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RADON TRANSFORM FROM DISCRETE DATA IN R\bfthree \ast 
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Abstract. A number of practically important imaging problems involve inverting the generalized
Radon transform (GRT) \scrR of a function f in R3. On the other hand, not much is known about the
spatial resolution of the reconstruction from discretized data. In this paper we study how accurately
and with what resolution the singularities of f are reconstructed. The GRT integrates over a fairly
general family of surfaces \scrS y in R3. Here y is the parameter in the data space, which runs over
an open set \scrV \subset R3. Assume that the data g(y) = (\scrR f)(y) are known on a regular grid yj with
step-sizes O(\epsilon ) along each axis, and suppose \scrS = singsupp(f) is a piecewise smooth surface. Let f\epsilon 
denote the result of reconstruction from the discrete data. We obtain explicitly the leading singular
behavior of f\epsilon in an O(\epsilon )-neighborhood of a generic point x0 \in \scrS , where f has a jump discontinuity.
We also prove that under some generic conditions on \scrS (which include, e.g., a restriction on the
order of tangency of \scrS y and \scrS ), the singularities of f do not lead to nonlocal artifacts. For both
computations, a connection with the uniform distribution theory turns out to be important. Finally,
we present a numerical experiment, which demonstrates a good match between the theoretically
predicted behavior and actual reconstruction.
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distribution
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1. Introduction. A large number of practically important imaging problems
involve inversion of the generalized Radon transform (GRT), i.e., recovering an un-
known function f from its integrals over a family of surfaces. The reconstruction
may involve finding f itself, or finding f modulo smoother terms. Most of the time,
the surfaces are not planes. Below is a list of some of the most common integral
transforms with some of the most prominent examples of their use.

1. Integration over spheres. Applications include ultrasound imaging and, in
particular, SONAR (see [17] and references therein), as well as thermoacoustic
and photoacoustic tomography [14, 23].

2. Integration over ellipses. This transform arises in linearized seismic imaging
with a common offset between the sources and receivers [7].

3. Integration over cones arises in Compton camera imaging. Applications are
single-scattering optical tomography, Compton camera medical imaging, and
homeland security (see [21] for a recent review).

In all of the above cases, one collects a discrete data set and reconstructs f using
a numerical algorithm. Frequently, reconstruction is achieved by applying a linear in-
version formula (as opposed to a nonlinear reconstruction algorithm based on fidelity
functional minimization). In all of the above examples it is of fundamental impor-
tance to know the resolution of the method as a function of (1) the data sampling
rate and (2) specific implementation of the inversion formula that is used. Despite the
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significance of this problem, not much is known about the resolution of reconstruction
from discrete data. The main reason for this is that the classical sampling theory,
which addresses such problems, can be applied only to the classical Radon transform
(CRT) and only under restricted conditions [16]. The known results are quite scarce,
and they are of a semiqualitative nature (see, e.g., pp. 784--786 in [6]). Very recently,
a more flexible approach to sampling based on semiclassical analysis was proposed in
[20]. Let A be a Fourier integral operator (FIO). The idea of [20] is to determine how
the data Af should be sampled to allow for accurate interpolation of its values on a
lattice provided that f is semiclassically bandlimited. If the sampling condition is vi-
olated, then reconstruction from the discrete values of Af (i.e., applying a parametrix
A - 1 to the interpolated Af) leads to aliasing artifacts, which are also analyzed
in [20].

An alternative approach to the analysis of resolution was proposed recently in
[11, 12]. The idea is to investigate how accurately and with what resolution the
singularities of f are reconstructed. For some of the above problems there is no exact
inversion formula, and inversion modulo smoother terms is the most one can hope for.
In such cases, spatial resolution of the recovery of singularities is all one needs. Note
that in this paper both f and g = \scrR f are assumed to have singularities in the sense of
a conventional, classical wavefront set (see, e.g., [8]). In contrast, the main assumption
in [20] is that f and, consequently, the data Af have only semiclassical singularities
(see, e.g., [25]). It is possible to apply the approach of [20] to the analysis of classical
singularities, but this would require summing a series over ``folded"" frequencies in the
Fourier domain, which is complicated.

In [11, 12] the author considers the inversion of the CRT of f in R2 and R3.
The parametrization of the data is standard, i.e., in terms of the affine and angular
variables. Suppose the step-sizes along the angular and affine variables are O(\epsilon ). Let
f\epsilon denote the result of reconstruction from the discrete data. The author picks a
point x0, where f has a jump singularity, and obtains explicitly the leading singular
behavior of f\epsilon in an O(\epsilon )-neighborhood of x0 as \epsilon \rightarrow 0. The obtained behavior, which
we call edge response, provides the desired resolution of the reconstruction algorithm.
It is shown also that convex parts of the singular support of f do not create non-
local artifacts. The case when f changes during the scan (so-called dynamic CT) is
considered in the two-dimensional setting as well [11].

In this paper we generalize the approach of [11, 12]. The reconstruction problem
is now formulated in terms of the GRT \scrR , which integrates f over a fairly general
family of surfaces \scrS y in R3. Here supp(f) \subset \scrU , where \scrU \subset R3 is an open set, and
y is the parameter in the data space. For the problem to be well-determined, we
assume that y runs over an open set \scrV \subset R3. As is seen, our setting is fairly general
and covers all the problems mentioned above. The GRT in this paper is very close
to that considered by Beylkin in [2], only the parametrization of the surfaces \scrS y is
slightly different. This gives us more flexibility to connect our results with practical
applications, where GRTs arise.

Assume that the data g = \scrR f are known on a regular grid yj with step-sizes
O(\epsilon ) along each axis. Suppose \scrS = singsupp(f) is a piecewise smooth surface. Sim-
ilarly to [11, 12], we obtain explicitly the leading singular behavior of f\epsilon in an O(\epsilon )-
neighborhood of a generic point x0 \in \scrS , where f has a jump discontinuity. We also
prove that under some generic conditions on \scrS (which include, e.g., a restriction on
the order of tangency of \scrS y and \scrS ), the singularities of f do not lead to nonlocal
artifacts. For both computations, a connection with the uniform distribution theory
[15] turns out to be important. It is possible that violation of the imposed conditions
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3992 ALEXANDER KATSEVICH

leads to artifacts. Analysis of such artifacts and analysis of more general surfaces \scrS 
will be the subject of future research.

The reconstruction formula g \rightarrow \v f , which contains a suitably adapted adjoint \scrR \ast ,
is one specific example of an FIO. Here \v f is such that \v f - f is smoother than f . Thus,
the reconstruction algorithm can be viewed as an application of an FIO to discrete
data (\scrR f)(yj). A number of methods for computing the action of FIOs on discrete
data have been proposed; see, e.g., [4, 5, 1, 24] and references therein. To the best of
the author's knowledge, here we propose the first method to compute the resolution
of the reconstruction obtained by applying an FIO to discrete data that comes from
an image with classical singularities (jump discontinuities). Extension of the method
to more general FIOs and more general singularities will also be the subject of future
work. Some results along this direction are in [13].

The paper is organized as follows. In section 2 we define the GRT \scrR via an
incidence relation \scrC \subset \scrU \times \scrV , list the properties of the function \Phi (x, y) that defines
the incidence relation, define generic points, and specify the continuous and discrete
inversion formulas that are used in the analysis. The main result is formulated in
section 3; see Theorem 3.1. In this theorem we give a simple and explicit expression
for the edge response of a reconstruction from (\scrR f)(yj). Instead of some cumulative
characteristic of resolution represented by a single number (e.g., a common measure
is full width at half maximum, or FWHM for short), we compute the entire edge
response curve. Hence, this result constitutes a comprehensive answer to the question
of how accurately and with what resolution the jumps of f can be reconstructed from
discrete GRT data. Section 3 also contains the beginning of the proof of Theorem 3.1.
The entire proof spans sections 3--7. In section 3 we obtain the behavior of g near
its singular support, which generalizes one of the results of [18, 19] from the CRT to
the GRT. The behavior of the interpolated data g\epsilon near singsupp(g) is obtained in
section 4. The contribution of the leading singular term to the edge response at a
generic point x0 \in \scrS is computed in section 5. In section 6 we show that lower order
terms do not contribute to the edge reponse. In section 7 we prove that, under some
assumptions, remote singularities do not contribute to the edge response either. For
convenience of the reader, in section 8 we introduce a GRT that integrates over a
family of spheres tangent to a plane and obtain explicitly some of the key quantities
that arise in our derivation. The example is continued in section 9, where we work out
the details of the inversion formula for this transform. We also present the results of a
numerical experiment, which show a good match between the theoretically predicted
behavior and actual reconstruction. Finally, Appendix A contains the statement of
the Morse lemma and a short explanation of how it is used in our work.

2. Preliminary construction. Let \scrU ,\scrV \subset R3 be two open connected sets,
where \scrU is the image domain, and \scrV is the data domain. Each y \in \scrV determines a
smooth surface \scrS y \subset \scrU . Let \scrC be an incidence relation \scrC \in \scrU \times \scrV , which is defined in
terms of a smooth function \Phi (x, y) \in C\infty (\scrU \times \scrV ):

(2.1) \scrC := \{ (x, y) \in \scrU \times \scrV : \Phi (x, y) = 0\} .

Another way to state (2.1) is that x \in \scrS y if and only if \Phi (x, y) = 0. Define the
submanifold:

(2.2) \scrT x := \{ y \in \scrV : \Phi (x, y) = 0\} , x \in \scrU .

Thus, \scrT x is the collection of all y \in \scrV such that \scrS y contains x. The main assumptions
about \Phi are as follows (``DF"" stands for defining function):
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DF1. \Phi is real-valued and nondegenerate, i.e.,

(2.3) \Phi \prime 
x(x, y) \not = 0, \Phi \prime 

y(x, y) \not = 0, (x, y) \in \scrC .

DF2. For each x \in \scrU , the map \scrT x \rightarrow S2 defined by y \rightarrow \pm \Phi \prime 
x(x, y)/| \Phi \prime 

x(x, y)| ,
y \in \scrT x, is surjective.

DF3. For each y \in \scrV , the vectors \Phi \prime 
y(x, y) and \Phi \prime 

y(z, y) are not parallel whenever
x, z \in \scrS y, x \not = z.

DF4. The mixed Hessian of \Phi is nondegenerate,

(2.4) det

\biggl( 
\partial 2\Phi (x, y)

\partial xi\partial yj

\biggr) 
\not = 0, (x, y) \in \scrC ,

where \partial /\partial xi, i = 1, 2, and \partial /\partial yj , j = 1, 2, are basis vectors in the tangent
spaces to the submanifolds \scrS y and \scrT x at x and y, respectively.

By DF1, \scrS y and \scrT x are immersed submanifolds. Condition DF2 means that the
tomographic data are complete, i.e., any singularity is visible. Condition DF3 says
that there are no conjugate points. Condition DF4 is a local version of the Bolker
condition. Conditions DF3 and DF4 imply the (global) Bolker condition. Conditions
DF1--DF4 are analogous to Conditions (I)--(IV) in [2]. Conditions DF1 and DF4
combined are equivalent to the condition (cf. equation (4.23) in [22, p. 335]) that at
every point (x, y) \in \scrC ,

(2.5) det

\biggl( 
\Phi \prime \prime 

xy (\Phi \prime 
x)

T

\Phi \prime 
y 0

\biggr) 
\not = 0.

Indeed, let W denote the matrix in (2.5). Pick any (x, y) \in \scrC . By DF1, we can
augment xi, i = 1, 2, and yj , j = 1, 2 (cf. condition DF4), to local coordinates in \scrU 
and \scrV , respectively, so that \Phi \prime 

x = (1, 0, . . . , 0) and \Phi \prime 
y = (1, 0, . . . , 0). Subtracting the

appropriate multiples of the bottom row (\Phi \prime 
y, 0) and the right column (\Phi \prime 

x, 0)
T from

the rest of W transforms W to the matrix

(2.6)

\left(  0 0 1

0T \~W 0
1 0 0

\right)  , 0 := (0, 0),

where \~W is the 2\times 2 matrix in (2.4). Hence conditions DF1 and DF4 are equivalent
to (2.5).

In the paper we consider functions, which can be represented as a finite sum

(2.7) f(x) =
\sum 
j

\chi Dj
fj(x),

where \chi Dj is the characteristic function of the domain Dj \subset \scrU . For each j,
1. Dj is compact,

2. Dj is bounded by finitely many smooth surfaces, i.e., \partial Dj \subset \cup Lj

l=1\scrS jl, and
3. fj is C\infty in a domain containing the closure of Dj .

Denote \scrS := \cup j\partial Dj . By construction, singsupp(f ) \subset \scrS . Similarly to (2.2), let

(2.8) \scrT \scrS := \{ y \in \scrV : \scrS y is tangent to \scrS \} .

Generally, \scrS is not necessarily smooth, so the notion of tangency in (2.8) needs to be
suitably generalized (see [18]). In this paper, we consider only the cases when \scrS y is
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3994 ALEXANDER KATSEVICH

tangent to \scrS at points where \scrS is smooth. The GRT of f is given by

(2.9) g(y) = (\scrR f)(y) :=
\int 
\scrS y

b(x, y)f(x)dx, y \in \scrV ,

where the weight b is smooth (i.e., C\infty ) and nonvanishing, and dx is the area element
on \scrS y. The discrete data are given by

(2.10) g(\epsilon j), j \in r + Z3,

for some r \in R3.
Even though (2.10) assumes that the step-size along each data axis equals \epsilon , this

is a nonrestrictive assumption. Indeed, consider a smooth diffeomorphism \psi : \scrV \rightarrow \~\scrV 
for some open \~\scrV \subset R2, so that \psi maps an irregular grid covering \scrV into a regular,
square grid covering \~\scrV . Introducing a new defining function \~\Phi (x, \~y) := \Phi (x, \psi  - 1(\~y)),
we can transform any smoothly sampled data set into the one with a square grid.
Clearly, if \Phi satisfies DF1--DF4, then \~\Phi satisfies DF1--DF4 as well.

Conditions DF1--DF4 imply that (cf. [2] and [22, sections VIII.5 and VIII.6]) the
following:

1. \scrR is an FIO with phase function \lambda \Phi (x, y).
2. The corresponding canonical relation is

C := \{ ((x, \lambda \Phi \prime 
x(x, y)), (y, - \lambda \Phi \prime 

y(x, y))) : \Phi (x, y) = 0, \lambda \in R \setminus 0, x \in \scrU , y \in \scrV \} ,
(2.11)

which is a local canonical graph.
3. Any suitably modified adjoint of \scrR , denoted \scrR \ast , is also an FIO, whose canon-

ical relation C\ast is obtained from (2.11) by switching the (x, \xi ) \in T \ast \scrU and
(y, \eta ) \in T \ast \scrV variables.

4. The composition \scrR \ast (. . . )\scrR , where the dots denote a cut-off combined with
a suitable differential operator, is a pseudodifferential operator (\Psi DO), i.e.,
C\ast \circ C is a subset of the diagonal in T \ast \scrU .

Given a point x \in \scrS where \scrS is smooth, find y = y(x) (which is locally smooth
under our assumptions; see assertion 1 of Lemma 3.4 below) such that \scrS y is tangent
to \scrS at x. Denote

(2.12) N(x) := II\scrS y
(x) - II\scrS (x),

where II\scrS (x) is the matrix of the second fundamental form of \scrS at x \in \scrS written in
an orthonormal basis of Tx\scrS .

For any x \in \scrU , introduce the set (see Figure 1)

(2.13) \Gamma x := \{ y \in \scrV : x \in \scrS y, \scrS y is tangent to \scrS at some z, z \not = x\} .

Definition 2.1. A pair (x0, y0) \in \scrC is globally generic if whenever \scrS y0 is tangent
to \scrS at some z \not = x0 the following conditions hold:
GG1. \scrS is smooth at z, and N(z) is either positive or negative definite.
GG2. Let \.\Gamma x0

be a nonvanishing at any point tangent vector field along \Gamma x0
. There

exists an open set \scrV 1, y0 \in \scrV 1 \subset \scrV , such that for each m \in Z3, | m| > 0, and
all \delta > 0 sufficiently small,
1. the set \{ y \in \Gamma x0

\cap \scrV 1 : | m \cdot \.\Gamma x0
(y)| \leq \delta \} is contained in a finite number

of segments of \Gamma x0
(this number may depend on m and \delta ), and

2. the sum of the lengths of these segments goes to zero as \delta \rightarrow 0.
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Fig. 1. Illustration of the curve \Gamma x, which is shown in red on the left. The red curve on the
right shows the points of tangency z(y) of \scrS and \scrS y.

Fig. 2. Illustration of the geometric setup in the definition of a locally generic pair (x0, y0) \in \scrC .

As is shown in section 7, conditions GG1 and DF3 imply that \Gamma x0 is a smooth
curve, so condition GG2 makes sense.

An example when condition GG2 is violated is when \Gamma x0
contains a straight line

segment and m \cdot \.\Gamma x0
(y) \equiv 0 on this segment for some m \in Z3, | m| > 0.

Definition 2.2. A pair (x0, y0) \in \scrC , x0 \in \scrS , is locally generic if, whenever \scrS y0

is tangent to \scrS at x0 (see Figure 2), the following conditions hold:
LG1. \scrS is smooth at x0, and N(x0) is either positive or negative definite.
LG2. There is no \lambda \not = 0 such that \lambda \Phi \prime 

y(x0, y0) \in Z3.

Definition 2.3. A pair (x0, y0) \in \scrC is generic if it is both locally and globally
generic.

Let \varphi be an interpolating kernel (IK), i.e., \varphi (0) = 1 and \varphi (j) = 0 for all j \in Z,
j \not = 0. Suppose also that \varphi satisfies the following assumptions:

IK1. \varphi is exact up to the order 2, i.e.,

(2.14)
\sum 
j\in Z3

jm\varphi (u - j) = um, m \in (0 \cup N)3, | m| \leq 2, u \in R3.

IK2. \varphi is compactly supported.
IK3. All partial derivatives of \varphi up to order 2 are continuous.
IK4. All partial derivatives of \varphi of order 3 are piecewise continuous and bounded.
IK5. \varphi is normalized, i.e.,

\int 
\varphi (y)dy = 1.

The interpolated version of g can be written in the form

(2.15) g\epsilon (y) :=
\sum 

j\in r+Z3

g(\epsilon j)\varphi 

\biggl( 
y  - \epsilon j

\epsilon 

\biggr) 
.
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First, we derive a microlocal inversion formula for the GRT \scrR , which reconstructs
exactly the leading singularities of f . Pick any (x0, y0) \in \scrC . Let \alpha 0 be a unit vector
normal to \scrS y0

at x0. For (x, \alpha ) \in \scrU \times S2 close to (x0, \alpha 0) and for t, | t| \ll 1, find the
local solution y = Y (\alpha , t;x) such that x + t\alpha \in \scrS y and \alpha is normal to \scrS y at x + t\alpha .
By construction, y0 = Y (\alpha 0, t = 0;x0). Here we use the assumption that the data
are complete, i.e., such a solution exists. It is shown below (see (4.2)) that the map
(\alpha , t) \rightarrow y = Y (\alpha , t;x) is a local diffeomorphism that depends smoothly on x.

Let \scrV 1 be a small neighborhood of y0. Pick any \chi \in C\infty 
0 (\scrV 1) such that \chi \equiv 1

near y0. The inversion formula with continuous data is given by

f\chi (x) =  - 1

4\pi 2

\int 
S2
+

\chi (Y (\alpha , 0;x))

b(x, Y (\alpha , 0;x))

\biggl( 
\partial 

\partial t

\biggr) 2

g(Y (\alpha , t;x))

\bigm| \bigm| \bigm| \bigm| \bigm| 
t=0

d\alpha .(2.16)

This inversion formula emulates the CRT inversion formula by backprojecting a second
order derivative of the GRT. The affine variable t is computed relative to x as opposed
to the origin, as is the case with the CRT. Hence the GRT analogue of the usual term
\alpha \cdot x is missing from (2.16), because it is absorbed by the function Y . Due to the
symmetry g(Y (\alpha , t;x)) = g(Y ( - \alpha , - t;x)), in (2.16) we integrate over half of the unit
sphere S2

+.
Using consequences 1--4 of conditions DF1--DF4 (see above (2.12)), it is easy

to show that the map f \rightarrow f\chi is a \Psi DO of degree zero with principal symbol 1
microlocally near (x0, \alpha 0) (see, e.g., [2, 10]). Thus, the singularities of f and f\chi 
are the same to leading order (e.g., in the scale of Sobolev spaces) microlocally near
(x0, \alpha 0). An inversion formula that recovers all the singularities of f can be obtained
by combining (2.16) with a microlocal partition of unity. In the case of discrete data,
we use the same inversion formula (2.16), but replace g with g\epsilon . The corresponding
reconstruction is denoted f\chi \epsilon .

3. Statement of main result. Beginning of proof.

3.1. Statement of main result. Pick (x0, y0) \in \scrC such that \scrS is smooth at
x0 \in \scrS , \scrS y0 is tangent to \scrS at x0 (see Figure 3), and N(x0) is either positive definite
or negative definite. Fix some orthonormal basis in the common plane tangent to
\scrS and \scrS y0

at x0. Let \alpha 0 be the unit vector normal to \scrS at x0. For convenience of
calculations, we sometime use the Cartesian coordinates (x1, x

\bot ) determined by

x = x1\alpha 0 + x\bot , x\bot \in \alpha \bot 
0 ,(3.1)

where \alpha \bot 
0 is the plane through x0 and normal to \alpha 0. This plane is tangent to both \scrS 

and \scrS y0
at x0 (see Figure 3). The direction of \alpha 0 is chosen so that N(x0) is negative

definite. The side of \scrS where \alpha 0 points is called interior. The other side of \scrS is called
exterior. If necessary, multiply \Phi by ( - 1) so that \Phi \prime 

x(x0, y0)/| \Phi \prime 
x(x0, y0)| =  - \alpha 0.

Fig. 3. Illustration of the surface \scrS y0 , which is tangent to \scrS at x0, and the associated plane \alpha \bot 
0 .
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Consider the point

(3.2) x\epsilon := x0 + \epsilon \~x, \~x \in \~\scrU ,

where \~\scrU is a bounded set. Denote

f\chi (x0\pm ) := lim
\epsilon \rightarrow 0+

f\chi (x0\pm \epsilon \alpha 0), f0 := lim
\epsilon \rightarrow 0+

(f(x0 + \epsilon \alpha 0) - f(x0  - \epsilon \alpha 0)),

\nu :=
| \Phi \prime 

x| 
| \Phi \prime 

y| 
, \beta 0 =

\Phi \prime 
y

| \Phi \prime 
y| 
.

(3.3)

Here and in what follows the convention is that if the arguments of \Phi and its deriva-
tives are omitted, then they are evaluated at x0, y0.

We also introduce local y-coordinates with the origin at y0:

(3.4) y = (y1, y
\bot ) = y1\beta 0 + y\bot .

Thus, equation y1 = 0 determines the plane tangent to the submanifold \scrT x0
at y0.

We frequently denote this plane \beta \bot 
0 .

Finally, we use the extension of the CRT to all of R3 \setminus 0 according to

(3.5) \^f(u, s) :=

\int 
f(x)\delta (u \cdot x - s)dx, u \in R3 \setminus 0,

for a sufficiently smooth and rapidly decreasing f .
The main result of the paper is the following.

Theorem 3.1. Pick a generic pair (x0, y0) \in \scrC such that \scrS y0 is tangent to \scrS at
x0 \in \scrS . Then

(3.6) lim
\epsilon \rightarrow 0

f\chi \epsilon (x\epsilon ) = f\chi (x0+) - f0

\int \infty 

\nu h

\^\varphi (\beta 0, s)ds,

where h = \~x \cdot \alpha 0, and \^\varphi is the CRT of \varphi .

By IK5,
\int 
R \^\varphi (\beta 0, s)ds = 1. The inversion formula (2.16) reconstructs jumps of f

accurately, so f\chi (x0+) - f\chi (x0 - ) = f0 and (3.6) can be written as follows:

(3.7) lim
\epsilon \rightarrow 0

f\chi \epsilon (x\epsilon ) = f\chi (x0 - ) + f0

\int \nu h

 - \infty 
\^\varphi (\beta 0, s)ds.

Theorem 3.1 implies that for small \epsilon > 0, the reconstructed image near a generic
jump discontinuity of f can be approximated by the right-hand side of (3.6) (or (3.7)).
Based on this formula one can perform various analyses of the accuracy of reconstruc-
tion, e.g., compute conventional measures of resolution like FWHM, investigate how
resolution and accuracy depend on location and orientation of the edge, and many
others. The integral on the right-hand side of (3.6), which represents the unit edge
response, is explicitly computable using fairly simple formulas. Indeed, only three
quantities are required for this: \nu and \beta 0, which are given in (3.3), and the CRT of
the interpolation kernel \varphi . See sections 8 and 9, where the edge response is computed
for a GRT that integrates over spheres.

Formulas (3.6), (3.7) can be understood intuitively as follows. Let \theta (t) = 0, t \leq 0,
and \theta (t) = 1, t > 1, be the Heaviside step function. As \epsilon \rightarrow 0, the reconstruction
points x\epsilon are confined to a shrinking neighborhood of x0 \in \scrS . In this neighborhood,
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3998 ALEXANDER KATSEVICH

\scrS is close to the tangent plane (x  - x0) \cdot \alpha 0 = 0, and the approximation f(x\epsilon ) \approx 
f(x0 - ) + f0\theta ((x\epsilon  - x0) \cdot \alpha 0) is increasingly accurate as \epsilon \rightarrow 0. Moreover, because
(2.16) preserves values of jumps, we can view the function \theta ((x\epsilon  - x0) \cdot \alpha 0) as the unit
edge response of the reconstruction from continuous data. Clearly,

(3.8)

\int \nu h

 - \infty 
\^\varphi (\beta 0, s)ds =

\int 
R
\theta 

\biggl( 
h - 

| \Phi \prime 
y| 

| \Phi \prime 
x| 
s

\biggr) 
\^\varphi (\beta 0, s)ds.

Thus the unit edge response of the reconstruction from discrete data equals to the
convolution of the ideal, continuous data edge response with a smoothing kernel (see
also [13] for related results). Since (x0, \alpha 0) \in WF (f), analyzing the reconstruction
of f at x0 probes the edge response along the direction \alpha 0. The canonical relation
C\ast of the FIO in (2.16) maps (y0, \beta 0) to (x0, \lambda \alpha 0) for some \lambda \not = 0, so it is clear
that a vanishingly small conical neighborhood of (y0, \beta 0) should be contributing to
the discrete reconstruction at (x0, \alpha 0) as \epsilon \rightarrow 0. This is indeed confirmed by our
derivation; see (4.3), (5.20), and (6.3) below. As g(y) is a conormal distribution and
(y0, \beta 0) \in WF (g), in a small neighborhood of y0, g(y) can be approximated by a
function g0((y  - y0) \cdot \beta 0), which is constant along planes perpendicular to \beta 0. The
interpolation kernel \varphi is applied to the data, so it is natural that the CRT of \varphi along
\beta 0 appears in (3.8), and the convolution is with respect to the affine variable s along
\beta 0. The ratio | \Phi \prime 

y| /| \Phi \prime 
x| is a microlocal (i.e., depending on location and orientation)

``conversion factor,"" which converts distances in the data domain \scrV (e.g., s and the
sampling rate \epsilon ) to distances in the image domain \scrU .

By linearity, the proof of Theorem 3.1 can be split into two parts: local and
global. The local part is formulated as follows.

Theorem 3.2. Pick a locally generic pair (x0, y0) \in \scrC such that \scrS y0
is tangent to

\scrS at x0 \in \scrS . Suppose supp(f) is contained in a sufficiently small neighborhood of x0.
Then

(3.9) lim
\epsilon \rightarrow 0

f\chi \epsilon (x\epsilon ) = f\chi (x0+) - f0

\int \infty 

\nu h

\^\varphi (\beta 0, s)ds,

where h = \~x \cdot \alpha 0, and \^\varphi is the CRT of \varphi .

Theorems 3.2 and 7.1 (see section 7) state that the edge response of the recon-
struction near x0 is determined only by the behavior of f near x0.

Since \scrR is an FIO with canonical relation (2.11), g = \scrR f is singular only when \scrS y

is tangent to \scrS . Therefore, we are interested in the behavior of g in a neighborhood
of y0.

Remark 3.3. Strictly speaking, one has to distinguish between the original coor-
dinates that describe points x \in \scrU , y \in \scrV and those in (3.1), (3.4), respectively. For
example, one should write x = \^x1\alpha 0 + \^x\bot instead of x = x1\alpha 0 + x\bot . Such notation
would emphasize that \^x1 is not the first component of x in the original coordinates,
i.e., \^x1 \not = x1. Similarly, a derivative like \partial \Phi (x, y)/\partial x1, if written in full, becomes
\partial \Phi (x(\^x1, \^x

\bot ), y(\^y1, \^y
\bot ))/\partial \^x1. To avoid burdensome notation, whenever the coordi-

nates (\^x1, \^x
\bot ) and (\^y1, \^y

\bot ) are used, we will stick with the simplified notation and
assume that the above convention holds.

3.2. Behavior of \bfitg near its singular support. Because \scrS is smooth in a
neighborhood of x0 \in \scrS , there is a smooth local diffeomorphism x\rightarrow (z, p) so that

(3.10) x = z + pn(z), z \in \scrS , n(z) is normal to \scrS at z, | n(z)| \equiv 1.
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The normal n(z) is chosen so that N(z) is negative definite. Thus n(x0) = \alpha 0. Clearly,
we can extend the function n(z), z \in \scrS , to n(x) defined in a neighborhood of x0 by the
formula n(z + pn(z)) := n(z). With a slight abuse of notation, the extended function
will also be denoted n(\cdot ).

Using (3.10), define \Psi (z + pn(z)) := p. Then \Psi (x) = 0 is the equation of \scrS near
x0, and \Psi is smooth. By construction, \Psi (x) > 0 on the interior side of \scrS .

Consider the system of equations

(3.11) \Phi \prime 
x(z + pn(z), y) - \lambda n(z) = 0, \Phi (z + pn(z), y) = 0, \Psi (z) = 0.

If we set p = 0 and solve (3.11) for y, we find a local patch of the submanifold \scrT \scrS 
near y0. Recall that y \in \scrT \scrS implies that \scrS y is tangent to \scrS . We also need to solve
these equations for z, p, and \lambda in terms of y.

Lemma 3.4. Pick (x0, y0) \in \scrC such that (1) \scrS is smooth at x0, (2) \scrS y0
is tangent

to \scrS at x0 \in \scrS , and (3) N(x0) is negative definite. Then
1. \scrT \scrS \subset \scrV is a smooth submanifold of codimension 1 near y0, and the vector

\Phi \prime 
y(x0, y0) is normal to \scrT \scrS at y0;

2. the solutions z = Z(y), p = P (y), and \lambda = \Lambda (y) to (3.11) depend smoothly
on y in a neighborhood of y0, and

(3.12) P \prime 
y(y0) =

1

| \Phi \prime 
x| 
\Phi \prime 

y \not = 0;

3. equations (3.11) determine a smooth function y = Y (z, p), (z, p) \in \scrS \times R, in
a neighborhood of (x0, 0).

Proof. Differentiate (3.11) with respect to z, p, \lambda , and y, and set z = x0, p = 0,
y = y0 to obtain the 5\times 8 matrix

(3.13)

\left[  \Phi \prime \prime 
xx  - \lambda n\prime 

x \Phi \prime \prime 
xx\alpha 0  - \alpha 0 \Phi \prime \prime 

xy

\Phi \prime 
x \Phi \prime 

x \cdot \alpha 0 0 \Phi \prime 
y

\Psi \prime 
x 0 0 0

\right]  .
Here n\prime x is the derivative of the function n(x) extended to a neighborhood of x0 as
described following (3.10). Since \scrS y0

is tangent to \scrS at x0 \in \scrS , we have \Phi \prime 
x \| \alpha 0, so

\Phi \prime 
x \cdot \alpha 0 = \lambda =  - | \Phi \prime 

x| \not = 0. This also gives the value of \lambda to be used in (3.13). By (3.3),
\Phi \prime 

y = | \Phi \prime 
y| \beta 0. Also,

(3.14) \Psi \prime 
x(z + pn(z)) \equiv n(z),

which implies that \Psi \prime 
x(x0) = \alpha 0. Combining these observations, and dividing the

second from the bottom row by  - | \Phi \prime 
x| , and the bottom row -- by | \Phi \prime 

x| , the matrix in
(3.13) transforms to

(3.15)

\left[  \Phi \prime \prime 
xx + | \Phi \prime 

x| n\prime 
x \Phi \prime \prime 

xx\alpha 0  - \alpha T
0 \Phi \prime \prime 

xy

\alpha 0 1 0 ( - 1/\nu )\beta 0
\alpha 0 0 0 0

\right]  ,
where \alpha 0 and \beta 0 are row vectors.

To prove (3.14) note that, by construction, \Psi (x(z, p)) \equiv p. Here (z, p) \rightarrow x is the
local diffeomorphism defined in (3.10). Suppose points z \in \scrS near x0 are parametrized
by some two-dimensional parameter u = (u1, u2). Differentiating with respect to u
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and p gives \Psi \prime 
x(x)x

\prime 
u \equiv 0 (because p and z are independent) and \Psi \prime 

x(x)x
\prime 
p \equiv 1, where

x\prime p = n(z). By construction, z(u) \in \scrS and | n(u)| \equiv 1 (where we replaced n(z(u)) with
n(u) with a slight abuse of notation). Hence x\prime uj

= z\prime uj
+ pn\prime 

uj
, j = 1, 2. Since z\prime uj

is tangent to \scrS at z and n\prime uj
\cdot n \equiv 0, we get n(z) \cdot x\prime uj

\equiv 0, and (3.14) immediately
follows.

To prove the first part of the first assertion of the lemma we need to show that
z, \lambda , and y1 are smooth functions of y\bot . Remove the columns corresponding to the
derivatives with respect to p (because p = 0 is fixed) and y\bot to obtain a 5 \times 5
submatrix. By applying elementary row and column operations, it is clear that this
submatrix is full-rank if and only if the following matrix has rank two:

(3.16) \Phi \prime \prime 
x\bot x\bot + | \Phi \prime 

x| (n\bot )\prime x\bot .

Here \Phi \prime \prime 
x\bot x\bot : \alpha \bot 

0 \rightarrow \alpha \bot 
0 is the appropriate submatrix of \Phi \prime \prime 

xx in the coordinates (3.1),
and n\bot is the projection of n onto \alpha \bot 

0 . It is easy to see that

(3.17) \Phi \prime \prime 
x\bot x\bot + | \Phi \prime 

x| (n\bot )\prime x\bot = | \Phi \prime 
x| N(x0).

The desired assertion follows from condition LG1 (see Definition 2.2).
Next, set p = 0 in (3.11) and assume that z, y1 are functions of y

\bot . Differentiating
the last two equations in (3.11) with respect to y\bot and using that \Phi \prime 

y \cdot \beta 0 = | \Phi \prime 
y| \not = 0

gives \Phi \prime 
xz

\prime 
y\bot = 0 and \partial y1/\partial y

\bot = 0. This proves the second part of the first assertion.
The first part of the second assertion follows by retaining the columns corre-

sponding to the derivatives with respect to z, p, and \lambda . As before, the resulting 5\times 5
submatrix is full-rank because the matrix in (3.16) has rank two. The second part of
the second assertion follows by considering z, p, and \lambda as functions of y, differentiating
the last two equations in (3.11) with respect to y, and using that \Phi \prime 

x,\Phi 
\prime 
y \not = 0.

The function z = Z(y) leads to a shorter proof of the first assertion by noting
that \Phi (Z(y), y) = 0 is also a local equation of \scrT \scrS near y0 and, by construction,
dy\Phi (Z(y), y)| y=y0

= dy\Phi (x0, y)| y=y0
.

The third assertion follows immediately from data completeness and the Bolker
condition (conditions DF2 and DF4, respectively).

We need the following lemma, which generalizes one of the results of Ramm and
Zaslavsky [18, 19] from the CRT to the GRT.

Lemma 3.5. Pick (x0, y0) \in \scrC such that (1) \scrS is smooth at x0, (2) \scrS y0
is tangent

to \scrS at x0 \in \scrS , and (3) N(x0) is negative definite. Suppose supp(f) is contained in
a small neighborhood of x0. For any z \in \scrS and p in small neighborhoods of x0 and 0,
respectively, one has

(3.18) g(Y (z, p)) = p+G(z, p) +G1(z, p) and G(z, 0) = f0(z)b(z, Y (z, 0))
2\pi \sqrt{} 

detN(z)

for some smooth G(z, p), G1(z, p).

Proof. Recall that Y (z, p) is the smooth function of (z, p) \in \scrS \times R defined by the
conditions that z + pn(z) \in \scrS y and n(z) be normal to \scrS y at the point z + pn(z); see
assertion 3 of Lemma 3.4. By assumption, N(x0) is negative definite in coordinates
(3.1). By linearity, we may assume that f \equiv 0 on the exterior side of \scrS . In particular,
f(x0 - \epsilon \alpha 0) \equiv 0, \epsilon > 0, in (3.3). In this case we have to prove (3.18) with G1 \equiv 0. By
construction,

g(y) =

\int 
\scrS y

f(x)b(x, y)\theta (\Psi (x)) dx,(3.19)
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where \theta is the unit step function (Heaviside function). Consider the system

(3.20) \Psi \prime 
x(x) - \mu \Phi \prime 

x(x, y) = 0, \Phi (x, y) = 0,

which we solve for x and \mu in terms of y. Equations (3.20) determine the stationary
point x\ast (y) of \Psi (x) on the surface \scrS y (the parameter \mu , which corresponds to 1/\lambda in
(3.11), is the Lagrange multiplier). From (3.11) and the property of \Psi \prime 

x, the solution
x\ast (y), \mu (y) to (3.20) can be obtained from the solution z = Z(y), p = P (y), \lambda = \Lambda (y)
to (3.11): x\ast (y) = Z(y)+P (y)n(Z(y)), \mu (y) = 1/\Lambda (y). By assertion 2 of Lemma 3.4,
x\ast (y) is smooth near y0.

As is easily checked, when the matrix \Psi \prime \prime 
xx(x0) - \mu (y0)\Phi 

\prime \prime 
xx(x0, y0) is viewed as a

quadratic form on \alpha \bot 
0 , it coincides with N(x0). The latter is negative definite, hence

x\ast (y) is the local maximum of \Psi (x) on \scrS y. By the Morse lemma (see Appendix A),
find local coordinates \omega on \scrS y, which depend smoothly on y, such that \omega (x\ast (y)) = 0
and \Psi (x) = \Psi (x\ast (y)) - | \omega | 2, x = x(\omega ; y) \in \scrS y. Since f, b, and x(\omega ; y) are all smooth,
we get from (3.19)

(3.21) g(y) =

\int 
\theta 
\bigl( 
\Psi (x\ast (y)) - | \omega | 2

\bigr) 
F (\omega , y)d\omega 

for some smooth F . Expand F in the Taylor series around \omega = 0 and integrate in
spherical coordinates \omega = r\Theta . Integration with respect to \Theta removes all the odd
powers of r, i.e., only the even powers of r remain. By construction,

(3.22) \Psi (x\ast (y)) = \Psi (z + pn(z)) = p if y = Y (z, p),

and the first statement in (3.18) follows.
To prove the second statement, we use the local coordinates (3.1). In these

coordinates, the local equation of \scrS y becomes

(3.23) x1 = x1(x
\bot , y) = \phi (y) + a(y) \cdot x\bot +

A(y)x\bot \cdot x\bot 

2
+O(| x\bot | 3)

for some smooth \phi , a, and A. By construction, y = Y (x0, p) implies that x\ast (y) =
x0 + p\alpha 0. Substitute such a pair (x\ast (y), y) into (3.20) and use (3.23) to conclude
that \phi (y) \equiv p, a(y) \equiv 0, y = Y (x0, p). Let x1 = Q(x\bot ) be the equation of \scrS in
the coordinates (3.1). By construction, Q\prime (0) = 0. Clearly, A(y0) and Q\prime \prime (0) are
the matrices of the second fundamental form of \scrS y0 and \scrS , respectively, at x0 in the
coordinates (3.1). From (3.19),

g(y) =

\int 
f(x)b(x, y)\theta 

\bigl( 
\psi (x\bot , y)

\bigr) \sqrt{} 
1 + | Q\prime (x\bot )| 2 dx\bot ,

\psi (x\bot , y) := x1(x
\bot , y) - Q(x\bot ), x = (x1(x

\bot , y), x\bot ).

(3.24)

Setting y = Y (x0, p) in (3.24), integrating by diagonalizing N(x0) = \psi \prime \prime 
x\bot x\bot (0, y0) and

changing variables, and taking the limit as p\rightarrow 0 (hence y \rightarrow y0), we find

G(x0, 0) = f(x0)b(x0, y0)
2\pi \sqrt{} 

detN(x0)
.(3.25)

By noting that instead of (x0, y0) \in \scrC one can take any (z, y) \in \scrC , where z \in \scrS is
sufficiently close to x0 (and y = Y (z, 0)), we finish the proof.
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It follows from the results obtained in this section that the properties of the
matrix function N(x) are very important for our analysis. The nondegeneracy of
N(x) ensures that \scrT \scrS \subset \scrV is a smooth submanifold of co-dimension 1 near x0. See
the proof of assertion 1 of Lemma 3.4. Also, the specific behavior of g(y) near its
singular support (recall that singsupp(g) \subset \scrT \scrS ) established in Lemma 3.5 holds only
whenN(x0) < 0 (i.e., N(x0) is negative definite). The case N(x0) > 0 can be obtained
from the case N(x0) < 0 by a change of variables (cf. the paragraph following (3.1)).

4. Local behavior of interpolated data. Similarly to (3.11), consider the
equations

(4.1) \Phi \prime 
x(x+ t\alpha , y) - \lambda \alpha = 0, \Phi (x+ t\alpha , y) = 0,

which we solve to find y = Y (\alpha , t;x) assuming (\alpha , t, x) is in a neighborhood of
(\alpha 0, 0, x0). Differentiating (4.1) with respect to \lambda and y and setting x = x0, t = 0,
\alpha = \alpha 0, \lambda =  - | \Phi \prime 

x| , we obtain similarly to (3.13) a matrix, which is nondegenerate.
As opposed to (3.13), the key reason why it is nondegenerate is the Bolker condition.
Hence Y (\alpha , t;x) is a smooth function of \alpha , t, and x. Next we substitute y = Y (\alpha , t;x)
into (4.1) and obtain a few useful properties of Y . The first one is that \partial Y1/\partial \alpha 

\bot = 0.
Indeed, differentiate the second equation in (4.1) with respect to \alpha \bot and set x = x0,
t = 0, \alpha = \alpha 0 to obtain \Phi \prime 

y\partial Y/\partial \alpha 
\bot = 0. The desired assertion follows from (3.4). In

a similar fashion, we have

(4.2) det(\partial Y \bot /\partial \alpha \bot ) \not = 0, \partial Y1/\partial t = | \Phi \prime 
x| /| \Phi \prime 

y| \not = 0, det(\partial Y/\partial (\alpha \bot , t)) \not = 0.

The first result is obtained by differentiating the first equation in (4.1) with respect
to \alpha \bot and using the Bolker condition and that \partial Y1/\partial \alpha 

\bot = 0. The second result is
obtained by differentiating the second equation in (4.1) with respect to t and using
the properties of the selected coordinates (3.1), (3.4). The last result is an obvious
consequence of the first two and that \partial Y1/\partial \alpha 

\bot = 0.
In view of (4.2), given any small \omega > 0, we can find a sufficiently small open set

\scrV 1, y0 \in \scrV 1 \subset \scrV , such that Y (\alpha , t;x\epsilon ) \in \scrV 1 implies | \alpha \bot | < \omega for all x\epsilon provided that \epsilon 
is sufficiently small. This relationship between \scrV 1 and \omega is assumed in what follows.
The results in (4.2) imply also that the inversion formula (2.16) requires finitely many
data points yj = \epsilon j (cf. (2.10)) for each fixed x \in \scrU and \epsilon > 0.

Since supp(\chi ) \subset \scrV 1, the domain of integration in (2.16) can be split into two sets:

\Omega 1 := \{ \alpha \in S2
+ : | \alpha \bot | < A\epsilon 1/2\} , \Omega 2 := \{ \alpha \in S2

+ : A\epsilon 1/2 < | \alpha \bot | < \omega \} (4.3)

for some small (but fixed) \omega > 0. Here A > 0 is a large parameter. Let f
(j)
\chi \epsilon denote the

result of integrating in (2.16) (with g replaced by g\epsilon ) over \Omega j , j = 1, 2. The behavior

of f
(1)
\chi \epsilon is investigated first. This is done in section 5. In the remainder of this section

we lay the groundwork for that investigation by deriving the behavior of Y (\alpha , t;x\epsilon )
and g\epsilon (y) in a neighborhood of (\alpha 0, 0, x0) and y0, respectively.

4.1. Local behavior of \bfitY (\bfitalpha , \bfitt ;\bfitx \bfitepsilon ). The first step is to obtain the leading term
behavior of the function Y (\alpha , t;x\epsilon ) for t = O(\epsilon ) and \alpha \in \Omega 1, i.e., for | \alpha \bot | = O(\epsilon 1/2).
In this section we continue using the coordinates (3.1).

Expanding y = Y (\alpha , t;x\epsilon ) in the Taylor series around x = x0, t = 0, \alpha = \alpha 0 and
using that | x\epsilon  - x0| = O(\epsilon ), t = O(\epsilon ), | \alpha \bot | = O(\epsilon 1/2), and \partial Y1/\partial \alpha 

\bot = 0 gives

(4.4) y1 = O(\epsilon ), | y\bot | = O(\epsilon 1/2).
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For x in an O(\epsilon ) neighborhood of the origin (i.e., x0) and for y in an O(\epsilon 1/2) neigh-
borhood of the origin (i.e., y0) we have

\Phi (x, y) = \Phi \prime 
x \cdot x+\Phi \prime 

y \cdot y +
\Phi \prime \prime 

yyy \cdot y
2

+O(\epsilon 3/2),

\Phi \prime 
x(x, y) = \Phi \prime 

x +\Phi \prime \prime 
xyy +O(\epsilon ).

(4.5)

To find y = Y (\alpha , t;x\epsilon ), substitute x = x\epsilon into (4.5) and solve

\Phi \prime 
x \cdot (\epsilon \~x+ t\alpha ) + \Phi \prime 

y \cdot y +
\Phi \prime \prime 

yyy \cdot y
2

= O(\epsilon 3/2),

\Phi \prime 
x +\Phi \prime \prime 

xyy = \lambda 
\bigl( 
1, \alpha \bot \bigr) (mod O(\epsilon )).

(4.6)

Recall that h = \~x \cdot \alpha 0. Switching to the coordinates (3.1), (3.4), using (4.4), and
keeping only the terms of order O(\epsilon ) in the first equation in (4.6) gives

 - (\epsilon h+ t)| \Phi \prime 
x| + | \Phi \prime 

y| y1 +
\Phi \prime \prime 

y\bot y\bot y
\bot \cdot y\bot 

2
= O(\epsilon 3/2).(4.7)

Projecting the second equation in (4.6) onto \alpha 0 and onto \alpha \bot 
0 implies

(4.8) \lambda =  - | \Phi \prime 
x| +O(\epsilon 1/2), \Phi \prime \prime 

x\bot y\bot y
\bot = \lambda \alpha \bot +O(\epsilon ),

leading to

(4.9) Y \bot (\alpha , t;x\epsilon ) =  - | \Phi \prime 
x| (\Phi \prime \prime 

x\bot y\bot )
 - 1\alpha \bot +O(\epsilon ).

By the Bolker condition (2.4), \Phi \prime \prime 
x\bot y\bot is nondegenerate. Substitution into (4.7) now

yields

Y1(\alpha , t;x\epsilon ) = \nu 

\biggl( 
\epsilon h+ t - M\alpha \bot \cdot \alpha \bot 

2

\biggr) 
+O(\epsilon 3/2),

M : = | \Phi \prime 
x| (\Phi \prime \prime 

x\bot y\bot )
 - T\Phi \prime \prime 

y\bot y\bot (\Phi 
\prime \prime 
x\bot y\bot )

 - 1, M : \alpha \bot 
0 \rightarrow \alpha \bot 

0 .

(4.10)

Recall that \nu is defined in (3.3).

4.2. The leading local behavior of \bfitg (\bfitY (\bfitalpha , \bfitt ;\bfitx \bfitepsilon )). We plan to substitute
y = Y (\alpha , t = 0;x\epsilon ) into (2.15). Hence the second step is to find the leading behavior
of g(y) when | y - Y (\alpha , 0;x\epsilon )| = O(\epsilon ) and | \alpha \bot | = O(\epsilon 1/2). This is done by finding the
asymptotics of z = Z(y) and p = P (y), which are determined by solving (3.11).

Recall that the local equation of \scrS in the coordinates (3.1) and the interior unit
normal are given by

z1 = Q(z\bot ) =
Q\prime \prime z\bot \cdot z\bot 

2
+O(| z\bot | 3),

n(z) = (1 +O(| z\bot | 2), - Q\prime \prime z\bot +O(| z\bot | 2)), Q\prime \prime := Q\prime \prime (0).

(4.11)

By (4.9), (4.10), | y1| = O(\epsilon ), | y\bot | = O(\epsilon 1/2). From (3.12), \partial p/\partial y\bot = 0 at y = y0,
so this implies | p| = O(\epsilon ), x1 = O(\epsilon ), and | z\bot | , | x\bot | = O(\epsilon 1/2), where x = z + pn(z).
Equation (4.11) leads to

x =

\biggl( 
Q\prime \prime z\bot \cdot z\bot 

2
+O(\epsilon 3/2), z\bot 

\biggr) 
+ p(1 +O(\epsilon 1/2), - Q\prime \prime z\bot +O(\epsilon ))

=

\biggl( 
p+

Q\prime \prime z\bot \cdot z\bot 

2
+O(\epsilon 3/2), z\bot +O(\epsilon 3/2)

\biggr) 
.

(4.12)
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4004 ALEXANDER KATSEVICH

From (4.12), x\bot = z\bot +O(\epsilon 3/2).
Given that now | x\bot | = O(\epsilon 1/2), the expansion in the first line in (4.5) should

include additional terms. The second equation in (3.11) becomes

(4.13)  - | \Phi \prime 
x| x1+ | \Phi \prime 

y| y1+
\Phi \prime \prime 

x\bot x\bot x
\bot \cdot x\bot 

2
+\Phi \prime \prime 

x\bot y\bot y
\bot \cdot x\bot +

\Phi \prime \prime 
y\bot y\bot y

\bot \cdot y\bot 

2
= O(\epsilon 3/2).

Solving for x1 we find
(4.14)

x1 =
1

\nu 
y1 +

1

| \Phi \prime 
x| 

\Biggl\{ 
\Phi \prime \prime 

x\bot x\bot x
\bot \cdot x\bot 

2
+ \Phi \prime \prime 

x\bot y\bot y
\bot \cdot x\bot +

\Phi \prime \prime 
y\bot y\bot y

\bot \cdot y\bot 

2

\Biggr\} 
+O(\epsilon 3/2).

Using (4.9) and that | y  - Y (\alpha , 0;x\epsilon )| = O(\epsilon ), we have

(4.15) y\bot =  - | \Phi \prime 
x| (\Phi \prime \prime 

x\bot y\bot )
 - 1\alpha \bot +O(\epsilon ),

and the unit normal vector to \scrS Y is thus

(4.16)

\Biggl( 
1 +O(\epsilon 1/2), \alpha \bot  - 

\Phi \prime \prime 
x\bot x\bot x

\bot 

| \Phi \prime 
x| 

+O(\epsilon )

\Biggr) 
.

The big-O terms in (4.16) follow by noticing that differentiation with respect to x1 in
(4.13) converts O(\epsilon 3/2) into O(\epsilon 1/2), and differentiation with respect to x\bot converts
O(\epsilon 3/2) into O(\epsilon ). This follows by noticing that (a) the term O(\epsilon 3/2) on the right in
(4.13) represents a smooth function (which is the difference between \Phi (x, y) and the
left-hand side of (4.13)), and (b) the Taylor expansion of this function starts with the
terms of order O(\epsilon 3/2) (e.g., x1x

\bot 
j , x1y

\bot 
j , y1y

\bot 
j , y1y

\bot 
j , . . . ).

From (4.11) and (4.16), the two normal vectors are parallel (the first equation in
(3.11)) if

(4.17) \alpha \bot  - 
\Phi \prime \prime 

x\bot x\bot z
\bot 

| \Phi \prime 
x| 

+O(\epsilon ) =  - Q\prime \prime z\bot +O(\epsilon ),

which implies

(4.18) z\bot = N - 1
0 \alpha \bot +O(\epsilon ), x\bot = N - 1

0 \alpha \bot +O(\epsilon ), N0 := N(x0).

Matching the first components in (4.12) and using (4.14), (4.15), (4.18) gives after
simple transformations

(4.19) p =
1

\nu 

\biggl( 
y1 +

M1\alpha 
\bot \cdot \alpha \bot 

2

\biggr) 
+O(\epsilon 3/2), M1 := \nu (M  - N - 1

0 ),

where M is defined in (4.10). Summarizing (4.18) and (4.19) we have

Z\bot (y) = N - 1
0 \alpha \bot +O(\epsilon ), P (y) =

1

\nu 

\biggl( 
y1 +

M1\alpha 
\bot \cdot \alpha \bot 

2

\biggr) 
+O(\epsilon 3/2),

| y  - Y (\alpha , 0;x\epsilon )| = O(\epsilon ), | \alpha \bot | = O(\epsilon 1/2).

(4.20)

Substituting into (3.18) we find

g(y) =f(Z(y))b(Z(y), y\ast )
2\pi \sqrt{} 

detN(Z(y))
P+(y) +O

\bigl( 
P 2
+(y)

\bigr) 
,(4.21)
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where y\ast = Y (z, p = 0) whenever y = Y (z, p).
From (4.11), (4.18) and (4.9), (4.10) it follows that | Z(y)  - x0| = O(\epsilon 1/2) and

| y  - y0| = O(\epsilon 1/2) whenever | y  - Y (\alpha , 0;x\epsilon )| = O(\epsilon ), hence

(4.22)
f(Z(y))b(Z(y), y\ast )\sqrt{} 

detN(Z(y))
=
f(x0)b(x0, y0)\sqrt{} 

detN(x0)
+O(\epsilon 1/2).

4.3. Local behavior of the interpolated data. In this subsection we find the
behavior of the interpolated data near y0 = 0. Combining (4.20)--(4.22) we get

g(\epsilon j) =
2\pi 

\nu 

\biggl( 
f(x0)b(x0, y0)\surd 

detN0

+O(\epsilon 1/2)

\biggr) \biggl( 
\epsilon j1 +

M1\alpha 
\bot \cdot \alpha \bot 

2
+O(\epsilon 3/2)

\biggr) 
+

+O
\bigl( 
P 2
+(\epsilon j)

\bigr) 
,

(4.23)

where M1 is defined in (4.19). From (4.10) and (4.20), | P (\epsilon j)| = O(\epsilon ). Using (4.9),
(4.10), and (4.23) gives

g\epsilon (Y (\alpha , t;x\epsilon ))

=
2\pi \epsilon 

\nu 

\sum 
j\in r+Z3

\biggl( 
f(x0)b(x0, y0)\surd 

detN0

+O(\epsilon 1/2)

\biggr) \biggl( 
j1 +

M1\~\alpha 
\bot \cdot \~\alpha \bot 

2
+O

\Bigl( 
\epsilon 1/2

\Bigr) \biggr) 
+

\times \varphi 

\biggl( 
\nu 

\biggl( 
h+ \~t - M \~\alpha \bot \cdot \~\alpha \bot 

2

\biggr) 
 - j1 +O

\Bigl( 
\epsilon 1/2

\Bigr) 
, - | \Phi \prime 

x| 
\epsilon 1/2

(\Phi \prime \prime 
x\bot y\bot )

 - 1 \~\alpha \bot  - j\bot +O(1)

\biggr) 
+O(\epsilon 2), \~t := t/\epsilon , \~\alpha \bot := \alpha \bot /\epsilon 1/2.

(4.24)

Since \varphi is compactly supported, the number of terms in the sum in (4.24) is bounded.
Using additionally that | \~\alpha \bot | \leq A < \infty , the two O

\bigl( 
\epsilon 1/2

\bigr) 
terms on the second line

of (4.24) are uniform in j, and the sum itself is bounded as well. Finally, combining
with the fact that | (a+O(\epsilon 1/2))+ - a+| = O(\epsilon 1/2) uniformly in a \in R and using (4.9)
and (4.10) gives

g\epsilon (Y (\alpha , t;x\epsilon ))

=
f(x0)b(x0, y0)2\pi \epsilon /\nu \surd 

detN0

\sum 
j\in r+Z3

\biggl( 
j1 +

M1\~\alpha 
\bot \cdot \~\alpha \bot 

2

\biggr) 
+

\times \varphi 

\biggl( 
\nu 

\biggl( 
h+ \~t - M \~\alpha \bot \cdot \~\alpha \bot 

2

\biggr) 
 - j1 +O

\Bigl( 
\epsilon 1/2

\Bigr) 
, - | \Phi \prime 

x| 
\epsilon 1/2

(\Phi \prime \prime 
x\bot y\bot )

 - 1 \~\alpha \bot  - j\bot +O(1)

\biggr) 
+O(\epsilon 3/2).

(4.25)

In view of (4.25), denote

(4.26) \psi (q, u) :=
\sum 

j\in r+Z3

(j \cdot \beta 0 + q)+\varphi (u - j), q \in R, u \in R3.

Here we will need a higher order approximation of Y (\alpha , t;x\epsilon ) than the one in (4.9),
(4.10):

Y \bot /\epsilon =  - | \Phi \prime 
x| (\Phi \prime \prime 

x\bot y\bot )
 - 1 \~\alpha \bot +A1(\~\alpha 

\bot , \~\alpha \bot ) +A2\~t+A3h+O(\epsilon 1/2),

Y1/\epsilon = \nu 

\biggl( 
h+ \~t - M \~\alpha \bot \cdot \~\alpha \bot 

2

\biggr) 
+O(\epsilon 1/2),

(4.27)
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4006 ALEXANDER KATSEVICH

where A1 is a bilinear map R2 \times R2 \rightarrow R2, and A2, A3 \in R2. Moreover, the two
O(\epsilon 1/2) terms in (4.27) depend smoothly on \~t and \~\alpha \bot . In particular, differentiation
with respect to \~t does not change the order of these terms as \epsilon \rightarrow 0. Hence we rewrite
(4.25) as follows:

g\epsilon (Y (\alpha , t;x\epsilon )) =
f0b02\pi \epsilon /\nu \surd 

detN0

\psi 
\bigl( 
q(\~\alpha \bot ), u(\~\alpha \bot , \~t)

\bigr) 
+O(\epsilon 3/2), q(\~\alpha \bot ) :=

M1\~\alpha 
\bot \cdot \~\alpha \bot 

2
,

u(\~\alpha \bot , \~t) :=

\biggl( 
\nu 

\biggl( 
h+ \~t - M \~\alpha \bot \cdot \~\alpha \bot 

2

\biggr) 
+O

\Bigl( 
\epsilon 1/2

\Bigr) 
,

 - | \Phi \prime 
x| 

\epsilon 1/2
(\Phi \prime \prime 

x\bot y\bot )
 - 1 \~\alpha \bot +A1(\~\alpha 

\bot , \~\alpha \bot ) +A2\~t+A3h+O(\epsilon 1/2)

\biggr) 
.

(4.28)

We also have

\partial u(\~\alpha \bot , \~t)/\partial \~t
\bigm| \bigm| 
\~t=0

= \nu 
\Bigl( 
1 +O(\epsilon 1/2), A2/\nu +O(\epsilon 1/2)

\Bigr) 
,

\partial 2u(\~\alpha \bot , \~t)/\partial \~t2
\bigm| \bigm| 
\~t=0

= O(\epsilon 1/2).
(4.29)

5. Estimating the term \bfitf (\bfone )
\bfitchi \bfitepsilon . To study f

(1)
\chi \epsilon we need the following lemma,

which follows immediately from (4.26) and the properties IK1--IK3 of \varphi .

Lemma 5.1. Partial derivatives of \psi (q, u) with respect to u up to the order two
are continuous. Also, one has

(5.1) \psi (q, u) = \psi (q +m \cdot \beta 0, u - m) \forall m \in Z3,

and, for some c > 0,

(5.2) \psi (q, u) = 0 if u \cdot \beta 0 + q <  - c; \psi (q, u) = u \cdot \beta 0 + q if u \cdot \beta 0 + q > c.

Denote

(5.3) U(q, u) :=  - \partial 2

\partial \tau 2
\psi (q, u+ \tau (1, A2/\nu ))

\bigm| \bigm| \bigm| \bigm| 
\tau =0

.

The following lemma is a direct consequence of Lemma 5.1 (see also properties IK3,
IK4 of \varphi ).

Lemma 5.2. The function U(q, u) has piecewise continuous bounded first order
partial derivatives with respect to q and u. Also,

(5.4) U(q, u) = U(q +m \cdot \beta 0, u - m), \forall m \in Z3,

and, for some c > 0,

(5.5) U(q, u) \equiv 0 if | u \cdot \beta 0 + q| > c.

Note that the derivative in the inversion formula (2.16) is with respect to t. Using
that t = \epsilon \~t (cf. (4.24)) and taking into account (4.29), (5.3), in the formula below we

will acquire the factor (\epsilon /\nu )2. Thus, in terms of U , the expression for f
(1)
\chi \epsilon becomes
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after changing variables \alpha \bot \rightarrow \~\alpha \bot (this brings the factor \epsilon ), setting \~t = 0, and using
(4.28), (4.29), (5.3),

f (1)\chi \epsilon (x\epsilon ) =
1

4\pi 2

f0(2\pi \epsilon /\nu )\surd 
detN0

\epsilon 

(\epsilon /\nu )2

\int 
| \~\alpha \bot | <A

U
\bigl( 
q(\~\alpha \bot ), u0(\~\alpha 

\bot )
\bigr) 
d\~\alpha \bot +O(\epsilon 1/2),

u0(\~\alpha 
\bot ) : =

\biggl( 
\nu 

\biggl( 
h - M \~\alpha \bot \cdot \~\alpha \bot 

2

\biggr) 
, - | \Phi \prime 

x| 
\epsilon 1/2

(\Phi \prime \prime 
x\bot y\bot )

 - 1 \~\alpha \bot +A1(\~\alpha 
\bot , \~\alpha \bot ) +A3h

\biggr) 
.

(5.6)

Two simplifications have been made in deriving (5.6). First, using that first and
second order derivatives of \psi are bounded, it follows from (4.29) that

(5.7)
\partial 2

\partial \~t2
\psi 
\bigl( 
\cdot , u(\~\alpha \bot , \~t)

\bigr) \bigm| \bigm| \bigm| \bigm| 
\~t=0

= \nu 2
\partial 2

\partial \tau 2
\psi (\cdot , u(\~\alpha \bot , 0) + \tau (1, A2/\nu ))

\bigm| \bigm| \bigm| \bigm| 
\tau =0

+O(\epsilon 1/2).

Second, since the derivatives of U are bounded, the integral with respect to \~\alpha \bot is over
a bounded set, and the coefficient in front of the integral is bounded, using (5.7) and
then replacing u(\~\alpha \bot , 0) with u0(\~\alpha 

\bot ) in the arguments of U leads to the term O(\epsilon 1/2)
outside the integral.

Approximate the domain | \~\alpha \bot | < A by a union of nonoverlapping small squares
of size \delta . Let these squares be denoted Bk, k = 1, 2, . . . , O(\delta  - 2). By (5.6),

u0(\~\alpha 
\bot ) = u0(\~\alpha 

\bot 
k ) + \Delta uk(\~\alpha 

\bot ) +O(\delta ), \~\alpha \bot \in Bk,

\Delta uk(\~\alpha 
\bot ) : =

\Bigl( 
0, - | \Phi \prime 

x| (\Phi \prime \prime 
x\bot y\bot )

 - 1(\~\alpha \bot  - \~\alpha \bot 
k )/\epsilon 

1/2
\Bigr) 
\in \beta \bot 

0 ,
(5.8)

where \~\alpha \bot 
k is the center of Bk. By Lemma 5.2,

U
\bigl( 
q(\~\alpha \bot ), u0(\~\alpha 

\bot )
\bigr) 
= U

\bigl( 
q(\~\alpha \bot 

k ), u0(\~\alpha 
\bot 
k ) + \Delta uk(\~\alpha 

\bot )
\bigr) 
+O(\delta ), \~\alpha \bot \in Bk.(5.9)

Therefore

\int 
Bk

U
\bigl( 
q(\~\alpha \bot ), u0(\~\alpha 

\bot )
\bigr) 
d\~\alpha \bot 

=

\int 
Bk

\bigl[ 
U
\bigl( 
q(\~\alpha \bot 

k ), u0(\~\alpha 
\bot 
k ) + \Delta uk(\~\alpha 

\bot )
\bigr) 
+O(\delta )

\bigr] 
d\~\alpha \bot 

=

\int 
Bk

\bigl[ 
U
\bigl( 
q(\~\alpha \bot 

k ) + \lfloor u0(\~\alpha \bot 
k ) + \Delta uk(\~\alpha 

\bot )\rfloor \cdot \beta 0, \{ u0(\~\alpha \bot 
k ) + \Delta uk(\~\alpha 

\bot )\} 
\bigr) 
+O(\delta )

\bigr] 
d\~\alpha \bot 

=

\int 
Bk

\bigl[ 
U
\bigl( 
q(\~\alpha \bot 

k ) + u0(\~\alpha 
\bot 
k ) \cdot \beta 0  - \{ u0(\~\alpha \bot 

k ) + \Delta uk(\~\alpha 
\bot )\} \cdot \beta 0,

\{ u0(\~\alpha \bot 
k ) + \Delta uk(\~\alpha 

\bot )\} 
\bigr) 
+O(\delta )

\bigr] 
d\~\alpha \bot ,

(5.10)

where we have used that \Delta uk(\~\alpha 
\bot )\cdot \beta 0 = 0. In (5.10) and below the fractional part of a

vector is computed componentwise: \{ u\} = (\{ u1\} , \{ u2\} , \{ u3\} ), where \{ ui\} = ui  - \lfloor ui\rfloor 
and \lfloor ui\rfloor is the largest integer not exceeding ui.

Pick any m \in Z3, m \not = 0. Let m\bot be the projection of m onto the plane \beta \bot 
0 .

Condition LG2 in Definition 2.2 implies that m\bot \not = 0. By the local Bolker condition
DF4, \Phi \prime \prime 

x\bot y\bot is nondegenerate, so the vector (\Phi \prime \prime 
x\bot y\bot )

 - Tm\bot \in R2 is not zero. Using
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4008 ALEXANDER KATSEVICH

(5.8), a Weyl-type argument (cf. [15]) implies that

lim
\epsilon \rightarrow 0

\int 
Bk

U
\bigl( 
q(\~\alpha \bot ), u0(\~\alpha 

\bot )
\bigr) 
d\~\alpha \bot 

=

\Biggl( \int 
[0,1]3

U
\bigl( 
q(\~\alpha \bot 

k ) + u0(\~\alpha 
\bot 
k ) \cdot \beta 0  - \omega \cdot \beta 0, \omega 

\bigr) 
d\omega +O(\delta )

\Biggr) 
Vol(Bk).

(5.11)

Indeed, consider the function U1(q, \omega ) := U(q - \omega \cdot \beta 0, \omega ). Clearly, U1(q, \omega ) is periodic:
U1(q, \omega ) = U1(q, \omega +m), m \in Z3. Expand U1(q, \omega ) in a Fourier series:

(5.12) U1(q, \omega ) =
\sum 
m\in Z3

Am(q) exp(2\pi im \cdot \omega ).

By the argument preceding (5.11),

m \cdot 
\Bigl( 
0, - | \Phi \prime 

x| (\Phi \prime \prime 
x\bot y\bot )

 - 1(\~\alpha \bot  - \~\alpha \bot 
k )
\Bigr) 
=  - | \Phi \prime 

x| (\Phi \prime \prime 
x\bot y\bot )

 - Tm\bot \cdot (\~\alpha \bot  - \~\alpha \bot 
k ),

(\Phi \prime \prime 
x\bot y\bot )

 - Tm\bot \not = 0, | m| > 0.
(5.13)

Therefore,

lim
\epsilon \rightarrow 0

\bigm| \bigm| \bigm| \bigm| \int 
Bk

exp
\bigl( 
2\pi im \cdot 

\bigl( 
u0(\~\alpha 

\bot 
k ) + \Delta uk(\~\alpha 

\bot )
\bigr) \bigr) 
d\alpha \bot 

\bigm| \bigm| \bigm| \bigm| 
= lim

\epsilon \rightarrow 0

\bigm| \bigm| \bigm| \bigm| \int 
Bk

exp

\biggl( 
 - 2\pi i| \Phi \prime 

x| 
\epsilon 

\Bigl[ 
(\Phi \prime \prime 

x\bot y\bot )
 - Tm\bot 

\Bigr] 
\cdot \~\alpha \bot 

\biggr) 
d\~\alpha \bot 

\bigm| \bigm| \bigm| \bigm| = 0, | m| > 0.

(5.14)

By (5.14), only the term corresponding to m = 0 does not vanish as \epsilon \rightarrow 0. The
desired assertion follows from the standard approximation argument.

By (4.23), (4.28), and (5.6),

(5.15) q(\~\alpha \bot 
k ) + u0(\~\alpha 

\bot 
k ) \cdot \beta 0 = \nu h - \nu N - 1

0 \~\alpha \bot 
k \cdot \~\alpha \bot 

k

2
.

Add the integrals over all the squares Bk and use (5.6), (5.11), and (5.15):

lim
\epsilon \rightarrow 0

f (1)\chi \epsilon (x\epsilon )

= \kappa 
\sum 
k

\int 
Bk

U
\bigl( 
q(\~\alpha \bot ), u0(\~\alpha 

\bot )
\bigr) 
d\~\alpha \bot +O(\delta )

= \kappa 
\sum 
k

\Biggl( \int 
[0,1]3

U

\biggl( 
\nu h - \nu N - 1

0 \~\alpha \bot 
k \cdot \~\alpha \bot 

k

2
 - \omega \cdot \beta 0, \omega 

\biggr) 
d\omega +O(\delta )

\Biggr) 
Vol(Bk) +O(\delta ),

\kappa :=
\nu 

2\pi 

f0\surd 
detN0

.

(5.16)

The term O(\delta ) outside the integral on the second line of (5.16) appears because of
the error of approximating the domain of integration | \~\alpha \bot | < A in (5.6) by the union
of Bk's. Since \delta > 0 can be as small as we like, (5.16) implies

lim
\epsilon \rightarrow 0

f (1)\chi \epsilon (x\epsilon ) = \kappa 

\int 
| \~\alpha \bot | <A

\int 
[0,1]3

U

\biggl( 
\nu h - \nu N - 1

0 \~\alpha \bot \cdot \~\alpha \bot 

2
 - \omega \cdot \beta 0, \omega 

\biggr) 
d\omega d\~\alpha \bot .(5.17)
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The second argument of U is bounded and N0 is negative definite, so by (5.5) the
integral with respect to \~\alpha \bot over the set | \~\alpha \bot | < A, when A > 0 is large enough (but
fixed), can be replaced by the integral over all R2. Changing variables and integrating
in spherical coordinates gives

lim
\epsilon \rightarrow 0

f (1)\chi \epsilon (x\epsilon ) = \kappa 

\int 
R2

\int 
[0,1]3

U

\biggl( 
\nu h - \nu N - 1

0 \~\alpha \bot \cdot \~\alpha \bot 

2
 - \omega \cdot \beta 0, \omega 

\biggr) 
d\omega d\~\alpha \bot 

= \kappa 
2
\surd 
detN0

\nu 

\int 
R2

\int 
[0,1]3

U (\nu h+ v \cdot v  - \omega \cdot \beta 0, \omega ) d\omega dv

= f0

\int \infty 

0

\int 
[0,1]3

U (\nu h+ \tau  - \omega \cdot \beta 0, \omega ) d\omega d\tau .

(5.18)

The integral with respect to \omega can be evaluated explicitly. Recall that in our
coordinates, \beta 0 = (1, 0, 0) (cf. (3.4)). From (4.26) and (5.3),

 - 
\int 
[0,1]3

U(q  - \omega \cdot \beta 0, \omega )d\omega 

=

\int 
[0,1]3

\partial 2

\partial \tau 2
\psi (q  - \omega \cdot \beta 0, \tau (1, A2/\nu ) + \omega )

\bigm| \bigm| \bigm| \bigm| 
\tau =0

d\omega 

=
\partial 2

\partial \tau 2

\int 
[0,1]3

\sum 
j\in r+Z3

(q  - \beta 0 \cdot (\omega  - j))+\varphi (\tau (1, A2/\nu ) + \omega  - j)d\omega 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\tau =0

=
\partial 2

\partial \tau 2

\int 
R3

(q  - \beta 0 \cdot \omega )+\varphi (\tau (1, A2/\nu ) + \omega )d\omega 

\bigm| \bigm| \bigm| \bigm| 
\tau =0

=
\partial 2

\partial \tau 2

\int 
R3

(q  - \beta 0 \cdot \omega )+\varphi (\tau (1, 0) + \omega )d\omega 

\bigm| \bigm| \bigm| \bigm| 
\tau =0

= \^\varphi (\beta 0, q).

(5.19)

Substitute (5.19) into (5.18)

(5.20) lim
\epsilon \rightarrow 0

f (1)\chi \epsilon (x\epsilon ) =  - f0
\int \infty 

0

\^\varphi (\beta 0, \nu h+ \tau )d\tau = f0

\biggl( 
 - 
\int \infty 

\nu h

\^\varphi (\beta 0, \tau )d\tau 

\biggr) 
.

Since \varphi is normalized and compactly supported,

(5.21)  - 
\int \infty 

\nu h

\^\varphi (\beta 0, \tau )d\tau =

\Biggl\{ 
0, h > c,

 - 1, h <  - c,

for some c > 0.
Using the definition (3.5) and some simple transformations, we can rewrite the

integral in (5.20) in two different forms:

(5.22)

\int \infty 

\nu h

\^\varphi (\beta 0, \tau )d\tau =

\int \infty 

| \Phi \prime 
x| h

\^\varphi (\Phi \prime 
y, \tau )d\tau =

\int 
\Phi \prime 

x\~x+\Phi \prime 
y \~y>0

\varphi (\~y)d\~y.

6. Analysis of the term \bfitf (\bftwo )
\bfitchi \bfitepsilon .

Lemma 6.1. One can find \omega > 0, \epsilon 0 > 0 small enough and A > 0 large enough so
that g(y) is smooth in a neighborhood of all y such that (y - Y (\alpha , 0;x\epsilon ))/\epsilon \in supp(\varphi )
for any \alpha \in \Omega 2, \~x \in \~U (cf. (3.2)), and 0 < \epsilon < \epsilon 0.
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4010 ALEXANDER KATSEVICH

Proof. Fix some c > 0 sufficiently large. Using that N(x0) is negative definite,
(4.20) implies that we can find A > 0 large enough and \omega > 0 small enough so that
P (Y (\alpha , 0;x\epsilon )) > c\epsilon for all \alpha \in \Omega 2 and all \~x \in \~U provided that \epsilon is small enough.
Since \varphi is compactly supported and P (y) is smooth, P (y) > 0 for all y such that
(y  - Y (\alpha , 0;x\epsilon ))/\epsilon \in supp(\varphi ) (this is where we use that c > 0 is sufficiently large).
Therefore, g is a smooth function in a neighborhood of all such y because in this case
we can drop the subscript ``+"" from P+(y) in (3.18).

Lemma 6.1 implies that the inversion formula (2.16) and its discrete analogue
do not see singularities in the data when \alpha \in \Omega 2 provided that \omega ,A are selected as

in the proof of Lemma 6.1. Since | \Omega 1| = O(\epsilon ), the limit lim\epsilon \rightarrow 0+ f
(2)
\chi \epsilon (x\epsilon ) exists, is

independent of \~x \in \~\scrU , and

(6.1) f (2)\chi \epsilon (x\epsilon ) - f (2)\chi \epsilon (x0) = O(\epsilon ).

Using again that N(x0) is negative definite, there exist sufficiently small neighbor-
hoods \scrU 1 of x0 and \scrV 1 of y0 such that \scrS y \cap \scrU 1 is on the exterior side of \scrS whenever \scrS y

is tangent to \scrS and y \in \scrV 1. This implies that if x \in \scrU 1 and x is on the interior side of
\scrS , then there is no y \in \scrV 1 such that \scrS y contains x and is tangent to \scrS . In turn, this
implies that the data g(y), y = Y (\alpha , t = 0;x) \in \scrV 1, which is used to compute f\chi (x)
is also smooth. Hence, assumptions IK1--IK3 imply that the L\infty error of computing
the second derivative \partial 2/\partial t2 in (2.16) from the interpolated data is of order O(\epsilon ).
The integral in the discrete data inversion formula can be viewed as a Riemann sum
with step-size O(\epsilon ) for the integral in the continuous data inversion formula. The
integrand in the latter is smooth when x is on the interior side of \scrS , so we have using
again that | \Omega 1| = O(\epsilon )

(6.2) f (2)\chi \epsilon (x0 + \epsilon h\alpha 0) - f\chi (x0 + \epsilon h\alpha 0) = O(\epsilon )

for any h > 0. Combining (6.1) and (6.2) gives

(6.3) f (2)\chi \epsilon (x\epsilon ) = f\chi (x0+) +O(\epsilon ).

This concludes the proof of Theorem 3.2.

7. Contribution of remote singularities. Suppose x0 \in \scrS y0
, \scrS y0

is tangent
to \scrS at some z0 \in \scrS y0

, z0 \not = x0, \scrS is smooth at z0, and N(z0) is either positive definite
or negative definite. Set \alpha 0 = \Phi \prime 

x(z0, y0)/| \Phi \prime 
x(z0, y0)| , so that y0 = Y (\alpha 0, 0;x0). As

before, \scrV 1 is a small neighborhood of y0, and supp(\chi ) \subset \scrV 1.
As follows from assertion 1 of Lemma 3.4 (with x0 replaced by z0 as the point of

tangency), \scrT \scrS is a smooth submanifold of \scrV 1 through y0, and the vector \Phi \prime 
y(z0, y0) is

normal to \scrT \scrS at y0. The local equation of \scrT \scrS is P (y) = 0, where the function P is
the same as in Lemma 3.4. By assertion 2 of the lemma, P \prime 

y(y0) \not = 0.
Another locally smooth submanifold through y0 is \scrT x0

, and \Phi \prime 
y(x0, y0) is normal

to it at y0. By the assumption DF3 of no conjugate points, \Phi \prime 
y(x0, y0) and \Phi \prime 

y(z0, y0)
are not parallel, so the intersection of the two submanifolds is a smooth curve \Gamma x0

through y0. This is the same curve \Gamma x0
, which was introduced in (2.13). From this

argument it is easy to see that \Gamma x depends smoothly on x near x = x0.

Theorem 7.1. Pick a globally generic pair (x0, y0) \in \scrC such that x0 \not \in \scrS and
\scrS y0 is tangent to \scrS at z0 \in \scrS . Suppose supp(f) is contained in a sufficiently small
neighborhood of z0. One has

(7.1) lim
\epsilon \rightarrow 0

f\chi \epsilon (x\epsilon ) = f\chi (x0).
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Proof. Suppose first that the reconstruction point is x0. Since the reconstruction
point is fixed, the dependence of various quantities on x0 is omitted from notation in
most places when there is no risk of confusion. Then

f\chi \epsilon (x0) =

\int 
S2
+

B(\alpha )
\sum 
j

g(\epsilon j)

\biggl( 
\partial 

\partial t

\biggr) 2

\varphi 

\biggl( 
Y (\alpha , t) - \epsilon j

\epsilon 

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 
t=0

d\alpha ,

B(\alpha ) := - \chi (Y (\alpha , 0))

4\pi 2

1

b(x0, Y (\alpha , 0))
.

(7.2)

By Lemma 3.5,

(7.3) g(y) := P+(y)G(y), G(y) := G(Z(y), P (y)).

Since \varphi is compactly supported, we can expand the factor P (y) in (7.3) in the Taylor
series centered at Y (\alpha , 0). Let L(y) be its linear term:

(7.4) L(y) := P (Y (\alpha , 0)) + P \prime 
y(Y (\alpha , 0)) \cdot (y  - Y (\alpha , 0)).

We begin by looking at the expression, which is obtained by ignoring the second and
higher order terms in the expansion of P :

J (1)
\epsilon :=

\int 
S2
+

B(\alpha )
\sum 
j

G(\epsilon j)L+(\epsilon j)

\biggl( 
\partial 

\partial t

\biggr) 2

\varphi 

\biggl( 
Y (\alpha , t) - \epsilon j

\epsilon 

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 
t=0

d\alpha .(7.5)

Clearly, \biggl( 
\partial 

\partial t

\biggr) 2

\varphi 

\biggl( 
Y (\alpha , t) - \epsilon j

\epsilon 

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 
t=0

d\alpha 

=
1

\epsilon 2
\nabla 2

u(\alpha )\varphi 

\biggl( 
Y (\alpha , 0)

\epsilon 
 - j

\biggr) 
+

1

\epsilon 
\varphi \prime 
y

\biggl( 
Y (\alpha , 0)

\epsilon 
 - j

\biggr) 
\cdot Y \prime \prime 

tt (\alpha , 0),

u(\alpha ) := Y \prime 
t (\alpha , 0), \nabla 2

u\varphi (y) =

\biggl( 
\partial 

\partial t

\biggr) 2

\varphi (y + tu)

\bigm| \bigm| \bigm| \bigm| \bigm| 
t=0

.

(7.6)

Consider the most singular part of J
(1)
\epsilon , which is obtained by using the first term on

the right in (7.6) and replacing G(\epsilon j) with G(Y (\alpha , 0)):

J (1a)
\epsilon :=

\int 
S2
+

B1(\alpha )
\sum 
j

L+(\epsilon j)
1

\epsilon 2
\nabla 2

u(\alpha )\varphi 

\biggl( 
Y (\alpha , 0)

\epsilon 
 - j

\biggr) 
d\alpha ,

B1(\alpha ) :=B(\alpha )G(Y (\alpha , 0)).

(7.7)

In view of (7.4) and (7.7), similarly to (4.26) and (5.3), introduce the function

(7.8) \psi (q, v;\alpha ) :=
\sum 
j

(e(\alpha ) \cdot (j  - v) + q)+ \nabla 2
u(\alpha )\varphi (v  - j) , e(\alpha ) := P \prime 

y(Y (\alpha , 0)).

Clearly,
1. \psi is compactly supported in q (by (2.14)),
2. \psi has bounded first order partial derivatives, and
3. \psi (q, v;\alpha ) = \psi (q, v  - m;\alpha ) for any m \in Z3.
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Using (7.8) in (7.7) yields

J (1a)
\epsilon =

1

\epsilon 

\int 
S2
+

B1(\alpha )\psi 

\biggl( 
P (Y (\alpha , 0))

\epsilon 
,
Y (\alpha , 0)

\epsilon 
;\alpha 

\biggr) 
d\alpha .(7.9)

Introduce local coordinates s = (s1, s2) on S2
+ so that s1 \equiv P (Y (\alpha , 0)) in a

neighborhood of \alpha 0. As is shown at the beginning of this section, \Gamma is the transverse
intersection of the submanifolds \scrT x0

and \scrT \scrS . By the first equation in (4.2), \alpha \rightarrow 
Y (\alpha , 0) \in \scrT x0

is a regular parametrization near \alpha 0. In (4.2), y0 = Y (\alpha 0, 0;x0),
and Y \bot is determined by the projection onto the plane (\Phi \prime 

y(x0, y0))
\bot (as opposed to

(\Phi \prime 
y(z0, y0))

\bot ). Hence P \prime 
y(y0) \not = 0 (cf. (3.12)) implies \partial P (Y (\alpha , 0))/\partial \alpha \bot \not = 0 near \alpha 0.

Therefore the preimage of \Gamma \cap \scrV 1, given by \{ \alpha \in S2
+ : P (Y (\alpha , 0)) = 0, Y (\alpha , 0) \in \scrV 1\} ,

is also a smooth curve, and local coordinates (s1, s2) with the required property do
exist. Then

J (1a)
\epsilon =

1

\epsilon 

\int 
R2

B1(\alpha (s))\psi 

\biggl( 
P (Y (\alpha (s), 0))

\epsilon 
,
Y (\alpha (s), 0)

\epsilon 
;\alpha (s)

\biggr) \bigm| \bigm| \bigm| \bigm| \partial \alpha \partial s
\bigm| \bigm| \bigm| \bigm| ds+O(\epsilon )

=

\int 
R2

B2(s2)\psi 

\biggl( 
\~s1,

Y (\alpha (0, s2), 0)

\epsilon 
+
\partial Y (\alpha (s1, s2), 0)

\partial s1

\bigm| \bigm| \bigm| \bigm| 
s1=0

\~s1;\alpha (0, s2)

\biggr) 
d\~s1ds2

+O(\epsilon ),

B2(s2) := B1(\alpha (0, s2))

\bigm| \bigm| \bigm| \bigm| \partial \alpha (s1 = 0, s2)

\partial s

\bigm| \bigm| \bigm| \bigm| , \~s1 = s1/\epsilon .

(7.10)

In the first line, the integral is over the bounded set \{ s \in R2 : Y (\alpha (s), 0) \in supp(\chi )\} .
In the second line, the integral can be confined to a bounded set \{ (\~s1, s2) \in R2 :
| \~s1| < \~A, Y (\alpha (0, s2)) \in supp(\chi )\} for some \~A > 0 large enough.

Lemma 7.2. Let D be a rectangle D := [a1, b1] \times [a2, b2]. Consider a function
\psi \in C(D \times R3). Suppose \psi is periodic: \psi (s, y) = \psi (s, y +m) for any m \in Z3 and
(s, y) \in D \times R3. Let Y : [a2, b2] \rightarrow R3 be a C1 function with the following properties.
For any m \in Z3, | m| > 0,

1. the set \{ s2 \in [a2, b2] : | m \cdot Y \prime (s2)| \leq \delta \} is contained in a finite number of
intervals for all \delta > 0 sufficiently small (this number may depend on m and
\delta ), and

2. the sum of the lengths of these intervals goes to zero as \delta \rightarrow 0.
Then one has

lim
\epsilon \rightarrow 0+

\int 
D

\psi 

\biggl( 
s,
Y (s2)

\epsilon 

\biggr) 
ds =

\int 
D

\int 
[0,1]3

\psi (s, y)dyds.(7.11)

Proof. Pick any \delta 1 > 0. Let \Psi m(s) denote the coefficients of the Fourier expansion
of \psi (s, y) with respect to y. We can find M > 0 large enough and a partition of D
into sufficiently small rectangles such that

sup
s\in D,y\in R3

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \psi (s, y) - 
\sum 

| m| \leq M

\~\Psi m(s) exp (2\pi im \cdot y)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq \delta 1.(7.12)

D
ow

nl
oa

de
d 

09
/0

8/
20

 to
 5

.1
98

.1
37

.2
5.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ANALYSIS OF RESOLUTION 4013

Here \~\Psi m is an approximation of \Psi m, which is constant on each rectangle of the
partition. Thus, the lemma will be proven if we show that

(7.13)\int b

a

exp (2\pi im \cdot Y (s2)/\epsilon ) ds2 \rightarrow 0, \epsilon \rightarrow 0, for any [a, b] \subset [a2, b2], m \in Z3, | m| > 0.

Using assumptions 1 and 2 of the lemma, partition [a, b] into a finite collection of
nonoverlapping intervals so that (i) their union is as close to [a, b] as we like, and (ii)
in each of these intervals m \cdot Y \prime (s2) is bounded away from zero. The result now follows
immediately.

Clearly, condition GG2 in Definition 2.1 is independent of the choice of the vec-
tor field \.\Gamma as long as it does not vanish at any point of \Gamma . In the s-coordinates,
Y (\alpha (0, s2), 0) is a regular parametrization of \Gamma \cap \scrV 1 because det(\partial Y \bot /\partial \alpha \bot )\alpha =\alpha 0

\not = 0
and det(\partial \alpha \bot /\partial s) \not = 0 (see also the argument following (7.9)). The latter determinant
is computed at s such that \alpha (s) = \alpha 0. Therefore \partial Y/\partial s2 never vanishes on \Gamma \cap \scrV 1.
Condition GG2 implies that Y (\alpha (0, s2)) satisfies conditions 1 and 2 in Lemma 7.2.
Set

(7.14) \psi 1(s, y) := B2(s2)\psi 

\biggl( 
\~s1, y +

\partial Y (\alpha (s1, s2), 0)

\partial s1

\bigm| \bigm| \bigm| \bigm| 
s1=0

\~s1;\alpha (0, s2)

\biggr) 
, s = (\~s1, s2).

Using the properties 1--3 of \psi , we see that Lemma 7.2 applies to \psi 1. Also, \psi 1 is
compactly supported. Compact support along \~s1 is due to the property 1 of \psi , and
along s2 is due to the cut-off \chi . Substituting \psi 1 into (7.10), using Lemma 7.2, and
then expressing \psi 1 in terms of \psi yields

lim
\epsilon \rightarrow 0

J (1a)
\epsilon =

\int 
R2

B2(s2)

\Biggl[ \int 
[0,1]3

\psi (\~s1, v;\alpha (0, s2)) dv

\Biggr] 
d\~s1ds2.(7.15)

By (7.8), similarly to (5.19),\int 
[0,1]3

\sum 
j

(e \cdot (j  - v) + q)+ \nabla 2
u\varphi (v  - j) dv

=

\int 
R3

( - e \cdot v + q)+ \nabla 2
u\varphi (v)dv = (e \cdot u)2 \^\varphi (e, q).

(7.16)

As | e| not necessarily equals one, (7.16) assumes the extended definition of the CRT;
cf. (3.5). By (7.6) and (7.8),

(7.17) e(\alpha ) \cdot u(\alpha ) = \partial P (Y (\alpha , t))/\partial t| t=0 =: P \prime 
t (\alpha ), \alpha = \alpha (0, s2).

With \varphi normalized, using (7.16) with q = \~s1 and (7.17) in (7.15) gives

lim
\epsilon \rightarrow 0

J (1a)
\epsilon =

\int 
R
B2(s2)(P

\prime 
t (\alpha (0, s2)))

2

\int 
\^\varphi (e(\alpha (0, s2)), \~s1)d\~s1ds2

=

\int 
R
B2(s2)(P

\prime 
t (\alpha (0, s2)))

2ds2.

(7.18)
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Consequently, from (7.10) we get

lim
\epsilon \rightarrow 0

J (1a)
\epsilon =

\int 
R
B1(\alpha (0, s2))

\bigm| \bigm| \bigm| \bigm| \partial \alpha (0, s2)\partial s

\bigm| \bigm| \bigm| \bigm| (P \prime 
t (\alpha (0, s2)))

2ds2

=

\int 
R2

B1(\alpha (s))(P
\prime 
t (\alpha (s)))

2\delta (P (Y (\alpha (s), 0)))

\bigm| \bigm| \bigm| \bigm| \partial \alpha (s)\partial s

\bigm| \bigm| \bigm| \bigm| ds
=

\int 
S2
+

B1(\alpha )

\biggl( 
\partial P (Y (\alpha , t))

\partial t

\bigm| \bigm| \bigm| \bigm| 
t=0

\biggr) 2

\delta (P (Y (\alpha , 0)))d\alpha .

(7.19)

In the second line we used that s = (s1, s2) and s1 \equiv P (Y (\alpha (s), 0)).

Next, consider the second part of J
(1)
\epsilon , which is obtained by using the second

term on the right in (7.6) and replacing G(\epsilon j) with G(Y (\alpha , 0)):

J (1b)
\epsilon :=

\int 
S2
+

B1(\alpha )
\sum 
j

L+(\epsilon j)
1

\epsilon 
\varphi \prime 
y

\biggl( 
Y (\alpha , 0)

\epsilon 
 - j

\biggr) 
\cdot Y \prime \prime 

tt (\alpha , 0)d\alpha .(7.20)

The function L+(y) has bounded first derivatives, hence the limit of J
(1b)
\epsilon can be

easily found:

lim
\epsilon \rightarrow 0

J (1b)
\epsilon = lim

\epsilon \rightarrow 0

\int 
S2
+

B1(\alpha )
\sum 
j

L+(\epsilon j)
1

\epsilon 
\varphi \prime 
y

\biggl( 
Y (\alpha , 0) - \epsilon j

\epsilon 

\biggr) 
\cdot Y \prime \prime 

tt (\alpha , 0)d\alpha 

= lim
\epsilon \rightarrow 0

\int 
S2
+

B1(\alpha ) \partial y
\sum 
j

L+(\epsilon j)\varphi 

\biggl( 
Y (\alpha , 0) + y  - \epsilon j

\epsilon 

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
y=0

\cdot Y \prime \prime 
tt (\alpha , 0)d\alpha 

=

\int 
S2
+

B1(\alpha ) \partial yL+(Y (\alpha , 0) + y)| y=0 \cdot Y
\prime \prime 
tt (\alpha , 0)d\alpha 

=

\int 
S2
+

B1(\alpha )P
\prime 
y(Y (\alpha , 0)) \cdot Y \prime \prime 

tt (\alpha , 0)\theta (P (Y (\alpha , 0)))d\alpha .

(7.21)

Recall that P > 0 on the interior side of \scrS .
The final piece of J

(1)
\epsilon is

J (1c)
\epsilon :=

\int 
S2
+

B(\alpha )
\sum 
j

(G(\epsilon j) - G(Y (\alpha , 0)))L+(\epsilon j)

\times 
\biggl( 
\partial 

\partial t

\biggr) 2

\varphi 

\biggl( 
Y (\alpha , t) - \epsilon j

\epsilon 

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 
t=0

d\alpha .

(7.22)

In an O(\epsilon ) neighborhood of \Gamma , we have | L(y)| = O(\epsilon ). For any fixed y = Y (\alpha , 0) \in \scrV 1,
P (y) > 0, we compute by dropping the subscript ``+"" from L:

\sum 
j

(G(\epsilon j) - G(Y (\alpha , 0)))L(\epsilon j)

\biggl( 
\partial 

\partial t

\biggr) 2

\varphi 

\biggl( 
Y (\alpha , t) - \epsilon j

\epsilon 

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 
t=0

=

\biggl( 
\partial 

\partial t

\biggr) 2

[(G(Y (\alpha , t)) - G(Y (\alpha , 0)))L(Y (\alpha , t))]

\bigm| \bigm| \bigm| \bigm| \bigm| 
t=0

+O(\epsilon ).

(7.23)D
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Substitution into (7.22) gives

lim
\epsilon \rightarrow 0

J (1c)
\epsilon 

=

\int 
S2
+

B(\alpha )

\biggl( 
\partial 

\partial t

\biggr) 2

[(G(Y (\alpha , t)) - G(Y (\alpha , 0)))L(Y (\alpha , t))]

\bigm| \bigm| \bigm| \bigm| \bigm| 
t=0

\theta (P (Y (\alpha , 0)))d\alpha .

(7.24)

We can apply the limit as \epsilon \rightarrow 0 inside the integral in (7.22) to obtain (7.24) be-
cause the integrand is uniformly bounded. This follows because the function (G(y) - 
G(Y (\alpha , 0)))L(y) is smooth away from an O(\epsilon ) neighborhood of \Gamma , and the integrand
is O(1) within that neighborhood.

The final term to be considered arises because of the difference between P (y) (cf.
(7.3)) and its linear approximation L(y) (cf. (7.4)):

J (2)
\epsilon :=

\int 
S2
+

B(\alpha )
\sum 
j

G(\epsilon j) [P+(\epsilon j) - L+(\epsilon j)]

\biggl( 
\partial 

\partial t

\biggr) 2

\varphi 

\biggl( 
Y (\alpha , t) - \epsilon j

\epsilon 

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 
t=0

d\alpha .

(7.25)

In the domain where P (\epsilon j) and L(\epsilon j) are both positive, we have

(7.26) P+(\epsilon j) - L+(\epsilon j) =
1

2
P \prime \prime 
yy(Y (\alpha , 0))(\epsilon j  - Y (\alpha , 0)) \cdot (\epsilon j  - Y (\alpha , 0)) +O(\epsilon 3).

This difference is zero if P (\epsilon j) and L(\epsilon j) are both negative. Thus,

lim
\epsilon \rightarrow 0

\sum 
j

G(\epsilon j) [P (\epsilon j) - L(\epsilon j)]

\biggl( 
\partial 

\partial t

\biggr) 2

\varphi 

\biggl( 
Y (\alpha , t) - \epsilon j

\epsilon 

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 
t=0

= G(Y (\alpha , 0))P \prime \prime 
yy(Y (\alpha , 0))Y \prime 

t (\alpha , 0) \cdot Y \prime 
t (\alpha , 0), P (Y (\alpha , 0)) > 0.

(7.27)

In the region where P (Y (\alpha , 0)) < 0, the limit is obviously zero. Hence

lim
\epsilon \rightarrow 0

J (2)
\epsilon =

\int 
S2
+

B1(\alpha )P
\prime \prime 
yy(Y (\alpha , 0))Y \prime 

t (\alpha , 0) \cdot Y \prime 
t (\alpha , 0)\theta (P (Y (\alpha , 0)))d\alpha .(7.28)

As before, we can apply the limit as \epsilon \rightarrow 0 inside the integral in (7.25) to obtain
(7.28) because the integrand is uniformly bounded. Indeed,

(7.29) P+(y) - L+(y) = (L(y) +O(\epsilon 2))+  - L+(y) = O(\epsilon 2),

so the integrand in (7.25) remains bounded as \epsilon \rightarrow 0. The domain where P (y) and
L(y) are of different signs is a shrinking O(\epsilon ) neighborhood of \Gamma , and the desired
result follows.

Combining (7.19), (7.21), (7.24), and (7.28) gives the result, which, in compact
form, can be written as follows:

lim
\epsilon \rightarrow 0

f\chi \epsilon (x0)

=

\int 
S2
+

B(\alpha )[G0(\partial tP )
2\delta (P0) + (G0P

\prime 
yY

\prime \prime 
tt + \partial 2t ((G - G0)L) +G0P

\prime \prime 
yyY

\prime 
t \cdot Y \prime 

t )\theta (P0)]d\alpha 

=

\int 
S2
+

B(\alpha )[G0(\partial tP )
2\delta (P0) + (G0\partial 

2
t P + \partial 2t ((G - G0)L))\theta (P0)]d\alpha .

(7.30)
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Here G0 := G(Y (\alpha , 0)), G := G(Y (\alpha , t)), P := P (Y (\alpha , t)), P0 := P (Y (\alpha , 0)), and
the derivatives with respect to t are evaluated at t = 0. This coincides with what we
get by substituting g = P+G into the continuous inversion formula (2.16). Indeed,
representing P+G = (GP )\theta (P ), we have

\partial 2t ((GP )\theta (P )) = \partial t[\partial t(GP )\theta (P ) + (GP )\delta (P )\partial tP ] = \partial t[\partial t(GP )\theta (P )]

= \partial t(GP )\partial tP\delta (P0) + \partial 2t (GP )\theta (P0)

= G0(\partial tP )
2\delta (P0) + \partial 2t (GP )\theta (P0).

(7.31)

The coefficients in front of the delta-function in (7.30) and (7.31) match. Subtracting
the coefficients in front of the Heaviside function gives

[G0\partial 
2
t P + \partial 2t ((G - G0)L)] - \partial 2t (GP ) =  - \partial 2t [(G - G0)(P  - L)] = 0.(7.32)

Here we have used that G0 is independent of t, and the expression under the derivative
has a zero of third order at t = 0. Thus the theorem is proven in the case x = x0.

Next, consider the case of a general x\epsilon := x0+\epsilon \~x (cf. (7.1)). We begin by repeating
the steps (7.3)--(7.9), where all the auxiliary functions, such as Y , are computed using
x\epsilon instead of x0. It is clear that in any place where an auxiliary function is not divided
by \epsilon , e.g., B(\alpha ) in (7.5) and e(\alpha ), u(\alpha ) in (7.8), replacing x\epsilon with x0 introduces an
error of magnitude O(\epsilon ). Here we also used the property 2 of \psi . Consequently, the
analogue of (7.9) for x\epsilon becomes

J (1a)
\epsilon (x\epsilon ) =

1

\epsilon 

\int 
S2
+

B1(\alpha )\psi 

\biggl( 
P (Y (\alpha , 0;x\epsilon ))

\epsilon 
,
Y (\alpha , 0;x\epsilon )

\epsilon 
;\alpha 

\biggr) 
d\alpha +O(\epsilon ),(7.33)

where only Y is different from the analogous function in (7.9). Note that P (y) depends
only on the shape of \scrS in a neighborhood of z0 and, therefore, is independent of x\epsilon .
We have

Y (\alpha , 0;x\epsilon ) = Y (\alpha , 0) + \epsilon W (\alpha , \~x) +O(\epsilon 2),

P (Y (\alpha , 0;x\epsilon )) = P (Y (\alpha , 0)) + \epsilon P \prime 
y(Y (\alpha , 0))W (\alpha , \~x) +O(\epsilon 2),

(7.34)

for some smooth and bounded W . Here Y (\alpha , 0) is the same as in (7.9). Substituting
into (7.33) gives

J (1a)
\epsilon (x\epsilon ) =

1

\epsilon 

\int 
S2
+

B1(\alpha )\psi 

\biggl( 
P (Y (\alpha , 0))

\epsilon 
+ P \prime 

y(Y (\alpha , 0))W (\alpha , \~x),

Y (\alpha , 0)

\epsilon 
+W (\alpha , \~x);\alpha 

\biggr) 
d\alpha +O(\epsilon ).

(7.35)

Similarly to (7.14), introduce

\psi 2(s, y) := B1(\alpha )\psi (\~s1 + P \prime 
y(Y (\alpha , 0))W (\alpha , \~x), y +W (\alpha , \~x);\alpha ),

\alpha = \alpha (0, s2), s = (\~s1, s2).
(7.36)

The point \~x is fixed, so we do not need to list it in the arguments of \psi 2. Clearly, \psi 2

satisfies the same properties 1--3 as \psi . Hence Lemma 7.2 applies to \psi 2 as well, and
we get similarly to (7.10), (7.14), and (7.15)

lim
\epsilon \rightarrow 0

J (1a)
\epsilon (x\epsilon ) =

\int 
R2

\Biggl[ \int 
[0,1]3

\psi 2 (\~s1, v;\alpha (0, s2)) dv

\Biggr] 
d\~s1ds2

=

\int 
R2

B2(s2)

\Biggl[ \int 
[0,1]3

\psi (\~s1, v;\alpha (0, s2)) dv

\Biggr] 
d\~s1ds2.

(7.37)D
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Here we have used that the integrals with respect to \~s1 and v are unaffected by the
constant (with respect to \~s1 and v) shifts in (7.36). Therefore, (7.19) holds with

J
(1a)
\epsilon (x\epsilon ) on the left.

To find the limit of J
(1b)
\epsilon (x\epsilon ), consider the key step in (7.21),

(7.38)
\sum 
j

L+(\epsilon j;x\epsilon )\varphi 

\biggl( 
Y (\alpha , 0;x\epsilon ) + y  - \epsilon j

\epsilon 

\biggr) 
= L+(Y (\alpha , 0;x\epsilon ) + y;x\epsilon ),

which is rewritten with x0 replaced by x\epsilon . This equality holds everywhere except in an
O(\epsilon ) neighborhood of \Gamma (= \Gamma x0

). Here we use that the curve \Gamma x\epsilon 
, which is obtained by

solving P (Y (\alpha , 0;x\epsilon )) = 0, depends smoothly on x\epsilon , and dist(\Gamma x\epsilon ,\Gamma ) = O(\epsilon ) (see the
argument preceding the statement of Theorem 7.1). Similarly to (7.21), the integrand
is uniformly bounded, and we get

(7.39) lim
\epsilon \rightarrow 0

J (1b)
\epsilon (x\epsilon ) =

\int 
S2
+

B1(\alpha )P
\prime 
y(Y (\alpha , 0)) \cdot Y \prime \prime 

tt (\alpha , 0)\theta (P (Y (\alpha , 0)))d\alpha .

The fact that the limits of J
(1c)
\epsilon (x\epsilon ) and J

(2)
\epsilon (x\epsilon ) as \epsilon \rightarrow 0 are independent of \~x \in \~\scrU 

can be established in a similar way, and the theorem is proven.

8. Illustrative example. As an example, consider the GRT that integrates a
function supported in the half-space x3 > 0 over spheres that are tangent to the plane
x3 = 0. For simplicity, we take b(x, y) \equiv 1 in (2.16). The family of such spheres
is three-dimensional. We parametrize the spheres (and, consequently, the GRT) by
the coordinates of their center y. Thus, \scrU := \{ x = (x1, x2, x3) \in R3 : x3 > 0\} and
\scrV := \{ y = (y1, y2, y3) \in R3 : y3 > 0\} . The surfaces \scrS y are spheres, and the defining
function \Phi in (2.9) becomes

(8.1) \Phi (x, y) := y23  - (x1  - y1)
2  - (x2  - y2)

2  - (x3  - y3)
2 = 0.

Clearly,

(8.2) \Phi \prime 
x(x, y) = 2(y  - x), \Phi \prime 

y(x, y) = 2(x1  - y1, x2  - y2, x3).

Let us check the conditions DF1--DF4. From (8.2), \Phi \prime \prime 
xy(x, y) = 2I, where I is the 3\times 3

identity matrix. In this case, by applying elementary row operations we conclude that
the matrix in (2.5) is nonsingular if \Phi \prime 

x \cdot \Phi \prime 
y \not = 0. Using (8.1) and (8.2) we find that

\Phi \prime 
x \cdot \Phi \prime 

y =  - 4x3y3 < 0. This verifies DF1 and DF4. Condition DF2 holds, because
for any \alpha \in S2 we can find y \in \scrV such that x \in \scrS y and \alpha is perpendicular to the
sphere \scrS y at x. Denote \^y := (y1, y2, 0). The point \^y can be viewed as the south pole
of the sphere \scrS y, and \Phi \prime 

y(x, y) = 2(x - \^y). Condition DF3 is violated if there are two
distinct points on the sphere x, z \in \scrS y such that x  - \^y and z  - \^y are parallel. Since
this is not possible, DF3 holds as well.

Details of applying the inversion formula (2.16) to discrete data, including com-
putation of the function Y (\alpha , t;x), are described in the next section.

9. Numerical experiment. We start by constructing an interpolation kernel
with the required properties. To obtain \varphi , we first obtain an interpolation kernel \varphi 1D

that has properties IK1--IK5 in R, and then extend it to R3 in a separable fashion.
To obtain \varphi 1D we use the result of [12], where such a kernel is obtained following the
method in [3]:

(9.1) \varphi 1D(t) = 0.5(B3(t) +B3(t - 2)) + 4B3(t - 1) - 2(B4(t) +B4(t - 1)).
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Here Bn is the cardinal B-spline of degree n supported on [0, n+ 1]. Then the kernel
\varphi becomes

(9.2) \varphi (y) =
3\prod 

k=1

\varphi 1D

\biggl( 
yk
\Delta k

+ 3

\biggr) 
, y = (y1, y2, y3),

where \Delta k is the data step-size along the kth axis. For simplicity, in this paper all the
\Delta k are equal, i.e., \Delta k = \epsilon , k = 1, 2, 3.

The GRT integrates over spheres, as described in section 8. The test object is
the ball with center xc = (0, 0, 11), radius R = 5, and uniform density 1. The point
on the boundary x0, in a neighborhood of which we compute resolution, is given by

(9.3) x0 = xc  - R\alpha 0, \alpha 0 = (sin(0.2\pi ) cos(0.7\pi ), sin(0.2\pi ) sin(0.7\pi ), cos(0.2\pi )).

In agreement with our convention, \alpha 0 points into the interior of the ball.
There can be two spheres that are tangent to the ball at x0. As an example, we

consider the sphere whose center y0 satisfies (x0 - y0)\cdot \alpha 0 > 0. Thus, for reconstruction
near x0 we use the data in a neighborhood of y0. With this choice of y0, the condition
\Phi \prime 

x(x0, y0)/| \Phi \prime 
x(x0, y0)| =  - \alpha 0 (see the text following (3.1)) is satisfied with \Phi given

by (8.1). For the selected x0, \alpha 0, and y0, we compute using (8.2)

(9.4) \nu = | \Phi \prime 
x| /| \Phi \prime 

y| = 0.526.

To compute the GRT, we use the formula for the area of a spherical cap:

(9.5) A = 2\pi Rh,

where R is the radius of the sphere, and h is the height of the cap. The values of
R and h can be computed once the center of the sphere \scrS y is chosen (e.g., R = y3).
To simulate discrete data, the GRT is computed at the points y = r + \epsilon j. The
interpolated data g\epsilon is computed using (2.15), where the kernel is given by (9.2) with
\Delta k = \epsilon , k = 1, 2, 3.

To apply the inversion formula (2.16), we numerically integrate g\epsilon over a neigh-
borhood of \alpha 0 on the unit sphere. To compute (\partial /\partial t)2g\epsilon (Y (\alpha , t;x)) at t = 0 we use
(2.15) and the chain rule as in (7.6). Given x, \alpha , and t, the center of the sphere con-
taining the point x + t\alpha and normal to \alpha at that point (cf. the paragraph following
(2.15)) is easily found to be

(9.6) Y (\alpha , t;x) = (x+ t\alpha ) - x3 + t\alpha 3

1 + \alpha 3
\alpha .

Consequently,

(9.7)
\partial 

\partial t
Y (\alpha , t;x)

\bigm| \bigm| \bigm| \bigm| 
t=0

=
1

1 + \alpha 3
\alpha ,

\partial 2

\partial t2
Y (\alpha , t;x)

\bigm| \bigm| \bigm| \bigm| 
t=0

= 0,

and

\biggl( 
\partial 

\partial t

\biggr) 2

\varphi 

\biggl( 
Y (\alpha , t;x) - \epsilon j

\epsilon 

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 
t=0

d\alpha =
1

\epsilon 2
1

(1 + \alpha 3)2

3\sum 
i,k=1

\varphi \prime \prime 
ik

\biggl( 
Y (\alpha , 0;x)

\epsilon 
 - j

\biggr) 
\alpha i\alpha k.

(9.8)
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Fig. 4. Comparison of the predicted and actual edge responses for \epsilon = 0.01.

The cut-off function \chi in (2.16) is constructed as follows. Let \alpha \bot run through the
unit sphere in the plane \alpha \bot 

0 . Then any \alpha \in S2
+ (\alpha 0 is the north pole of S2

+) can be
represented in the form \alpha = (cos\omega )\alpha 0 + (sin\omega )\alpha \bot , 0 \leq \omega \leq \pi /2. In the code we use

(9.9) \chi (\alpha ) =

\left\{     
1, 0 \leq \omega < 0.8\omega mx,
1+cos((\omega  - 0.8\omega mx)/(0.2\omega mx))

2 , 0.8\omega mx \leq \omega < \omega mx,

0, \omega \geq \omega mx.

Finally, the predicted response is computed using (3.6). The results corresponding
to \epsilon = 0.01 are shown in Figure 4. We see a good match between the predicted and
actual edge responses.

Appendix A. The Morse lemma and its application. For convenience of
the reader we first present here the Morse lemma (see [9, p. 502]).

Lemma A.1. Let f(v, y) (v \in Rn, y \in RN ) be a real valued C\infty function in a
neighborhood of (0, 0). Assume that f \prime v(0, 0) = 0 and that A = f \prime \prime vv(0, 0) is nonsingular.
Then the equation f \prime v(v, y) = 0 determines in a neighborhood of 0 a C\infty function v(y)
with v(0) = 0, and we have in a neighborhood of (0, 0)

(A.1) f(v, y) = f(v(y), y) +Aw \cdot w/2,

where w = v  - v(y) +O(| v  - v(y)| (| v| + | y| )) is a C\infty function of (v, y) at (0, 0).

To apply this lemma, we solve the equation \Phi (x, y) = 0 for x1 in terms of x\bot and
y in a neighborhood of (x0, y0). Because of the choice of coordinates (cf. (3.1)), this
is possible. Thus, x1 = X1(x

\bot , y) is a parametrization of \scrS y (see also (3.23)). Then
we apply the Morse lemma with

(A.2) v = x\bot \in R2, y \in R3, f(v, y) = \Psi ((X1(x
\bot , y), x\bot ), y).

Since \Psi \prime 
x1
(x0, y0) = 0, we have

(A.3) f \prime \prime vjvk
(0, 0) = \Psi \prime \prime 

x1x1
(x0)

\partial X1

\partial x\bot j

\partial X1

\partial x\bot k
+\Psi \prime 

x1
(x0)

\partial 2X1

\partial x\bot j \partial x
\bot 
k

+\Psi \prime \prime 
x\bot 
j x\bot 

k
(x0), j, k = 1, 2,

D
ow

nl
oa

de
d 

09
/0

8/
20

 to
 5

.1
98

.1
37

.2
5.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

4020 ALEXANDER KATSEVICH

where the derivatives of X1 are computed at (x\bot 0 , y0). By construction, \partial X1/\partial x
\bot 
j = 0,

j = 1, 2, and \Psi \prime 
x1
(x0) = | \Psi \prime (x0)| > 0. Hence

(A.4) f \prime \prime (0, 0) = | \Psi \prime (x0)| N(x0),

and f \prime \prime (0, 0) is negative definite. By the Morse lemma, there exists a smooth function
w(x\bot , y) such that (A.1) holds. Diagonalizing A, and then rotating and rescaling w,
we get another smooth function \omega (x\bot , y) such that Aw \cdot w =  - | \omega | 2. Additionally,
\partial w(0, 0)/\partial v = I, where I is the 3 \times 3 identity matrix. This follows easily from the
proof of the Morse lemma (see [9, p. 503]). Hence, we can solve w = w(x\bot , y) for x\bot :
x\bot = X\bot (w, y), which leads to the desired diffeomorphism \omega \rightarrow x = x(\omega ; y) \in \scrS y for
all y close to y0.

REFERENCES

[1] F. Andersson, M. V. D. Hoop, and H. Wendt, Multiscale discrete approximation of Fourier
integral operators, Multiscale Model. Simul., 10 (2012), pp. 111--145.

[2] G. Beylkin, The inversion problem and applications of the generalized Radon transform,
Comm. Pure Appl. Math., 37 (1984), pp. 579--599.

[3] T. Blu, P. Th\'evenaz, and M. Unser, Complete parameterization of piecewise-polynomial
interpolation kernels, IEEE Trans. Image Process., 12 (2003), pp. 1297--1309.

[4] E. Candes, L. Demanet, and L. Ying, Fast computation of Fourier integral operators, SIAM
J. Sci. Comput., 29 (2007), pp. 2464--2493.

[5] E. Candes, L. Demanet, and L. Ying, A fast buttery algorithm for the computation of Fourier
integral operators, Multiscale Model. Simul., 7 (2009), pp. 1727--1750.

[6] M. Cheney and B. Borden, Synthetic aperture radar imaging, in Handbook of Mathematical
Methods in Imaging, O. Scherzer, ed., Springer, New York, 2015, pp. 763--799.

[7] C. Grathwohl, P. Kunstmann, E. T. Quinto, and A. Rieder, Approximate inverse for the
common offset acquisition geometry in 2D seismic imaging, Inverse Problems, 34 (2018),
014002.

[8] L. Hormander, The Analysis of Linear Partial Differential Operators I. Distribution Theory
and Fourier Analysis, Springer-Verlag, Berlin, 2003.

[9] L. Hormander, The Analysis of Linear Partial Differential Operators III. Pseudo-Differential
Operators, Springer-Verlag, Berlin, 2007.

[10] A. Katsevich, An accurate approximate algorithm for motion compensation in two-
dimensional tomography, Inverse Problems, 26 (2010), 065007.

[11] A. Katsevich, A local approach to resolution analysis of image reconstruction in tomography,
SIAM J. Appl. Math., 77 (2017), pp. 1706--1732.

[12] A. Katsevich, Analysis of reconstruction from discrete Radon transform data in R3 when the
function has jump discontinuities, SIAM J. Appl. Math., 79 (2019), pp. 1607--1626.

[13] A. Katsevich, Analysis of Resolution of Tomographic-Type Reconstruction from Discrete Data
for a Class of Distributions, https://arxiv.org/abs/2001.05774, 2020.

[14] P. Kuchment and L. Kunyansky, Mathematics of photoacoustic and thermoacoustic tomog-
raphy, in Handbook of Mathematical Methods in Imaging, O. Scherzer, ed., Springer, New
York, 2015, pp. 1117--1167.

[15] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Dover, Mineola, NY,
2006.

[16] F. Natterer, The Mathematics of Computerized Tomography, Classics Appl. Math. 32, SIAM,
Philadelphia, 2001.

[17] E. T. Quinto, A. Rieder, and T. Schuster, Local inversion of the sonar transform regularized
by the approximate inverse, Inverse Problems, 27 (2011), 035006.

[18] A. Ramm and A. Zaslavsky, Reconstructing singularities of a function given its Radon trans-
form, Math. Comput. Modell., 18 (1993), pp. 109--138.

[19] A. Ramm and A. Zaslavsky, Singularities of the Radon transform, Bull. Amer. Math. Soc.,
25 (1993), pp. 109--115.

[20] P. Stefanov, Semiclassical Sampling and Discretization of Certain Linear Inverse Problems,
https://arxiv.org/abs/1811.01240, 2018.

[21] F. Terzioglu, P. Kuchment, and L. Kunyansky, Compton camera imaging and the cone
transform: A brief overview, Inverse Problems, 34 (2018), 054002.

D
ow

nl
oa

de
d 

09
/0

8/
20

 to
 5

.1
98

.1
37

.2
5.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://arxiv.org/abs/2001.05774
https://arxiv.org/abs/1811.01240


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ANALYSIS OF RESOLUTION 4021

[22] F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators. Volume 2:
Fourier Integral Operators, Plenum, New York, 1980.

[23] K. Wang and M. A. Anastasio, Photoacoustic and Thermoacoustic Tomography: Image
Formation Principles, in Handbook of Mathematical Methods in Imaging, O. Scherzer,
ed., Springer, New York, 2015, pp. 1081--1116.

[24] H. Yang, Oscillatory Data Analysis and Fast Algorithms for Integral Operators, Ph.D. thesis,
Stanford University, 2015.

[25] M. Zworski, Semiclassical Analysis, Grad. Stud. Math. 138, AMS, Providence, RI, 2012.

D
ow

nl
oa

de
d 

09
/0

8/
20

 to
 5

.1
98

.1
37

.2
5.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p


	Introduction
	Preliminary construction
	Statement of main result. Beginning of proof
	Statement of main result
	Behavior of g near its singular support

	Local behavior of interpolated data
	Local behavior of Y(,t;x)
	The leading local behavior of g(Y(,t;x))
	Local behavior of the interpolated data

	Estimating the term f(1)
	Analysis of the term f(2)
	Contribution of remote singularities
	Illustrative example
	Numerical experiment
	Appendix A. The Morse lemma and its application
	References

