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Here, we present an efficient quantum algorithm to generate a many-body state equivalent to Laugh-
lin’s ν = 1/3 fractional quantum Hall state on a digitized quantum computer. Our algorithm only uses
quantum gates acting on neighboring qubits in a quasi-one-dimensional (1D) setting and its circuit depth
is linear in the number of qubits, i.e., the number of Landau orbitals in the second quantized picture. We
identify correlation functions that serve as signatures of the Laughlin state and discuss how to obtain them
on a quantum computer. We also discuss a generalization of the algorithm for creating quasiparticles in
the Laughlin state. This paves the way for several important studies, including quantum simulation of
nonequilibrium dynamics and braiding of quasiparticles in quantum Hall states.
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I. INTRODUCTION

Understanding the properties of strongly interacting
electrons is a long-standing challenge in condensed-matter
physics [1,2]. The computation time required for the
numerical solution of strongly correlated quantum many-
body models on classical computers grows exponentially
with the system size. As proposed by Feynman in 1982, the
use of a quantum computer to simulate a quantum system
can circumvent this difficulty [3–6]. Recent advances in
superconducting qubits [7–9] and trapped-ion qubits [10,
11], among other platforms, have brought us close to this
goal. Concurrently, progress has been made on algorithms
to simulate strongly correlated quantum systems [12–15].

Existing and near-term quantum hardware provide an
unprecedented opportunity for creating strongly corre-
lated states of quantum matter that can be controlled and
manipulated to a high degree of precision. The ability to
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create such states on general-purpose digitized quantum
devices (rather than customized single-purpose systems
that physically emulate the associated Hamiltonians) can
foster rapid progress in quantum simulation of correlated
quantum systems. Such advances, however, rely on the
development of efficient quantum algorithms. Recently,
different algorithms have been proposed for the use of
quantum computers to study topological phases as well as
the Hubbard model [4,12,13,16], the latter corresponding
to a strongly interacting system that is believed to cap-
ture the essential properties of cuprate high-temperature
superconductors.

Another class of correlated electron states are fractional
Hall phases [17]. In the latter system, the kinetic energy
of electrons is suppressed by an external magnetic field
and, as a result, even the screened interaction is strong
in comparison with the kinetic energy. It has been exper-
imentally shown that the correlated electronic states that
emerge in these settings would harvest novel properties
such as fractional quasiparticle charges. These experimen-
tal results have first been explained by Laughlin through
the prediction of the form of a many-body wave function
[18]. Numerical methods such as exact diagonalization
have further confirmed the form of the Laughlin wave
function as the many-body wave function corresponding to
a class of fractional Hall states. Diverse types of correlated
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states seem to develop at different filling fractions of the
Landau level. The types of fractional Hall states predicted
theoretically are more numerous than those that have been
experimentally realized. Many of the theoretically pre-
dicted phases would display novel phenomena such as
non-Abelian quasiparticles. Despite extensive effort, many
of these demanding theoretical predictions have not been
experimentally realized. The generation of fractional Hall
states on quantum computers would provide a highly con-
trollable platform to realize novel phenomena that have
been predicted theoretically, on an actual quantum wave
function. Fractional Hall states can result from long-ranged
electron-electron interactions but to generate them effi-
ciently on quantum computers, we need unitary operators
that act only on nearest-neighbor qubits.

In this paper, we present a quantum algorithm to gener-
ate a ν = 1/3 fractional quantum Hall state in the same
topological class as Laughlin’s wave function on a dig-
itized quantum computer. Our algorithm works in the
second-quantized representation of Landau orbitals in each
Landau level, where the parent Hamiltonian is one dimen-
sional (1D) and gapped (with a matrix-product ground
state). Our proposal requires N qubits, where N is the
number of Landau orbitals, and employs a quantum circuit
of depth N/3 + 3. It opens up new avenues to simulat-
ing novel quantum phenomena in fractional quantum Hall
systems on a digitized quantum computer.

In Sec. II, we discuss the truncated 1D parent Hamil-
tonian of the Laughlin state in the second quantization
picture. The effect of the truncation is benign, given the
fast Gaussian decay of the pseudopotentials. In Sec. III,
we first introduce a reduced representation of the Laughlin
state using only one third of the qubits. This state repre-
sents a fractional quantum Hall state with ν = 1/3 and is
equivalent to the Laughlin’s wave function. We then pre-
pare the Laughlin state in the reduced representation before
converting it back to the original representation. In Sec.
IV, we discuss how to verify the generated Laughlin state
by evaluating certain correlation functions. In Sec. V, we
discuss how to create quasiparticles in the Laughlin state.
We present our conclusions in Sec. VI.

II. FERMION-CHAIN MODELS FOR
FRACTIONAL HALL EFFECT

When a perpendicular magnetic field is applied to a
two-dimensional (2D) electron gas, the kinetic energy of
electrons is suppressed and they form a set of discrete Lan-
dau levels. The degeneracy of each level is determined
by the number of magnetic flux quanta passing through
the system, while the gap between the Landau levels is
directly controlled by the size of the magnetic field. Within
each Landau level, the electron-electron interaction is the
sole energy scale and it determines the many-body ground
state. Since the degenerate set of states could be labeled

with a single quantum number (e.g., angular momentum),
an effective 1D model could be applied to study the quan-
tum states within each Landau level. The main challenge,
then, is that the electrons in all states in the 1D chain inter-
act with each other. To represent the interaction potentials
between the states in one Landau level, we need to choose
a basis with which to represent the degenerate states within
the lowest Landau level. A commonly used method is to
consider states for electrons on a torus. The general form
of the Hamiltonian will then correspond to [19–21]

H =
N−1∑

i=0

∑

k>|m|
Vkmc†

i+mc†
i+kci+m+kci, (1)

where ci is the annihilation operator acting on orbital i and
N = L1L2/2n identifies the number of available states in
each Landau level. With periodic boundary conditions, we
identify cN+j with cj . L1 and L2 are the circumferences of
the torus. The interaction potential Vkm corresponds to the
projected Coulomb interaction in the orbitals within each
Landau level. Generally speaking, Vkm is nonzero for all
pairs of orbitals but considering specific limits, such as the
thin-torus limit, the interaction potential can be simplified.
For example, the form of the interaction potential that leads
to the Laughlin wave function,

Vkm ∝ (k2 − m2)e−2π2(m2+k2)/L1 , (2)

gives local interaction in the limit of L1 → 0 and has
a density-wave ground state |100100 . . . 〉, where each
occupied site is followed by two unoccupied sites.

Following [21], we truncate the above Hamiltonian
to a minimal model with a fractional-quantum-Hall-type
ground state:

H =
N−1∑

j =0

V10nj +1nj +2 + V20nj nj +2 + V30nj nj +3

+
√

V10V30
(
c†

j c†
j +3cj +2cj +1 + h.c.

)
, (3)

where nj = c†
j cj .

Applying transformations that correspond to enlarging
L1 transforms the density-wave ground state into an entan-
gled state corresponding to a Laughlin-type state. Even in
the thick-torus limit, the state has an important simplify-
ing feature: it can be represented by a matrix product state
that captures all the salient properties of the Laughlin state
[19–21].

III. QUANTUM CIRCUIT

For the Laughlin ν = 1/3 state, it has been shown in
Ref. [21] that the (unnormalized) ground state of Hamil-
tonian (1) can be obtained by the action of a nonunitary
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operator on a direct-product state as

|ψ〉 = N
N−3∏

j =0

(1 − tc†
j +1c†

j +2cj +3cj )|100100100 . . .〉, (4)

where the parameter t is given by t = √
V30/V10. The factor

N is an overall normalization constant.
It is convenient to map the fermions to qubits through

a Jordan-Wigner transformation, which maps the fermion
occupation number nj = c†

j cj to spin operators σ z
j = 1 −

2nj . The two levels of each qubit satisfy σ z
j |0〉j = |0〉j ,

σ z
j |1〉j = −|1〉j , and the fermion creation and annihilation

operators are given by

cj =
⎛
⎝
∏

k<j

σ z
k

⎞
⎠ σ−

j , c†
j =

⎛
⎝
∏

k<j

σ z
k

⎞
⎠ σ+

j , (5)

where σ+
j |0〉j = |1〉j , σ−

j |1〉j = |0〉j , σ+
j |1〉j = 0, and

σ−
j |0〉j = 0.
Using the anticommutation of fermion operators, we

can then write the squeezing operator c†
j +1c†

j +2cj +3cj =
σ+

j +2σ
z
j +2σ

−
j +3σ

+
j +1σ

z
j σ

−
j that corresponds to moving the

electrons on the effective 1D chain toward each other
[22,23]. The state can then be written as |ψ〉 = N ∏

j (1 −
tSj )|100100100 . . .〉

Sj = σ+
j +1σ

+
j +2σ

−
j +3σ

−
j , (6)

where we use σ+σ z = σ+ and σ zσ− = σ−.
To construct a unitary operator that creates the same

state, we note that blocks of three consecutive qubits effec-
tively serve as a reduced qubit, indicating whether or not
a block is squeezed. The initial state has no squeezed
blocks and can be represented by a sequence of zeros in the
reduced space as |100100100100〉 → |0000〉. As another
example, a state with two squeezed blocks |1010〉 repre-
sents |011000011000〉. The squeezing operator associated
with a block acts on the three qubits in the block and the
first qubit of the next block. A squeezing operator trans-
forms the qubits in a three-qubit block as well as the first
site of the next block according to |100, 1〉 → |011, 0〉.
Therefore, when the squeezing operator acts on a given
block, its first qubit as well as the first qubit of the next
three-qubit block will be set to 0. We note that Sj anni-
hilates the state unless the four qubits it acts upon are in
the 1001 configuration. Thus, if a block is squeezed, the
application of the squeezing operator on the neighboring
block to its left (right) will annihilate the state. Thus, a
squeezed block cannot have any neighboring blocks that
are also squeezed. For example, the reduced representation

on two neighboring blocks are

|1k〉 = |03k13k+113k+2〉, (7)

|1k0k+1〉 = |03k13k+113k+2, 03k+303k+403k+5〉, (8)

|0k0k+1〉 = |13k03k+103k+2, 13k+303k+403k+5〉. (9)

The number of states in the superposition (4) is then given
by the Fibonacci number, which grows exponentially with
the system size [24]. The amplitude of a state in the unnor-
malized superposition is then (−t)P, where P is the number
of 1s in the reduced space of registers associated with the
blocks.

The nonunitary operator (1 − tS3k) acting on |0k〉 cre-
ates |0k〉 − t|1k〉 when the (k + 1)th register is 0 and it
leaves the |0k〉 unchanged when the (k + 1)th register is
1. Since a nonunitary operator cannot be implemented on
a quantum device, we consider the unitary operator on the
kth register

Uk = eφk(S3k−S†
3k), (10)

which similarly acts as identity when the (k + 1)th register
is 1. However, when the (k + 1)th register is 0, it creates a
superposition

Uk|0k0k+1〉 = cos(φk)|0k0k+1〉 + sin(φk)|1k0k+1〉. (11)

Our approach to creating the state (4) uses the following
sequence of unitary operators:

|ψ〉 = UN/3−1(φN/3−1) · · · U1(φ1)U0(φ0)|0 · · ·00〉. (12)

By choosing the appropriate angle φk, obtained from the
recursion relation

φk−1 = arctan [−t cos(φk)] , (13)

with boundary condition φN/3−1 = arctan(−t), we can
ensure that the resulting normalized state is the same as
Eq. (4).

The recursion provides the correct factor of (−t)P for
a state with P squeezed registers |1〉. The amplitude of
the (k − 1)th register being in state |0〉 is reduced by a
factor of cosφj if the state of the kth register is |0〉; oth-
erwise, it remains the same. On the other hand, every
register with state |1〉 obtains a factor of sinφj during the
squeezing operation. Therefore, the squeezing angles on
two consecutive blocks must satisfy

sin(φk−1)

cos(φk) cos(φk−1)
= −t, (14)

to create the superposition |0k−1〉 − t|1k−1〉. For example,
we consider the initial state |100100100〉 = |000〉. The
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resulting squeezed state is U2U1U0|000〉 = c0c1c2|000〉 +
c0c1s2|001〉 + c0s1|010〉 + s0c2|100〉 + s0s2|101〉,
where we use the shorthand notation cj ≡ cos(φj )

and sj ≡ sin(φj ). The condition tanφ2 = tanφ1/cosφ2 =
tanφ0/cosφ1 = −t needs to be satisfied to create the
desired superposition |0〉 − t|1〉 for all blocks.

We now present our algorithm in the form of a uni-
tary quantum circuit acting on the vacuum state |000 . . . 0〉
of 3m superconducting qubits. The circuit depth scales
linearly with the number of qubits, with a small enough
coefficient to allow the implementation of the algorithm
on existing quantum hardware. The efficiency of the
algorithm relies on two key observations. First, as dis-
cussed above, we cannot squeeze two neighboring three-
qubit blocks. The second observation is that the middle site
of a block fully encodes whether or not a block is squeezed.
It is |0〉 (|1〉) before (after) squeezing. As shown in Fig. (1),
our algorithm starts by creating the initial direct-product
state |100100100 . . . 〉 using X gates in stage 0.Stage 1
is the core of the algorithm, which applies the squeezing
operators on the middle site of each three-qubit block. Ini-
tially, none of the blocks are squeezed, so for the first block
we simply apply a unitary rotation Ry(θ) ≡ e−iθσ y/2 on the
middle site of the first block. For the second block, how-
ever, we apply a controlled rotation. If the middle site of
the first block is 1, a neighboring block is squeezed and we
should not act on the second block. The middle-site block k
acts as a control register for a Ry(−2φk+1) rotation applied
to the middle site of block k + 1. In this implementation,
we make use of a controlled phase gate, CNOT, and simple
single-qubit gates. Since the gates are applied sequentially,
we only need to control each block by the previous block.

At the end of stage 1, the middle qubit of each block has
the same amplitude as the corresponding reduced register.
In the final stage, we use control gates to fix the states of the
neighboring qubits according to whether or not a squeezing
has occurred.

Therefore, in the first stage of the algorithm we just act
on the middle site of each block to construct the overall

FIG. 1. The full quantum circuit in three stages.

FIG. 2. Our algorithm can be implemented using only nearest-
neighbor two-qubit gates if the qubit layout of the device contains
a three-leg ladder substructure. The solid lines represent cou-
plings between the reduced space registers encoded in the middle
sites (stage 1 in Fig. 1). The dashed lines represent the couplings
in stage 2 of the algorithm, shown in Fig. 1.

structure of the superposition. In the following stage, we
use control gates to fix the nearby qubits. Several simpli-
fications, utilizing the special structure of the initial state,
are used to eliminate redundant gates.

In an experimental setup, we can apply two-qubit gates
only between neighboring qubits. A 3 × n square-lattice
qubit layout, shown in Fig. 2, makes the middle sites of
the consecutive blocks nearest neighbors, allowing for the
physical implementation of the circuit.We present the cir-
cuit in Fig. 1 as an example for n = 4. The last two qubits
are “ghost” sites, which ensure the correct filling fraction.
Due to the open boundary conditions of this setup, the
properties of the Laughlin state emerge in the bulk of the
system and away from the boundaries. We note that with
this layout, it is not possible to obtain a lower circuit depth
for a deterministic circuit. Since the circuit depth for stage
2 is constant, we focus on stage 1 in the reduced space.
With the linear geometry, we need at least an n − 1 depth
to correlate the first and last qubits deterministically.

An efficient decomposition of the controlled Ry gate in
term of the native gates of the system is presented in Fig. 3.
Our circuit then uses only two types of two-qubit gates, the
standard CNOT and the gate CZα = diag(1, 1, 1, eiπα) for a
tunable exponent α.

IV. VERIFICATION OF GENERATED LAUGHLIN
STATE

We now discuss the measurements that allow us to
experimentally verify whether our algorithm successfully
prepares the fractional quantum Hall state. We focus on the
expectation values of operators acting on the qubits, which

Ry(−2φ)
= X

X
1
2

cz −2φ
π

Rz(2φ)

X− 1
2

X

FIG. 3. The decomposition of the controlled Ry (up to an over-
all phase) in terms of native two-qubit gates.
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FIG. 4. The average density 〈nk〉 after the application of our
quantum circuit for a system of N = 24 qubits (the last two
qubits are ghost sites that remain zero) and different values of
t. Away from the boundaries, the results approach the thermody-
namic limit expressions given in Eqs. (15) and (16).

can be measured in the existing superconducting quantum
devices. As fractional Hall states are topological liquids
that do not carry a local order parameter (in real space
for the underlying 2D system), such measurements may
appear to be challenging.

However, it has been shown that correlations of some
nonlocal string operators would distinguish fractional Hall
states from other featureless liquid states. To verify the
nature of the state generated, we can perform sets of cor-
relation measurements. The first set consists of one- and
two-point correlation functions of the occupation number.
While these observables do not serve as an order parame-
ter for topological order, we know their dependence on the
parameter t. Thus, verification of the expected correlation
functions supports the correct preparation of the quantum
Hall state.While we do not have access to the full wave
function, as complete tomography is not feasible with a
large number of qubits, we can measure σ z for all qubits at
the end of the unitary evolution. The local density opera-
tor has the simple form nj ≡ 1

2 (1 − σ z
j ). The local density

pattern and their correlations for the Laughlin state are
expected to have the following forms [21]

〈n3m±1〉 = 1
2

(
1 − 1/

√
4t2 + 1

)
, (15)

〈n3m〉 = 1/
√

4t2 + 1, (16)

|〈ninj 〉 − 〈ni〉〈nj 〉| ∝
(

1 − √
4t2 + 1

1 + √
4t2 + 1

)|i−j |/3
. (17)

The results for the density expectation value obtained from
our algorithm with a finite number of qubits N = 24 are
shown in Fig. 4. Already, at this small system size, which
can be implemented with 22 qubits, we see that the bound-
ary effects are suppressed in the middle of the chain and
the observables are in agreement with the thermodynamic
limit expectations.

We can similarly compute the density-density correla-
tion function |〈ninj 〉 − 〈ni〉〈nj 〉|. Because we are in the
ground state of a gapped Hamiltonian, this correlator
decays exponentially with a correlation length that depends

on the parameter t, as in Eq. (17). In finite systems, it turns
out that we can see the dependence of the correlation length
on t. However, in finite systems there are oscillatory sub-
leading corrections. In Fig. 5, we show the correlator for
i = 2 and several values of t for a system with N = 24
qubits.

We now turn to a string operator [25], which can serve
as a diagnostic for topological order in this system. Despite
the absence of a local order parameter, topological order in
a fractional quantum Hall state can be detected by long-
range order in the density matrix transformed to a singular
gauge [26].

The analog of the singular-gauge density matrix for

a spin-1 chain is the string operator −〈Sz
i eiπ

∑j −1
k=i+1 Sz

k Sz
j 〉

[25,27]. As in Ref. [21], we identify a spin-1 degree of
freedom in our system by noting that the last site of the
three-qubit block and the first two sites of the next block
can only take three different configurations, |01, 0〉 →
|Sz = 0〉, |00, 1〉 → |Sz = 1〉, and |10, 0〉 → |Sz = −1〉.
Therefore, we can write Sz

j = n3j +3 − n3j +1. We therefore
use the following string correlator in terms of the original
measured occupation numbers of the qubits:

Oij
str = −

〈[ j −1∏

k=i+1

(−1)n3k+3(−1)n3k+1

]

(n3i+3 − n3i+1)(n3j +3 − n3j +1)

〉
. (18)

Long-range order in Ostr, i.e., lim(j −i)→∞ Oij
str 	= 0, serves

as a diagnostic for the hidden topological order of our state.
In Fig. 7, we can clearly observe that for both small and
large systems and various values of t, the correlation func-
tions do not decay to zero. A qualitative feature of the
string operator, namely its finite asymptotic behavior, is an
indicator of topological order.

A short comment is in order regarding improving the
measurements in experiment. Each measurement results in

2 4 6 8 10 12 14 16 18

0.5

1.0

1.5

2.0

2.5

3.0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

FIG. 5. The correlation function |〈ninj 〉 − 〈ni〉〈nj 〉| exhibits
fast exponential decay even in a small system with N = 24
qubits. There are oscillatory finite-size effect, however, which
become larger as t increases. In the figure, we use i = 2 to stay
reasonably away from the boundaries.
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5
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15

0.0

0.1

0.2

0.3

FIG. 6. The value of Oij
str for t = 1 and j > i and two sys-

tem sizes. We have set the correlator to zero for j � i for easy
comparison. Even in a small system, long-range order can be
identified. The pattern persists for larger system sizes.

a bit string and we will need to repeat the experiment many
times to estimate the observables nj . In practice, there are
errors, such as the T1 error, in the implementation of all
the gates. Postselection can correct these errors to a large
degree. The squeezing operators do not change the number
of ones and zeros, so discarding any bit string for which
the number of qubits with n = 1 is not one third of the total
number of qubits improves the precision of the results.

0.0

0.2

0.4

0.6

2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

FIG. 7. The value of Oij
str for i = 1 as a function of j − i for

several values of t. The data for small system sizes are strongly
suggestive of long-range order. Larger system sizes provide even
more compelling evidence.

V. QUASIPARTICLE STATES

The creation of quasiparticle states is an important chal-
lenge, as it can pave the way to studying braiding and
the associated topological Berry phases on the quantum
device. Using the same recursion relations as before, we
can generalize our algorithm to also create quasiparticle
states. The Laughlin ν = 1/3 state is threefold degenerate.
In our discussion so far, we pick the density-wave pattern
100, 100, 100, . . .. Let us represent this pattern by sector a.
Alternatively, we could use any of the other two thin-torus
states 010, 010, 010, . . . (sector b) or 001, 001, 001, . . .
(sector c), each of which provides one of the degenerate
ground states. Our algorithm works for each of the three
sectors above. In each sector, we construct unitary opera-
tors that act on four consecutive sites. For the ground state,
the blocks that start with 1 have four sites in the 1001
configuration, which is not annihilated by the squeezing
operator. The blocks starting with 0, on the other hand,
have either the 0010 or 0100 configuration and get annihi-
lated by squeezing. Therefore, we are able to skip two out
of three blocks of four consecutive sites—namely, 0010
and 0100—in this sector as they are annihilated by the
squeezing operators. Our algorithm for sector a therefore
implements a unitary operator

Ua = Ua
N/3Ua

N/3−1 · · · Ua
1Ua

0, (19)

where Ua
k is the same as Uk defined in Eq. (10). Similarly,

we can define

Ub
k = eφk(S3k+1−S†

3k+1), Uc
k = eφk(S3k+2−S†

3k+2). (20)

A more general unitary operator

U = Uc
N/3Ub

N/3Ua
N/3 · · · Uc

0Ub
0Ua

0 (21)

can be constructed, which can prepare the ground state
in all three sectors. Quasiparticles can be constructed by
acting with U on density-wave states that have domain
walls between patterns corresponding to the different sec-
tors. The above unitary, which acts on all qubits, correctly
implements the transformation from thin- to thick-torus
limits and also works in the presence of domain walls.

VI. CONCLUSIONS

In summary, we design an efficient quantum algorithm
for creating a ν = 1/3 Laughlin-type wave function in
a system of qubits arranged in a three-leg ladder. Only
single-qubit gates and two-qubit gates acting on nearest
neighbors in the ladder geometry are used in our algorithm.
The circuit depth is N/3 + 3, which scales linearly with
system size.

Our algorithm takes advantage of the matrix-product
nature of the Laughlin-type wave functions in the sec-
ond quantization picture using Landau orbitals. While the
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assignment of one creation or annihilation operator to
each orbital may hide some characteristic properties of the
underlying 2D fractional quantum Hall state, the topologi-
cal order of the fractional Hall effect can still be diagnosed
by measuring some string operators.

The physical creation of the Laughlin wave function in a
ladder geometry paves the way for several important stud-
ies. These include quantum simulation of nonequilibrium
dynamics of quantum Hall states, as well as braiding quasi-
particles by implementing a cyclic adiabatic process on
the spin chain with domain walls. Due to the short cir-
cuit depth and the easy procedure to verify the generated
state, our algorithm is well positioned to be implemented
on near-term quantum computers.
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