0, |m| > 0.
Therefore,
; - <1 <1 L
115% /B exp (2mim - (uo(dy ) + Aug(a™))) do
(5.14) " ,
. 2mi| ©7 | 1" T, L] ~1)\ j~L
= lim exp| ————= [(®/., ) m~|-a )da—| =0, |m| > 0.
—0|/p, € Y

By (5.14), only the term corresponding to m = 0 does not vanish as ¢ — 0. The
desired assertion follows from the standard approximation argument.
By (4.23), (4.28), and (5.6),
vNy ak ozﬁ
2

Add the integrals over all the squares By, and use (5.6), (5.11), and (5.15):

(5.15) (@) +uo(dy) - fo = vh —

(5.16)
lim f{ (x:)
Z/ ug(a™)) dat + 0(9)
k
vNy tag - a-
- Z [0 o Vh— — —w-ﬂmw) dw + O(8) | Vol(By) + O(9),
k

The term O(J) outside the integral on the second line of (5.16) appears because of
the error of approximating the domain of integration |&*| < A in (5.6) by the union
of By’s. Since > 0 can be as small as we like, (5.16) implies

N71~l AL
(5.17) limfV(z) = /{/ / Ulvh -0 2 % . Byw ) dwda.
-0 jati<a Jio,e 2
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The second argument of U is bounded and Ny is negative definite, so by (5.5) the
integral with respect to & over the set |a| < A, when A > 0 is large enough (but
fixed), can be replaced by the integral over all R2. Changing variables and integrating
in spherical coordinates gives

N ~L
hmf(1 (acg):/-@/ / ( h—yOé—w-%,w)dwdé}L
=0 Rz J{0,1)3 2

L

[0,1]3

fo/ / Uwh+71—w-B,w)dwdr.
o Jp,

The integral with respect to w can be evaluated explicitly. Recall that in our
coordinates, Sy = (1,0,0) (cf. (3.4)). From (4.26) and (5.3),

By R
[0,1]?

82
- /[0 O (g —w- Bo, (1, AgJ) +w)

71]3 87'2

(5.18) =K Uwh+v-v—w-fy,w)dwdv

dw
7=0

G19) =2 / > (0o (@ — ) plr(l, Asv) 0 — )

j€r+Z3 o
32
= ﬁ/}}@ (g —Bo-w)+p(T(1, A2/v) + w)dw
? 7=0
0? X
= 573 (0= B @)er(10) + 0| = G(A.0)

Substitute (5.19) into (5.18)
o0 o0
(5.20) li_r>r(1)f>(é)(x6) = —fo/ @&(Bo, vh 4 T)dT = fo (—/ @(ﬁo,T)dT) .
€ 0 vh
Since ¢ is normalized and compactly supported,

(5.21) - /Oo &(Bo, 7)dr = {0’ h>e

h -1, h<-—c

for some ¢ > 0.
Using the definition (3.5) and some simple transformations, we can rewrite the
integral in (5.20) in two different forms:

o0 o0
(5.22) / (Bo,7)dr = / H(@) 7)dr = / o(§)di.
vh |® |h @1 E4+D,§>0

6. Analysis of the term f>(<2€)

LEMMA 6.1. One can find w > 0, ¢g > 0 small enough and A > 0 large enough so
that g(y) is smooth in a neighborhood of all y such that (y — Y (a, 0;2¢))/e € supp(yp)
forany a € Qo,z €U (cf. (3.2)), and 0 < € < €.
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Proof. Fix some ¢ > 0 sufficiently large. Using that N(z() is negative definite,
(4.20) implies that we can find A > 0 large enough and w > 0 small enough so that
P(Y(,0;2)) > ce for all @ € Qy and all Z € U provided that e is small enough.
Since ¢ is compactly supported and P(y) is smooth, P(y) > 0 for all y such that
(y — Y(,0;2.))/e € supp(p) (this is where we use that ¢ > 0 is sufficiently large).
Therefore, g is a smooth function in a neighborhood of all such y because in this case
we can drop the subscript “4” from P, (y) in (3.18). d

Lemma 6.1 implies that the inversion formula (2.16) and its discrete analogue
do not see singularities in the data when a € Q5 provided that w, A are selected as

in the proof of Lemma 6.1. Since || = O(e), the limit lim o+ fg) (x) exists, is
independent of £ € U, and
(6.1) £ (@) = £ (w0) = O(e).

Using again that N(z() is negative definite, there exist sufficiently small neighbor-
hoods U; of zy and V; of yo such that Sy N is on the exterior side of S whenever S,
is tangent to S and y € V;. This implies that if x € U; and z is on the interior side of
S, then there is no y € V; such that S, contains  and is tangent to S. In turn, this
implies that the data g(y), y = Y (o, t = 0;2) € V4, which is used to compute f,(z)
is also smooth. Hence, assumptions IK1-IK3 imply that the L* error of computing
the second derivative 9%/9t? in (2.16) from the interpolated data is of order O(e).
The integral in the discrete data inversion formula can be viewed as a Riemann sum
with step-size O(e) for the integral in the continuous data inversion formula. The
integrand in the latter is smooth when x is on the interior side of S, so we have using
again that 1] = O(e)

(6.2) FP (o + ehaw) — fy(wo + ehag) = OCe)
for any h > 0. Combining (6.1) and (6.2) gives
(6.3) 1@ (@e) = f(wo+) + Ofe).

This concludes the proof of Theorem 3.2.

7. Contribution of remote singularities. Suppose zg € S, Sy, is tangent
to S at some zg € Sy, 20 # To, S is smooth at zg, and N (zp) is either positive definite
or negative definite. Set g = D/ (20,v0)/|P%(20,%0)l, so that yo = Y(aog,0;20). As
before, V; is a small neighborhood of g, and supp(x) C V;.

As follows from assertion 1 of Lemma 3.4 (with z( replaced by z as the point of
tangency), 7s is a smooth submanifold of V; through yo, and the vector ] (20, yo) is
normal to Ts at yo. The local equation of Ts is P(y) = 0, where the function P is
the same as in Lemma 3.4. By assertion 2 of the lemma, P, (yo) # 0.

Another locally smooth submanifold through yo is 7z,, and <I>; (0, Yyo) is normal
to it at yo. By the assumption DF3 of no conjugate points, ®; (o, yo) and @ (z0,yo)
are not parallel, so the intersection of the two submanifolds is a smooth curve I';,
through yo. This is the same curve I, which was introduced in (2.13). From this
argument it is easy to see that I', depends smoothly on x near x = x.

THEOREM 7.1. Pick a globally generic pair (xo,yo) € C such that xg € S and
Sy, 1s tangent to S at zo € S. Suppose supp(f) is contained in a sufficiently small
neighborhood of zy. One has

(7.1) P_{%fXE(xe) = fx(zo).
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Proof. Suppose first that the reconstruction point is xy. Since the reconstruction
point is fixed, the dependence of various quantities on x( is omitted from notation in
most places when there is no risk of confusion. Then

: .
o ftan) = [ , B 2 st (;) ’ (W) s
’ . x(Y(a,0)) 1
Bla) == e oy (@ 0))"
By Lemma 3.5,
(7.3) 9(v) = Py ()Cw). C) = G(Z(y). P)).

Since ¢ is compactly supported, we can expand the factor P(y) in (7.3) in the Taylor
series centered at Y («,0). Let L(y) be its linear term:

(7.4) L(y) := P(Y(«,0)) + P?;(Y(a, 0) - (y — Y(a,0)).

We begin by looking at the expression, which is obtained by ignoring the second and
higher order terms in the expansion of P:

EEEEEY , B S Gl (;)w (Het=9) .
Clearly,

(5) # (M22=9)| e
16 = Ve (F2Y ) 2y (K225 o)

2
ua) = ¥/(@,0). V2ol = (53 ) ety + 10
t=0

Consider the most singular part of Je(l)7 which is obtained by using the first term on
the right in (7.6) and replacing G(ej) with G(Y («, 0)):

1 Y(a,0) .
09— [ Bi(a)S L (ef) 5 Voo [~ —
Je Si 1(0{) - +(6J)€2 vu(a)@ ( c ]) dOé,

Bi(a) :=B(a)G(Y (o, 0)).

(7.7)

In view of (7.4) and (7.7), similarly to (4.26) and (5.3), introduce the function
(7.8)  e(g,vi0) =Y (e() - (j = v) + q); Viayp (v = j), e(a) = Py(Y(a,0)).
J
Clearly,
1. % is compactly supported in ¢ (by (2.14)),

2. 1 has bounded first order partial derivatives, and
3. Y(q,v;a) = Y(q,v — m;a) for any m € Z3.
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Using (7.8) in (7.7) yields

(7.9) g =2 /32 Bi(a)y (P(Y(a,o))’ Y((?O);oz) dao.

€

Introduce local coordinates s = (s1,s2) on S% so that s; = P(Y(,0)) in a
neighborhood of ag. As is shown at the beginning of this section, I' is the transverse
intersection of the submanifolds 7, and 7s. By the first equation in (4.2), a —
Y(a,0) € T, is a regular parametrization near ag. In (4.2), yo = Y (ao,0;zp),
and Y is determined by the projection onto the plane (@}, (o, Y0))* (as opposed to
(®},(20,40))"). Hence P}(yo) # 0 (cf. (3.12)) implies dP(Y (a,0))/dat # 0 near ay.
Therefore the preimage of I'NVy, given by {a € S : P(Y(a,0)) =0, Y (e, 0) € V1 },
is also a smooth curve, and local coordinates (si,s2) with the required property do
exist. Then

(7.10)
w01 [ g ey (PO@G10) Y@(,0)  N[oa] o
s =1 [ u(aoy (PO YO0, ) 192 45 4 0o
— 5 B2(S2)w<§1, Y(a<07€52)70) + 8Y(Oé(;;7132),0) - §1;Oz(0,82)>d§1d82
+ O(e),
Bs(s2) := B1(a(0, s2)) W , 81 =s1/€.

In the first line, the integral is over the bounded set {s € R? : Y (a(s),0) € supp(x)}.
In the second line, the integral can be confined to a bounded set {(51,s2) € R? :
|51] < A, Y («(0, s2)) € supp(x)} for some A > 0 large enough.

LEMMA 7.2. Let D be a rectangle D := [a1,b1] X [a2,b2]. Consider a function
W € C(D x R®). Suppose 1 is periodic: (s,y) = ¥(s,y +m) for any m € Z3> and
(s,y) € D X R3. LetY : [ag,by] — R? be a C function with the following properties.
For any m € Z3, |m| > 0,
1. the set {sy € lag,ba] : |m - Y'(s2)| < &} is contained in a finite number of
intervals for all 6 > 0 sufficiently small (this number may depend on m and
5), and
2. the sum of the lengths of these intervals goes to zero as § — 0.
Then one has

Y(s
(7.11) lim ) (5, (2)> ds = / Y(s,y)dyds.
e—0t Jp € D J[0,1]3
Proof. Pick any 61 > 0. Let ¥,,(s) denote the coefficients of the Fourier expansion
of ¥(s,y) with respect to y. We can find M > 0 large enough and a partition of D
into sufficiently small rectangles such that

(7.12) sup  |¥(s,y) — Z U, (s)exp (2mim - y)| < 6.
seD,ycR3 Im|<M
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Here W,, is an approximation of U,,, which is constant on each rectangle of the
partition. Thus, the lemma will be proven if we show that

(7.13)

b
/ exp (2mim - Y (s2)/€) dsy — 0, € — 0, for any [a,b] C [ag,bs], m € Z3, |m| > 0.
a

Using assumptions 1 and 2 of the lemma, partition [a,b] into a finite collection of
nonoverlapping intervals so that (i) their union is as close to [a,b] as we like, and (ii)
in each of these intervals m-Y”(s2) is bounded away from zero. The result now follows
immediately. ]

Clearly, condition GG2 in Definition 2.1 is independent of the choice of the vec-
tor field I' as long as it does not vanish at any point of I'. In the s-coordinates,
Y (a(0, 52),0) is a regular parametrization of I' N V; because det(9Y L /dat)p=a, # 0
and det(dat/ds) # 0 (see also the argument following (7.9)). The latter determinant
is computed at s such that a(s) = ag. Therefore 9Y/0ss never vanishes on I' N V.
Condition GG2 implies that Y («(0, s2)) satisfies conditions 1 and 2 in Lemma 7.2.
Set

Y (a(s1, $2),0)
881

(7.14) Yi(s,y) := 32(32)¢<§1,y + 51;“(0752)>7 5 = (51, 82).

81:0

Using the properties 1-3 of 1, we see that Lemma 7.2 applies to ¢;. Also, 9 is
compactly supported. Compact support along s; is due to the property 1 of v, and
along s, is due to the cut-off x. Substituting vy into (7.10), using Lemma 7.2, and
then expressing 17 in terms of 1 yields

e—0

(7.15) lim J() :/ Bs(s2) [ ¥ (81, v; (0, 82)) dv] d31dss.
R? [0,1]3
By (7.8), similarly to (5.19),

/,Z(e'(j*"’)JFQ)JFVi@(Ufj)dU
[0,1]3 =
(7.16) j
B /R (—e-v+q), Vip(v)dv = (e u)*¢le,q).

As |e| not necessarily equals one, (7.16) assumes the extended definition of the CRT;
cf. (3.5). By (7.6) and (7.8),

(7.17) e(@) -u(a) = OP(Y (1)) /0t],_y =: P/(c), o = (0, 52).
With ¢ normalized, using (7.16) with ¢ = §; and (7.17) in (7.15) gives

lim Ja) — / Bg(sz)(zvg(a(o,52)))2/@(e(a(o,sz)),gl)dglds2
€E—> R

(7.18)
- / By (s2)(P((0, 52)))?dss.
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Consequently, from (7.10) we get

000:52) (P (a(0, 52))2ds:
da(s)

0s

lim Ja) — / B ((0, 52))
€ R

(7.19) — /  Bi(a(9)(P(a()*6(P(Y (a(5), ) ds

_ IP(Y (a,1))

In the second line we used that s = (s1,s2) and s1 = P(Y (a(s),0)).

Next, consider the second part of Je(l)7 which is obtained by using the second
term on the right in (7.6) and replacing G(ej) with G(Y (¢, 0)):

(7.20) T = ZL+ ej)-e, < (.0 j) -V (o, 0)dar.

2
) 5(P(Y (e, 0)))da.

t=0

The function L, (y) has bounded first derivatives, hence the limit of JI can be
easily found:

(7.21)
Y (e, 0
lim J1b) —ggr(l) E L. (ej) goy ( (o ) ) Y (e, 0)da
— im 0) 9, ZL Y(a,0)+y—¢j Y/ (a,0)d
Jm +(ej)e p e\, V)ac

y=0

- /S Bi(0) 0,14 (Y (@,0) +y)l,q - Vil (0 0)da
= [, Bu(@) Py (0.0)) - V(0. 0)0(P(Y a.0)) o

Recall that P > 0 on the interior side of S.
The final piece of Je(l) is

709 = [ B(e) 2(G(ed) = GOV (e ) e

J

(3 2)

In an O(e) neighborhood of I', we have |L(y)| = O(¢). For any fixed y = Y (o, 0) € V4,
P(y) > 0, we compute by dropping the subscript “+” from L:

(7.22)

dov.
t=0

2 .
S (6te) - Gz (5) o (HeD=T)
(7.23) ’ ) 1=0
~ () (G0 @) - G @0NLI @] +0(
t=0
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Substitution into (7.22) gives

(7.24)
lim J 1)
e—=0 -
a 2
= [ 5@ (5) [60(0.0) - GO @ 0NLY (@) OP(Y (0 0)da.
s o

We can apply the limit as ¢ — 0 inside the integral in (7.22) to obtain (7.24) be-
cause the integrand is uniformly bounded. This follows because the function (G(y) —
G(Y(,0)))L(y) is smooth away from an O(e) neighborhood of T', and the integrand
is O(1) within that neighborhood.

The final term to be considered arises because of the difference between P(y) (cf.
(7.3)) and its linear approximation L(y) (cf. (7.4)):

(7.25)

JE(Q) ::/
S

In the domain where P(ej) and L(ej) are both positive, we have

do.
t=0

€

B(a) Y Gle)) [Ps(ed) = L (i) (;) v (WH>

2
+

(726)  Py(e)) ~ Lo (6]) = 5 Py (¥ (0,0))(e] — Y (0,0)) - (6] — ¥ (@, 0)) + O(e?)

This difference is zero if P(ej) and L(ej) are both negative. Thus,
o\’ (Y(a t) — ej)
lim G(ej) [P(ej) — L(ej = —_
IO ) - L) (5) o (Ft ~
= G(Y(,0)) Py, (Y (a,0))Y{(a,0) - Y/(,0), P(Y(c,0)) > 0.

In the region where P(Y (a,0)) < 0, the limit is obviously zero. Hence

(2 I = [ Bi(@) P (Y (@ 0)¥/(0,0) - Y/ (0 0)8(P(Y (a,0)))do.
€ Si

As before, we can apply the limit as ¢ — 0 inside the integral in (7.25) to obtain

(7.28) because the integrand is uniformly bounded. Indeed,

(7.29) Pi(y) = Li(y) = (L(y) + O(e"))+ — Ly.(y) = O(¢?),

so the integrand in (7.25) remains bounded as € — 0. The domain where P(y) and
L(y) are of different signs is a shrinking O(e) neighborhood of T', and the desired
result follows.

Combining (7.19), (7.21), (7.24), and (7.28) gives the result, which, in compact
form, can be written as follows:
(7.30)

lim fy. (o)

= /32 B()[Go(9:P)*3(Po) + (GoPy Yy, + 07 ((G — Go)L) + Go Py, Y/ - Y[)0(Py)]dx

+

= /32 B()[Go(8:P)*6(Po) + (Godf P+ 87 ((G — Go)L))0(Po)]da.

+
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Here Gy := G(Y(,0)), G := G(Y (o, 1)), P := P(Y(a,t)), Py := P(Y(,0)), and
the derivatives with respect to ¢ are evaluated at ¢ = 0. This coincides with what we
get by substituting ¢ = P4 G into the continuous inversion formula (2.16). Indeed,
representing PG = (GP)6(P), we have

O ((GP)O(P)) = 0,[0:(GP)O(P) + (GP)5(P)9, P] = 9,[0,(GP)O(P)]
(7.31) = 0;(GP)0,;P5(Py) + 02(GP)0(Py)
= Go(8:P)*6(Ry) + 07 (GP)0(Py).

The coefficients in front of the delta-function in (7.30) and (7.31) match. Subtracting
the coefficients in front of the Heaviside function gives

(7.32) [God7 P + 07 ((G — Go)L)] = 97(GP) = =07 [(G — Go)(P — L)] = 0.

Here we have used that Gy is independent of ¢, and the expression under the derivative
has a zero of third order at t = 0. Thus the theorem is proven in the case x = zg.

Next, consider the case of a general x. := zg+eZ (cf. (7.1)). We begin by repeating
the steps (7.3)—(7.9), where all the auxiliary functions, such as Y, are computed using
z. instead of xg. It is clear that in any place where an auxiliary function is not divided
by €, e.g., B(a) in (7.5) and e(a), u(a) in (7.8), replacing z. with xo introduces an
error of magnitude O(e). Here we also used the property 2 of ¢. Consequently, the
analogue of (7.9) for z. becomes

(733) Je(la)(xe) :1/5'2 Bl(a)’(/) <ID(Y(OZ,0;$6))7 Y(OK,OQZ‘G);Q) do + 0(6),

€ € €

where only Y is different from the analogous function in (7.9). Note that P(y) depends
only on the shape of S in a neighborhood of zy and, therefore, is independent of x..
We have

Y(a,0;2.) = Y(a,0) + eW(a, &) + O(e?),
P(Y (@, 0;z)) = P(Y(c,0)) + ePy(Y (a, 0)) W (e, &) + O(e?),

for some smooth and bounded W. Here Y (a, 0) is the same as in (7.9). Substituting
into (7.33) gives

1
Je(la) (xe) = E/
S

(7.35) +

(7.34)

P(Y(«,0))

Bl(a)¢< JrP;(Y(oz,O))W(a,i),

Y (a,0)

; +W(a,5c);a>da+0(e).

Similarly to (7.14), introduce

(7 36) 1/’2(5, y) = Bl(a)¢(§1 + P;(Y(aa 0))W(O¢, 53)7 Y+ W(O{, j)v Oé),
. a=a(0,s2),s = (51, 82).

The point Z is fixed, so we do not need to list it in the arguments of 1. Clearly, ¥
satisfies the same properties 1-3 as ¥. Hence Lemma 7.2 applies to ¥y as well, and
we get similarly to (7.10), (7.14), and (7.15)

lim Je(la)(;ve) = /
e—0 R2

:/ BQ(SQ) [ 1/1(51,1);01(0,32)) d’U] d§1d82.
R2 [0,1]3

[0,1]3

Y9 (51,v; (0, s2)) dv} dsidss
(7.37)
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Here we have used that the integrals with respect to §; and v are unaffected by the
constant (with respect to §; and v) shifts in (7.36). Therefore, (7.19) holds with

g (x) on the left.
To find the limit of Je(lb)(ace), consider the key step in (7.21),

. Y(a,0;2¢) +y —€j
(7.38) > Li(ejize)p ( ( 6) J j) = Ly (Y(, 052¢) + y;2c),
j

which is rewritten with x¢ replaced by x.. This equality holds everywhere except in an
O(e) neighborhood of T (=T, ). Here we use that the curve I',,_, which is obtained by
solving P(Y (o, 0;z.)) = 0, depends smoothly on z, and dist(T',,,T") = O(e) (see the
argument preceding the statement of Theorem 7.1). Similarly to (7.21), the integrand
is uniformly bounded, and we get

(7.39) lim J1 () = | Bi(a)Py(Y(a,0)) - Y{{ (o, 0)0(P(Y (0, 0)))do.

2
S+

The fact that the limits of J (z.) and J& (z) as e — 0 are independent of & € U
can be established in a similar way, and the theorem is proven. ]

8. Illustrative example. As an example, consider the GRT that integrates a
function supported in the half-space x3 > 0 over spheres that are tangent to the plane
xz3 = 0. For simplicity, we take b(z,y) = 1 in (2.16). The family of such spheres
is three-dimensional. We parametrize the spheres (and, consequently, the GRT) by
the coordinates of their center y. Thus, U := {z = (z1,22,23) € R® : 23 > 0} and
Vi={y = (y1,92,y3) € R*: y3 > 0}. The surfaces S, are spheres, and the defining
function ® in (2.9) becomes

(8.1) O(z,y) =y5 — (11— y1)” — (22 — 42)* — (23 — y3)* = 0.
Clearly,
(8.2) L (z,y) =2(y — x), Oy (x,y) =2(z1 —y1, 22 — Y2, 23).

Let us check the conditions DF1-DF4. From (8.2), ®7, (z,y) = 21, where I is the 3 x3
identity matrix. In this case, by applying elementary row operations we conclude that
the matrix in (2.5) is nonsingular if ®/ - ®, # 0. Using (8.1) and (8.2) we find that
@), - &, = —4wzys < 0. This verifies DF1 and DF4. Condition DF2 holds, because
for any a € S? we can find y € V such that = € Sy, and « is perpendicular to the
sphere S, at z. Denote § := (y1,¥y2,0). The point § can be viewed as the south pole
of the sphere S, and @} (z,y) = 2(z — g). Condition DF3 is violated if there are two
distinct points on the sphere z,z € Sy such that x — 3 and z — § are parallel. Since
this is not possible, DF'3 holds as well.

Details of applying the inversion formula (2.16) to discrete data, including com-
putation of the function Y (a, t;x), are described in the next section.

9. Numerical experiment. We start by constructing an interpolation kernel
with the required properties. To obtain ¢, we first obtain an interpolation kernel ¢1p
that has properties IK1-IK5 in R, and then extend it to R? in a separable fashion.
To obtain ¢;p we use the result of [12], where such a kernel is obtained following the
method in [3]:

(9.1)  @ip(t) = 0.5(Bs(t) + Bs(t — 2)) + 4B3(t — 1) — 2(By(t) + Ba(t — 1)).
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Here B, is the cardinal B-spline of degree n supported on [0,n 4 1]. Then the kernel
 becomes

3
(92) o) = [Low (25 +3) . 0= )
k=1

where Ay, is the data step-size along the kth axis. For simplicity, in this paper all the
Ay are equal, ie., Ay =€, k=1,2,3.

The GRT integrates over spheres, as described in section 8. The test object is
the ball with center x. = (0,0, 11), radius R = 5, and uniform density 1. The point
on the boundary zg, in a neighborhood of which we compute resolution, is given by

(9.3) =z =2z.— Ray, ag = (sin(0.27) cos(0.77), sin(0.27) sin(0.77), cos(0.27)).

In agreement with our convention, cg points into the interior of the ball.

There can be two spheres that are tangent to the ball at xy. As an example, we
consider the sphere whose center yq satisfies (zg—yo) o > 0. Thus, for reconstruction
near xy we use the data in a neighborhood of yo. With this choice of ¥, the condition
D! (20,90)/|PL (20, y0)| = —ap (see the text following (3.1)) is satisfied with ® given
by (8.1). For the selected zg, ag, and yo, we compute using (8.2)

(9.4) v =|®,|/|®;| = 0.526.
To compute the GRT, we use the formula for the area of a spherical cap:
(9.5) A =27 Rh,

where R is the radius of the sphere, and h is the height of the cap. The values of
R and h can be computed once the center of the sphere S, is chosen (e.g., R = y3).
To simulate discrete data, the GRT is computed at the points y = r + ¢j. The
interpolated data g. is computed using (2.15), where the kernel is given by (9.2) with
Ap=¢k=1,23.

To apply the inversion formula (2.16), we numerically integrate g. over a neigh-
borhood of ag on the unit sphere. To compute (9/9t)%g.(Y (o, ;7)) at t = 0 we use
(2.15) and the chain rule as in (7.6). Given z, «, and t, the center of the sphere con-
taining the point x + tav and normal to « at that point (cf. the paragraph following
(2.15)) is easily found to be

T3 —|—ta3
9.6 Y t; = t 2 0
(96) (0t52) = (@ + ta) = B2
Consequently,
(9.7) Iyt =——a Lyen =o
. 8t s Uy —o 1+043 ) at? IRg) o )
and
(9.8)
O\> [(Y(at;z)—¢j 1 1 > Y (a,0;x)
9 \HT) 49 do — — — — n (BP0 o
<8t> §0< € ) - «a 62 (1+a3)2 iélspzk < € j)OéOlk
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Fic. 4. Comparison of the predicted and actual edge responses for e = 0.01.

The cut-off function x in (2.16) is constructed as follows. Let a run through the
unit sphere in the plane ag. Then any o € S% (ay is the north pole of 5%) can be
represented in the form o = (cosw)ag + (sinw)at, 0 < w < m/2. In the code we use

1, 0 < w < 0.8wmx,
(99) X(a) _ 1+cos((w—0.8u2me)/(0.2wmx)) ’

0.8wmx € W < Wmx,

0, W > Wik

Finally, the predicted response is computed using (3.6). The results corresponding
to € = 0.01 are shown in Figure 4. We see a good match between the predicted and
actual edge responses.

Appendix A. The Morse lemma and its application. For convenience of
the reader we first present here the Morse lemma (see [9, p. 502]).

LEMMA A.1. Let f(v,y) (v € R,y € RY) be a real valued C> function in a
neighborhood of (0,0). Assume that f},(0,0) = 0 and that A = !’ (0,0) is nonsingular.
Then the equation f!(v,y) = 0 determines in a neighborhood of 0 a C™ function v(y)
with v(0) = 0, and we have in a neighborhood of (0,0)

(A1) flv,y) = f(u(y),y) + Aw - w/2,
where w =v —v(y) + O(Jv — v(y)|(|Jv] + |y|)) is a C function of (v,y) at (0,0).

To apply this lemma, we solve the equation ®(x,y) = 0 for ; in terms of =+ and
y in a neighborhood of (zg, o). Because of the choice of coordinates (cf. (3.1)), this
is possible. Thus, z1 = X;(z1,y) is a parametrization of S, (see also (3.23)). Then
we apply the Morse lemma with

(A-2) v=at €R? yeR’, f(v,y) =V((Xi(z",y),2"),y).
Since W/, (xg,y0) = 0, we have

0X; 0X,
81‘]4 &Cﬁ

02X,
A3) 7 (0,0)=0" _—
( ) I ( ) ) (1‘0) al,jlaxkl

VjVk r1T1 +\I];31 (fL‘O) +\Illxlj~a;é~ (',1:0)7 J7k = ]‘727
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where the derivatives of X, are computed at (25 ,%0). By construction, X, /dx; = 0,
Jj=1,2,and ¥ (20) = |¥'(20)| > 0. Hence

(A4)

£7(0,0) = [¥'(20)|N (o),

and f”(0,0) is negative definite. By the Morse lemma, there exists a smooth function
w(zt,y) such that (A.1) holds. Diagonalizing A, and then rotating and rescaling w,
we get another smooth function w(zt,y) such that Aw - w = —|w|?. Additionally,
0w(0,0)/0v = I, where I is the 3 x 3 identity matrix. This follows easily from the
proof of the Morse lemma (see [9, p. 503]). Hence, we can solve w = w(z*,y) for z*:
zt = X+ (w,y), which leads to the desired diffeomorphism w — z = z(w;y) € S, for
all y close to yo.

M.

=

=
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