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ABSTRACT
This paper introduces BioScript , a domain-specific language
(DSL) for programmable biochemistry which executes on
emerging microfluidic platforms. The goal of this research
is to provide a simple, intuitive, and type-safe DSL that is
accessible to life science practitioners. The novel feature of
the language is its syntax, which aims to optimize human
readability; the technical contribution of the paper is the
BioScript type system. The type system ensures that cer-
tain types of errors, specific to biochemistry, do not occur,
including the interaction of chemicals that may be unsafe.
Results are obtained using a custom-built compiler that im-
plements the BioScript language and type system.

1. INTRODUCTION
The last two decades have witnessed the emergence of

software-programmable laboratory-on-a-chip (pLoC) tech-
nology, enabled by technological advances in microfabrica-
tion and coupled with scientific understanding of microflu-
idics, the fundamental science of fluid behavior at the micro-
to nano-liter scale. The net result of these collective ad-
vancements is that many experimental laboratory proce-
dures have been miniaturized, accelerated, and automated,
similar in principle to how the world’s earliest computers
automated tedious mathematical calculations that were pre-
viously performed by hand. Although the vast majority of
microfluidic devices are effectively Application Specific In-
tegrated Circuits (ASICs), a variety of programmable LoCs
have been demonstrated. [15, 17].

With a handful of exceptions, research on programming
languages and compiler design for programmable LoCs has
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lagged behind their silicon counterparts. To address this
need, this paper presents a domain-specific programming
language (DSL) and type system for a specific class of pLoC
that manipulate discrete droplets of liquid on a two-dimensional
grid. The basic principles of the language and type system
readily generalize to programmable LoCs, realized across a
wide variety of microfluidic technologies.

The presented language, BioScript , offers a user-friendly
syntax that reads like a cookbook recipe. BioScript features
a combination of fluidic/chemical variables and operations
that can be interleaved seamlessly with computation, if de-
sired. Its intended user base is not traditional software de-
velopers, but life science practitioners, who are likely to balk
at a language that has a steep learning curve.

BioScript ’s type system ensures that each fluid is never
consumed more than once, and that unsafe combinations of
chemicals — those belonging to conflicting reactivity groups,
as determined by appropriately qualified government agen-
cies — never interact on-chip; BioScript ’s type system is
based on union types and was designed to ensure that type
inference is decidable. This will set the stage for future re-
search on formal validation of biochemical programs.

The BioScript language and type system are evaluated us-
ing a set of benchmark applications obtained from scientific
literature. We use a microfluidic simulator to assess per-
formance under ideal operating conditions, and also execute
them on a real device, which is much smaller and supports a
subset of BioScript ’s operational capabilities. This result es-
tablishes the feasibility of high-level programming language
and compiler design for programmable chemistry, and opens
up future avenues for research in type systems and formal
verification techniques within this non-traditional comput-
ing domain.

1.1 Digital Microfluidic Biochips (DMFBs).
This paper targets a specific class of programmable LoCs

that manipulate discrete droplets of fluid via electrostatic
actuation. Fig. 1a illustrates the electrowetting principle:
applying an electrostatic potential to a droplet modifies the
shape of the droplet and its contact angle with the surface.
As shown in Fig. 1b, droplet transport can be induced by ac-



(a) The electrowetting principle [10, 13]: applying an electro-
static potential to a droplet at rest reduces the contact angle
with the surface, thereby increasing the surface area in contact
with the droplet

(b) A droplet is transported from control electrode CE2 to
neighboring electrode CE3 by activating CE3, and then deac-
tivating CE2 (white: activated electrode; black: deactivated
electrode).

Figure 1: The elecrowetting principle (a) enables droplet transport (b).

(a) Left: A DMFB is a planar array of electrodes [15]. Right:
Cross-sectional view.

(b) The DMFB ISA supports five basic operations: transport-
ing, merging, splitting, mixing and storage, in addition to I/O
on the perimeter of the array.

Figure 2: A DMFB (a) and it’s reconfigurable instruction set (b).

tivating and deactivating a sequence of electrodes adjacent
to the droplet; the ground electrode, on top of the array, im-
proves the fidelity of droplet motion and reduces the voltage
required to induce droplet transport.

Fig. 2a depicts a programmable 2D electrowetting array,
called a “Digital Microfluidic Biochip (DMFB).” A DMFB
can support five basic operations, shown in Fig. 2b: trans-
port (move a droplet from position (x, y) to (x′, y′)), split
(create 2 droplets out of 1), merge/mix (combine 2 droplets
into 1, and, optionally, rotate them in a rectangular motion),
and store (place a droplet at position (x, y) for later use).
A DMFB is reconfigurable, as these operations can be per-
formed anywhere on the array, and any given electrode can
be used to perform different operations at different times.
Droplet I/O is performed using reservoirs on the perimeter
of the chip, which are not depicted in Fig. 2.

The DMFB instruction-set architecture (ISA) can be ex-
tended by integrating sensors, optical detectors, or online
video monitoring capabilities. Sensors and actuators create
a “cyber-physical” feedback loop between the host PC con-
troller and the DMFB. The ability to perform sensing, com-
putation, and actuation based on the results of the compu-
tation adds control flow to the instruction set of the DMFB.
Prior work has applied feedback-control for precise droplet
positioning and online error detection and recovery [18, 11,
12]; efforts to leverage these capabilities to provide control
flow constructs at the language syntax level have been far
more limited.

2. OVERVIEW
BioScript Syntax and Semantics. BioScript is a lan-

guage for programmable microfluidics whose syntax aims to
be palatable to life science practitioners, most of whom are
not experienced programmers. The BioScript syntax and
semantics were designed to enable scientists to express op-
erations in a manner that closely resembles plain English.
To keep the language small, we do not include operations
in the language syntax that can automatically be inferred

by the compiler and/or execution engine. For example, the
compiler can automatically infer implicit fluid transfers for
a mix operation. BioScript features a semantics that targets
pLoC technologies. The syntax and semantics of BioScript ’s
type system are formally described in Section 3.

We begin with a self-contained example to illustrate the
expressive capabilities of BioScript .
Example: PCR with Droplet Replenishment. Fig-
ure 3 presents a BioScript program for a DMFB-compatible
implementation of the Polymerase Chain Reaction (PCR),
used to amplify DNA [14]. PCR involves thermocycling (re-
peatedly heating then cooling) a droplet containing the DNA
mixture undergoing amplification [lines 5-17]. In this imple-
mentation, thermocycling may cause excess droplet evapora-
tion. This implementation uses a weight sensor to detect the
droplet volume after each iteration [line 8]; if too much evap-
oration occurs [line 9] the algorithm injects a new droplet to
replenish the sample volume [line 10-11], preheating a tem-
plate solution [line 12] to ensure that replenishment does not
affect the temperature of the DNA.

Type Systems and Safety. The Environmental Protec-
tion Agency (EPA) and National Oceanic and Atmospheric
Administration (NOAA) have categorized 9,800 chemicals
into 68 reactivity groups [7], defined by common physical
properties of discrete chemicals. It is known that mixing
materials from certain reactivity groups can produce mate-
rials from other reactivity groups; for example mixing acids
and bases induces a strong reaction that produces salt and
water. BioScript ’s type system models reactivity groups
as types. As a material can belong to multiple reactivity
groups, a union type is associated with a material. Using
standard reaction corpora, we calculate the type signature of
the mix operation, which is fundamental throughout chem-
istry, as a table of abstract reactions between pairs of types,
which results in a union of types.

At the same time, reactions vary in terms of safety. The
EPA/NOAA categorization assigns one of three outcomes
to the combination of chemicals: Incompatible, Caution, or



1 // Initialization omitted. PCRMasterMix is a
2 // commercially available pre -mixed solution
3 // used to perform PCR.
4 PCRMix = mix PCRMasterMix with Template for 1s
5 repeat 50 times {
6 heat PCRMix at 95C for 20s
7 volumeWeight = detect Weight on PCRMix
8 if (volumeWeight <= 50uL) {
9 replacement = mix 25uL of PCRMasterMix

10 with 25uL of Template for 5s
11 heat replacement at 95C for 45s
12 PCRMix = mix PCRMix with replacement for 5s
13 }
14 heat PCRMix at 68C for 30s
15 heat PCRMix at 95C for 45s
16 }
17 heat PCRMix at 68C for 5min
18 save PCRMix

Figure 3: PCR with droplet replenishment [9]. It uses the
target-specific save instruction.

Compatible. If the union type resulting from a mix opera-
tion includes a hazardous type, then the corresponding cell
in the table is marked as being unsafe. Any biochemical pro-
cedure, or assay, specified in BioScript is allowed to execute
only if it is safe. The signature of the mix operation does
not include unsafe abstract reactions, which correspond to
unsafe table cells. Therefore, the type system exclusively
type-checks mix statements that do not produce hazardous
materials. This is fundamental to the soundness of Bio-
Script ’s type system: it only type-checks assays that do not
produce unsafe materials.

BioScript allows, but does not require, type annotations,
saving the programmer from the burden of annotating pro-
grams with overly complicated union types. The assay spec-
ifications presented in Figure 3 do not use type annotations.
BioScript ’s type inference system can automatically infer
types. Since, the EPA/NOAA classification begins with a
finite set of material types, type inference can be reduced to
efficiently decidable theories. Type inference is sound: if a
typing assignment is inferred, it can be used to type-check
the assay; it is also complete: if there is a typing assignment
with which the assay can be type-checked, the inference will
discover it. Otherwise, the assay is rejected and marked as a
potential hazard if no typing assignment can be inferred for
it. Our experiments show that the type system is expressive
enough to reject hazardous assays and accept those that are
safe. Proofs for these attributes are left for supplemental
material.

3. TYPE SYSTEM
This section presents interesting aspects of the core Bio-

Script language. We begin by presenting the simple, yet ro-
bust, BioScript syntax. Next, we describe the novel aspects
of the operational semantics — or mathematical model —
describing the runtime execution of assays on pLoC devices
(Definition 1). We then provide technical details on how
BioScript ’s type system prevents unsafe operations from oc-
curring. Unsafe operations include the interaction of mate-
rials that may cause an explosion or create noxious gasses,
as well as accessing materials that have already been con-
sumed. We explore the syntax, operational semantics, and
type system using two statements: variable assignment and
mix semantics in great detail. The full BioScript language,

operational semantics, and type system are described in the
supplemental material.

3.1 Syntax
BioScript ’s set of instructions is modeled after the ISA

discussed in Section 1.1. BioScript supports heat and de-
tect instructions but omits move and store instructions, as
they are inferred from data-flow analysis. The BioScript
language is imperative and a statement is a sequence of ef-
fectful instructions that involve side-effect-free terms. To
model state, or memory, we define σ, a mapping of variables
to their values. A Side-effect, in this context, is changing σ
— updating the values of the variables. As terms are side-
effect-free, a term does not alter σ. A term can take one of
many forms: a variable, a math operation, a detection of a
physical property on a material, or a concrete value.

Unlike terms, instructions are not side-effect-free; they al-
ter memory. BioScript supports traditional assignment of
terms to variables, manipulation of variables, and control-
flow constructs.

BioScript utilizes a conservative type system capable of
analyzing how chemical interactions work in a cyber-physical
context. Mixing chemicals during experiments yields a new
chemical, functionally expiring the input chemicals. How-
ever, not all of the input chemicals participate in the reac-
tion, trace amounts of the input chemicals are present in
the new chemical. For instance, mixing an acid and base
yields salt water. There are still acid and base molecules
that haven’t reacted in the salt water. To model this, Bio-
Script employs union types that allow variables to belong to
multiple types (see Definition 2). In other words, a variable
can store any combination of scalar types in the union type.
As usual, the typing environment Γ represents a mapping
from variables to their types.

Operational Semantics:
The operational semantics describe how a program is
executed as a sequence of computational steps. It is
represented as inference rules that define valid steps.
Inference rules are comprised of premises and conclu-
sions, whereby all the premises must be met for the
conclusion to hold. As shown in Figures 4 and 5, the
inference rules represent the premises above the line
and conclusion below the line.

Definition 1

3.2 Operational Semantics for Assay Execu-
tion

We model execution of BioScript assays on a DMFB as
an operational semantics. When execution of an instruction
occurs, e.g., a mix, the model must use the appropriate rules
to “step” or handle the change of state. All the premises of
a stepping rule must be satisfied. If no rule can step, the
program is stuck and cannot continue execution.

We highlight two sets of rules that showcase some inter-
esting challenges BioScript faces and discuss how they are
overcome. We begin with variable assignment. It’s syntax:
x := t allows a variable x to be assigned some term t. To
model execution we define E-AssignR, E-Assign, and E-
Assign′, represented in Fig. 4a.



The rule E-AssignR evaluates the right-hand side term, t
(if it is not a variable); the rule E-Assign assigns the reduced
value to the variable in σ, the store. The rule E-Assign′

transfers a material from the right-hand side variable to the
left-hand side variable; preventing aliasing.

In traditional computing, variable assignment is an ele-
mentary operation that most computer scientists don’t even
bother thinking about. However, when modeling assignment
in the physical world, things aren’t so simple. In BioScript
the value of a chemical variable is consumed when it is as-
signed to another variable, restricting variable aliasing. In
other words, the BioScript program x = mat ; y = x; z = x is
stuck at the third assignment as the second assignment con-
sumes x. This restriction is necessary for material variables,
but can be easily lifted for numeric variables.

Mixing is a frequent activity that chemists and biologists
employ in their discipline. BioScript ’s syntax for mixing
is simple and intuitive: x := mix x1 with x2 for t. A mix
instruction takes two variables (x1 and x2), mixes them for
some time t and stores the resulting chemical in the new
variable x. To model execution of the mix instruction, we
define E-MixR and E-Mix, defined in Fig. 4b.

E-MixR first evaluates the time term of a mix instruc-
tion, eventually reducing it to a real number, r. After the
time term has been reduced, E-Mix is evaluated. E-Mix
prescribes that both x1 and x2 in σ must be materials. The
variables x1 and x2 must also be safe to interact; the func-
tion interact determines safety at run time. interact returns
the resulting material if mixing is safe, otherwise interact
returns  — the mixture is unsafe. When a scientist mixes
two chemicals together in a flask, the two distinct chemicals
no longer exist; to model this, the used variables x1 and x2
are removed from σ and the variable x is mapped to the
resulting material. The evaluation of a mix instruction is
stuck if either of the two variables are not material values,
any of the variables are already used and removed from the
store, or the interaction of the materials is unsafe ( ).

The full runtime model, detailing all terms and instruc-
tions is available in the supplemental material.

3.3 Type Checking and Inference
Similar to modeling execution, inference rules describe

how BioScript ’s type system type checks a program. Again,
we focus on the interesting typing rules that BioScript de-
fines to keep scientists safe while writing and executing as-
says on DMFB devices.

We begin with typing assignment instructions, defined in
Fig. 5a. The rule T-Assign-1 types an assignment of a
value to a variable and adds the variable to the set of avail-
able variables. Rule T-Assign-2 strictly prevents aliasing
by consuming the right-hand side while adding the left-hand
side variable to the set of available variables. (At the cost of
brevity, the rule can be easily relaxed to not remove numeric
variables from the available set.) Finally, rule T-Assign-3
addresses typing for numeric terms. It allows assigning nu-
meric terms to variables.

In spite of a scientist’s training regarding safe and un-
safe chemical interactions, countless incidents occur involv-
ing chemical interactions that result in explosions or noxious
gasses, causing harm to the laboratory or worse, the scien-
tist. To help prevent incidents, BioScript defines the typing
rule T-Mix, described in Fig. 5b, which helps ensure that
no chemical interaction exhibit adverse reactions as well as

E-AssignR
(σ, t)→ t′ t 6∈ X

(σ, x := t; s)→ (σ, x := t′; s)

E-Assign
(σ, x := v; s)→

(σ[x 7→ v], s)

E-Assign′

σ′ = (σ \ {x′})[x 7→ σ(x′)]

(σ, x := x′; s)→ (σ′, s)

(a)

E-MixR
(σ, t)→ t′

(σ, x := mix x1 with x2 for t; s)→
(σ, x := mix x1 with x2 for t′; s)

E-Mix
σ(x1) ∈Mat σ(x2) ∈Mat
interact(σ(x1), σ(x2), r) 6=  

σ′ = (σ \ {x1, x2})[x 7→ interact(σ(x1), σ(x2), r)]

(σ, x := mix x1 with x2 for r; s)→ (σ′, s)

(b)

Figure 4: Figures 4a and 4b depict the operational semantics
for variable assignment and mixing in BioScript .

T-Assign-1
x : T ∈ Γ Γ, X ` v : T ′ T ′ ⊆ T

Γ, X ` x := v,X ∪ {x}

T-Assign-2
x : T ∈ Γ Γ, X ` x′ : T ′ T ′ ⊆ T

Γ, X ` x := x′, X \ {x′} ∪ {x}

T-Assign-3
x : T ∈ Γ t 6∈ V ∪ X

Γ, X ` t : T ′ T ′ = R ∨ T ′ = N T ′ ⊆ T
Γ, X ` x := t,X ∪ {x}

(a)

T-Mix
Γ, X ` x1 : ∪Mati Γ, X ` x2 : ∪Matj Γ, X ` t : R

interact-abs(Mati,Matj) ⊆ Γ(x) for each i and j

Γ, X ` x := mix x1 with x2 for t,X \ {x1, x2} ∪ {x}

(b)

Figure 5: Figures 4a and 4b depict the typing rules for vari-
able assignment and mixing in BioScript .

guaranteeing no chemical is used more than once.
To guarantee safety during a mix instruction, x1 and x2

must be a union of material types, i.e. Γ, X ` x1 : ∪Mati
and Γ, X ` x2 : ∪Matj , respectively. Similarly, the time
term of the mix instruction must be a real number (Γ, X `
t : R, which is to say that the value of the term t must be in
the set of real numbers).



Union Types:
A typing convention that allows a variable to assume
a set of types. We differentiate between scalar types,
denoted by S and union types, denoted by ∪S; a union
type is a set of scalar types. In the context of BioScript ,
scalar types are the material types Mat1 | .. |Matn. A
union of material types can then be expressed as ∪Mat.

Definition 2

For a mix instruction to type check, the interaction of
the input materials must be safe. To determine this, we
define the function interact-abs, which accepts two scalar
material types as arguments and returns a union type of
materials (∪Mat). The abstract interaction interact-abs is
conservative with respect to the concrete interaction func-
tion: interact. If two material values mati and matj are
members of two material types Mati and Matj , and the
concrete interaction of mati and matj is unsafe, then the
abstract interaction of Mati and Matj is undefined; render-
ing the program unable to type check. Otherwise, the result
of the concrete interaction is a member of the type result-
ing from the abstract interaction of Mati and Matj . If the
interaction of all such pairs of materials mati and matj is
safe, then the abstract interaction of Mati and Matj is safe.
A full discussion of how the interact-abs function is used is
presented in Section 4.

Finally, the result of the mix is assigned to x, whose type
in Γ should be a superset of the resulting material types. In
the physical world, mixing chemicals uses those chemicals
— they no longer exist. To model this, the materials repre-
sented by x1 and x2 are consumed and replaced by x in the
set of available variables.

We proved that the BioScript type system is sound. All
type-checked programs are correct, i.e., never get stuck dur-
ing execution; conversely, incorrect programs cannot type
check. As explained for the operational semantics, there
is no inference rule for unsafe operations, that is incorrect
programs are stuck. The soundness is proved as tandem
progress and preservation lemmas (see Definition 3). The
progress lemma states that well-typed programs are not stuck,
i.e., they can take a step. More precisely, if a statement is
typed, then it is either the terminal statement or it can make
a step. The preservation lemma states that if a well-typed
program steps, the resulting program is also well-typed.

BioScript features a type inference system. Type infer-
ence helps the biologists and chemists by lifting the burden
of manually annotating assays with union types. The rules
for type inference match the corresponding type checking
rules but restate the conditions as constraints. After the
type inference system derives the constraints for a program,
a satisfying model for the constraints yields types for the
variables of the program. We proved that the type inference
system infers types for a program iff it is typeable. This
is proved as a pair of soundness and completeness lemmas
for the type inference system. The soundness lemma states
that, if the type inference system infers types for a program,
then with the inferred types, the type checking system can
type-check the program. The completeness lemma states
that if, for a program, there exist types for variables under
which the type checking system can type-check the program,

then the type inference system can infer those types.
We provide a full discussion of the above theorems in the

supplemental materials for the interested reader.

Progress:
A well-typed program is not stuck, i.e., it can take a
step.
Preservation:
If a well-typed term takes a step, the resulting term is
also well-typed.

Definition 3

4. IMPLEMENTATION
This section describes the underlying implementation de-

tails of the BioScript language and its type system.
BioScript. The BioScript language was implemented as

described in Section 2. As DMFBs do not offer external
fluidic storage, there is no possibility to implement a stack
or heap of substantial size. For these reasons, BioScript
provides inline functions exclusively and does not support
recursion; similarly, BioScript does not support arrays, even
of constant size, as doing so would significantly inhibit porta-
bility. We hope to address these issues in greater detail in
a future publication. BioScript handles variable assignment
implicitly, e.g., Fig. 8d. However, the scientist declares a
manifest of chemicals that is used throughout the assay
(“blood” and “water”, for this assay) and the BioScript com-
piler infers the dispense and move operations.

The Type System. BioScript ’s type system utilizes
static type checking, which runs during compilation. The
type system automatically infers types using an abstract in-
teraction function that is a conservative over-approximation
of the resulting chemical types of each interaction. The type
system uses the 68 EPA/NOAA reactivity groups as the ma-
terial types Mati, that together with natural N, and real R
numbers, constitute the set of scalar types S.

We calculate the abstract interaction function interact-abs
(defined in Section 3) as a table that is indexed by two ma-
terial types and stores union types. Each reactivity group
or type Mati comprises a non-empty set of chemicals Ci.
Abstract mixing of a pair of material types Mati and Matj
effectively mixes each pair of chemicals (ci, cj) in the cross
product Ci × Cj . If any interaction is Incompatible, the
table entry for (Mati,Matj) is marked as hazardous (or
undefined, as modeled in Section 3). Otherwise, if the mix
operation yields a new chemical ck, we use an ChemAxon [4],
an industry-standard computational chemistry library to as-
sign a union type ∪Matk to ck, which are added to the union
type of the cell for Mati and Matj . In practice, molecules
of ci and cj will remain after mixing ci and cj , even if a
reaction occurs, and the presence of extra molecules at the
micro-liter scale, or smaller, may have a non-negligible im-
pact on the underlying chemistry or biology. To account for
this fact, Mati and Matj are also added to the cell. Since
type assignment to concrete chemicals is conservative and
we include the input types in the resulting union type, the
types in the table represent an over-approximation of the
chemicals that can result from concrete interactions.

There may be instances where scientists need to create
hazardous reactions, which the type system would correctly



Figure 6: A DMFB chip used by DropBot devices.

reject. In this case, the type system generates all relevant
errors and warnings, but allows the programmer to override
the type system in order to finish compilation and execute
the assay.

Execution. BioScript targets a real-world DMFB plat-
form called DropBot [8], shown in Fig. 6. Although DropBot
features real-time object tracking, it does not, at present,
support execution of assays that feature control flow. Bio-
Script can produce a DropBot-compatible electrode activa-
tion sequence, in the form of a JSON file, to execute on the
chip depicted in Fig. 6.

5. EVALUATION
The objectives of BioScript are to reduce the time and cost

Table 1: Compile time and the number of constraints gath-
ered. †denote real-world instances that resulted in damages
to equipment or personnel that the type system was cor-
rectly able to identify as dangerous.

Benchmark Compile Type Check Total
Time (sec) Time (sec) Types

AIHA 1† 0.012 0.936 70
AIHA 2† 0.012 1.648 68
AIHA 3† 0.014 1.214 17
Broad Spec-
trum Opiate

0.011 0.887 11

Ciprofloxacin 0.023 1.722 14
Diazepam 0.024 1.007 14
Dilution 0.014 0.892 9
Fentanyl 0.018 0.900 13
Full Morphine 0.048 4.188 19
Glucose
Detection

0.012 1.633 14

Heroine 0.020 1.553 13
Image Probe
Synthesis

0.015 2.181 13

Morphine 0.018 1.026 13
Mustard Gas† 0.015 1.433 83
Oxycodone 0.026 0.959 13
PCR 0.032 3.534 8
Safety Zone† 0.013 1.341 76

of scientific research and to provide a safe execution environ-
ment for chemists and biologists with respect to chemical in-
teractions. As noted earlier, BioScript is a DSL that enables
high-level programming and direct execution of bioassay on
pLoCs. These objectives inform our selection of metrics to
evaluate BioScript .

Language. Compared to other languages, BioScript of-
fers an intuitive and readable syntax and a type system. We
do not claim that BioScript offers any performance advan-
tages over other languages; performance primarily depends
on the algorithms implemented in the compiler back-end and
execution engine, which are compatible, in principle, with
any language and front-end. Hence, our evaluation empha-
sizes qualitative metrics of the language.

First, we compare BioScript ’s syntax to three other lan-
guages: the AquaCore Instruction Set (AIS), a target-specific
assembly-like language [2]; Antha, a language for cloud-based
laboratory automation [16]; and BioCoder, a C++ library
that has been previously specialized for DMFBs [5]. Our
comparison uses a set of compact, yet representative, bioas-
says taken from published literature. As an illustrative ex-
ample, Figure 8 shows a simple assay (a Mix followed by
a Heat instruction) in all four languages; BioScript , by far,
has the shortest description and is easier to read.

Figure 7 compares the number of lines of code required
to specify seven representative bioassays using the four lan-
guages; three of the seven assays were not compatible with
AIS (which is tethered to a specific pLoC [2]) and Antha
(which is tethered to a cloud laboratory), so we only report
four assays for those languages. We do not count empty lines
(for spacing/aesthetic purposes) or lines that contain com-
ments. We wrote each assay based on our notion of human
readability, which generally meant one statement/operation
per line for AIS, BioCoder, and Antha. As shown in Fig-
ure 8d, the mixture statement in BioScript succinctly en-
compasses two implicit variable declarations with fluid type
and volume information.

Across the four compatible assays, BioScript required 68%
fewer lines of code than AIS and 73% fewer lines of code
than Antha. Across all seven assays, BioScript required 65%
fewer lines of code than BioCoder, which can target DMFBs,
unlike AIS and Antha. Although these results do not ac-
count for subjective experience, we believe that they convey
the same basic sentiments as Figure 8: BioScript has an
intuitive syntax and will be far easier for scientists to learn
and use compared to existing languages in this space. Source
code for all implementations of the bioassays reported in
Figure 7 are included in our supplementary materials.

Type System Evaluation. BioScript ’s type system’s
main purpose is to prevent inadvertent production of haz-
ardous chemicals. We evaluate its ability to detect haz-
ardous mixing in BioScript descriptions of 5 reported real-
world incidents [1, 3]. To the best of our understanding,
BioScript ’s type system is first-of-its kind, so there are no
prior type systems for biochemistry to compare against.

Table 1 summarizes the results of our experiments. The
results denoted by the † are real-world situations in which
safety precautions were ignored while carrying out exper-
iments. The first three are incidents documented by the
American Industrial Hygiene Association (AIHA) [1]. Mus-
tard gas refers to a documented situation where an indi-
vidual mixed two common reagents used to clean swimming
pools, inadvertently creating mustard gas. SafetyZone refers



Figure 7: The number of lines of code to specify Image Probe Synthesis, Glucose Detection, Neurotransmitter Sensing, PCR,
Probabilistic PCR, PCR w/ Droplet Replacement, and Opiate Detection in AIS, BioCoder, Antha, and BioScript . We were
unable to specify the latter three assays in AIS and Antha.

1 b.first_step ();
2 b.measure_fluid(blood , tube);
3 b.measure_fluid(water , tube);
4 b.next_step ();
5 b.tap(tube , tenSec);
6 b.next_step ();
7 b.incubate(tube , 100, tenSec);
8 b.end_protocol ();

(a)

1 smpl:= make ([]* wtype.LHComponent , 0)
2 Bld := mixer.SampleForTotalVolume(Blood , BldVol)
3 smpl = append(smpl , Bld)
4 Wtr := mixer.Sample(Water , WtrVol)
5 smpl = append(smpl , Wtr)
6 rctn := MixInto(OutPlate , "", smpl ...)
7 r1 := Incubate(rctn , mltTemp , InitDenatime , false)

(b)

1 input s1, ip1
2 input s2, ip2
3 move mixer1 , s1;
4 move mixer1 , s2;
5 mix mixer1 , 10;
6 move heater1 , mixer1;
7 incubate heater1 , 100, 10;

(c)

1 mixture = mix water with blood for 10s
2 heat mixture at 100C for 10s

(d)

Figure 8: Example assay specified using Biocoder(Fig. 8a),
Antha(Fig. 8b), AIS(Fig. 8c), and BioScript(Fig. 8d). We
omit initialization for all examples.

to a documented explosion where a student mixed a sulfuric
acid/hydrogen peroxide mixture with acetone [6] (it remains

unknown whether this explosion was intentional or acciden-
tal). The type system correctly identified the presence of
safety hazards in all of these cases.

We also tested the type system on 14 assays that were
known to be safe; BioScript ’s type system successfully in-
ferred types in all of these cases. These assays, listed in
Table 1, are currently used in the physical sciences today.

Compilation Time. We compiled the safe and unsafe
assays described here, targeting the DropBot platform, which
is a 4×15 array (ignoring permiter I/O reservoirs), assuming
the default electrode actuation time of 750ms. The exper-
iments were run on a 2.7 GHz IntelTM Core i7 processor,
8GB RAM, machine running macOSTM. Construction of
the the type system’s abstract interaction table took 31 min-
utes running on a 2.53 Ghz IntelTM XeonTM processor, with
24GB RAM, running CentOS 5.

Table 1 reports the compilation time, constraint solv-
ing time, and number of constraints gathered. The unsafe,
real-world, assays were correctly identified as unsafe by Bio-
Script . On average, each material defined in the benchmarks
belonged to 3.015 distinct reactive groups; average bench-
mark compilation time was 0.0190 seconds; and the average
time spent solving constraints was 1.594 seconds. We must
note that these programs are significantly smaller than typ-
ical software programs today.

BioScript assays, along with additional synthetic bench-
marks, are made available in the supplemental materials.

6. CONCLUSION AND FUTURE WORK
BioScript enables scientists to express assays in a comfort-

able manner, similar in principle to laboratory notebooks.
Its type system, which defines the operational semantics of
BioScript , can provide safety guarantees for chemicals used.
BioScript is extensible, allowing it to target pLoC compi-
lation and LoC synthesis across multiple technologies. Bio-
Script and its software stack pave the way for many life



science subdisciplines to increase productivity due to au-
tomation and programmability. This paper reports a full
system implementation, which can compile and type-check a
high-level language program and execute it on the real-world
DropBot platform by transmitting commands (electrode ac-
tuation sequences) via the DropBot software interface.

Being nascent, BioScript ’s type system statically type-
checks only chemical reactivity groups. Extending the type
system, introducing dependent types to account for proper-
ties such as temperature, pH, volume, or concentration is a
natural next step.

Long-term, this type system could be generalized into a
generic type system for cyber-physical systems, transcending
even pLoC-based biochemistry. In the future, we hope to
extend the BioScript language with support for non-inlined
functions, arrays, SIMD operations, and some notion akin to
processes or threads. We view the type system as a starting
point for a much deeper foray into formal verification, e.g.,
to ensure that biological media always experience physical
properties such as temperature or pH levels within a user
specified range.
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électriques et capillaires. Gauthier-Villars, 1875.

[11] Y. Luo, K. Chakrabarty, and T. Ho. Error recovery in
cyberphysical digital microfluidic biochips. IEEE
Trans. on CAD of Integrated Circuits and Systems,
32(1):59–72, 2013.

[12] Y. Luo, K. Chakrabarty, and T. Ho. Real-time error
recovery in cyberphysical digital-microfluidic biochips
using a compact dictionary. IEEE Trans. on CAD of
Integrated Circuits and Systems, 32(12):1839–1852,
2013.

[13] F. Mugele and J. Baret. Electrowetting: from basics to
applications. Journal of Physics: Condensed Matter,
17:R705–R774, 2005.

[14] K. B. Mullis, H. A. Erlich, N. Arnheim, G. T. Horn,
R. K. Saiki, and S. J. Scharf. Process for amplifying,
detecting, and/or-cloning nucleic acid sequences,
July 28 1987. US Patent 4,683,195.

[15] M. G. Pollack, A. D. Shenderov, and R. B. Fair.
Electrowetting-based actuation of droplets for
integrated microfluidics. Lab on a Chip, 2(2):96–101,
2002.

[16] Synthace. Antha-lang, coding biology.
https://www.antha-lang.org, 2016. accessed:
2016-11-01.

[17] J. P. Urbanski, W. Thies, C. Rhodes, S. Amarasinghe,
and T. Thorsen. Digital microfluidics using soft
lithography. Lab Chip, 6:96–104, 2006.

[18] Y. Zhao, T. Xu, and K. Chakrabarty. Integrated
control-path design and error recovery in the synthesis
of digital microfluidic lab-on-chip. JETC,
6(3):11:1–11:28, 2010.


