INTEGRAL AND RATIONAL MAPPING CLASSES
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Abstract

Let X and Y be finite complexes. When Y is a nilpotent space, it has a rational-
ization Y — Y (o) which is well understood. Early on it was found that the induced
map [X,Y] — [X, Y] on sets of mapping classes is finite-to-one. The sizes of the
preimages need not be bounded; we show, however, that, as the complexity (in a suit-
able sense) of a rational mapping class increases, these sizes are at most polynomial.
This “torsion” information about [X,Y] is in some sense orthogonal to rational
homotopy theory but is nevertheless an invariant of the rational homotopy type of Y
in at least some cases. The notion of complexity is geometric, and we also prove a
conjecture of Gromov regarding the number of mapping classes that have Lipschitz
constant at most L.

1. Introduction

One of the great successes of homotopy theory is the complete algebraicization of
rational homotopy theory by Quillen in [14] and Sullivan in [16]. In particular, while
the main objects of study are best understood as infinite complexes, the finiteness the-
orem of Sullivan and Hilton, Mislin, and Roitberg, quoted below, and related results
allow the ideas to be applied to the homotopy theory of based maps between finite
complexes X — Y, where Y is a nilpotent space.

To each nilpotent complex Y of finite type' is associated a (functorially con-
structed) rationalization Y(g), characterized by the condition that the map ¥ — Y(q)
induces an isomorphism on ; (—) ® Q. In this context, the finiteness theorem says
the following.

THEOREM ([ 16, Theorem 10.2(i)] or [10, Corollary I1.5.4])
If X is a finite complex, then the map between (based or unbased) sets of homotopy
classes [X, Y] — [X, Y ()] is finite-to-one.
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This paper is devoted to understanding this more quantitatively. If X is the sphere,
say, then the number of preimages of a rational map is independent of the map—when
it is nonzero—since it is the cardinality of the kernel of the map 7; (Y) — 7; (Y) ® Q.
However, even for as simple a target as S*, there are examples where the cardinalities
of these fibers can be unbounded. If X = S3 x §#, then the sizes depend on the degree
of the map restricted to the S factor.

The precise statement that we will make is that the size of these preimages grows
like a polynomial in the complexity of the homotopy class. But this forces the question
of defining complexity.

There are two solutions to this new problem, both suggested by Gromov’s well-
known paper [8].

(1)  Replace X and Y by manifolds with boundary, and consider the norms that
the maps induce on sufficiently large finite-dimensional algebras of differen-
tial forms. Unfortunately, unlike the minimal model, which is unique up to
isomorphism (see Section 2 for relevant concepts in the homotopy theory of
commutative differential graded algebras [DGAs]), the algebras of differen-
tial forms are not. We will see that, in consequence, although the notion of
polynomially bounded is well defined, the degree of the polynomial is not.

2) Fix (possibly piecewise or cellwise) Riemannian metrics on X and Y, and
view the Lipschitz constant of f : X — Y as the complexity of the map. Min-
imizing this over representatives gives us a measure of complexity for homo-
topy classes. For example, the complexity of a degree d map S" — S” is
roughly d /.

The notion in (1) does not require the homomorphism to be integral. One just asks

for a map of DGAs with certain properties and considers the impacts on norms. For

integral classes, this quantity can be estimated from the map itself and bounded in
terms of its Lipschitz constant.

On the other hand, the notion in (2) is only defined for integral mapping classes
and, moreover, depends a priori on the metric. However, any homotopy equivalence
between finite metric complexes is homotopic to a Lipschitz homotopy equivalence
in the obvious sense. Hence, asymptotics with respect to it (up to a multiplicative
constant) are actually homotopy invariants.

The precise interconnection between (1) and (2) is complex. Gromov noted in
[8] and J. Maher showed in more detail in his unpublished thesis [11] that the ratio-
nal invariants of Lipschitz maps to a nilpotent complex (and therefore the notion in
(1)) are bounded by a polynomial in the Lipschitz constant. In fact, it turns out that
the minimal Lipschitz constant is likewise polynomially bounded by the notion in
(1); indeed, in [12] the first author shows this by way of a purely rational notion of
dilatation which is equivalent to (2) up to a multiplicative constant. This points to
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(2) as the “correct” notion of complexity for rational mapping classes even from an
algebraic-topological point of view.
We will show the following.

THEOREM 1.1
The size of the preimages of maps in [X,Y]| — [X, Y ()] is bounded by a polynomial
in the complexity (in either sense).

There is another phenomenon that is dual to this that also needs to be considered,
namely, a statement about the density of the image of [X, Y] in [X, Y(q)]. The image
is always discrete, but the density, that is, the number of image points in a “ball of
radius 1,” can grow as one moves farther from the zero map. However, this density
turns out to be polynomial as well.

These conclusions can be summarized by the following theorem, proved by Gro-
mov when X is a sphere in [8] and conjectured by him in [9, Chapter 7].

THEOREM 1.2
The number of homotopy classes of maps [X, Y] that have a representative with Lip-
schitz constant at most L is bounded by a polynomial in L.

However, in Section 3, we will see that (contrary to the speculation in Gromov’s
book; see [9, p. 358]) the number is not necessarily asymptotic to a polynomial. We
give an example that has an extra log(L) factor.

In all cases, we work with based maps, but the corresponding results for unbased
maps follow easily. Moreover, our examples are all in the realm of simply connected
spaces, where these notions are equivalent.

1.1. Rational invariance

The techniques in the proofs of Theorems 1.1 and 1.2 are variations of the work of
Sullivan. It is natural to ask whether the growth rates in these problems, which we
call torsion growth’ and growth, respectively, are actually invariants of the rational
homotopy type of Y(g) and not just the integral homotopy type of Y. It is unclear
whether this is true in general, but we prove the following partial result.

THEOREM 1.3
Let X and Y be finite metric complexes with Y simply connected. If Y (resp., X) is a

2We hope not confusingly, since there is only growth in situations where the mapping set does not have a group
structure.
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space with positive weights, then the asymptotic behavior of the growth g[x y] and the
torsion growth tgy y| depends only on the rational homotopy type of Y (resp., X ).

Having positive weights is a technical condition on the rational homotopy type of
a simply connected space first introduced by Morgan and Sullivan.” The main prop-
erty of such spaces is that they have a large family of “telescoping” automorphisms.
Many naturally occurring simply connected spaces have positive weights; in particu-
lar, all of our examples do. Therefore, for example, the L8log L growth we show for
[(S3 x S%)#2, §4] is a rational homotopy invariant. On the other hand, this theorem
does not give any information about non-simply-connected nilpotent spaces.

For more general spaces, we can only say something much weaker.

PROPOSITION 1.4

Given a rational homotopy equivalence Y — Z between finite nilpotent complexes,
for any finite complex X, the induced map [X,Y ]| — [X, Z] is uniformly finite-to-one;
that is, preimages of classes have bounded size.

This is insufficient even to prove rational invariance of torsion growth because,
for example, there may be classes in [X, Z(g)] that have quickly growing preimages
in [X, Z] but no preimages at all in [X, Y]. The difficulties may be number-theoretic:
in general, the integral classes of homomorphisms X — Y are integer points of an
arbitrarily complicated algebraic variety cut out by the differentials of X and Y. It is
unclear what rationally invariant estimates can be found in general.

1.2. Structure of the paper

Section 2 provides the background about DGAs and their connection to rational
homotopy theory. We recommend the (impatient) reader skip partway through to Sec-
tion 3, which gives examples of the various phenomena that this paper grapples with,
and then go back to complete Section 2. In Section 4, we explain methods (1) and (2)
for defining sizes of maps, and, in Section 5, we prove our main theorem by combin-
ing the ideas of Section 4 with Sullivan’s inductive method. Finally, the last section
addresses the rational invariance problem.

2. Homotopy theory of DGAs

In this section, we sketch out the homotopy theory of DGAs, following the treatment
in [7, Chapters IX and X]. Their relatively explicit formulation helps us obtain quan-
titative bounds. This justifies a thorough exposition, as the formalism may differ from
more abstract modern treatments.

3 According to [3], although this class of spaces was studied earlier by Mimura and Toda in [13].
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A (commutative) DGA will always denote a cochain complex of Q- or R-
vector spaces equipped with a graded commutative multiplication which satisfies
the (graded) Leibniz rule.* The prototypical example of an R-DGA is the algebra of
smooth forms on a manifold or piecewise smooth forms on a simplicial complex. On
a simplicial complex X, one can also define a Q-DGA A*X of polynomial forms
(see [7, Chapter VIII] for a detailed exposition). In the rest of the section, we will
denote Q or R by F.

The cohomology of a DGA is the cohomology of the underlying cochain com-
plex. The relative cohomology H"(¢p) of a DGA homomorphism ¢ : A — B is
defined to be the cohomology of the cochain complex

Cn(ﬁﬂ) — eA)n @ 0an—l

with the differential given by d(a,b) = (da, ¢(a) — db). This cohomology fits, as
expected, into the obvious exact sequence involving H *(#4) and H*(8).

Given a finite-dimensional vector space V', we write H*(; V*), where V* is the
dual of V, for the cohomology of the cochain complex Hom(V, +A). By the universal
coefficient theorem, this is naturally isomorphic to Hom(V, H *(+4)), but we will refer
to individual cochains in the former format.

A weak equivalence between DGAs 4 and B is a homomorphism 4 — B which
induces an isomorphism on cohomology.

An algebra 4 is simply connected if HO(A) = H'(A) = 0. If 4 is simply con-
nected and of finite type (i.e., it has finite-dimensional cohomology in every degree),
then it has a minimal model: a weak equivalence m 4 : M 4 — A, where M 4 is freely
generated as an algebra by finite-dimensional vector spaces V;, in degree n, written

o0
MA = /\ Va,
n=2
and the differential satisfies
n—1
dVy < N\ V-
k=2

In other words, M 4 can be built up via a sequence of elementary extensions
Ma(n+1) = Ma(n) & AViis

with a differential extending that on M 4 (1), starting with M 4 (1) = Q or R. We refer
to elements of the V},’s as indecomposables. We will often define finitely generated

“We use the abbreviation “DGA” for “differential graded algebra,” following [7] and [6]. In other areas this
abbreviation may be reserved for augmented algebras. Minimal algebras have a natural augmentation which
sends indecomposables to zero, but cochain algebras generally do not.
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free DGAs by indicating the degree of generators as superscripts in parentheses: a®)
means that a is an indecomposable generator in degree 3.

In particular, if Y is a manifold or simplicial complex which is simply connected
and of finite cohomological type, then the algebras of forms 4 = A*Y or Q*Y each
have minimal models, both of which we will call my : M} — . (This notational
confusion will not cause us any problems.) This models the Postnikov tower of Y:
each V,, =~ Hom(w,(Y),F) and the differential on V}, is dual to the k-invariant of
the fibration Y(,) — Y(,—1). This is shown inductively via the obstruction theory dis-
cussed below.

More generally, suppose that Y is a nilpotent space; that is, its fundamental group
is nilpotent and acts nilpotently on the higher homotopy groups. Then it still has a
minimal model my : M; — A, in the sense that it is built as a limit of extensions
My (n + 1) = M3 (n) ® AVpq1, but now n can no longer denote the degree of the
extension as the degrees

1 <degV1 <-- <V, < Vg1 <---

need not be strictly increasing. In other words, the kth Postnikov stage yields a finite
sequence of elementary extensions which correspond to a decomposition of the Post-
nikov stage K(mx(Y),k) — Yx) — Yx—1) into a sequence of principal fibrations.
Even more generally, we say + is geometric for a space Y if there is a weak equiva-
lence A — A*Y or Q*Y.

2.1. Obstruction theory
Given a principal fibration K(mw,n) — E — B, obstruction theory gives an exact
sequence of based sets

H"(X;m)— [X,E]—[X.B] > H""\(X;7)

of sets of based homotopy classes (see, e.g., [7, Proposition 14.3]). Moreover, over a
given map f : X — B, there is an exact sequence of groups

o> m(EX, fy > m(BX, f) > H"(X;7) — {lifts of /} — 0,

where the set of lifts is not a group but has a transitive action by H" (X ; ).
We now give DGA versions of these statements. First define homotopy of DGA
homomorphisms as follows: f, g : A — B are homotopic if there is a homomorphism

H:A—>BA1t®,diD)

such that H| 1= = = f and H| p=1 = = g. We think of A(z,dt) as an algebraic model

for the unit 1nterval and this n0t10n as an abstraction of the map induced by an ordinary
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smooth or simplicial homotopy. In particular, it defines an equivalence relation (see
[7, Corollary 10.7]).

We also introduce some notation which is useful for constructing homotopies
between DGA homomorphisms. For any DGA «, define an operation fot A ®
A(t,dt) - A Q@ A(t,dt) of degree —1 by
pit+l

i+1

t t
/ a®t =0, / a®t dt = (—1)%*% ®
0 0
and an operation fol 1A Q A(t,dt) = A of degree —1 by

1 . 1 . a
/ a®t =0, / a@tidt =(—1)%e? —,
0 0 i+1

These provide a formal analogue of fiberwise integration; in particular, they satisfy

t t
d(/ u)+/du=u—u|t=o ®1, 2.1
0 0 dt=0

1 1
d(/ u)—l—/ du =ul| =1 —ul| t=o . (2.2)
0 0 dt=0 dt=0

Now we state the main lemma of obstruction theory, which gives the conditions

the identities

under which a map can be extended over an elementary extension.

PROPOSITION 2.3 ([7, Proposition 10.4])
Let A ® AV be a degree n elementary extension of a DGA A. Suppose that we have
a diagram of DGAs

A B
It
g
AQAV —— €
with gla =~ hf by a homotopy H : A — € ® A(t,dt). Then the map O :V —
Bt @ €" given by

0w =( sz + [ Hiaw)

defines an obstruction class [0] € H" 1 (h : 8 — €;V*) to producing an extension
[ AQAV = Bof fwithho f >~ gviaahomotopy H extending H.



1950 MANIN and WEINBERGER

When the obstruction vanishes, there are maps (b,c) : V — (8",€"~!) such that
d(b,c) = O; that is,

db(v) = f(dv),
1
dc(v) =hob(v)—g(v) —/0 H(dv).

Then for v € V we can set f(v) = b(v) and

ﬁ(v):hof(v)+/0 H(dv) +d(c(v) ®1).

This gives a specific formula for the extension.
There is also a relative version of this proposition, as in [7, Lemma 10.5]. This
can be used to prove the following.

PROPOSITION 2.4
Let A ® AV be a degree n elementary extension of a DGA A. Let h: 8 — € be a

surjection of DGAs, and let A Q@ AV Y ebea map. Then there is an exact sequence
of based sets

H"(h:8— €, V*) > [ARAV, B, — [A,Bl,, = H" ' (h: B—C€;V*)

of homotopy classes of lifts of 9. Moreover, for every lift r : A — B of ¢| 4, there are
an exact sequence of groups and a set

(1 O ringp . - extensions of
[4, B ® Ae ]1,,®1—>H(h.£—>‘€,V)—>{inM®AV,£]w 0.

Here in the first term, we are looking at lifts of v ® 1 as a map
A—> (B Ae)/kerh ® (e),
that is, self-homotopies of W which project to ¢| 4 ® 1, and the obstruction O sends

v +n®er> (ndly,0).

This is a mild extension of [7, Proposition 14.4] and is proved in essentially the
same way.

In the case of spaces, a principal fibration K(xw,n) — E — B induces a fibra-
tion K(,n)X — EX — BX of spaces of based maps, for any CW-complex X. The
homotopy exact sequence of this fibration is
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o> H"R(X 1) > mi (EX, ) » me(BX, f) S H'" F U (X 7m) — -

2.5)

- m(BX, f) S H (X 7) > {hom(’topy Classes} 0.

of lifts of f

where f : X — E is an arbitrary lift of the map f : X — B.

The analogous long exact sequence for DGAs can be proved by an application of
Proposition 2.4. Let A ® AV be an n-dimensional elementary extension of a minimal
DGA 4, and let ¢ : A — B be a homomorphism. Then there is an exact sequence of
groups

s H'RB V) = [ARAV, B F(e(k))k

— [4. B@F(®)] gkl gy

2.6
of extensions of ¢ 2.6

= [A. B ® reM], 5 HY (B V*) > { homotopy classes } 0.
Here again ¢ : 4 ® AV — B is an arbitrary extension of ¢, and e®) represents a
k-dimensional generator with de = 0 and e? = 0. (Note that F(e®) is not minimal
when k is even.)

When B is nilpotent, 4 is a minimal model for B, V =7 ® Q, and B is geo-
metric for X, there is a homomorphism between these two sequences; in fact, by
induction on elementary extensions, when B is a rational space, this homomorphism
is an isomorphism. Therefore, for any nilpotent space this homomorphism is the ten-
sor product with @, as shown, for example, by Sullivan as part of the proof of [16,
Theorem 10.2(i)].

The group operation on [, 8 ® F(e®))], is given as follows. We can represent
any element as F = ¢ +1®e, where 1 : A* — B8* ¥ satisfies the identities dn = nd
and

N(uv) = (=) w)e(v) + @u)n(v). 2.7)
Then we define the operation H on such elements by the formula
(p+n1®@e)Bl@+i®e)=9+ 1+ Ve

When we view e as the volume element on S¥, this operation is homotopic to the
image of the usual operation in m; by an Eckmann-Hilton argument. We can then
identify ¢z with

p+n®er>nodl|y:V — Bk,
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3. Torsion and density growth

The finite-to-one-ness statement mentioned in the Introduction was proved by Sulli-
van as part of the following more general result (see [16, Theorem 10.2(i)] and its
proof).

THEOREM

Let X be a finite complex, and let Y be a nilpotent space of finite type (over the
integers). Then

(1) the localization map loc : [X, Y] — [X, Y(0)] is finite-to-one; and

(2) foralli>0and f: X — Y, the map

n(Y X, ) ®Q— m(Yo)*, f0)

induced by localization is an isomorphism.

One might hope that the finiteness in (1) is uniform, that is, that cardinalities of
preimages of points are bounded by some constant N (X, Y'). Indeed, this is obviously
true when X = S”, since in that case the correspondence is a group homomorphism
and each such preimage is a coset of the kernel. In general, however, the size of this
preimage may grow without bound depending on the rational homotopy class; we then
say that [X, Y] exhibits torsion growth. Instead, the quantitative version of Sullivan’s
theorem is provided by Theorem 4.6, which implies Theorems 1.1 and 1.2.

In this section, we provide three examples of torsion growth and related phenom-
ena that motivate the rest of the discussion.

Example 3.1
By obstruction theory, the homotopy class of amap f : S3 x §* — §* is determined
by the degree on the S* factor and a Hopf invariant on the top-dimensional cell.
However, some combinations determine homotopic maps. To see this, we fix two
maps f1, f»: 83 x S* — S* with degree d and Hopf invariants /1,5 which factor
through a map S3 x S — §7 v §* given by pinching off a disk in the top cell and
projecting the rest onto the S* factor, as in Figure 1.

Suppose that H : S3 x §* x I — §* is a homotopy between two such maps. The
original maps factor through S7 v $*, so such a homotopy factors as

S3xstxr Iy g4

where U is given by collapsing each end of the cylinder to a copy of S7 v S*. This
U is homotopy equivalent to S* x S minus two open disks; here the first S# factor
is S3 x I modulo the ends. Then H, sends the boundaries of the two disks to S* via
maps of Hopf invariant /21 and &, and the second S* factor via a map of degree d. It
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/\ degree p
/\

\_/ Hopf

invariant g

Figure 1. Construct maps S3 x §% — S* by “budding off” a small ball
and then projecting the rest onto the S* factor.

remains to determine the degree on the first S* factor, which we call a. In order for
the map to be defined on the top cell, the Hopf invariant on its boundary must be 0;
that is,

2ad = hl —hz.

Thus, a is determined by d, h;, and A5, and such a homotopy can be constructed if
and only if /1y — h is an integer multiple of 2d . In other words, maps 3 x §* — S*
which have degree d on the S* have a nontrivial Hopf invariant modulo 2d. For
d # 0, this gives 2d elements of [X, Y] above a single element of [X, Y(q)].

Repeating this example with maps S3 x HP" — HP”" gives (n + 1)d" different
maps of degree d on the second factor. Thus, the torsion growth of [X, Y] may be an
arbitrarily large polynomial in the rational homotopy invariants. The second part of
Theorem 4.6 shows that this is the worst that can happen.

Note that torsion growth occurs when the obstruction theory is affected by what
happens in lower dimensions. A similar situation may lead to another kind of growth
which is also limited by Theorem 4.6. Namely, the “density” of rational homotopy
classes which come from genuine, integral homotopy classes in [X, Y] (integral
classes for short) may grow as we look at larger balls in Hom(MF, M%).

Example 3.2

Consider now the space X = S3 x (§* v §%). Similarly to the previous example,
elements of [X, S*4] are determined by degrees oy and o on the two copies of S*
and Hopf invariants f; and §, on the two 7-cells. We now translate this into rational
homotopy theory. The two spaces have minimal models M, = (a® . b | da =0,
db =a?) and

H @ M D T
My = (x(3)7y§ )vJ’§ ),Zgl),Ziz),Zgz),... |dzij = yiyj....)
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(omitting higher-degree terms), and homomorphisms are given by

a1y +az2ya,

b a?zyy 4+ 20102212 + @220 + B1xy1 + Baxya

for any «;, B; € Q. However, when a1 85 = a3 81, a homotopy to the homomorphism
with 81 = B, = 0 is given by

ar oy, +oe2yz+?x®dt,
1

b afzyy + 20100212 + 05212 + (B1y1 + B2y2)x @t

Extending by linearity, we see that the representatives of a given rational homotopy
class form a line of slope a, /a1 in the (81, B2)-plane. (Thus, the space of homotopy
classes in this plane is 1-dimensional.) The lines which pass through lattice points are
integral. Thus, when o and «, are relatively prime, a ball of radius R in this plane
contains 2max{oy,a,} R integral classes.” As we allow «q and o, to increase, this
density grows, and the total number of integral classes in an R-ball in Hom(My , M)
is ~ R*, rather than ~ R3, as one may expect purely by looking at the dimension of
the space of rational homotopy classes.’

Thus, Theorem 4.6 may be rephrased as saying that both the torsion growth and
density growth of [X, Y] are always at worst polynomial.

Finally, we compute an example in which only looking at the volume growth
of the space of DGA homomorphisms actually yields the wrong overall bound on
the growth of [X, Y]. This is in contrast with the previous two examples, where the
number of distinct maps of degree zero with at most a given Lipschitz constant, which
is determined by the Hopf invariant, swamps the “extra” elements coming from the
torsion and density growth. Indeed, in this example, the correct bound is not even
polynomial!

Example 3.3

Let X = (S3 x S*)#(S3 x §4). Using the same method as in Example 3.1, we see

the following:

d The homotopy class of a map X — S* is determined by degrees d; and d, on
the two S* factors and a Hopf invariant / on the 7-cell.

SBy repeating the analysis in the previous example, one can see that the size of the preimage of this ball in
[X, Y], without identifying classes which are the same rationally, is 2 max{c;, @2} R + ged{a1, o2 }, regardless
of what the ged is.

OThis relies on the fact that a positive fraction (namely, 6/72) of all pairs of numbers are relatively prime.
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. The invariant /4 is well defined modulo 2 ged(dy, d>).

We now estimate the number of homotopy classes which have representatives with
Lipschitz constant at most L. By a minimal model analysis, such a homotopy class
must have d; = O(L*) and (if d; = d» = 0) h = O(L?). Conversely, any homotopy
class with d; < L* and h < L® can be realized with Lipschitz constant O(L) by the
construction in Example 3.1. The number of such homotopy classes is

2L +4 > 2d+ Y 2ged(dy.da).
0<d<L*4 0<|dq|,|d2|<L*

Clearly, the last term is asymptotically at least as large as the other two. Now, if
N > k, then the proportion of pairs 0 < a,b < N with gcd(a,b) =k is

. at most that of pairs for which k divides both @ and b (i.e., 1/ k?); and

d at least

o0 2
i Lag) ~mC- %)

Here the factor of 1/4 comes from accommodating the possibility that k does
not evenly divide N, and the summation comes from an overcount of all the
pairs which have gcd divisible by and strictly larger than k.
Therefore, to within a multiplicative constant, the number of integral homotopy
classes with these bounds is
L4 18
> 2ged(didy) ~ Y —5 -2k~ L¥logL.

k2
0<ld; |,Id2|<L* k=1

This is, therefore, the growth function of [X, $*].

4. Polynomially bounded functionals on [X, Y]

We now introduce some vocabulary to talk about the quantitative properties of the
fundamental correspondences in rational homotopy theory. Let X be a finite simpli-
cial complex, and let Y be a nilpotent space of finite Q-homological type. We will
study the set of homotopy classes from X to ¥ by studying their images in the homo-
topy classes of DGA homomorphisms M} — A* X from the minimal model of ¥ to
the simplexwise polynomial forms on X. Although the domain and range are both
potentially infinite-dimensional as vector spaces, there is a finite-dimensional vector
subspace of Homg.ys (M5, A* X) which contains representatives of every homotopy
class, as a consequence of the following lemma.

LEMMA 4.1
There is a finite-dimensional space W C A*X such that every homotopy class of
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maps My — A* X has a representative where the images of all the indecomposables
arein W.

Proof

We show this by induction on elementary extensions. In the base case, there is one
DGA map Q — A*X, whose image is in Q. Now suppose that every homotopy
class of maps M7} (k) — A*X has a representative such that the indecomposables
land in a finite-dimensional subspace Wy . Suppose that M3 (k + 1) = M3 (k) @ AV,
where V is of degree ng 1. Then for any such representative, d V' lands in the finite-
dimensional subspace Dyji1 C Q[Wy] consisting of (ng4+; — 1)-coboundaries. Let
Sk+1 be a finite-dimensional subspace of A* X such that d|s,, is an isomorphism
to Dy 1. Finally, let #7%+1(X;Q) be a subspace of A*X containing a representa-
tive for each element of H"*+1(X;Q). By obstruction theory, every homotopy class
of DGA maps M7 (k 4+ 1) — A*X has a representative in

Wit := Wi + Sky1 + HEHL(X;Q).

Then we can set W = W,., where r is maximal such that n,, <dim X. O

Note that, given a minimal model my : M}"( — A*X for X, we can always
choose W C A*X as in the proof to be a subset of the image of my. This is true
even if X is not nilpotent: in this case a minimal model can still be chosen for A* X,
although it may be infinite-dimensional in each degree and may not be a good homo-
topical model for X. We fix the notation W(my,Y') for the vector space constructed
in this way, as it will be useful later. We also write Q[W] for the subalgebra of A*X
generated by W. Since W, as constructed in the proof, has no elements of degree
zero, this is still finite-dimensional in each degree and zero in degrees greater than
dim X, allowing us to use Hom(M3, Q[W]) as a larger but still finite-dimensional
substitute for the set of homomorphisms which send indecomposables of My to W.

Now let F : [X,Y] — R be a functional.” We say that F is polynomially bounded
with respect to a W as above if, for some (equivalently, any) choice of norms on W
and rA/(,S,dmlx, there is some p such that, for every o € [X, Y],

|F(@)]| = O((min{|l¢llop : ¢ € Hom(M}, Q[W]) with [p] = a9)})”).  (4.2)

Here |-||op represents the operator norm and «(q) is the image of « in [M3}, A*(X)].
We say that F is polynomially bounded if it is polynomially bounded with respect
to all choices of W. Likewise, if for some (not necessarily every!) W the reverse
inequality holds; that is, for some p > 0,

7In the old-fashioned sense of a mapping assigning numerical values to elements of a function space.
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F() = Q((min{]l¢llop : ¢ € Hom(M}. Q[W]) with [¢] = o) })”). 4.3)

then we say that the functional F is polynomially bounded below.

The degree p in (4.2) may certainly depend on the choice of W. For example,
one may take X = S3, Y = S2, and F to simply be the absolute value of the Hopf
invariant. Here we have M} = (x®|dx = 0) and

My = (a®,bP|da =0,db = a?).

The obstruction-theoretic choice of W as in Lemma 4.1 is a purely 3-dimensional one
generated by a volume form on S3; the map a — 0,b — kd volgs is homotopic to
the pullback of a map of Hopf invariant k, so the bound for this choice is linear. But
we could also, for example, choose W = (f*d volg2, d volgs), where f :S3 — S?2
is the Hopf fibration. Then a map of Hopf invariant k2 can be represented by a >
kf*d volg2, b 0,° and so the polynomial bound on F is only quadratic.

It is probably the case, although we do not know of specific examples, that func-
tionals may be polynomially bounded with respect to some W without being polyno-
mially bounded.” On the other hand, it is always enough to test the specific W that
we have already constructed.

LEMMA 4.4

Fix a minimal model my : My — A*X. Whenever a functional F on [X,Y] is poly-
nomially bounded with respect to W(mx,Y), it is polynomially bounded. Similarly,
F is polynomially bounded below if and only if (4.3) holds for W(mx,Y).

When X is also nilpotent, we may also choose Q[W] = m X(M)f(dimx). In this
case, it is possible to define the degree of polynomiality of a functional F as its
degree with respect to this W. This may be different from the degree with respect to
the Lipschitz norm given by the minimal Lipschitz constant of a representative; in this
paper we will take the latter as more natural, as explained in the Introduction.

Proof of Lemma 4.4
Write W = W(my,Y). For every k, fix subspaces S and #H"k (X; Q) of W as con-
structed in the proof of Lemma 4.1.

Let W’ be another finite-dimensional subset of 4* X such that maps to W' con-
tain representatives for all of [X, Y]. It is enough to show that there is a polynomial

8Note that we still need to include d volgs in W in order to represent maps with Hopf invariant not a perfect
square.

9This is because there are ways to define W so that the images of indecomposables must be related via essentially
arbitrary systems of rational Diophantine equations, and very little is known about how the minimal size of
solutions to these depends on parameters.
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P(t) such that, for every ¢’ : My — Q[W’], there is a ¢ : M} — Q[W] which is
homotopic to ¢" as amap to A*X such that ||¢|lop < P(||¢"|lop). If F is bounded with
respect to W by a polynomial Py, then it is bounded with respect to W’ by P o Py.

We show this by induction on elementary extensions. The point is to move
¢ M) 0@ @ M3 (k) — Q[W] which is sufficiently nearby, in the sense that
there is a polynomial-size homotopy from one to the other. This allows us to lift ¢
to a @x+1 which is still not too far away.

Formally, we keep track of the operator norm of ¢; (which sends indecompos-
ables to W(my,Y)) and of the homotopy Hj between ¢ M (k) and @i (Which sends
indecomposables to Uy ® (t=*, dt) for some finite-dimensional Uy which depends
only on W and W’). At the (k + 1)st step, lifting the homotopy increases these oper-
ator norms by at most a polynomial, again depending only on W and W’.

Specifically, we define ¢x4, and Hyy; as follows. Write My (k + 1) =
M3 (k) ® AV; choose a finite subspace S” C A*X such that d|s/ is an isomor-
phism to the space of coboundaries in the subspace

Ska1 + HH(X;Q) + (U + W)™+ C A™X.

By the discussion after Proposition 2.3, to extend ¢ and Hy it is enough to choose
(b, c) satistying

db(v) = gr(dv).
1
de(v) = b(v) — ¢/ (v) — [ Hi(dv)
0
for v € V. Then we can set ¢g+1(v) = b(v) and
Hisr (v) = grsr (0) + /0 Hi(dv) + d(c() ®1).

To choose b and ¢ in a polynomially bounded way, first let I;(v) = (d| Sk+1)_l x
(¢x (dv)) € Sk+1.- Then

1
b) ¢~ [ Hela)
0
isacyclein Sg4+1 + Ux + W’; let a(v) be the representative of its homology class in
H"k+1(X; Q). Then we choose b(v) = b(v) —a(v) and ¢(v) to be the antiderivative
in S’ of

» 1
B(v) —a(v) —¢'(v) - /0 Hie(dv).
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All four of these terms are polynomially bounded in terms of ¢ and Hy, with the
polynomial depending only on the differential on .M} and the structure of W and W',
O

All the above results, starting with Lemma 4.1, also hold for the de Rham algebra
Q* X ; in this case one should talk of R[W] rather than Q[W].

We now give the two main examples of polynomially bounded functionals which
motivate the definitions.

THEOREM 4.5
Suppose that X and Y are finite complexes with piecewise Riemannian metrics and
with Y nilpotent. Then the functional Lip : [X,Y] — R™T given by

Lipa = inf{Lip f : f is a Lipschitz representative of o}

is polynomially bounded below.

THEOREM 4.6

For finite complexes X and Y with Y nilpotent and for any W C A*X as in the
statement of Lemma 4.1, the number of homotopy classes in [X, Y] whose image in
[My,A*X] has a representative in the R-ball in Hom(M3, W) is bounded by a
polynomial in R. In particular, the functional # : [X, Y(0)] = R™, which measures the
size of the preimage in [ X, Y] of each class under composition with the rationalization
map, is polynomially bounded.

These two results combine to immediately yield Gromov’s conjecture.

COROLLARY 4.7

If X and Y are finite complexes and Y is nilpotent, then the number of homotopy
classes of maps X — Y which have representatives with Lipschitz constant at most L
is bounded by a polynomial in L.

The proof of Theorem 4.6 is deferred to Section 5.

Before we begin the proof of Theorem 4.5, we remark that, since we have not
used the equivalence between the rational homotopy categories of spaces and DGAs,
everything discussed thus far in this section is true for real DGAs as well as rational
ones. In other words, if X is a smooth manifold, perhaps with boundary, then we can
replace A* X with Q* X without changing any of the arguments.

Proof of Theorem 4.5
We first note that this property is invariant under Lipschitz homotopy equivalence.
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Therefore, we can assume that X and Y are compact Riemannian manifolds with
boundary by embedding them in some high-dimensional Euclidean space and thick-
ening.

From here, the proof follows the same outline as that of Lemma 4.4. Let f : X —
Y be a map with Lipschitz constant L. Fix real minimal models my : M} — Q*X
and my : My — Q*Y . (Here again, the fact that M} may not be a good homotopical
model is immaterial.) We would like to show that, for some polynomial P depend-
ing only on my and my, f*my : My — Q*X is homotopic to a map ¢ : M} —
W(my,Y) such that ||¢| < P(L).

This is proved by induction on the minimal model of Y. We let the co-norm be
our chosen norm on Q*X. This gives us an operator norm on maps My — Q*X
which is well defined up to a constant. Note that the Lipschitz condition implies that,
forw € Q"(Y),

I f*@lloo = L™ |@]loo-

In other words, || f*my [op < C(dim X,my ) L4mX .
At each stage of the induction we produce maps ¢y : M} (k) — W(myx,Y) and
Hy : M3 (k) — Q*X ® A(t,dt) such that
. okl < Pi(L); and
. if we write

r S
He () =Y L)@t + > Ji () @t dr,
i=0 j=0

then r and s depend only on X and Y, |[Ixillop < Px(L), and [[J jllop =<
Pr(L).
The induction step proceeds exactly as in Lemma 4.4, except that, since f*my is
not guaranteed to land in a finite subspace, neither can we guarantee this about Hy.
Therefore, we also cannot choose antiderivatives from a finite subspace. Instead we
use the following lemma, which dates back to [8] and is proved carefully for simplicial
complexes as [12, Lemma 2.2].

LEMMA 4.8 (Coisoperimetric inequality)

Given a compact Riemannian manifold X, there is a constant I(X,n — 1) such
that any exact form B € Q"(X) has an antidifferential a € Q" 1(X) with ||||eo <
I1(X,n = 1D|[Blloo-

We then produce @11 and Hyi as before. Write Mj (kK + 1) = M5 (k) ®
AVi41. First we produce b(v) for each element v of a basis for V4. This gives
acycle
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5 1
B(v)— frmy(v) — /O Hi(dv)

whose co-norm is polynomially bounded in L; this also gives a bound on its cohomol-
ogy class, obtained by integrating it against cycles generating Hy, ,, (X;R). Thus, we
can choose a(v) and b(v) as before. Applying the coisoperimetric inequality to

_ 1
b(v)—a(v)—f*my(v)—/0 Hy (dv),

we get a polynomially bounded c(v) and finally obtain ¢4+, and Hy 1, which also
have polynomial estimates. U

5. Quantitative finiteness

We now demonstrate Theorem 4.6. Sullivan’s result is proved by using obstruction-
theoretic exact sequences and the five lemma; for the quantitative version, we will
develop some quantitative homological algebra.

Definition

Let h: A — V be a homomorphism from a finitely generated group to a normed
Q-vector space. We say that £ is

. C -injective if, for every 1-ball B in V, #h~'(B) < C;

. C -surjective if every point of V is within C of h(A).

LEMMA 5.1 (Quantitative four lemmas)
Suppose that

S 2 /3

Ay A As Ay

l o l o l o l o
mq m> m3

V1 Vs V3 Vs

are exact sequences with the A;’s finitely generated groups and the V;'s finite-
dimensional normed Q- or R-vector spaces such that my and ms have operator
norm at most 1. Let T be a constant such that m, satisfies

min{||u|| ‘UE mgl(v)} <t|v| foreveryvemy(V,).

(1) If ¢ is Cy-injective, @4 is Cy-injective, and ¢y is Ci-surjective, then @3 is
(C1 + v)y*migkm2C, Cy-injective.

) If o1 is Cy-surjective, @3 is Cz-surjective, and @4 is Cy-injective, then ¢, is
(C1 + 31C3rkm3+1C4)—surjective.
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We remark that the groups A; are not necessarily abelian, although the ¢;’s of
course factor through the abelianization map.

Proof
We use a quantitative version of the usual diagram-chasing arguments for proving the
four lemmas.

For the injectivity four lemma, we would like to show that, for every 1-ball B in
Vs,

#p3'(B) < (C + )™ r*m2 0, Cy.
First note that # f3(¢3 ' (B)) < C4. Thus, it is enough to show that, for any a € Aq4,
#(f51 @ N g3 (B)) < (Cr + "™,

By shifting the center of B by —@3(a), where a is an arbitrary preimage of a, we see
that it is enough to show this for a = id. To do that, we will show that every element
in @31 (B) Nker f3 has a preimage in A, which lands within distance 7 of a C;-ball
Bina rkm1-dimensional affine subspace v, + m1 (V7).

Choose the center of B to be an arbitrary preimage v, of the center of B. Given
b € p31(B) N ker f3, choose a preimage b € Ay: we know that (pz(l;) is at most
distance t from v, + m1 (V7). Then we can choose s € Ay such that m; o ¢1(s) is at
most distance C; from ¢, (l;) — vy, and therefore b — f1(s) is the preimage we are
looking for. This completes the proof of the injectivity lemma.

For the surjectivity lemma, choose v € V5; we would like to show that there is
an a € A, such that ¢, (a) is contained in a (Cy + 3rC§km3+lC4)-ball around v. For
this, we will show that there is an element b € A, such that

||m2(v —2(b)) || =< 3C;km3+1c4-

We can find a point v’ € kerm, whose distance from v — @,(b) is at most 37 x
C3t1Cy. Then there is an @ € Ay such that m; o fi(d) is within C; of v/, and
wecanusea = b + fi(a).

It remains to find b. If |my(v)|| < 3C3™ "' Cy, then we can use b = 0. Oth-
erwise, we show by induction that we can reduce to this case. Let N = C;km3C4,
and consider the N + 1 disjoint C3-balls B; around Ii,;mz(v), i=0,1,...,N.Each
of these has a preimage point ¢; € A3; moreover, ¢4 o f3 sends each of the ¢;’s to
the Cs-ball around zero in V4, which means that they have at most C;km C, dis-
tinct images under f3. By the pigeonhole principle, there are i < j such that some
¢ € 93" (By) and ¢; € 93 (B)) have f3(¢;) = fa(c;). Then ¢; —ci = fo(b') for
some b’ € A,. Moreover,
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[m2(v = 20)) [ < [ma()] - Cs.

Now we repeat this process with m, (v — ¢2(b’)); after a finite number of steps, we

get an element of length at most 3C3rkm3+1C4 and can set b to be the sum of all the

b"’s used along the way. O
We are now ready to prove the theorem along with the following extra statements.

LEMMA 5.2
Let X and Y be finite complexes with Y nilpotent.
1) For every k, there is a polynomial P such that the rationalization map

(V)X f) — [M5 k), A* X @ neD]

frmy

is P(Lip f)-surjective, where the norm on the latter is given by the operator
norm on the indecomposables,

Iyl = inf{rpggllnln llopln : My (k) —> A*X s.t. [f*my + n®e] = y}.

(i)  For every k, there is a polynomial P,é such that the map

homotopy classes of homotopy classes of
lifts of fk—1) to Yx extensions of f*my (k — 1) to M3 (k)

is P/ (Lip f')-injective, where the norm on the set of extensions is induced by
the obstruction in H* (X : 73 (Y) ® Q) to homotoping to some fixed extension.

Remark 5.3
A similar proof, applied to a different portion of the long exact sequence, simultane-
ously proves that

(Y X, f) = 1 ((Yo)™. fo)
is P(Lip f)-injective and
T (Y'Y, f) = mig ((Y(o))X, f)

is P(Lip f)-surjective, for norms similar to those in Lemma 5.2(i). Thus, we recover
quantitative versions of the entirety of Sullivan’s result.

Proof
Write Y as an inverse limit of a tower of spaces
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—)Yk _)Yk—l —)—)YO = %,

where each Yy — Yy _ is a principal K (A, ny)-fibration, ny > ny_q. Fix W as in
the previous section; let ¢ : M} — A* X be a homomorphism which sends indecom-
posables to W and is homotopic to f*my.

Our goal here is to understand the behavior of [X, Y], that is, 7o of the mapping
space YX. To do this, we need to also consider the behavior of 7 ((Yz)¥, f) at
various stages k and with various basepoints f and its rationalization homomorphism
to

(k@) = [M} k), A*X ® /\e(l)](p.

By induction on k, we will construct polynomials Py such that, for the norm in
the statement of the lemma, the homomorphisms

m (Y0¥, f) = Tk, ¢)

are Py ([@ll)-surjective. In turn, we will use this to construct polynomials P, such
that the homomorphisms

homotopy classes of IR homotopy classes of
lifts of f to Y% extensions of ¢ to M7 (k)

are Py (||¢||)-injective, where the set of extensions is given a group structure by fix-
ing a basepoint. Then the number of classes in [X, Y] which map to the R-ball of
Hom(M73, Q[W]) is at most

;
R k=1 dim H"k (X;Ax ®Q) l‘[ PIQ(R), 5.4
k=1

where r = max{i : n; < dim X}. This is the estimate we are looking for (although it
may often be a drastic overcount). The Lipschitz estimates then follow from Theo-
rem 4.5.

We now produce the polynomials Py . Of course, we can take Py = 0, since both
groups are trivial. For general k, we inductively apply the surjectivity four lemma to
the subsequence

H" (X 4g) = (V)X f) = m(Ve-) ™ f) — H"™ (X 4K) - (5.5)
of the exact sequence (2.5) and the corresponding subsequence

H"™ Y (A*X: 4; ® Q) — I(k, @) LA Mk —1,9) 2 H (A*X; A, ®Q) (5.6)
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of (2.6). To do this, we must put norms on the vector spaces in (5.6) that satisfy the
relevant compatibility conditions. Note that the groups in (5.5) are finitely generated
as noted by Sullivan and perhaps already Serre.

First, let W D W be a finite-dimensional subspace such that every homotopy
class of homomorphism My — A*X ® Ae™ has a representative which lands in
Q[W] ® Ae. Such a subspace can be found by the method of Lemma 4.1. We put
norms on each of the groups Hom(Ag, Q) (Vi for short) and on the degree at most
dim X vectors in Q[W]. This gives a well-defined operator norm on maps Vi —
Q[W] with fixed-degree image—for example, on cochains that land in Q[W].

Now for i = ny and ny — 1 we define norms on H'(A*X; V,}) by minimizing
over cochain representatives that land in Q[W]:

leell g7 = inf{[| v [lopl ¥ : Vie — QW] s.t. [¥] = ).

Similarly, for y € I1(k,¢) we take the minimum over representatives of y of the
operator norm on indecomposables, which we call the left norm:

Iyl = inf{gggllnlw lopln : M (k) — Q[W]s.t. [p +n®e] =y}

Finally, for y € I1(k — 1,¢) we need to use a right norm which combines the left
norm (for M3 (k — 1)) and the homology norm on the image under ¢;:

(1o )y, |}

n: My (k—1) — Q[W]
st.lp+n®e]l=y '

Il = inf {maX{ir;kaflllnlw lop-

It is easy to see that, under these norms, the outer two maps of (5.6) are norm-
nonincreasing. Moreover, for the restriction map

p: (k). II-l1) — (Tk = L.g). |I-lIr)

there is a constant 7z, which is determined by the differentials on Vj and Q[W] and
is therefore independent of ¢, such that

min{||7]; : 7 € p~"(y)} < tllyll for every y € p(I(g.k)).

Finally, in order to induct, we need to compare the left and right norms on
IT(k — 1, ¢). Indeed, there is a polynomial Qj such that, for y € I1(k — 1, ¢),

171 < Qk(llell) - Iy lli-

This is because, for any u = dv, v € Vi, n(u) decomposes by repeated applications
of (2.7) as
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nw) =" pi)n(y).

where the y;’s are indecomposable. This bounds 7|4y, ) in terms of 7 applied to
indecomposables.
Therefore, by the surjectivity four lemma,

Pe(ll9l) = et + 37 Cro(Qi (1) Pt (I )™ .

where Cy _; and Cy ¢ depend only on X and Y. Now we apply the injectivity four
lemma to the sequence

i ((Ye—)*, f) = H" (X; Ax) — {lifts of £} —0

and the corresponding sequence of vector spaces, letting the norm on the set of lifts
be induced by that on H"*(X; V;*). We get that the rationalization on the set of lifts
is Py (|l¢]))-injective, where

P (llel) = Cro(Qx U@l Pe—i (lll) + 1)™,

where Ci o = Ci,0(X, Y) is the same as above. Now, distances under this norm are a
lower bound for distances under the operator norm on Hom(My , Q[W1]); this proves
the bound (5.4) and the theorem. Ol

6. Rational invariance
In this section we prove the statements about rational invariance given in Section 1.1.
We first restate Theorem 1.3.

THEOREM

Let X and Y be finite metric complexes with Y simply connected. If Y (resp., X)
is a space with positive weights, then the asymptotic behavior of g(x,y] and tg[x yj
depends only on the rational homotopy type of Y (resp., X ).

A simply connected space Y has (Q-) positive weights (see [3] or [5]) if the
indecomposables of its minimal DGA splitas U; @ U, @ -+ @ U, so that for every
t € Q there is an automorphism ¢; sending v > t*v, v € U;. Examples include formal
spaces in [15], coformal spaces in [5], as well as homogeneous spaces and other
spaces whose indecomposables split as Vo @ V7, where d Vo =0and dV; C A Vp. In
particular, the spaces in Section 3 all have positive weights. The lowest-dimensional
nonexample, as far as we know, is a complex given in [13], which is constructed by
attaching a 12-cell to S3 v CP?; other, much higher-dimensional nonexamples are
given in [2] and [1].
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Proof
Suppose that Y and Y’ are rationally equivalent simply connected finite complexes
with positive weights. This implies (see [3]) that these spaces are 0-universal; in par-
ticular, there are maps

y Ly Ly
inducing rational equivalences. We can assume that these maps are Lipschitz; more-
over, by Proposition 1.4, there are constants C(¢, X) and C’(v, X) such that the
maps [X,Y] — [X,Y’] — [X, Y] induced by ¢ and v are, respectively, C -to-one and
C’-to-one. Then we immediately see that, for any X,

gix,v1(L) < Cgrx,y(Lip(p) - L) < C'Cgpx v (Lip(¥) Lip(p) - L),
tgx.y](L) < Ctgx y(Lip(e) - L) < C'Ctgx v (Lip(¥) Lip() - L).

Since all these functions are polynomial, this means that they are within a multiplica-
tive constant of each other. A similar argument works for rationally equivalent X and
X' with positive weights. O

It remains to prove Proposition 1.4, which we again restate.

PROPOSITION

Given a rational homotopy equivalence ¢ : Y — Z between finite nilpotent com-
plexes, for any finite complex X, the induced map [X,Y | — [X, Z] is uniformly finite-
to-one; that is, preimages of classes have size bounded by some C (¢, X).

For the second part of Theorem 1.3, which concerns the domain, we will also
need the following dual statement.

PROPOSITION

Given a map ¢ : X — X' between finite complexes where the relative homology
groups H* (X', X) are finite, for any simply connected finite complex Y, the induced
map [X',Y] — [X, Y] is uniformly finite-to-one.

Proof of both propositions
To bound the size of the preimage of a homotopy class, we use obstruction theory on
the relative Postnikov tower
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Py
1 Pn
n i ps
P

P2
P2
% !

Y————— > P =P=Z

of the map ¢ : Y — Z. Here, Py is a space such that 7;(Px,Y) =0 for i <k and
wi(Z,Py) =0 for i > k. The map pj therefore only has one nonzero (and finite)
relative homotopy group, mx(Z,Y). This means that the obstruction to homotoping
two lifts of a map X — Py to Pr4q lies in H*(X;mx(Z,Y)), which is again finite.
Thus, there are at most

dim X

[T1H*(X:me(2.7))|

k=1

homotopy classes of maps X — Y going to any homotopy class of maps ¥ — Z.
For the dual proposition, we can use the dual argument to show that the size of
the preimage is bounded by
dim X
[T1H*(X". X:me(Y))

k=1

El

which is also finite. O
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