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Polarization of optical fields is a crucial degree of freedom in the
all-optical analogue of electromagnetically induced transparency
(EIT). However, the physical origins of EIT and polarization-
induced phenomena have not been well distinguished, which can
lead to confusion in associated applications such as slow light
and optical/quantum storage. Here we study the polarization
effects in various optical EIT systems. We find that a polarization
mismatch between whispering gallery modes in two indirectly
coupled resonators can induce a narrow transparency window in
the transmission spectrum resembling the EIT lineshape. However,
such polarization-induced transparency (PIT) is distinct from EIT:
It originates from strong polarization rotation effects and shows
a unidirectional feature. The coexistence of PIT and EIT provides
additional routes for the manipulation of light flow in optical
resonator systems.
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Coherent processes of light–matter interaction have been uti-
lized to generate electromagnetically induced transparency

(EIT) in optical media with Λ-shape energy levels (1, 2). The
probability amplitudes of transitions to an excited state are
canceled due to the destructive interference between two exci-
tation pathways and thus prevent the absorption of a probe
beam. Associated with EIT are the strong normal dispersion and
group delay, which play a critical role in applications of slow
light and optical storage (3–7). EIT has been widely studied
in atomic systems (8–10), superconductors (11, 12), electron-
ics (13), metamaterial/metasurfaces (14, 15), optical resonators
(16–22), scattering nanostructures (23), optomechanics (24–27),
plasmonics (28–30), etc. Among them, coupled-mode optical
platforms, including a single resonator (31–34), directly coupled
microresonators (35), and indirectly coupled microresonators
(36, 37), have been intensively explored as promising candi-
dates for realizing an all-optical analogue of EIT, due to their
advantages of room temperature operation, on-chip integratabil-
ity, and high tunability for parameter control. The recent study
of exceptional-point–assisted transparency (EPAT) (38) offers
opportunities for EIT control via chiral eigenstates associated
with the exceptional points (EPs) (38–43). While there have been
comprehensive explorations into the roles of intermodal cou-
pling, resonance frequencies, optical dissipation rates, and phase
factors of propagation, the investigation of another important
degree of freedom of light—polarization states of probe fields
and optical modes—has been lacking. It is known that the probe-
and coupling-field polarizations have a significant influence on
the magnitude of EIT in multilevel cascade atomic systems (44–
47). In optical systems, the polarization mismatch between the
mode fields in different optical devices naturally exists, and it
has been demonstrated that the polarization of incident light
could modify the transmission lineshape (31). Moreover, trans-
parency and absorption phenomena can also occur in a single
resonator supporting overlapping modes with different polar-
izations (48–50). However, up to now, the distinction between
EIT and polarization effects is unclear in two ways: 1) How is
EIT affected by the polarization mismatch in different coupled-

mode optical systems? And 2) what are the underlying physics
of the transparency phenomena caused by polarization effects?
To clearly understand the polarization effects and their distinc-
tion from EIT is of great significance for properly controlling
and using polarization in the induced-transparency phenom-
ena for applications in slow light generation, optical switching,
sensing, etc.

Here we report a comprehensive study on the effects of
polarization in various configurations for the all-optical ana-
logue of EIT. In particular, we find the polarization-induced
transparency (PIT) phenomenon in indirectly coupled res-
onators, which exhibits a unidirectional feature. This phe-
nomenon is strongly dependent on the polarization mismatch
between two cavity modes. Moreover, by exploiting backscatter-
ing on the resonator surfaces, the indirectly coupled resonators
can function as a hybrid system that involves EIT and PIT
simultaneously.

Polarization Effects on EIT in Various Configurations
EIT originates from atomic/molecular systems, such as atomic
gases (Fig. 1A), which are modeled as Λ-shape energy lev-
els and are composed of a ground state |1〉, an excited state
|2〉, and a metastable state |3〉. The decay rate of state |3〉 is
much smaller than that of state |2〉. The probe (pump) light
beam induces the dipole transition |1〉→ |2〉 (|2〉→ |3〉), while
the dipole transition |1〉→ |3〉 is forbidden. To generate each

Significance

Electromagnetically induced transparency (EIT) describes the
phenomenon that an opaque optical medium becomes trans-
parent due to interference effects. EIT plays a pivotal role
in engineering slow light and quantum memory. However,
polarization effects could cause similar phenomena and there-
fore were considered as EIT occasionally. We investigate the
polarization effects on EIT in optical resonators and discover
a polarization-induced transparency (PIT) phenomenon that
the system is transparent in one direction but opaque in the
other. PIT results from the polarization effects rather than
wave interference and thus fundamentally differs from EIT.
This study resolves the confusion between EIT and polariza-
tion effects, which is crucial for optical memory design and
paves the way to additional techniques for controlling wave
propagation.

Author contributions: C.W., X.J., and L.Y. designed research; C.W., X.J., W.R.S., C.W.H.,
Y.L., G.Z., and L.Y. performed research; C.W., W.R.S., C.W.H., B.P., M.Z., L.J., A.D.S., and
L.Y. contributed new reagents/analytic tools; C.W. and Y.L. analyzed data; and C.W., X.J.,
W.R.S., C.W.H., Y.L., G.Z., B.P., M.Z., L.J., A.D.S., and L.Y. wrote the paper.y

The authors declare no competing interest.y

This article is a PNAS Direct Submission.y

Published under the PNAS license.y
1 To whom correspondence may be addressed. Email: yang@seas.wustl.edu.y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2012982118/-/DCSupplemental.y

Published January 4, 2021.

PNAS 2021 Vol. 118 No. 3 e2012982118 https://doi.org/10.1073/pnas.2012982118 | 1 of 7

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

A
ug

us
t 9

, 2
02

1 

http://orcid.org/0000-0002-0487-5571
http://orcid.org/0000-0002-9609-7155
http://orcid.org/0000-0002-0000-9342
http://orcid.org/0000-0002-9052-0450
https://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:yang@seas.wustl.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2012982118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2012982118/-/DCSupplemental
https://doi.org/10.1073/pnas.2012982118
https://doi.org/10.1073/pnas.2012982118
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2012982118&domain=pdf&date_stamp=2021-01-02


A B

C D

Fig. 1. Polarization effects in different platforms for studying EIT. (A) Atomic gas. Ground state, |1〉; excited state, |2〉; metastable state, |3〉. The control
and probe light beams have Rabi frequencies Ωc and Ωp, respectively. The detuning between |1〉→ |2〉 (|2〉→ |3〉) and the probe (control) light is ∆1

(∆2). For either probe or control light, an arbitrary polarization state P as a superposition of the right and left circular polarization states (|R〉 and |L〉)
can be represented on a Poincare sphere (51). The right circular, left circular, diagonal linear, and antidiagonal linear polarization states are related to the
horizontal and vertical polarization states by |L, R〉= (|H〉 ± i |V〉 /

√
2, |D, A〉= (|H〉 ± |V〉 /

√
2. The components of the probe and control light that have

a matching polarization will interact with the atomic systems and induce EIT, while the mismatching components will be transparent to the system. (B)
Directly coupled microresonators. |0〉, |1〉, and |2〉 represent the vacuum state, photons in µR1, and photons in µR2, respectively. Inset shows the polarization
orientations of quasi-TE or quasi-TM modes (52), where ~k is the wavevector. With polarization mismatch, the effective coupling strength between the two
resonator modes becomes κeff = κ cos(∆φ). (C) A single microresonator with two coupled modes. |0〉, |1〉, and |2〉 representations are similar to B. The
two modes have disparate quality factors and different polarization states, with the effective coupling strength κeff = κ cos(∆φ) +

√
γc1γc2 cos(φ1) cos(φ2).

(D) Indirectly coupled microresonators with backscattering. With polarization mismatch, the effective coupling strength between |1〉 and |2〉 is given by

κeff = (γc1γc2κa21κb12e2iθ)
1/4

[cos(φ1) cos(φ2)]1/2.

dipole transition, certain linearly or circularly polarized light is
needed, whose polarization state P is a superposition of the right
and left polarization states (|R〉 and |L〉); i.e., P = cos(α)|R〉+
e−i2φsin(α)|L〉, where α∈ [0, π/2] and φ∈ [0, π]. Thus, P can also
be represented by a Bloch sphere (51) as shown in Fig. 1 A, Inset.
If the polarization state of the input light does not match the
dipole transition, then only the component with aligned polar-
ization orientation will interact with the atomic levels, while
the rest will be noninteracting and transparent to the system.
As a result, the polarization of the pump light will affect how
much control light is effectively coupled to |2〉→ |3〉 and thus
determine the effective Rabi frequency (Ωc). As for the probe

light, only the components with the matched polarization will get
involved in the EIT process, whereas the other component will
be transparent regardless of the coupling between levels |2〉 and
|3〉 and thus will raise the baseline over the whole transmission
spectrum.

In a pair of directly coupled resonators (Fig. 1B), the level
diagram takes on a very similar form to that of the atomic
system mentioned above, if we make the comparison Ωc↔κ,
Γ2↔ γ1 + γc1, Γ3↔ γ2 + γc2, where κ is the coupling strength
between the two resonators, and γ1,2 (γc1,c2) are the intrinsic
(coupling) loss rates of the resonators µR1 and µR2, respec-
tively. The ground state is now replaced by the vacuum state,
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while the numbers of photons in µR1 and µR2 play the roles
of the occupancy of levels |2〉 and |3〉, respectively. Whisper-
ing gallery modes (WGMs) supported by resonators usually
have quasi-transverse-electric (TE) or quasi-transverse-magnetic
(TM) polarization states (52). To simplify the analysis, we con-
sider that the input light also has a linear polarization state,
and we denote the angle between P1 (P2) and P0 as φ1 (φ2).
When the waveguide mode is coupled to µR1, only the com-
ponent E0 cos (φ1) in the orientation of P1 will be coupled to
the cavity mode, while the perpendicular component E0sin(φ1)
will be transparent and elevate the transmission baseline. On
the other hand, when the light couples from µR1 to µR2, only
the component in the orientation of P2 will be able to con-
tribute to the mode in µR2, while the component perpendicular
to P2 will not. The same process happens when the light couples
from µR2 to µR1. Therefore, the polarization mismatch leads to
a reduced coupling efficiency (κeff =κcos(∆φ)). Consequently,
the figure of merit of EIT is reduced, and the baseline in the
transmission spectrum is raised (detailed analysis in SI Appendix,
section S1).

In the single-resonator case (Fig. 1C), a high-Q mode and low-
Q mode overlapping in the frequency spectrum can be coupled
to each other directly by mode profile overlap as well as indirectly
via a waveguide. The level diagram reveals that both modes are
excited by the probe light so that the system is deviated from a
perfect EIT model due to the additional absorption into the high-
Q mode. Considering different quasi-linear polarization states in
the waveguide and the two modes, the effective coupling strength
is modified as κcos(∆φ)+

√
γc1γc2cos(φ1) cos(φ2), where γc1

(γc2) denotes the coupling strength between the waveguide and
mode 1 (mode 2), κ represents the direct coupling strength
between mode 1 and mode 2, φ1 (φ2) is the angle between the
polarization of mode 1 (mode 2) and that of the input field, and
∆φ=φ2−φ1. Moreover, it has been reported that the coexisting
of resonant modes with orthogonal polarization states can induce
transparency even without mode coupling (50).

The optical analogue of EIT can also be realized in indirectly
coupled resonators, where the phenomena of EIT and absorp-
tion can be controlled by the chiral state of one of the resonators
(38). In an indirectly coupled resonator system (Fig. 1D), we
consider µR1 and µR2 to be a high-Q and a low-Q resonator,
respectively, both of which support WGMs with backscatter-
ing. Each level of the cavity resonance is split into two levels
(53, 54) and can be tuned to be degenerate at the EPs (41).
The effective coupling between the modes in two cavities is
given by (γc1γc2κa21κb12e

2iθ)1/4[cos(φ1) cos(φ2)]1/2, which van-
ishes at one type of EP (κa21 = 0) and exists at the other
(κa21 6= 0). The transition |0〉→ |1〉 can be neglected when it is
much smaller than the transition |0〉→ |2〉→ |1〉. However, if
P1 is different from P0 and γc1 & γ1, the polarization of light
passing µR1 can be greatly rotated, which significantly affects
the transition |0〉→ |2〉 and gives rise to a reduced absorption
at µR2. Such a polarization effect will not only reduce the effi-
ciency of the EIT configuration, but also lead to another kind
of induced transparency phenomenon, which we will discuss
in detail.

In all of the above cases, the polarization mismatch in the con-
trol light or mode coupling reduces the efficiency of EIT, but
does not break the fundamental conditions of EIT. Similarly, the
EIT efficiency is reduced by the polarization mismatch of the
probe light in the first two cases. Nevertheless, in the last two
cases, the polarization mismatch between the input light and the
mode will induce fundamentally different phenomena.

PIT
The most intriguing polarization-induced phenomenon can be
seen from the indirect coupling scheme. Consider two indirectly

coupled resonators (µR1 and µR2) supporting clockwise (CW)
and counterclockwise (CCW) WGMs with quality factors of Q1

and Q2 (Q1�Q2). We follow the notation used in Fig. 1D. The
quasi-linear polarization states P1 and P2 of the CW modes (52)
in µR1 and µR2 form angles of φ1 and φ2 relative to the polar-
ization orientation of the input light (P0). In describing the full
scattering properties of the system, we introduce the relationship
between the input and output fields as

λ
′
x

λ′y
ρ′x
ρ′y

=S

λx

λy

ρx
ρy

, [1]

with λx(y) and ρx(y) being the x (y) polarization components of
the left- and right-incident field amplitudes, respectively. The
λ′x(y) and ρ′x(y) are the x (y) polarization components of the
outcoming field amplitudes from the left and right ports, respec-
tively. We now consider t1,2 to be the transmission matrices
of each individual resonator. The reflections to the left (right)
are represented by r1L (r1R) and r2L (r2R) for µR1 and µR2,
respectively. The scattering matrix can be written as

S =

(
rL tL
tR rR

)
, [2]

with

rL=UT
1 tT1 UT

2

(
1− r2LU2r1RU

T
2

)
−1r2LU2t1U1

+UT
1 r1LU1, [3]

rR = t2U2r1RU
T
2

(
1− r2LU2r1RU

T
2

)
−1tT2 + r2R, [4]

tTR = tL =UT
1 tT1 UT

2

(
1− r2LU2r1RU

T
2

)
−1tT2 , [5]

where U1,2 are unitary matrices encoding the polarization mixing
during the light propagation from the input port to µR1 and the
propagation between µR1 and µR2 (due to, for example, polar-
ization controllers inserted onto the waveguide) (SI Appendix,
section S2).

To see the phenomena purely induced by polarization effects,
we investigate a simple case that the resonators have no backscat-
tering in their mode volumes and support degenerate WGMs.
As a result, the system is composed of cascaded resonators,
where the second resonator is influenced by the light coming
out of the first resonator, while the first resonator is not influ-
enced by the second one (55, 56). The system is described by the
S matrix

S =

(
0 (t2U2t1U1)T

t2U2t1U1 0

)
. [6]

t1,2 can be calculated using the temporal coupled-mode theory
(TCMT)

t1,2 = 1− 2iW †
1,2(ω−Heff 1,2)−1W1,2, [7]

where the effective Hamiltonian is

Heff 1,2 =ω1,2− iγ1,2/2− iW1,2W
†
1,2, [8]

and the coupling matrix is
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W1,2 =

√
γc1,2

2

(
e iδ1,2 cosφ1,2e

iχ1,2 sinφ1,2

)
, [9]

with δ1,2 and χ1,2 being the phases related to the coupling coef-
ficients. The forward and backward transmission spectra can be
obtained by solving Eqs. 6–9 (SI Appendix, section S3).

To show polarization-induced phenomena, we design an
experimental setup where a high-Q microtoroid resonator (µR1)
and a low-Q microtoroid resonator (µR2) are coupled to a taper
fiber waveguide. We investigate the case that P0 aligns with P2,
which are both in the x direction. The angle between P1 and
P2 is set to be φ achieved by a polarization controller (PC)
applied onto the waveguide between them. When only µR2 is
coupled to the taper, a single Lorentzian dip appears in the
transmission spectrum. However, when µR1 is also coupled to
the taper (Fig. 2A), a narrow transparency window appears in
the forward transmission spectrum (Fig. 2B). This phenomenon
originates from the polarization discrepancy when the field trav-
els from the waveguide (E ) to µR1 or vice versa. When E
encounters µR1, only the component with the polarization ori-
entation in the direction of P1 interacts with the resonator
and passes with ratio t1 (t1 is dependent on the coupling con-
dition and laser frequency detuning), while the perpendicular
component gets fully transmitted. Thus the light passing µR1

will have a polarization state significantly changed from P0,
which cannot be completely absorbed by µR2. Under the spe-
cial condition that both resonators are critically coupled to
the waveguide and the laser frequency detuning is zero, the
polarization effect can be simply explained by the polarization
decomposition shown by the vectors in Fig. 2A. The modified
absorption spectrum of the system is accompanied by a change

of dispersion, based on the connection of real and imaginary
parts of the response function governed by the Kramers–Kronig
relations. The group delay of both x and y polarization com-
ponents of the forwardly propagating field can be calculated
by (27)

τx ,y =−d [arg (tx ,y)]

dω
, [10]

where ω is the frequency of the input optical field, and the trans-
mission rates are related to the S matrix in Eq. 6 by tx =S3,1

and ty =S4,1. The numerical results show that the x polarization
component of the output exhibits a large group delay within a
narrow spectrum window, while the y polarization component of
the output shows group advance (Fig. 2C). Therefore, slow and
fast light features are associated with different polarization states
of the output light. The principle of the induced transparency
phenomenon is different from EIT and EPAT, and thus we name
it PIT.

Furthermore, the PIT is unidirectional. In particular, when
µR2 is critically coupled to the taper, i.e., γc2 = γ2, the backward
transmission spectrum displays a pure absorption dip (Fig. 2 D
and E), because the field at zero detuning is fully absorbed by
µR2 before probing µR1. In addition, the modulation on the
group velocity is also found to be unidirectional, as the y polar-
ization component of the backward-propagating light (when the
polarization of the input is still in the x direction) exhibits group
delay instead of group advance (Fig. 2F). The unidirectionality
in the transmission spectrum and dispersion uniquely associated
with PIT can serve as a criterion for distinguishing between EIT
and PIT in this scheme. It is worth noting that the unidirection-
ality of PIT does not violate reciprocity; the S matrix here has

A D

B E

C F

Fig. 2. Unidirectional PIT. (A and D) Schematic diagrams of a single-mode waveguide coupled to two microresonators with no backscattering (µR1 and
µR2). The vectors representing the polarization states explain the polarization decomposition during light propagation in the case that both resonators are
critically coupled to the waveguide and the laser frequency is identical to the resonant frequencies of the resonators. (B and E) Experimental results of (B)
forward and (E) backward transmission spectra. (C and F) Calculated group delay for (C) forward and (F) backward propagation. φ= 0.25π for results in B,
C, E, and F.
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reciprocity symmetry. This symmetry does not imply that, for a
given input polarization, the total left to right output equals the
total right to left output summed over polarizations (SI Appendix,
section S3).

We then study how the polarization state of µR1 affects the
forward transmission spectrum. The polarization of the input
laser is controlled by a polarization controller (PC1). We apply
another polarization controller (PC2) to the intermediate fiber
between the two resonators, so that the polarization state of the
light propagating through this region can be controlled manually.
After initially aligning P0 to P2 by PC2, we can apply a linear
rotation of PC1 and PC2 in opposite directions to equivalently
adjust the P1, while ensuring that P0 and P2 remain aligned (see
Materials and Methods for details). P1 is recorded by separately
characterizing the transmission spectrum of µR1. Starting from
the condition P1 =P2 =P0, we observe pure absorption in the
transmission spectrum as a result of the sum of light absorption
by both resonators. With the effective change of the orientation
of P1 (rotation angle ∆φ), the absorption rate of µR1 is gradually
reduced, accompanied by the appearance of narrow peaks in the
spectrum (Fig. 3A). The peak at zero detuning undergoes oscil-
lation with an increase of ∆φ, reaching the maximum around
∆φ= 0.25π (Fig. 3B).

The effect of polarization can also be modulated by the
waveguide–resonator coupling strengths γc1 and γc2. This is
shown by studying the variation of transmission at the zero
detuning versus the change of P1 under different γc1 and γc2.
When the coupling strength between the high-Q resonator µR1

and the taper is increased and pushed into the overcoupling
regime, one can find a higher-transparency peak (green dashed
curve in Fig. 3C) compared to the critical coupling situation
(black solid curve in Fig. 3C). This owes to the fact that the
transmission coefficient t1(∆) = i∆−(γ1−γc1)/2

i∆−(γ1+γc1)/2
at zero detuning

(∆ = 0) becomes negative in the strong coupling regime (γc1 >
γ1), introducing a π phase shift to the P1 component of the
transmitted field in the waveguide, which significantly rotates the

polarization of the total field passing µR1. On the other hand,
PIT is also influenced by the coupling strength between µR2

and the waveguide. Among all coupling conditions, the high-
est peak appears around ∆φ= π/4, and a local minimum shows
up at ∆φ= π/2; namely P1 is perpendicular to P2 and µR1 is
decoupled from the optical path (Fig. 3C). Yet the contrasts of
the transparency window, which mark the efficiency of PIT, are
smaller in the cases of undercoupling and overcoupling than in
the critical coupling case. Thus based on the discussion above,
PIT is optimized when µR1 is overcoupled to the taper and µR2

is critically coupled to the taper.

Hybrid System for EIT and PIT
We finally investigate indirectly coupled resonators with
backscattering, where EIT and PIT could appear simultane-
ously. By steering µR1 to EPs, transparency or absorption
occurs depending on the type of EPs classified by the chiral-
ity of eigenstates (38). For EP− where the eigenmode is in
the CCW direction and has chirality −1, the interference is
“switched off” resulting in exceptional-point–assisted absorp-
tion (EPAA). For EP+ at which the eigenmode is in the CW
direction with chirality +1, the destructive interference leads to
EPAT. Here we find that the polarization mismatch ∆φ could
significantly modify the transmission spectra (SI Appendix, sec-
tion S4). With the initial splitting of µR1, under weak coupling
between µR1 and the taper, the transmission shows a split-
ting absorption window when ∆φ= 0, but exhibits a splitting
transparency window when ∆φ= π/4 (Fig. 4A). When µR1 is
steered to EP− (or EP+), the lineshape of EPAA (or EPAT)
appears when ∆φ= 0 (Fig. 4 B and C). But with the polariza-
tion mismatch, a large transparency window can be induced in
the forward transmission spectrum in both the cases of EPAA
and EPAT.

In experiments, we choose a microtoroid (µR1) and a
microdisk (µR2) resonator with strong backscattering and polar-
ization mismatch. With initial mode splitting in both resonators,

A B

C

Fig. 3. Effects of the polarization mismatch between two resonators and the resonator–taper coupling strengths on PIT. (A) Experimentally measured
transmission spectra of two indirectly coupled microtoroid resonators (µR1, high Q; µR2, low Q). The polarization state of µR2 is aligned with that of the
incident light. The polarization of µR1 is kept at linear polarization and rotates by ∆φ with respect to the polarization state of µR2. From bottom to
top, ∆φ increases from 0 to π/2. (B) Transmission at zero detuning versus the angle change of the polarization orientation of µR1. The blue circles are
the experimental results from A. The red dotted line is the theoretical result with γc1 = γ1 and γc2 = γ2. (C) Theoretical results of the transmission at zero
detuning versus the change of polarization state of µR1 at different resonator–waveguide coupling strengths.
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A B C

D E

Fig. 4. Polarization effect in indirectly coupled resonators with backscattering. (A–C) Theoretical results for the mode-splitting case (A), the EP− case (B),
and the EP+ case (C), with different relative polarization angles (∆φ). The transmission values are shifted by 1 in each curve for visual comparison. (D)
Experimental transmission spectrum when there is a mode splitting in µR1. Inset shows a close-up of the transmission spectrum around the zero detuning.
(E) Experimental transmission spectra with the change of the gap between µR1 and the taper (∆d).

a transparency window with splitting is observed (Fig. 4D). The
peak becomes larger with increased coupling strength between
µR1 and the fiber taper (Fig. 4E).

Discussion
The physical phenomena and processes discussed above shed
light on the distinction between EIT and PIT. First, the all-
optical analogue of EIT in linear optical systems is the direct
result of interference in the optical paths and has the Λ-type
level structure, whereas the occurrence of PIT is irrelevant to
interference effects. Second, while EIT depends on large inter-
modal coupling, PIT occurs in the absence of it and can display
a large transparency window based on the strong polarization
rotation effect enabled by the microresonators. Third, PIT is
accompanied by a unidirectional behavior, while EIT occurs for
transmission in both directions.

Such a clarification is important not only in terms of accuracy
of physical concepts, but also from the perspective of appli-
cations. Slow light application relies on group delay in optical
signal, which can be realized by the all-optical analogue of
EIT, EPAT, optomechanically induced transparency (OMIT)
(24–27), and Brillouin-scattering–induced transparency (BSIT)
(21, 22), etc. With a different mechanism from EIT, PIT offers
an alternative approach to manipulate the group index of optical
media for the control of slow light which is direction and polar-
ization dependent. Furthermore, the unidirectionality associated
with PIT enables directional control of light transport without
the need of any nonlinear elements or external control, which
can potentially benefit optical information processing in on-chip
all-optical devices, systems, and networks.

Materials and Methods
Control of the Polarization of One Resonator by a Polarization Controller. In
the experiments for Fig. 3 in the main text, we intend to rotate the polar-
ization of the mode in µR1 without physically changing the optical structure.
After initially aligning P0 to P2 by PC2, we apply a linear rotation of PC1 and
PC2 in opposite directions. We now prove that this method can equivalently
adjust P1 without breaking the alignment between P0 and P2. The rotation
of P1 and P2 in opposite directions but by the same degree ensures that
any rotation of PC2 described by a rotation matrix U is accompanied with a
rotation U† on PC1, so that the output vector from the right port becomes(

ρ′x
ρ′y

)
= t2Ut1U†

(
λx

λy

)
. [11]

This operation can be regarded as applying a rotation to t1; that is,

Ut1U† = 1− 2i(UW†1 )(ω−Heff 1)−1(W1U†), [12]

which is equivalent to the rotation of the coupling matrix W , or the polar-
ization state of µR1, by U. Thus, an arbitrary polarization mismatch between
the two resonators can be chosen.

In the experiments, the drift of polarization is overcome by carefully fix-
ing the position of the intermediate fiber between resonators. Polarization-
maintained fibers can be utilized to further improve the polarization stability.

Data Availability. All data are included in the article and SI Appendix.

ACKNOWLEDGMENTS. This work was supported by NSF Grant EFMA-
1641109 and Army Research Office (ARO) Grants W911NF1710189 and
W911NF1910234. A.D.S. acknowledges the support of NSF Grant DMR-
1743235. L.J. acknowledges the support of the Packard Foundation (2013-
39273). C.W. acknowledges the fellowship support through the McDonnell
International Scholars Academy.

1. M. Fleischhauer, A. Imamoglu, J. P. Marangos, Electromagnetically induced trans-
parency: Optics in coherent media. Rev. Mod. Phys. 77, 633 (2005).

2. J. P. Marangos, Electromagnetically induced transparency. J. Mod. Optic. 45, 471–503
(1998).
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Supporting Information Text12

S1. Polarization effects on electromagnetically induced transparency (EIT) in directly coupled resonators13

In a pair of directly coupled resonators (Fig. 1B in the main text), which lay the foundation of various studies on EIT (1–4) and14

non-Hermitian photonics (5–13), the polarization mismatch leads to a reduced coupling efficiency (κeff = κcos(∆φ)) between15

the two resonator modes, which is derived as follow.16

We assume the polarization states of the incoming light in the waveguide, WGM in µR1 and WGM in µR2 are P0, P1 and17

P2, respectively. Each of them is represented by a 2-by-1 complex vector with unit length. Based on the temporal-coupled18

mode theory (TCMT) (14, 15), the rate equations of the filed amplitudes a1 and a2 of the two resonators are given by19

d

dt
a1 =(−iω1 −

γ1 + γc1
2 )a1 − iκa2 (P1 · P2)

−√γc1ain (P0 · P1) ,
[1]20

21

d

dt
a2 =(−iω2 −

γ2 + γc2
2 )a2 − iκa1 (P1 · P2) . [2]22

This yields an effective non-Hermitian Hamiltonian23

H =
(
ω1 − i γ1+γc1

2 κeff
κeff ω2 − i γ2+γc2

2

)
, [3]24

where the effective coupling strength is25

κeff = κ (P1 · P2) . [4]26

For quasi-linear polarization states of WGMs, we assume the angle between P1 and P2 is ∆φ which lies in the range [0, π].27

Then we have28

κeff = κ cos (∆φ) . [5]29

One can tell from the above analysis that the Hamiltonian of the directly coupled resonator system under polarization mismatch30

can be regarded as equivalent to those with matched polarization states, if we modify the coupling strength κ by cos (∆φ).31

The cooperativity parameter (16) which describes the figure of merit of EIT becomes32

C =
4κ2

eff

(γ1 + γc1) (γ2 + γc2)

= 4κ2 cos2 ∆φ
(γ1 + γc1) (γ2 + γc2) ,

[6]33

which decreases with larger polarization mismatch. Therefore the figure of merit of EIT is reduced by the polarization mismatch34

between the modes of the two resonators. On the other hand, the only component of the field in the waveguide that is involved35

in the EIT process is the component that is aligned with the polarization of the mode in µR2. Assuming P0·P1=cos (φ1) exp(iθ),36

where θ = 0 if both P0 and P1 are quasi-linear polarization states. Therefore, the other non-interacting component with37

amplitude ain sin (φ1) will add a baseline onto the EIT lineshape in the transmission spectrum.38

S2. General formalism describing scattering properties of indirectly coupled resonator systems39

Here we treat the scattering of light through two taper-coupled resonators in series with mismatched resonant polarization40

states (see Fig. 1D in main text). The backscattering between clockwise (CW) and counterclockwise (CCW) modes leads to41

reflection and coupling between the two resonators (10, 17–19). This formalism will lay the foundation for all the scattering42

behavior we discuss in this study, including the polarization induced transparency, and the treatment of the system in the43

chiral case.44

With a coordinate of polarization set up, there are four incident amplitudes, one for each polarization and side, which form45

a vector46

α =

λ1
λ2
ρ1
ρ2

 , [7]47

with λ1(2) being the left-incident amplitude with polarization 1 (2), and similarly with the ρ’s being the right-incident amplitudes.48

These inputs are power-normalized, so that, e.g., |λ1|2 is the input power from the left in polarization 1.49

The outgoing amplitudes are given by50

β =

λ
′
1
λ′2
ρ′1
ρ′2

 , [8]51
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and are related to the input by the scattering matrix52

S =
(
rL tL
tR rR

)
, [9]53

where rL, rR, tL, tR are all 2 by 2 matrices representing the reflection or transmission coefficients. Now we consider the scheme54

that two polarization controllers (PC1 and PC2) with unitary rotation matrices U1 and U2 are inserted between the input and55

µR1, and between µR1 and µR2, respectively (Fig. S1). Each unitary matrix describing polarization mixing can be give as56

U =
(
eiψ1 cos Φ −eiψ2 sin Φ
e−iψ2 sin Φ e−iψ1 cos Φ

)
, [10]57

where ψ1,2 are phases encoded in the rotation and Φ is the rotation angle. Consider the forward transmission, the matrix t158

(t2) is the transmission matrix of the taper-coupled resonator µR1 (µR2). r1L/r1R (r2L/r2R) represent the left/right reflection59

matrices of µR1 (µR2). Based on reciprocity, we can deduce that the backward transmission matrices for the two resonators60

are tT1 and tT2 , respectively. The scattering processes in the whole system can be described by the sets of equations as follow61 (
λ′

a′

)
=
(

0 UT1
U1 0

)(
λ
a

)
, [11]62

63 (
a
b

)
=
(
r1L tT1
t1 r1R

)(
a′

b′

)
, [12]64

65 (
b′

c′

)
=
(

0 UT2
U2 0

)(
b
c

)
, [13]66

67 (
c
ρ′

)
=
(
r2L tT2
t2 r2R

)(
c′

ρ

)
, [14]68

where a, a′, b, b′, c and c′ are defined as shown in Fig. S1. The reciprocity associated with each scattering process requires a69

symmetric scattering matrix, yielding riL = rTiL and riR = rTiR (i = 1, 2). From Eqs. (11) and (12), we have70

b = t1U1λ+ r1RU
T
2 c. [15]71

From Eqs. (13) and (14), we get another relation72

c = r2LU2b+ tT2 ρ. [16]73

It follows that74

c =
(
1− r2LU2r1RU

T
2
)−1 (

r2LU2t1U1λ+ tT2 ρ
)
. [17]75

Plugging Eq. (17) back into Eqs. (11)-(14), we write every vector, including λ′ and ρ′, in terms of λ and ρ, so that we obtain
the elements of the S matrix

rL =UT1 tT1 UT2
(
1− r2LU2r1RU

T
2
)−1

r2LU2t1U1

+ UT1 r1LU1, [18]

rR =t2U2r1RU
T
2
(
1− r2LU2r1RU

T
2
)−1

tT2 + r2R, [19]

tL =UT1 tT1 UT2
(
1− r2LU2r1RU

T
2
)−1

tT2 , [20]

tR =t2U2r1RU
T
2
(
1− r2LU2r1RU

T
2
)−1

r2LU2t1U1

+ t2U2t1U1

=t2
(
1− U2r1RU

T
2 r2L

)−1
U2t1U1. [21]

We can see that76

tTR = tL, [22]77

which ensures a symmetric S matrix and the reciprocity of the polarization rotation processes.78
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S3. Derivation of polarization induced transparency (PIT)79

We now come to a simple case that the resonators have no direct coupling; the taper and a polarization controller are the sole80

mediators between the two resonators. We also neglect any intracavity scattering between the CW and CCW modes within81

each resonator.82

The serial nature of the system, together with the absence of back-scattering, implies that the scattering matrix has the83

representation84

S =
(

0 (t2U2t1U1)T
t2U2t1U1 0

)
. [23]85

The outgoing amplitudes are given by β = Sα, and therefore the total output power, β†β, is86

Iout = α†S†Sα. [24]87

From Eq. (23):88

S†S =
(
TL 0
0 TR

)
, [25]89

where TL ≡ t†t, TR ≡ (tt†)∗, and t = t2U2t1U1. For example, TLii is the total output when illuminating from the left with pure90

polarization i.91

We assume that near the incident frequency ω, each resonator has a single resonance ω1,2−iγ1,2/2 with a definite polarization92

which is different from either of the polarization states of the waveguide. For each resonator, there exists some polarization93

basis in which its coupling matrix is ∝ (1, 0) (we neglect the coupling to the backward-propagating channels). The basis in94

which this holds is connected to the waveguide polarization basis by a unitary transformation V1,2. From the fundamental95

relation S = I − 2iW †(ω −Heff)−1W , where96

Heff 1,2 = ω1,2 − iγ1,2/2− iW1,2W
†
1,2, [26]97

we see that if the polarization controllers are set to satisfy U1 = U†2 , then their combined effect is to perform a unitary98

transformation on W1 → W ′1 = W1U
†
2 = (1, 0)V ′1 , where V ′1 = V1U

†
2 is also unitary. We assume from now on that the99

polarization controllers are so set, and include them in effective unitaries V ′1 , V2, which are parameterized by angles φ1,2 and100

phases δ1,2, χ1,2. The effective coupling matrices (one for each resonator) in the waveguide polarization basis (choosing the101

polarization of the input light as the x direction) are:102

W ′1,2 =
√
γc1,2

2 (eiδ1,2 cosφ1,2, e
iχ1,2 sinφ1,2), [27]103

where W ′2 = W2. Since we assume that the free propagation in the fiber is polarization-independent, we are free to choose the104

first polarization state to be parallel to the resonant polarization of the second cavity, i.e., φ2 = 0. Henceforth we write ∆φ for105

φ1.106

The elements of the left-incident transmission matrix are

TL11 =
(

∆2
1 + (γ1 − γc1)2

∆2
1 + (γ1 + γc1)2

)(
∆2

2 + (γ2 − γc2)2

∆2
2 + (γ2 + γc2)2

)
+
{

4γ2γc1γc2 cos2 ∆φ+ γ1[∆2
2 + (γ2 − γc2)2]

[∆2
1 + (γ1 + γc1)2][∆2

2 + (γ2 + γc2)2]

}
× 4γc1 sin2 ∆φ,

TL22 =1− 4γ1γc1 sin2 ∆φ
∆2

1 + (γ1 + γc1)2

−
(

4γ2
c1 sin2 ∆φ

∆2
1 + (γ1 + γc1)2

)(
4γ2γc2 sin2 ∆φ

∆2
2 + (γ2 + γc2)2

)
,

TL12 =− 2ei(δ1−χ1) sin(2∆φ)
[∆2

1 + (γ1 + γc1)2][∆2
2 + (γ2 + γc2)2]

× {2γ2γc2[γc1 cos(2∆φ)− i(∆1 + iγ1)]
+ γ1[∆2

2 + (γ2 − γc2)2]},

[28]

where ∆1,2 ≡ ω − ω1,2. Note that TL,R12 = (TL,R21 )∗.107
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The right-to-left transmission matrix TR has elements

TR11 =
(

∆2
1 + (γ1 − γc1)2 + 4γ1γc1 sin2 ∆φ

∆2
1 + (γ1 + γc1)2

)
×
(

∆2
2 + (γ2 − γc2)2

∆2
2 + (γ2 + γc2)2

)
,

TR22 =1− 4γ1γc1 sin2 ∆φ
∆2

1 + (γ1 + γc1)2 ,

TR12 =2ei(δ1−χ1) sin(2∆φ)
(

γ1γc1
∆2

1 + (γ1 + γc1)2

)
×
(

∆2 − i(γ2 − γc2)
∆2 − i(γ2 + γc2)

)
.

[29]

Note that TLij 6= TRij . In particular, the difference between the outputs when illuminating from the left with polarization 1 and108

from the right with the same polarization 1 is109

TL11 − TR11 = γ2
c1 sin2(2∆φ)

∆2
1 + (γ1 + γc1)2

4γ2γc2
∆2

2 + (γ2 + γc2)2 . [30]110

For the experiment described in the main text, in which γ1 � γ2 and the critical coupling condition is satisfied for the111

second resonator (γ2 = γc2), we can then approximate the second factor to be unity in the frequency range |∆1| � γ2, and112

TL11 − TR11 ≈
γ2
c1 sin2(2∆φ)

∆2
1 + (γ1 + γc1)2 . [31]113

Therefore we expect a Lorentzian peak in the difference between the two, which will be modulated by sin2(2∆φ), which is the114

signature of PIT. Assuming ideal tuning (i.e., ∆φ = π/4), the peak output of the PIT will be 1/(1 + γ1/γc1)2, so that stronger115

coupling of µR1 is preferred.116

The asymmetry in the left and right transmission explains the unidirectional feature of PIT. It is noted that the reciprocity117

is still obeyed, which could be otherwise broken in the presence of thermally/mechanically/electrically-induced optical nonlinear118

effects (20–27). The narrow transparency window in Fig. 2D in the main text is due to the transmitted light with polarization119

perpendicular to P0. The transmitted component in P0 polarization is the same from both sides, following reciprocity. This is120

distinct from the Faraday effect (28) which leads to nonreciprocal light propagation based on the fact that the rotation of121

polarization of light is dependent on the magnetic field component in the direction of light propagation.122

S4. Model of the indirectly coupled resonators with backscattering and polarization mismatch123

We now discuss the indirectly coupled resonators with backscattering and polarization mismatch. Suppose that the CW and124

CCW modes in the resonator µR1 (µR2) are coupled by scatterers with coupling strengths κa21 and κa12 (κb21 and κb12)125

(10, 18, 19). The modes in µR1 (µR2) are associated with a quasi-linear polarization states represented by P1 (P2), whose126

direction has an angle of φ1 (φ2) relative to the direction of P0, which denotes the linear polarization of the input light also127

defined as the x direction. The scattering behavior of the system can be derived from the general form of the S matrix in128

Eq. (9), or can be directly described by the coupled mode equations involving polarization decomposition:129

d

dt

(
a1
a2

)
=
(
−iω1 − γ1+γc1

2 −iκa21
−iκa12 −iω1 − γ1+γc1

2

)(
a1
a2

)
−√γc1 cos (φ1)

(
ain

eiθb
′
outx

)
−√γc1 sin (φ1)

(
0

ei∆φb
′
outy

)
,

[32]130

(
a

′
outx

boutx

)
−
(

ain

eiθb
′
outx

)
= √γc1 cos (φ1)

(
a1
a2

)
, [33]131 (

a
′
outy

bouty

)
−
(

0
eiθb

′
outy

)
= √γc1 sin (φ1)

(
a1
a2

)
, [34]132

d

dt

(
b1
b2

)
=
(
−iω2 − γ2+γc2

2 −iκb21
−iκb12 −iω2 − γ2+γc2

2

)(
b1
b2

)
−√γc2 cos (φ2)

(
eiθa

′
outx

0

)
−√γc2 sin (φ2)

(
eiθa

′
outy

0

)
,

[35]133
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(
aoutx

b
′
outx

)
−
(
eiθa

′
outx

0

)
= √γc2 cos (φ2)

(
b1
b2

)
, [36]134 (

aouty

b
′
outy

)
−
(
eiθa

′
outy

0

)
= √γc2 sin (φ2)

(
b1
b2

)
. [37]135

One can solve Eqs. (32)-(37) numerically in the frequency domain and steady states to obtain the transmission spectrum. In136

particular, in the case that ω1 = ω2 (∆1 = ∆2 = ∆) and P2 aligns with P0 (φ2 = 0, ∆φ = φ1) as shown in Fig. 4 of the main137

text, one can solve analytically that the transmission of the x component becomes138

Tx = |tx|2 = |aoutx/ain|2

=

∣∣∣∣∣ (Γ1+Γ1− + κa21κa12) (Γ2+Γ2− + κb21κb12)
Q+

(
Γ2

1+ + κa21κa12
) (

Γ2
2+ + κb21κb12

) ∣∣∣∣∣
2

,
[38]139

where140

Γ1± = −i∆ + γ1 + γc1 sin2 (∆φ)
2 ± γc1 cos2 (∆φ)

2 , [39]141

142

Γ2± = −i∆ + γ2

2 ±
γc2
2 , [40]143

and144

Q = γc1 cos2 (∆φ) γc2κa21κb12e
iθ. [41]145

The transmission of the y component is calculated as146

Ty = |ty|2 = |aouty/ain|2

=
∣∣eiθ√γc1 sin (∆φ) a1/ain

∣∣2 . [42]147

We can calculate a1 in the frequency domain by148 (
a1[ω]
a2[ω]

)
= √γc1 cos (∆φ)M−1

(
ain[ω]

eiθb
′
outx[ω]

)
, [43]149

where150

M =
(
−Γ1 −iκa21
−iκa21 −Γ1

)
. [44]151

To evaluate Eq. (43), we note that152

Boutx[ω] = [1− (M2)2,1(M1)1,2]−1 (M2)2,1(M1)1,1ain[ω], [45]153

where154

M1 =

(
1− γc1 cos2(∆φ)Γ1

Γ2
1+κa21κa12

− iγc1 cos2(∆φ)κa21e
iθ

Γ2
1+κa21κa12

− iγc1 cos2(∆φ)κa12
Γ2

1+κa21κa12
eiθ − γc1 cos2(∆φ)Γ1e

iθ

Γ2
1+κa21κa12

)
, [46]155

and156

M2 =

(
eiθ − γc2Γ2e

iθ

Γ2
2+κb21κb12

− iγc2κb21
Γ2

2+κb21κb12

− iγc2κb12e
iθ

Γ2
2+κb21κb12

1− γc2Γ2
Γ2

2+κb21κb12

)
. [47]157
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𝑐
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Fig. S1. Schematic diagram for deriving the general S matrix for the indirectly coupled resonator system.
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