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We propose lateral optical trapping of Rayleigh particles using tailored anisotropic and hyperbolic meta-
surfaces illuminated with a linearly polarized Gaussian beam. This platform permits optical traps to be
engineered at the beam axis with a response governed by nonconservative and giant lateral recoil force
coming from the directional excitation of confined surface plasmons during the light-scattering process.
Compared to optical traps set over uniform metals, either in bulk or thin-layer configurations, the proposed
traps are broadband in the sense that they can be set with beams oscillating at any frequency within a wide
range in which the metasurface supports surface plasmons. Over that range, the metasurface dispersion
evolves from an anisotropic elliptic to a hyperbolic regime going through a topological transition and
enables optical traps with distinctive spatially asymmetric potential distribution, local potential barriers
arising from the momentum imbalance of the excited plasmons, and an enhanced potential depth that per-
mits stable trapping of nanoparticles using low-intensity laser beams. To investigate the performance of
this platform, we develop a rigorous formalism based on Lorentz force within the Rayleigh approximation
combined with anisotropic Green’s functions and calculate the trapping potential of nonconservative lat-
eral forces using the Helmholtz decomposition method. Tailored anisotropic and hyperbolic metasurfaces,
commonly implemented by nanostructuring thin metallic layers, permit to use low-intensity laser sources
operating in the visible or infrared frequencies to trap and manipulate particles at the nanoscale, and may

enable a wide range of applications in bioengineering, physics, and chemistry.
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L. INTRODUCTION

Optical trapping of small particles in the micrometer
range has triggered numerous applications in microbiology
[1-3], colloidal dynamics [4], and lab-on-a-chip appli-
cations [5], among many others [6-9]. In conventional
optical tweezers [10—13], an optical trap is set through a
tightly focused laser beam that confines the particle near
the higher electric field intensity. There, the gradient of the
electric field intensity that surrounds the particle generates
the required trapping forces. Unfortunately, it is challeng-
ing to extend this approach to trap particles whose size lie
down in the nanometer range as (i) the gradient force sig-
nificantly lessens with the third power of the particle size
[14]; and (ii) the thermal-fluctuation-induced motion of the
particles increases [15,16], thus favoring them to escape
from the trap. As a result, stable trapping demands high-
intensity and tightly focused laser beams that may damage
the nanoparticles due to photoheating.

These challenges can be alleviated by exploiting the
properties of surface plasmon polaritons (SPPs) [17-20],
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which are confined electromagnetic waves that propa-
gate at dielectric-metal interfaces [21]. For instance, let
us consider an electrically polarizable Rayleigh nanopar-
ticle (with radius @ < X¢/20, where Ag is the wavelength)
located near the surface of a metal is illuminated with light.
The particle scatters the incoming light as a superposition
of propagative plane waves and evanescent waves. This
linear scattering process can be accurately modeled using
the angular spectrum representation of a source consider-
ing that the particle behaves as a polarized electrical-point
emitter [21]. When the particle is located in the near
field of the plasmonic surface, the scattered evanescent
waves can couple to the structure and excite guided SPPs
[22-27]. Remarkably, this evanescent-wave coupling is
governed by spin-orbit interactions [28-—30]: only those
surface plasmons that possess identical transverse spin to
the one of the incoming waves will be excited. In the
cases that the particle acquires a linear polarization, the
scattered evanescent spectrum lacks any spin and excites
SPPs propagating along all directions within the surface.
The situation is different when the particle acquires an
out-of-plane polarization spin with respect to the sur-
face, which usually occurs when it is illuminated by an
obliquely incident circularly polarized light [22]. There,
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the scattered evanescent spectrum acquires a transverse
spin and excites only SPPs with similar spin thus leading
to plasmons traveling towards a specific direction along
the surface. To compensate the momentum of these direc-
tional SPPs, a nonconservative recoil force is exerted on
the particle acting in the direction opposite to the plas-
mons’ wavevector [22—27]. The direction and strength of
this force mostly depend on the handedness of the par-
ticle polarization spin and the momentum of the excited
plasmons, respectively [23]. Aiming to boost the strength
of recoil force, anisotropic and hyperbolic metasurfaces
(HMTSs) have been proposed to substitute bulk plasmonic
metals [31]. HMTSs [32-39] are ultrathin surfaces that
exhibit a metallic or dielectric response as a function of the
electric field polarization, possess a very large local density
of states, and support ultraconfined SPPs over a broad-
band frequency range. These structures can be constructed
by appropriately patterning common plasmonic materi-
als, such as silver [38], gold [39], or graphene [34,35]. It
has been shown that the recoil force acting on nanoparti-
cles located over HMTSs can be enhanced up to several
orders of magnitude with respect to the one appearing
over bulk isotropic surfaces [31]. Such a giant enhance-
ment is enabled by the large momentum of the directional
hyperbolic plasmons excited during the scattering process.
Furthermore, the enhancement is broadband [31] in the
sense that it appears when the particle is illuminated with
light oscillating at any frequency within a very wide range
in which the structure exhibits a hyperbolic response. It
should be noted that enhanced recoil force can also be
obtained using bulk hyperbolic metamaterials [25]. How-
ever, the strength of such a force is weaker than the one
found above hyperbolic metasurfaces and appears over a
short wavelength span [31]. This is because the excitation
of internally propagating hyperbolic states with sources
located outside the bulk of the media is challenging, as
evanescent fields scattered by the sources would mainly
couple at the interface between the metamaterial and the
surrounding environment [40].

In this context, recoil force has recently been exploited
to trap nanoparticles near bulk metals using a linearly
polarized Gaussian beam [41]. This elegant approach takes
advantage of the peculiar distribution of the electric field
within the beam: the components parallel to the surface
are even symmetric with respect to the laser-beam axis
whereas the out-of-plane component is odd symmetric.
The interplay between even and odd symmetries of the
in- and out-of- plane electric field components enforces
that the nanoparticle acquires an out-of-plane polariza-
tion spin with a rotation handedness always pointing away
from the beam axis that excites SPPs toward this direction.
This response holds independently of the particle position
within the beam. The combination of recoil force coming
from the excitation of directional SPPs in the scattering
process together with gradient force originating from the

Gaussian beam generates an optical trap located exactly
at the beam axis [41]. Unfortunately, this platform might
not be suitable for many practical applications because it
requires specific laser sources operating at wavelengths
very close to the intrinsic plasmon-resonance frequency of
metals. As the laser operation frequency is shifted away
from such a resonance, the presence of the metals does not
play a significant role on the force acting on the particle
and the trap performance becomes similar to a common
optical tweezer governed by gradient force originating
from the Gaussian beam. In addition, the performance of
this approach in terms of potential distribution, trap depth,
and minimum beam intensity required to achieve stable
optical trapping has not yet been investigated. The calcula-
tion of these parameters is challenging due to the intrinsic
nonconservative nature of the recoil force, which prevents
the use of common theoretical approaches based on the
definition of potential energy in the case of conservative
force fields [21].

In this contribution, we propose stable optical trap-
ping of nanoparticles using ultrathin anisotropic and
hyperbolic metasurfaces illuminated with low-intensity
Gaussian beams. This platform, illustrated in Fig. 1, per-
mits to engineer optical traps in which recoil force coming
from the directional excitation of ultraconfined SPPs deter-
mines the overall performance of the traps. The incident
Gaussian beam enforces that the nanoparticle acquires an
adequate out-of-plane polarization spin and sets the opti-
cal trap at its axis. Strikingly, and in stark contrast with
the case of bulk metals studied in Ref. [41], the proper-
ties of the traps are directly linked with the anisotropic
and broadband features of the supported SPPs, and can
be modified by tailoring the electromagnetic response of
the metasurface. In general, and compared to traps set over
common isotropic surfaces (bulk metal and uniform thin
layers), the proposed optical traps exhibit (i) significantly
larger trapping forces, associated to the high momen-
tum of the supported plasmons; and (ii) a broadband
response, in the sense that stable trapping can be set with
beams oscillating at any frequency within a wide range in
which anisotropic metasurfaces support SPPs. To investi-
gate this platform, explore its practical viability, and com-
pare its performance with respect to other configurations,
we develop below a rigorous theoretical formalism based
on (i) the Lorentz force within the dipole approximation
merged with anisotropic Green’s functions [21] to compute
the trapping forces; and (ii) the Helmholtz decomposition
method [42] to compute the potential energy of noncon-
servative forces. We validate our results using full-wave
numerical simulations performed in COMSOL Multiphysics
[43]. Our approach permits calculation of the spatial poten-
tial distribution of the trap, including the trap depth, and
allows elucidation of the minimum beam intensity required
to achieve stable optical trapping. We apply our formu-
lation to explore the trapping response of three realistic
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FIG. 1. Hyperbolic optical trap created by illuminating a
Rayleigh particle (yellow) located above an ultrathin anisotropic
metasurface (cyan) with a p-polarized Gaussian beam (red). The
beam has width wy and is focused at a distance f normal to the
surface. During the light-scattering process, the particle excites
highly confined surface plasmons (gray) on the metasurface
propagating away from the beam axis where the optical trap is
generated. The hyperbolic metasurface is constructed using sub-
wavelength metallic rods with width W, height H, and periodicity
L, and is supported by a medium of refractive index nj;.

configurations, namely a bulk silver substrate, a uniform
and thin silver layer, and an array of densely packed silver
nanostrips [38] that behaves as a HMTS. Numerical results
reveal an outstanding trap performance of nanostructured
silver over an ultrawide frequency band ranging from the
visible to the infrared. Compared to the case of a thin sil-
ver layer or bulk silver, the nanostructured configuration
greatly enhances the trap depth over the entire band that
in turn reduces the beam intensity required to achieve sta-
ble optical trapping. It should be noted that at the plasmon
resonance, the thin silver layer exhibits better performance
than the other platform. This response appears because the
nanostructured configuration does not exhibit a hyperbolic
response at that wavelength. Then, we explore the asym-
metrical potential distribution of the traps as the topology
of the nanostructured silver layer evolves from ellipti-
cal to hyperbolic regimes going through its topological
transition, and we reveal the presence of local potential
barriers that might appear along precise directions within
the surface. Such potential barriers arise over anisotropic
surfaces thanks to its rotationally asymmetric response,

exhibit larger energy than the trap depth, and might be use-
ful to predict the direction taken by an energetic particle
to escape from the trap. This response is in stark contrast
with the rotationally symmetrical and smooth potential dis-
tribution of traps set over thin and bulk metals, which
are isotropic in nature. Anisotropic and hyperbolic meta-
surfaces are promising candidates to trap and manipulate
nanoparticles using low-intensity laser sources operating
in the visible and near-IR band, and might lead to use-
ful applications in a wide variety of fields ranging from
physics and chemistry to bioengineering.

II. THEORETICAL FORMALISM: TRAPPING
FORCES AND POTENTIAL OVER ANISOTROPIC
METASURFACES

This section details first a theoretical framework able
to compute the nonconservative optical forces exerted on
a dipolar Rayleigh particle located above an anisotropic
metasurface that is illuminated by a Gaussian beam. Then,
the spatial potential distribution of the trap is computed
using the Helmholtz decomposition method [42]. Our
formalism permits quantitative determination of relevant
parameters such as the trap depth and stiffness, trapping
forces and potential, and minimum beam intensity required
to achieve stable trapping, among others. The approach is
general in the sense that no assumptions have been made
with respect to the type of metasurface, Rayleigh particle,
surrounding media, and operation frequency.

A. Optical trapping forces over anisotropic
metasurfaces

Let us consider an isotropic, nonmagnetic, and electri-
cally polarizable spherical Rayleigh particle located at a
position ¥y = (xg, yo,Zp) above an anisotropic metasurface
defined by a conductivity tensor 6°f = o*T%% + a};ﬁﬁﬁ, as
shown in Fig. 1. The ultrathin metasurface is placed in the
plane z = 0, lying on the interface between two media with
refractive indices n; (top) and ny (bottom). The particle is
illuminated by a normally incident Gaussian beam, i.e., the
beam axis is aligned with the Z axis (see the Supplemental
Material [44]), that has a beam width wg and is focused at
a distance fy. The focus position fy is defined as the verti-
cal distance between the metasurface and the center of the
Gaussian beam (see the Supplemental Material [44]), and
it is positive (negative) when the beam is focused above
(below) the metasurface. Assuming an e~ time depen-
dence, the total time-averaged optical forces exerted on the
particle are given by [21]

s 1 a5 2
F = SRe(p* - VIE®" (o) + E*(ro)])- (1

Here, p = ao[E" (ro) + E*(7o)] = @ - E" (7) is the
particle’s electric dipole moment, a¢ is the dynamic
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particle polarizability [21], @ is the effective dipole polariz-
ability tensor taking into account the electric field scattered
by the particle that is reflected from the surface com-
puted via the scattered dyadic Green’s function [21,44],
ES is the electric field scattered by the particle, and E¢"
is the superposition of the electric field of the standing
wave formed due to the superposition of incident laser
beam and its reflection from the metasurface. Equation (1)
shows that the total forces acting on the nanoparticle are
composed of two components: (i) the conservative gradi-
ent force, Fgmd = 0.5 Re[p* - VES (7y)], that always acts
toward the higher electric field intensity of the standing
wave [45,46]; and (ii) the nonconservative recoil force,
Fre = 0.5 Re[p* - VE*(rp)] that appears to compensate
the momentum of the directional SPPs excited on the sur-
face [22-25,31]. These two force components have a very
different origin: the gradient force depends on the gradi-
ent of the electric field intensity surrounding the particle,
and thus varies with the type of beam employed. For
instance, in the case of plane waves, this term would lead
to a radiation pressure pointing toward the direction of

EY @) = ﬁ fk.lf @e—iﬁzuz s (R 5
x C 4m kiky ik

—ky

the wavefront; whereas in the case of a Gaussian beam,
this component leads to gradient force pointing towards
the beam center, as is common in optical tweezers [12].
On the other hand, the recoil force mostly depends on
the properties of the surface plasmons supported by the
metasurface [31]. Besides, this force also depends on the
effective dipole polarization acquired by the particle [31].
For a given distance between the particle and the metasur-
face, the recoil force is maximized (strictly zero) when the
particle acquires an out-of-plane (linear) polarization spin.

The electric field of the p-polarized (i.e., transverse
magnetic) Gaussian beam employed in the proposed plat-
form possesses x and y components (in plane) that are even
symmetric with respect to the beam axis, whereas the z
component (out of plane) is odd symmetric [41]. This field
distribution ensures that the nanoparticle is polarized with
a spin that rotates against the beam axis (see the Supple-
mental Material [44]), as shown in Fig. 2 (top inset). The
resulting nonparaxial electric field components above the
surface yield [21,47,48]

23
kxkzl) e;kz,z] e T Mok Hon) gk, (2a)

rp kf k]

ky
wh k ; ks . B
E}(’;W(}_‘) —] ﬁ /f [;{_‘t‘ile—lkzlz - (Rsp;( _ Rpp%) elkz|z] e—fjﬁelkszDe!(kxI-l-%;dekxdky’ (2b)
_kl
o 2 2w
k, . : 1 ; ’
E¥ = ﬁ f f k—r(e_‘k”z —I—Rppe‘kz'Z)e_j'ue’kzm’e'“‘*”"yy Vdkdk, . (2¢)
1

—ky

Here, k; is the wave number in the medium above
the surface with a transverse component k = xk: + yk,

and a vertical component k;; = ,/k? — k?; and R,, and

Ry, are the Fresnel reflection coefficients that character-
ize the reflection of “p” and “s” polarized waves from
the anisotropic surface when it is illuminated with “p”-
polarized waves (see the Supplemental Material [44]). In
addition, a phase shift e’*z/0 is introduced as a measure of
tuning the laser focus position f along the Z axis [21,41].
Note that the integration limits in Eq. (2) are set to +k,
because the propagative modes dominate the response of
the beam and the influence of evanescent spectrum is

negligible [41]. In most scenarios, the total fields described
in Eq. (2) keep a similar symmetry as the incident Gaus-
sian beam in free space and polarize the particle with
the desired handedness to enable optical trapping (see the
Supplemental Material [44]). It should be noted that the
symmetry of these fields may change when the Gaus-
sian beam is focused well below the metasurface. In that
case, described below, the particle may acquire an out-of-
plane polarization spin with rotation handedness pointing
toward the beam axis and the recoil force becomes an
“antitrapping” force [41].

From Eq. (1), the lateral components of the gradient and
recoil forces can be simplified as (see the Supplemental
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FIG. 2. Trapping Rayleigh particles over a nanostructured metasurface with a Gaussian beam. (a) Normalized power of the surface
plasmons excited on the surface when the particle is located in different positions with respect to the beam axis. The top inset illustrates
the dipole polarization spin that rotates against the beam axis, direction of the plasmon wavevector, and the recoil forces acting on the
particle. (b) Total lateral forces F, (blue solid line) and recoil forces F e (red solid line) exerted on the nanoparticle versus its position
with respect to the beam axis (see the Supplemental Material [44]). Results obtained above actual nanostructured silver using COMSOL
Multiphysics (markers) are included for validation [43]. Dotted lines correspond to the forces acting on the nanoparticle when the
metasurface is replaced by a thin silver layer of identical thickness as the nanostructured metasurface. (c) Attractive vertical forces F,
acting on the nanoparticle as a function of its position xy with respect to the beam axis. The gold nanoparticle has a radius a = 15nm
and is located in free space at a distance zy = a over the metasurface described in Fig. 1 with parameters W =60 nm, L =180 nm,
H =10 nm, and n; = 1.05. The Gaussian beam width is wy = 2 pum, focus is fy = 0, and its operating wavelength is 540 nm.

Material [44])

_ 1 d B d el
F]atera],grad = ERQ Z E?: EEEW(FD)x +P: 5E,?W(P‘O)Yi|>
n=x\y,z

(3a)

s d .
Flateral,rec = _wz;u'(] llm[P:Pz]Im [EGER(}‘O)] x
* d g o= ~
+ Im[pypz]lm 5(?}2(1'0) Vit (3b)

Equation (3a) shows that the gradient force always acts
toward the maximum electric field intensity (i.e., toward
the beam axis) of the standing wave formed above the
metasurface. In addition to the type of beam, this force

also depends on the particle’s polarizability [21]. Equation
(3b) shows that the direction of the recoil force is deter-
mined by the interplay between the particle’s in-plane (py
and p, ) and out-of-plane (p,) dipole-moment components.
Using a properly focused Gaussian beam, the particle
acquires an out-of-plane polarization spin with rotation
handedness against the beam axis and the resultant recoil
force is directed towards the beam axis. In the case of
isotropic metasurfaces, this force points exactly towards
the beam axis independently of the particle position within
the beam [41]. However, in the case of anisotropic meta-
surfaces, the direction of the recoil force may not point
towards the beam axis due to the broken rotational sym-
metry of the system [i.e., G, (o) # G, (Fo) in Eq. (3b)].
As discussed below, the recoil force then pushes the parti-
cle towards the beam axis following a parabolic trajectory.
In addition, Eq. (3b) unveils that the strength of the recoil
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force depends on the imaginary part of the spatial deriva-
tive of scattered Green’s functions’ out-of-plane tensor
component, which measures the momentum of the excited
directional plasmons [23,31].

A useful parameter that defines the performance of an
optical trap is the trap stiffness, which measures the restor-
ing force that acts on the nanoparticle to bring it back to a
stable position within the trap—similar to the spring con-
stant in a common mechanical system. This parameter is
more significant in Brownian systems, where particles sus-
pended in liquids may acquire random motion due to the
continuous collision with the moving fluid molecules. The
stiffness of a trap set over a surface can be approximated
as [49]

Fy (e,
@)= -£28) )

p—0

where F,(p, @) denotes the radial component of the lat-
eral forces evaluated at a position (p,¢) defined in polar
coordinate system. In Eq. (4), we assume that the tangen-
tial force component is significantly weaker than the radial
one, as happens in the plasmonic systems considered here
(see the Supplemental Material [44]). In most cases con-
sidered in the literature [12,41], for instance, the force
generated by Gaussian beam in free space or over com-
mon plasmonic materials, the trap stiffness is isotropic in
the sense that it has polar symmetry and therefore provides
an identical response in all directions: x(¢) = «. This is
different in the case of traps set over anisotropic metasur-
faces: the restoring force that a nanoparticle experiences
towards the trap depends on the direction through which
the particle is trying to escape. Traps with anisotropic stiff-
ness are useful to predict the probable direction followed
by the particle when it acquires enough energy to escape
from the trap.

B. Trapping potential over anisotropic metasurfaces

The trap potential is arguably the most useful parameter
that defines the performance of an optical trap [17,18,50].
Here, we focus on the trap potential energy and trap depth,
which is a quantitative measure of how long the particle
remains confined within the trap. In the case of conser-
vative forces, such as the gradient force originating from
a Gaussian beam [13], the trapping potential U of a vec-

tor force F, can be obtained as U.(F) = — [ F.(F)-dF
—00
[21]. This potential represents the energy required to move
a particle from a reference location with zero energy (con-
sidered here to be in the infinite) to the position defined
by the vector r. Conservative forces are free of solenoidal
components and thus the path chosen in the integral is not
relevant: any trajectory from infinite to  provides identi-
cal potential energy. This situation is different in the case

of nonconservative vector forces because they possess a
solenoidal component [51]. Nonconservative forces may
arise in many scenarios, for instance, in certain optome-
chanical systems [52], using structured or evanescent fields
[53], or when a nanoparticle is illuminated near a plas-
monic surface [22—26,31]. In such cases, choosing differ-
ent paths to move the particle from a reference location to a
position ¥ will lead to different potential energies due to the
presence of the solenoidal force component. As a result, it
is not possible to use direct integration methods to compute
the potential energy. To avoid this issue, we apply here
the Helmholtz decomposition method to compute the trap-
ping potential of nonconservative forces [42]. Following
this approach, we express the force field as [51-53]

FF =-VU+V x 4, (5)

where V is the vector gradient, U is the potential energy,
A is the vector potential, and VU and V x 4 denote the
conservative and nonconservative (solenoidal) force com-
ponents, respectively. Taking the divergence of Eq. (5) and
applying the identity V - (V x A) = 0 permit us to find the
potential energy through the differential equation [51]

—VU=V-Fon%,

which is subjected to the Neumann boundary conditions
[54]

VU-p=F-pondQ,

where p is a unit vector pointing outwards with respect to
the boundary of the domain £2. This numerical approach is
valid when the force field is defined over a bounded region
€2 with a smooth boundary condition d€2. We stress that
the platform considered here fulfils these conditions: the
domain is defined by the Gaussian beam impinging over
the metasurface and the boundary conditions are related to
the negligible force acting on the particle when it is located
very far away from the beam axis.

We explore the potential distribution of the optical-
trap set using Gaussian beams over isotropic surfaces, for
instance ultrathin and bulk metals, and reveal that they
are defined by a spatially rotational symmetric function
centered at the beam axis. In stark contrast, the trapping
potential over anisotropic metasurfaces illuminated with
a Gaussian beam lacks such a rotational polar symmetry.
In both cases, the trap depth 8, is unique and is defined
as the potential difference between the energy computed
at the beam axis and at a position located in infinite with
zero energy. Strikingly, and as further detailed below, the
intrinsic anisotropy of the metasurface gives rise to local
potential barriers with larger potential difference than the
trap depth. As a result, the particle might acquire enough
energy to escape from the trap but not to overcome such
potential barriers and thus will follow a special route
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within the plane to avoid them. Finally, it should be noted
that stable optical trapping appears when the trap depth is
larger than 10kgT, where kg is the Boltzmann constant and
T is temperature. If this condition is not fulfilled, mech-
anisms such as thermal fluctuation [55,56] and Brownian
motion [12,17,53] may provide enough energy to the par-
ticle to quickly escape from the trap. Thus, the minimum
laser-beam intensity required to achieve stable trapping is
the one required to generate an optical trap with a potential
depth > 10k T [21].

III. PERFORMANCE OF OPTICAL TRAPS
ENGINEERED OVER ANISOTROPIC AND
HYPERBOLIC METASURFACES

In this section, we explore the performance of optical
traps engineered over anisotropic and hyperbolic meta-
surfaces illuminated by a p-polarized Gaussian beam.
To this purpose, we first analyze the recoil and gradi-
ent forces acting on a nanoparticle versus its position
with respect to the beam axis, unveiling the mechanisms
that conform the optical trap. Then, we investigate key
parameters of the trap including trap depth and stiffhess,
spatial potential distribution, local potential barriers, and
the laser-beam intensity needed to achieve stable trap-
ping versus the wavelength of the incoming beam. As the
wavelength increases, the metasurface topology evolves
from an anisotropic elliptical to a hyperbolic regime going
through a topological transition, which permits the study
of how the different light-matter interactions enabled by
these regimes conform the properties of the optical trap.
During our study, we compare the performance of the pro-
posed traps to the one found using Gaussian beams in free
space [11,12], bulk metals [41], and thin films, aiming to
highlight the pros and cons of this platform with respect to
other configurations and to assess its practical viability.

In the following, we consider a spherical gold nanopar-
ticle of radius @ = 15nm located at rp = (xo, 0, a). The
metasurface is constructed using nanostructured and peri-
odic silver rods [38,57] with width W =60 nm, height
H =10 nm, and periodicity L =180 nm (see Fig. 1) pat-
terned over a porous polymer with refractive index n, =
1.05 [25]. The subwavelength thickness and periodicity
of the layer allow us to characterize it using an effec-
tive in-plane conductivity tensor [58—61] with negligible
out-of-plane polarizability [62,63]. Even though the use of
different substrates might change the particle polarizabil-
ity and the density of states provided by the structure, the
overall response will not be significantly affected (see the
Supplemental Material [44]). We carefully verify the accu-
racy of our model using full-wave numerical simulations
as well as the dispersive hyperbolic response of the surface
(see the Supplemental Material [44]). For comparison pur-
poses, we employ ultrathin and bulk silver with identical

properties as the one employed on the nanostructured
metasurface (see the Supplemental Material [44]).

A. Optical forces arising in anisotropic traps

Figure 2 illustrates the response of the proposed optical
trap detailing the different forces that act on the nanopar-
ticle when it is illuminated with a Gaussian beam at
540 nm. At this wavelength, the nanostructured silver
layer behaves as a hyperbolic metasurface (see the Sup-
plemental Material [44]). For the sake of simplicity, we
begin considering that the nanoparticle is located along
the metallic rods (i.e., the X axis). In this situation, the
polarization state acquired by the particle can be computed
from dipole moment p(xo) = [pu(I%ol) + ipxi(IxoD]% +
[Fp=(Ix0]) F ip-i(|xo0]) 12, where the subscripts “#” and “i”
denote the real and imaginary components of a complex
number, and the upper (lower) sign appears when the par-
ticle is located in the negative (positive) portion of the X
axis (see the Supplemental Material [44]). We stress the
symmetry of the electric dipole magnitude with respect
to the beam axis, i.e., [p(x0)| = |p(—x0)|. This dipole
can be expressed as a linear combination of two funda-
mental emitters that have opposite out-of-plane polariza-
tion rotation handedness with respect to the surface. The
dipole moment of these emitters are py(xp) = pr(|x0])X F
ipzi(|x0])Z and pa(x0) = ipx(|x0])X F pzr(x0|)Z. The excita-
tion of p;(p;) depends on the real (imaginary) and imagi-
nary (real) parts of the in-plane and out-of-plane electric
field components of the standing wave created over the
surface. Focusing the incident p-polarized Gaussian beam
close to the metasurface ensures that the real part of the
in-plane electric field components is much stronger than
the other ones (see the Supplemental Material [44]). As
a result, the dipole p; is strongly excited and dominates
the scattering processes, generating SPPs that propagate
in the radial direction against the beam axis. Figure 2(a)
shows the power of the SPPs launched on the metasurface
for several particle positions. When the particle is located
away from the beam axis (i.e., xg # 0), it mostly scatters
evanescent waves with a transverse spin that excites direc-
tional plasmons with wavevectors pointing away from the
beam axis, associated with a “trapping” recoil force act-
ing toward the beam axis. When the particle is located
exactly on the axis of the Gaussian beam, it acquires a
linear polarization p(xg = 0) = p,(xp = 0)X and scatters
waves without any specific spin that excites SPPs propa-
gating symmetrically through the surface. As a result, the
recoil force vanishes, and an optical trap is set at xg = 0.
It is worthwhile to note the role of the dipole p2(xo): it
excites directional plasmons propagating towards the beam
axis that result into “antitrapping” recoil force [41,44]. In
the case shown in Fig. 2, the magnitude of this emitter is
very small (see the Supplemental Material [44]) and thus
it barely contributes to the excitation of SPPs. In a more
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general case, it is possible to engineer trapping or anti-
trapping recoil forces by controlling the strength of the
orthogonal dipoles that characterize the electromagnetic
response of the particle. This can be done by manipulating
the properties (focusing, polarization, etc.) of the incident
Gaussian beam.

The total optical forces exerted on the nanoparticle are
determined by the superposition of gradient and recoil
forces. Figure 2(b) shows the x component of the total
(blue solid line) and recoil (red solid line) forces ver-
sus the particle position along the X axis. For the sake
of comparison, it also shows these forces arising when
the nanostructured layer is replaced by a thin silver layer
(dashed lines) of similar thickness. Results show that the
recoil force strength over nanostructured silver is more
than an order of magnitude (approximately 40 times) larger
than the one found over the thin layer. This enhancement
appears thanks to the large wave number (momentum)
of the surface plasmons excited over the nanostructured
surface. As a result, the trapping mechanism is very dif-
ferent in both platforms: above the thin silver layer, the
trap is dominated by the gradient force generated from
the Gaussian beam and its reflection from the surface;
above the nanostructured silver layer, the trap is primar-
ily determined by the strong recoil force originating from
the directional excitation of hyperbolic surface plasmons.
Overall, the hyperbolic response of nanostructured silver
enhances the total lateral force strength over 6 times with
respect to the nonpatterned case. This example highlights
how anisotropic metasurfaces can enable plasmon-assisted
optical traps at desired wavelengths determined by the sur-
face properties. Figure 2(c) compares the vertical forces
acting on the particle when it is located over these two
configurations. In both cases, the total vertical force is
dominated by the recoil force, which is always attrac-
tive, pushes the particle towards the surface, and exhibits
a maximum strength near the trapping position. Note that

a nanoparticle located above a bulk silver substrate expe-
riences a repulsive vertical force due to the dominant
contribution of the gradient component, whereas the lat-
eral components exhibit a similar response as in the case
of thin silver (see the Supplemental Material [44]).

Numerical full-wave simulations performed in COMSOL
Multiphysics (markers) are included in Fig. 2(b). Results
are obtained considering realistic nanostructured silver and
applying Maxwell’s stress tensor formalism as described
within the Supplemental Material [44]. Our study shows
that the effective medium approach can be applied to model
the trap response of hyperbolic structures even though
the particle is in the near field. It should be noted that
small ripples appear on the force exerted on the particle
as it moves along the y axis from one metallic rod to
another one through the airgap in between them (see the
Supplemental Material [44]). These ripples are associated
to near-field interactions not captured by homogeneous
models and become stronger as the operation wavelength
decreases and the particle is electrically closer to the sur-
face. We verify that these ripples have a limited impact
on the force amplitude and its spatial profile, and therefore
they do not change the performance of the proposed optical
traps.

Although our study above is focused on nanoparticles
located along the metallic rods of the nanostructure (¥ axis
in the coordinate system of Fig. 1), the underlying mech-
anisms hold independently of the particle position within
the surface (see the Supplemental Material [44]). Figure 3
explores this scenario and shows the components of the
lateral forces acting on the particle as well as a quiver
plot indicating the force direction. Results confirm that
an optical trap is created exactly at the beam axis. Fur-
thermore, this analysis reveals the intrinsic anisotropy of
the metasurface: the strength of the recoil force exerted
on the nanoparticle lacks rotational symmetry. This asym-
metry appears because SPPs traveling towards different

@ F ((NW~'gm?) () _ F, (NW™!um?) ©
3 ( pm?) 3 v 200
2! 2 |
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FIG. 3. Optical trapping of a Rayleigh particle located above a hyperbolic metasurface when it is illuminated with a Gaussian beam.
(a), (b) Lateral components of the total force acting on the nanoparticle versus its position (xp, yp) with respect to the beam axis. (c)
Quiver plot detailing the direction of the lateral forces. Other parameters are as in Fig. 2.
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directions within the surface possess different momentum
and spin, and the resulting force might not be directly
directed towards the beam center. Instead, the particle fol-
lows a parabolic trajectory towards the trap, as shown
in Fig. 3(c). Note that the recoil force is significantly
larger than gradient force for all particle positions and thus
determines the trap performance.

B. Performance of anisotropic optical traps versus
wavelength

Figure 4(a) shows the potential depth of the traps engi-
neered over nanostructured silver versus the wavelength of
the incident Gaussian beam. Results are normalized with
respect to the beam intensity available at the focus posi-
tion. This figure highlights the extreme bandwidth in which
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FIG. 4. Performance of optical traps engineered over

anisotropic metasurfaces versus frequency. (a) Trap depth
normalized with respect to the power density available at the
center of the incident Gaussian beam. (b) Minimum amount of
power density required to achieve stable trapping. Results are
computed for a nanoparticle that is illuminated by a Gaussian
beam and is located above an array of silver nanorods (red),
above bulk silver (magenta), above a thin silver layer (dotted
blue), and in free space (black). The background shaded region
corresponds to different metasurface topologies (yellow, elliptic;
green, hyperbolic) going through the topological transition
(blue) associated with the nanostructured silver layer. Other
parameters are as in Fig. 2.

optical traps with very large potentials can be set, cov-
ering the band from around 300 nm to over 2 ym, and
how the trap depth correlates to the metasurface topology.
Theoretically, the structure exhibits hyperbolic responses
in the near-IR and beyond. However, due to the diffi-
culty to appropriately focus the beam at these frequencies
and the smaller amount of power scattered by the parti-
cle there, we restrict our analysis to the visible portion
of the spectrum. It should be noted that different types of
anisotropic and hyperbolic metasurfaces can be designed
to operate in the infrared region [64—67]. Figure 4(a)
also shows the trap depth obtained with a similar Gaus-
sian beam focused over a thin silver layer (blue dotted
line), bulk silver (magenta solid line), and in free space
in the absence of any structure (black solid line). Results
show that a thin layer of silver enables optical trapping
with a performance comparable to the nanostructured one
in the range of 325-425-nm wavelength, and exhibits a
slightly better trap depth (approximately 1.4 times) at the
intrinsic plasmon-resonance frequency of silver (approx-
imately 340 nm). This response appears for two main
reasons. First, the proposed nanostructured silver behaves
as a HMTS only for wavelengths larger than 425 nm. In
the range of 340-425 nm, it behaves as an anisotropic
elliptical surface (see the Supplemental Material [44]) that
exhibits moderate density of states. Therefore, in this fre-
quency range the comparison is between two elliptical
surfaces, one isotropic and another anisotropic. We note
that nanostructured silver can be redesigned to exhibit
hyperbolic response in this frequency range (340425 nm),
but this might be challenging to fabricate in practice. Sec-
ond, the electrical distance between the dipole and the
surface is not negligible at 340 nm. There is a clear trade-
off [22,23,31] between the particle-surface distance and the
surface modes that can be excited: when the particle is
located in the very near field of the surface, it can couple to
surface plasmons with large wave numbers that boost the
overall performance of the optical trap; when the particle
is moved away from the surface, scattered fields are par-
tially filtered out by free space and cannot efficiently excite
surface plasmons. In the latter case, evanescent fields with
low and moderate wave numbers are not strongly attenu-
ated and can still couple to structures that support them,
as happens in the case of a thin layer of silver. The com-
bination of these two factors explains why a thin layer of
silver exhibits a better response over nanostructured silver
at 340 nm. In the case of bulk silver, maximum poten-
tial depth is obtained near 340 nm and is approximately 2
times weaker than the one obtained above nanostructured
silver. When the particle is illuminated in free space in the
absence of any configurations, the trap depth increases as
the laser wavelength decreases, a response associated to
the higher amount of power scattered by an electrically
larger particle. Our results confirm that nanostructured
silver exhibits very large trap depth over a very wide
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bandwidth, which is not possible to achieve with uni-
form thin films. Figure 4(b) shows the minimum laser
intensity required to achieve stable trapping (i.e., a trap
depth approximately 10kpT) in these configurations. This
study reveals that the nanostructured metasurface permits
reduction of the required beam intensity by an order of
magnitude with respect to the other platforms. This has
significant implications in practice as it allows the use of
low-intensity laser sources operating in the visible and IR
region to trap and manipulate nanoparticles while avoiding
delicate adjustment between the surface response and the
laser wavelength.

To further investigate the performance of these plat-
forms, Fig. 5 shows their isofrequency contours—i.e.,
slices of the two-dimensional (2D) momentum space
(kx, k) at a constant wavelength. These contours describe
the wave number of the supported SPPs versus their direc-
tion in space and are very useful to engineer plasmonic
optical traps. From the figure, it is evident that HMTSs
support surface plasmons with larger momentum over a
large wavelength range; whereas isotropic materials sup-
port surface plasmons with moderate momentum near the
plasmon-resonance frequency of the material. The poten-
tial distribution of the traps above these structures are
shown in Figs. 6 and 7. The potential energy is computed
varying the particle position (xg, yo) over the surface with
respect to the beam axis. At the silver plasmon resonance,
found at Ay &~ 340 nm [44,57], both bulk and thin-film con-
figuration support TM isotropic surface plasmons [Fig.
5(b)] that lead to a rotationally symmetric potential dis-
tribution around the beam axis [Figs. 6(b) and 6(c)]. At
this frequency, the nanostructured silver layer behaves as
an elliptical anisotropic surface [Fig. 5(a)] and supports
rotationally nonsymmetric surface plasmons. Interestingly,
the intrinsic metasurface anisotropy translates into a non-
symmetric potential distribution that is illustrated in a
three-dimensional fashion in Fig. 6(a). Figure 7 further
studies the one-dimensional potential distribution above
this configuration when the particle is moved along the
main axes (i.e., X and y) of the metasurface. At 340-nm
wavelength, along the silver nanorods (i.e., X axis with

— 340 nm — 390 nm — 540 nm
(a) Nanostructured silver  (b) Thin silver
20
5 L
<& <&
T T
QO @O
m m
20 - R il
-20 0 20 -5 0 B
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— 785 nm
(c)

yo = 0), the potential is spatially smooth, and the trap
depth (VU; = 84) corresponds to the difference between
the potential energies when the particle is located at the
beam axis and infinity. Across the strips (i.e., y axis with
xo = 0), the potential presents local maxima with energy
larger than zero that leads to local barriers with potentials
greater than the trap depth (VU, > 84). Such local poten-
tial barriers appear above anisotropic surfaces because
they support surface plasmons with different wave num-
bers (momentum) along different polar directions within
the surface. As a result, the lateral recoil force exerted on
the particle strongly depends on its azimuthal position with
respect to the beam axis. Remarkably, barriers with poten-
tial energies even larger than the trap depth can be obtained
by leveraging extreme anisotropic responses, associated
with SPPs possessing drastically dissimilar wave num-
bers as they travel towards different directions within the
plane. This case can be found at the metasurface topo-
logical transition, which appears at Ap = 390nm (see the
Supplemental Material [44]) and exhibits a canalization-
like response along the y direction [68]. There, plas-
mons propagating towards the X axis possess significantly
larger momentum than those traveling toward the canal-
ized direction, enabling local potential barriers along the
strips [see Fig. 7(b)] with an energy VU, > VU, = §,. In
such a configuration, a trapped particle that gains kinetic
energy will probably escape in the direction perpendicular
to the nanorods, which in addition to lower potential also
exhibits a reduced trap stiffness. It should be noted that
the trap depth at this wavelength slightly decreases [Fig.
4(a)] due to the overall moderate local density of states
exhibited by the metasurface [Fig. 5(a)]. However, the trap
depth is still larger than the one found over uniform silver
[Fig. 6(b)] because this material provide reduced light-
matter interactions when operated off resonance. As the
operation wavelength further increases, the nanostructured
silver layer behaves as a hyperbolic metasurface and sup-
ports highly confined SPPs. Isofrequency contours of these
SPPs and associated trapping potentials at A9 = 540nm
and A9 = 785 nm are shown in Figs. 5—7. Hyperbolic sur-
faces lead to asymmetric potential distribution and very

FIG. 5. Isofrequency contour of
(a) a nanostructured silver layer;
(b) a thin silver layer; and (c) bulk
27 silver at different wavelengths. The
physical dimensions of the nanos-
tructure are detailed in Fig. 2.

Bulk silver
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FIG. 6. Trap potential versus the position (xg,)p) of the particle when it is illuminated by a Gaussian beam oscillating at 340-, 390-,
540-, and 785-nm operation wavelength. Results are computed when the particle is located above (a) a nanostructured silver layer; (b)
a thin silver layer; and (c) bulk silver. Other parameters are as in Fig. 2.

significant trap depths, greatly extending the functional-
ity of the proposed anisotropic platform from the visible
toward the IR. Local potential barriers also arise in the
hyperbolic case due to the different features of plasmons
propagating towards x [see Fig. 2(a)] and y semiplanes.
SPPs’ properties evolve as the wavelength increases and
the metasurface hyperbolic branches slowly close and tend
to behave as in a canalization regime along the ¥ direction,
which in turn leads to local potential barriers across the
nanorods (i.e., y axis). For comparison, thin-layer and bulk
configuration mostly behave as a lossy dielectric reflector
as the wavelength increases even further. At these fre-
quencies, they do not effectively contribute to conform
an optical trap rather than enhancing or decreasing the
gradient force acting on the particle by modifying the
standing-wave field patterns.

To complete our study, Fig. 8 shows the stiffness of
the optical traps engineered over the considered platforms
versus the beam wavelength and the azimuthal angle ¢
within the surface defined with respect to the positive X

axis, i.e., along the strips. In the case of the nanostructured
silver layer, the trap stiffness dramatically increases when
the metasurface topology changes from elliptical TE to
anisotropic elliptical TM, at around 340 nm. As happens
with the potential, the stiffness exhibits a rotationally non-
symmetric distribution and, starting from the topological
transition at 390 nm to around 750 nm, it presents local
maxima in the directions along the metallic rods (i.e.,
¢ = 0° and 180°) and minima in the orthogonal ones (i.e.,
¢ = 90° and 270°). Such a response is associated to the
distribution of the nonconservative force that conforms the
trap [as the one shown in Figs. 3(a) and 3(b)] and consis-
tent with the local potential barriers found along the strips
shown in Fig. 7. Thus, it is probable that energetic particles
will escape from these optical traps in the direction across
the strips. As wavelength increases further, the metasur-
face changes its polarization profile and tends to canalize
waves along the X axis. This mechanism swaps the direc-
tion of maximum (minimum) stiffness, which now appears
across (along) the strips. In those optical traps, energetic
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FIG. 7. Trapping potential computed as a function of the parti-
cle position (xp, yp) along (x¢ with yy = 0; blue line) and across
(yo with xp = 0; magenta line) the nanorods of a nanostructured
silver layer for several operation wavelengths. Local potential
barriers along and across the nanorods are denoted as AU, and
AU,, respectively. Other parameters are as in Fig. 2.

particles will escape in the direction parallel to the strips.
For comparison, the trap stiffness obtained focusing the
beam over a thin silver layer and over bulk silver is shown
in Figs. 8(b) and 8(c). As expected, optical traps engi-
neered over them show only better stiffness around the
metal plasmon resonance and always exhibit a rotationally
symmetrical profile around the trap. Overall, anisotropic
metasurfaces significantly boost the stiffness of engineered
optical traps over a large frequency band.
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IV. CONCLUSIONS

We put forward the concept of anisotropic and hyper-
bolic optical traps to manipulate nanoparticles. These
optical traps are created by illuminating a nanoparticle
over an anisotropic metasurface with a linearly polar-
ized Gaussian beam and their properties strongly depend
on the surface topology and light-matter interactions. To
analyze this platform, we develop a rigorous theoretical
formalism able to compute the induced trapping forces
based on the anisotropic scattered dyadic Green’s func-
tion approach merged with the Lorentz force within the
Rayleigh approximation. This approach, validated with
full-wave numerical simulations in COMSOL Multiphysics,
reveals that giant, nonconservative recoil force pointing
towards the beam axis dominates the overall trap response.
This force appears due to the excitation of ultraconfined
SPPs on the anisotropic metasurface. Then, we apply the
Helmholtz decomposition method to calculate the poten-
tial energy of the resulting nonconservative force field. Our
formalism permits computation of fundamental metrics
that characterize optical traps engineered over plasmonic
materials through nonconservative fields, including spatial
potential distribution, trap depth and stiffness, local poten-
tial barriers, as well as the minimum laser intensity that
achieve stable optical trapping.

The performance of the proposed anisotropic optical
traps is outstanding: they exhibit large trap depths over
an extremely broadband frequency range that covers the
entire visible spectrum extending well into the IR band. As
a result, a wide variety of low-intensity laser sources can
be employed to achieve stable trapping of nanoparticles
avoiding precise alignments between the surface response
and the operation wavelength, and significantly reducing
the possibility of damaging trapped particles due to photo-
heating. As a specific example, we study the performance
of optical traps engineered over a nanostructured silver
layer and analyze how the trap response evolves as the
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FIG. 8. Trap stiffness induced on a nanoparticle as a function of the wavelength (1) of the incident Gaussian beam and the polar
angle (¢) defined with respect to the X axis in Fig. 1. Results are computed for a nanoparticle that is illuminated by a Gaussian beam
and is located above (a) a nanostructured silver layer; (b) a thin silver layer; and (c) bulk silver. Other parameters are as in Fig. 2.
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metasurface topology changes from anisotropic elliptical
to hyperbolic going through the topological transition. In
addition, we find that the momentum imbalance of the
SPPs excited by the particle on anisotropic surfaces gives
rise to local potential barriers and larger trap stiffness
along certain spatial directions, thus breaking the rotational
symmetry that characterizes common optical traps. The
engineered traps exhibit a much larger potential depth and
stiffness than the one found focusing identical Gaussian
beam over uniform thin silver, bulk silver or in free space,
and maintain such a response over a large bandwidth.
We note that our formalism is based on the semiclassi-
cal Maxwellian approach and omits additional forces that
might originate from other mechanisms, such as Casimir
forces [21,69]. Investigating the influence of such forces
in the proposed platform is the scope of future research.
Moving forward, ultrathin metasurfaces enable unique
possibilities to construct optical traps with excellent per-
formance, including the possibility to engineer local poten-
tial barriers, at a desired wavelength, by tailoring the sur-
face topology, local density of states, and the momentum
of the supported plasmons. To this purpose, different plas-
monic materials—including metals such as gold or silver
and semimetals such as graphene and WTe; [70}—can be
appropriately patterned in subwavelength arrangements.
In addition, natural anisotropic and hyperbolic materi-
als [71,72] can also be employed to trapping purposes,
including hexagonal boron nitride [73], hybrid compos-
ites [74,75], van der Waals crystals [37,76—78], and an
increasing family of 2D materials [64—67]. We envision
that anisotropic and hyperbolic metasurfaces will lead to
the next generation of low-power nano-optical tweezers.
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