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A B S T R A C T

Inspired by conclusions of previous studies that Ga has the promoting effect on CO2 conversion, we performed
density functional theory (DFT) investigations of CO2 adsorption on forty icosahedral (Ih) symmetry 13-atom
clusters. They include M13, Ga-centered M12Ga, M-centered M12Ga, Ga-centered M11Ga2 and M-centered M11Ga2
clusters (M = Fe, Co, Ni, Cu, Ru, Rh, Pd and Ag). Initially, the stabilities of these clusters were studied. The
results show that Ga doped Cu, Pd, and Ag clusters are more stable than their pure metal analogues, and except
Pd and Ag clusters, M-centered species are more stable than Ga-centered clusters. In addition, the activation of
CO2 on these clusters was studied. The results show that most of M-centered M12Ga clusters transfer more
electron density to CO2 than other corresponding Ga-doped analogues. The amount of Bader charge transfers has
noteworthy linear relationship with the structural parameters of CO2. DOS analyses show that empty σ orbital of
CO2 is acceptor of electrons from cluster. It is worth to mention that Ag13−nGan clusters have little interaction
with CO2. To explain the effects of Ga on the adsorption of CO2, the electronic properties of clusters were
studied. The projected density of states (PDOSs), charge density differences, Bader charge transfers and electron
localization functions (ELFs) analyses show that Ga transfers electron density to M atom, and the effective
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interaction is attributed to the p orbitals of Ga with the d orbitals of M near Fermi level(0), mainly responsible
for the activation of CO2.

1. Introduction

It has been demonstrated that sub-nanometre sized metal clusters
consisting of limited number of atoms with unique physical and che-
mical properties [1] have improved catalytic performances [2–5]. Ex-
periments also showed that the sizes of metal catalysts can be tuned by
the loading contents [3,6], which means that compared with bulk
catalysts, clusters with a few atoms can largely reduce the loading
amounts and thus reduce the costs of industrial processes. In addition,
the electronic and magnetic properties of sub-nanometre sized clusters
are largely changed compared to their bulk analogues and larger na-
noparticles [1]. Among sub-nanometre sized clusters, transition metal
13-atom clusters TM13 (TM = Fe [7,8], Co [8], Ni [8,9], Cu [10,11], Pd
[12], Ag [13], Pt [9,14–16] and Au [17]) have been extensively in-
vestigated experimentally and theoretically because of their large sur-
face areas. In particular, TM13 clusters can exhibit a high symmetric Ih
structure even though some do not represent the lowest energy struc-
tures, including Au13[18], Pd13[19], and Pt13[20].
It is well known that CO2 capture [21,22] and chemical and elec-

trochemical processes for CO2 reduction to fuels [23–27] have brought
widespread attention of researchers because of its continuous in-
creasing concentration in the atmosphere. Among the reduction pro-
ducts, methanol (CH3OH) is an easily marketable and useful feedstock.
Although the studies on effective catalysts aiming for CO2 reduction to
CH3OH have emerged in numerous publications [28–32]; however, the
existing catalysts still have a long way before commercial utilization
due to the low process and cost-efficiency. Therefore, great efforts still
have to be dedicated to the design of new catalysts.
A large number of experimental and theoretical studies proved that

compared with monometallic catalysts, bimetallic catalysts have higher
catalytic activities [12,33]. For all the bimetallic combinations applic-
able for CO2 reduction to CH3OH, Ga contained transition metal cata-
lysts would be promising choices due to their good catalytic effects. For
example, the studies performed by Studt et al. [34] and Fiordaliso et al.
[35] respectively showed that Ni-Ga and Pd-Ga bimetallic catalysts are
more effective for CO2 reduction to methanol than traditional Cu/ZnO/
Al2O3 catalysts. Ga plays an important role in the reaction. In Ga doped
Cu/ZnO/ZrO2 catalysts [36], the presence of Ga increases surface Cu
and metallic Cu0 and thus the active sites for CO2 hydrogenation to
CH3OH due to the segregation of Cu to the surface. The same conclusion
was obtained by Toyir et al. [37]. In addition, Collins et al. [38,39]
concluded that on a Pd/Ga2O3 catalyst, CO2 is stepwise hydrogenated

to CH3OH on the surface sites of gallium oxide in the process of CO2
hydrogenation. In this reaction the role of Pd or Pd-Ga particles is to
provide atomic hydrogen to the sites via spillover. Medina et al. [40]
carried out a comparative study of Cu/SiO2 and Ga doped Cu/SiO2 in
the hydrogenation of CO2 to CH3OH, and found that formate can adsorb
on both Cu and Ga. This suggests that Ga may create new active sites for
CH3OH formation and thus cause the increase of CH3OH formation rate.
With the development of computational approaches including DFT

methods, more and more catalytic reactions could be investigated
without spending much time and money. For example, theoretical study
by Santiago-Rodríguez et al. [41] suggested that Ga doped Cu(1 1 1)
surface may be among the promising catalysts for CO2 hydrogenation.
In particular, using computational methods the structure parameters
and the electronic properties can be well described, providing basis for
predicting their catalytic effects. Previous studies [8,42] showed that
the activation of CO2 is one of the most important descriptors in the
CO2 reduction process.
In this work, aiming to screening potential catalysts for CO2 con-

version, we designed a series of Ga doped Ih symmetry 13-atom clusters
(M13, Ga-centered M12Ga, M-centered M12Ga, Ga-centered M11Ga2 and
M-centered M11Ga2 clusters (M = Fe, Co, Ni, Cu, Ru, Rh, Pd and Ag))
for the activation of CO2 by using DFT level computational studies. The
stabilities of these clusters were initially investigated; and then the
adsorption activities of CO2 were calculated. To further probe into the
effect of Ga atoms on CO2 adsorption, the electronic properties of
M13−nGan clusters were analyzed. The study can make advancement in
understanding the effect of Ga in bimetallic catalysts towards the ad-
sorption of CO2, and provide the possibility of designing highly efficient
catalysts for CO2 conversion to CH3OH.

2. Computational details

2.1. Computational methods

In this work, all the first principles calculations were performed by
the Vienna ab initio simulation package (VASP) [43–45] code. The
exchange-correlation function was described by the generalized gra-
dient approximation (GGA) with the formula of Perdew-Burke-Ern-
zerhof (PBE)[46]. The projector augmented wave (PAW) [47,48]
pseudopotentials was used to treat the ion-electron interactions. A
plane wave cut off energy of 400 eV was used to expand the electron
function. The Brillouin zone was only sampled on gamma point for the

Fig. 1. The models of M13−nGan clusters.
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geometry optimizations. The criterions that were used to terminate the
electronic and ionic calculation steps are 1.0 × 10−5 eV and 0.01 eV/Å,
respectively.

2.2. Calculation models

Clusters’ compositions and structures are important factors that af-
fect their properties. The M13 clusters were initially built with highly
symmetric Ih structures and M12Ga or M11Ga2 clusters were built based
on optimized M13 clusters. In all simulations, the M13−nGan (n = 0, 1,
and 2) cluster was placed in a 20 × 20 × 20 Å3 cubic cell with periodic
boundary conditions. The clusters’ structures are shown in Fig. 1, and
the average bond lengths are listed in Table S1 of Supplementary
Materials. The adsorption activities of CO2 were probed using the op-
timized structures of M13−nGan clusters.

3. Results and discussions

3.1. Structure stabilities of M13−nGan clusters

To evaluate the stabilities of M13−nGan clusters, the binding energy
per atom (Eb) is calculated, the used equation is as follows:

=E
E n E nE(13 )

13
b

M Ga M Gan n13

(1)

where EM Gan n13
is the total energy of M13−nGan cluster; EM and EGa

represent the chemical potentials of M and Ga atoms, respectively. The
lower the Eb is, the more stable the cluster is. The Eb of M13−nGan
clusters are listed in Table 1. As is shown for Fe, Co, Ni, Ru and Rh, the
pure metal clusters have lower Eb than their corresponding Ga doped
analogues, while for Cu, Pd, and Ag, Ga doped clusters have lower Eb
than their pure metal compounds. The results suggest that Ga doped Cu,
Pd, and Ag clusters are more stable than their pure analogues. For
M12Ga clusters, M-centered M12Ga clusters have lower binding energies
than the corresponding Ga-centered M12Ga clusters except Pd12Ga. This
suggests that M-centered structures are more stable than Ga-centered
structures, except Pd12Ga. For M11Ga2 clusters, except Pd11Ga2 and
Ag11Ga2 clusters, the same conclusion as for the M12Ga species could be
derived.
Additionally, to further evaluate the site preference of Ga atom in

M12Ga and M11Ga2 clusters, its segregation energy (Eseg
Ga) is calculated,

which is defined as

=E E Eseg
Ga

Ga centered M centered (2)

where EGa centered and EM centered represent the total energy of Ga-cen-
tered and M-centered M12Ga (M11Ga2) clusters, respectively. The ne-
gative value of Eseg

Ga demonstrates that Ga favors the central position,
and positive value means that Ga tends towards the surface position.
Table 2 lists the segregation energies of Ga in M12Ga and M11Ga2
clusters. It can be seen that except in Pd12Ga and Ru12Ga, Ga prefers the
surface position in all the other M12Ga clusters. It is worth to mention
that for Ru12Ga, surface Ga and center Ga atoms are compatible. Among

M11Ga2 clusters, Ga also favors the surface position except in Pd11Ga2
and Ag11Ga2 clusters. The result is consistent with that obtained from
evaluation of Eb.

3.2. The adsorption characteristics of CO2 on M13−nGan clusters

3.2.1. Charge transfers between CO2 and M13−nGan cluster
Previous studies showed that charge transfers between substrate

and CO2 is a key descriptor that assesses the activation of CO2 [8,49].
Bader charge is often useful for charge analysis [50–52]. Therefore, the
adsorption of CO2 on M13−nGan clusters is checked on all potential sites
(top, bridge, and hollow sites in Fig. 1). The Bader charge transfer of
CO2 is defined as follows,

=T VC VCBader CO atom in molecule single atom2 (3)

where TBader CO2
is the Bader charge transfer of CO2, VCatom in molecule

is the sum of valence charge of each atom in CO2 after adsorption,
VCsingle atom is the sum of valence charge of each single atom in CO2.

The positive value of TBader CO2
represents CO2 accepts electrons from

clusters.
The structure with the highest Bader charge transfers (Table 3) from

cluster to CO2 is selected as the aim of this study for each M13−nGan
cluster. From Table 3, it can be seen that almost all the Ga doped
clusters are characterized by higher Bader charge transfers than their
corresponding pure metal clusters, except Ag. Among Ga doped clus-
ters, M-centered M12Ga clusters have the highest values of the Bader
charge transfers and the average charge transfers is 0.18 e higher than
that of pure metal clusters. The adsorption structures of CO2 on
M13−nGan clusters with the highest Bader charge transfer values are
shown in Fig. S1 of Supplementary Materials. For all clusters, CO2
prefers to adsorb on the M composed bridge or hollow sites.
To clearly understand the direction of the charge transfers, the

charge density differences of CO2 adsorbed on Cu13−nGan clusters are
calculated and shown in Fig. 2. The isosurfaces indicate that the charge
density changes mainly occur near the adsorption sites, and the charge
densities between C(O) and clusters increase and those between C and
O decrease. It suggests that upon the bonding the bond strengths be-
tween substrate and CO2 are enhanced, and the C-O bonds are wea-
kened. This indicates that CO2 is activated by Cu13−nGan clusters.

Table 1
The binding energy per atom (Eb) of M13−nGan clusters.

Eb(eV/atom) Eb(eV/atom) Eb(eV/atom)

Ga-centered M-centered Ga-centered M-centered

Fe13 −3.49 Fe12Ga −3.31 −3.44 Fe11Ga2 −3.24 −3.34
Co13 −3.31 Co12Ga −3.12 −3.30 Co11Ga2 −3.08 −3.23
Ni13 −3.54 Ni12Ga −3.39 −3.49 Ni11Ga2 −3.32 −3.47
Cu13 −2.25 Cu12Ga −2.17 −2.30 Cu11Ga2 −2.27 −2.32
Ru13 −4.21 Ru12Ga −3.93 −4.11 Ru11Ga2 −3.83 −3.98
Rh13 −3.98 Rh12Ga −3.93 −3.93 Rh11Ga2 −3.84 −3.90
Pd13 −2.33 Pd12Ga −2.53 −2.47 Pd11Ga2 −2.63 −2.60
Ag13 −1.57 Ag12Ga −1.59 −1.67 Ag11Ga2 −1.72 −1.68

Table 2
The segregation energy of Ga in M12Ga and M11Ga2 clusters.

clusters Eseg
Ga/eV clusters Eseg

Ga/eV

Fe12Ga 1.60 Fe11Ga2 1.28
Co12Ga 2.35 Co11Ga2 2.03
Ni12Ga 1.25 Ni11Ga2 1.95
Cu12Ga 1.66 Cu11Ga2 0.75
Ru12Ga 2.31 Ru11Ga2 2.00
Rh12Ga 0.005 Rh11Ga2 0.79
Pd12Ga −0.81 Pd11Ga2 −0.49
Ag12Ga 0.97 Ag11Ga2 −0.43
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3.2.2. Structural parameters of adsorbed CO2

Most of studies showed that the adsorption geometry of CO2 on
metal surfaces [53] or clusters [8] is in a “V” shape. The structure
parameters, including angles and the average bond lengths of adsorbed
CO2 are listed in Table S2 of Supplementary Materials. The correlations
between Bader charge transfers and the angles and the average bond
lengths of CO2 are calculated for all the considered M13−nGan clusters.
As shown in Fig. 3, the Pearson correlation coefficients are as high as
0.89, and 0.94 for angles and average bond lengths of CO2, respectively.
It suggests that there are obvious linear relationships between Bader
charge transfers and the structural parameters of CO2. In other words,
the activation of CO2 can be reflected on the degree of its structure
deformation.

3.2.3. Adsorption energies of CO2

The adsorption energy (Eads) of adsorbate is often used to measure
the interaction between adsorbate and substrate. In this study, the Eads
of CO2 on M13−nGan cluster is defined as

=E E E Eads total M Ga COn n13 2 (4)

where Etotal is the total energy of adsorbed CO2 on M13−nGan cluster,
EM Gan n13

is the energy of bare M13−nGan cluster, and ECO2 represents
the energy of CO2 in gas phase. The Eads of CO2 are listed in Table S2 of
Supplementary Materials.
Similarly, the correlation of Bader charge transfers and Eads is cal-

culated (Fig. 4). The Pearson correlation coefficient is 0.78, which in-
dicates that the Bader charge transfers have lower correlation with Eads
than with the angles and the average bond lengths of CO2. Therefore,
compared with structural parameters, Eads may not be a good descriptor

to reflect the degree of CO2 activation.

3.2.4. DOS analysis of CO2 adsorption
To obtain better insight into the nature of CO2 adsorption on

M13−nGan clusters, the DOS of some clusters and CO2 before and after
interaction are calculated and shown in Fig. 5. In Fig. 5(a)–(e), (1) re-
presents the DOS projected on clusters’ s and d orbitals before CO2
adsorption; (4) is the DOS of CO2 before adsorption; (2) and (3) are the
DOS projected on cluster’s s and d orbitals and the DOS projected on
CO2 after CO2 adsorption, respectively. Fig. 5(a) displays the DOS of
CO2 and Ag13 before and after adsorption. It can be seen that during
interaction of CO2 and Ag13 clusters, the empty σ orbital of CO2 and the
s and d orbitals of Ag13 clusters change only slightly. It means that there
is no electron transfer between Ag13 and CO2. Whereas, for the ad-
sorption of CO2 on Ni13 and Cu13 clusters (Fig. 5(b) and (c)), the empty
orbital of CO2 changes significantly, and it has a little overlap with the
cluster’s s and d orbitals below the Fermi-level(0). This suggests that
CO2 obtained electrons from Ni13 or Cu13 clusters and formed CO2

δ−.
Usually, the orbitals below Fermi level(0) are electron occupied orbi-
tals; on the contrary, the orbitals above Fermi level(0) are electron
unoccupied orbitals. In addition, the antibonding of s and d orbitals of
clusters are above the Fermi level(0), which benefits the adsorption.
The results obtained from Bader charge transfers also well support these
conclusions. Comparing Fig. 5(c)–(e), one can see that the σ orbital of
CO2 drops lower on Cu-centered Cu12Ga cluster compared to Cu13 and
Ga-centered Cu12Ga clusters. It means that on Cu-centered Cu12Ga
cluster the adsorption of CO2 is stronger. The results are consistent with
that conclusions obtained from Bader charge transfer values.

Table 3
The highest Bader charge transfers of CO2 for each M13−nGan cluster.

Bader (e) Bader (e) Bader (e)

Ga-centered M-centered Ga-centered M-centered

Fe13 0.77 Fe12Ga 0.85 0.93 Fe11Ga2 0.81 0.90
Co13 0.76 Co12Ga 0.75 0.97 Co11Ga2 0.87 0.73
Ni13 0.59 Ni12Ga 0.64 0.80 Ni11Ga2 0.77 0.52
Cu13 0.53 Cu12Ga 0.50 0.72 Cu11Ga2 0.61 0.56
Ru13 0.89 Ru12Ga 0.90 1.14 Ru11Ga2 1.02 1.04
Rh13 0.65 Rh12Ga 0.76 0.74 Rh11Ga2 0.80 0.88
Pd13 0.43 Pd12Ga 0.57 0.59 Pd11Ga2 0.64 0.50
Ag13 0.10 Ag12Ga 0.11 0.08 Ag11Ga2 0.09 0.08

Fig. 2. Charge density differences of CO2 on
Cu13−nGan clusters. Blue, green, brown and red
balls are Cu, Ga, C and O atoms, respectively. Cyan
and yellow represent the charge depletion and ac-
cumulation, respectively. (For interpretation of the
references to colour in this figure legend, the
reader is referred to the web version of this article.)
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3.3. The effects of doped Ga on CO2 adsorption

3.3.1. The d-band center of M13−nGan clusters and the influence on CO2

adsorption
The d-band centers of M13−nGan clusters are shown in Fig. 6(a). For

3d M13 clusters, the d-band center shift-up from Fe to Ni, while Cu has
the lowest d-band center. However, for Ga replaced 3d M13 clusters, the
Co12Ga and Co11Ga2 have lower d-band center than Fe12Ga and Fe11Ga2
clusters, respectively. For 4d M13 clusters, the d-band centers follow the
same order: Ag13-nGan < Ru13−nGan < Rh13−nGan < Pd13−nGan.
Ag13−nGan clusters have the lowest d-bands centers among all the
corresponding clusters, then are Cu13−nGan clusters. In general, com-
pared with the d-band centers of pure metal clusters, their corre-
sponding Ga doped clusters’ d-band centers shift-up.
The correlation between Bader charge transfer values from clusters

to CO2 and d-band centers of clusters is calculated for M13, Ga-centered
M12Ga, M-centered M12Ga, Ga-centered M11Ga2, and M-centered
M11Ga2 clusters (Fig. 6(b)). The results show that Bader charge trans-
fers between substrate and CO2 have notable linear relationship with d-
band centers of substrates for each type of clusters with all Pearson
correlation coefficients higher than 0.74. The results are consistent with

previous studies that the higher the d-band center is, the more active
the catalyst is [54–56]. Therefore, the doping by Ga makes the 13 atom
metal clusters more active.

3.3.2. Electronic properties of Ga doped M13−nGan clusters and the
influence on CO2 adsorption
To find out the nature of the Ga doped M13 clusters, the Bader

charge transfer of Ga and the charge density differences are calculated
(Table S3 and Fig. S2 in Supplementary Materials, respectively). The
Bader charge transfer of Ga is defined as

=T VC VCBader Ga Ga in molecule Ga (5)

where TBader Ga is the Bader charge transfer of Ga, VCGa in molecule is
the sum of valence charge of Ga in M13−nGan cluster, VCGa is the sum
of valence charge of Ga atoms. The negative value of TBader Ga re-
presents Ga has lost electrons.
By taking the example of Ga doped Cu13−nGan clusters, the Bader

charge transfer values from Ga to Cu amount to 0.69 and 0.26 e in Ga-
centered and Cu-centered Cu12Ga clusters, respectively. In Ga-centered
and Cu-centered Cu11Ga2 clusters, those values are 1.07 and 0.97 e.
Besides these, there are also charge transfers among Cu atoms. The
charge density differences of Cu13−nGan clusters are shown in Fig. 7. It
can be seen that electron density only accumulates between Cu atoms,
and Ga atom transfers electrons to Cu atoms. Although Ga atom does
transfer electrons to M in Ga doped M13−nGan clusters, the number of
electron transfers from Ga to M has no relation with the degree of CO2
activation mentioned above. It is worth to note that CO2 is far away
from Ga atom after optimizing all the configurations, in which CO2 is
initially located at the top of Ga. This can be explained by the charge
density difference of M13−nGan clusters that indicates little electron
accumulation around Ga atom, and thus there is no electron transfer
from Ga to CO2.
The ELF is a useful descriptor that is based on orbital wavefunctions

used to classify chemical bonds [57,58]. Its value range is defined in
[0,1]. The closer to 1 the ELF value is, the more localized the electron
is. It means there is covalent bond, lone pair or atomic inner shell.
While ELF = 0 represents that there are no electrons. When the value is
around 0.5, it means there is metal free electron gas. To gain further
insight into the bond classification, the ELFs related to the plane along
the central line of M13−nGan clusters are calculated, which are shown in
Fig. S3 of Supplementary Materials. Take the ELFs of Cu13−nGan clus-
ters for example (Fig. 8), it can be seen that for surface Ga, there are
localized electrons (lone pair in s orbital) at the center position of Ga

Fig. 3. The correlation between (a) Bader charge transfers from clusters to CO2 and angles of adsorbed CO2, and (b) Bader charge transfers from clusters to CO2 and
average C-O bond lengths of adsorbed CO2.
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Fig. 6. (a) the d-band center of M13−nGan clusters (b) the correlation between Bader charge transfers from clusters to CO2 and d-band centers of M13−nGan clusters.

Fig. 7. Charge density differences of Cu13−nGan clusters. Cyan and yellow represent the charge depletion and accumulation, respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. The ELFs of Cu13−nGan clusters.
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atom, and around it, there are free electrons. While for center Ga, the
degree of localization is lower than that of Ga at the surface site. In
addition, the concentration of free electron gas around Ga is greater
than that of Cu. The results can well explain that the values of Bader
charge transfer from Ga to Cu for Cu-centered Cu13−nGan clusters are
lower than for their corresponding Ga-centered clusters. However, one
question arises: why center Ga transfers more electron density to Cu
than surface Ga, but the structures with surface Ga transfer more
electron density to CO2. To answer this question, the following part is
conducted. Fig. 3. The correlation between (a) Bader charge transfers
from clusters to CO2 and angles of adsorbed CO2, and (b) Bader charge
transfers from clusters to CO2 and average C-O bond lengths of ad-
sorbed CO2.

3.3.3. The orbitals interactions of Ga and M atom in Ga doped M13−nGan
clusters and the influence on CO2 adsorption
To answer the arising question and further probe into the structure

effects of clusters on CO2 adsorption, the PDOS of M12Ga clusters are
analyzed. The PDOS of Cu12Ga and Ni12Ga clusters are displayed in
Fig. 9(a)–(d), those of other clusters are displayed in Fig. S4 of

Supplementary Materials. The top of the figure shows the PDOS of M12
and free Ga atom, the bottom illustrates the DOS projected on s and d
orbitals of M and on s and p orbitals of Ga in M12Ga clusters. The dif-
ference in electronic configurations of Cu and Ni is the reason for
choosing Cu12Ga and Ni12Ga as examples for analysis. It can be seen
that, for Cu- (Ni-) centered Cu12Ga (Ni12Ga) cluster, the s orbital of Ga
mainly interact with the s orbital of Cu (Ni) far away from the Fermi
level(0), the p orbitals of Ga mainly interacts with the d orbitals of Cu
(Ni) near the Fermi level(0). Whereas for Ga-centered Cu12Ga (Ni12Ga),
the s and p orbitals of Ga interact only with the s orbital of Cu (Ni). In
addition, from Fig. 9(a) and (b), one can clearly see that the value of
occupied d orbital density of Cu increases, which means that there is
electron transfer from Ga to Cu. The DOS analyses of CO2 adsorption
mentioned above shows that the adsorption of CO2 on cluster is as-
cribed to the interaction of empty σ orbital of CO2 with the s and d
orbitals of cluster near the Fermi level(0). Therefore, in Ga-centered
clusters, the interaction of Ga and M are almost ineffective to the ad-
sorption of CO2, while for M-centered clusters, the interaction of Ga
affects this process.
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4. Conclusions

Comprehensive DFT calculations were preformed to study activa-
tion of CO2 by pure and Ga doped 3d and 4d 13-atom transition metal
clusters (M13−nGan). We concluded that Ga doped Cu, Pd and Ag
clusters are more stable than their analogues pure metal clusters. M-
centered clusters are more stable than their corresponding Ga-centered
clusters except Ga doped Pd and Ag clusters. For all the clusters, CO2
favors to adsorb at the M composed bridge or hollow sites on M13−nGan
clusters except on Ag13−nGan clusters. Most of Ga doped clusters can
transfer more Bader charge density to CO2 than pure clusters, but Ga
doped Ag clusters do not change much compared with Ag13 clusters. In
addition, the activation of CO2 is well reflected by its structure de-
formation rather than with its adsorption energy.
The electronic properties of clusters greatly affect their catalytic

properties. The replacement of M by Ga in M13 clusters has shifted up
the d-band centers of clusters, and thus has improved their interactions
with CO2. Ga transfers electrons to M atoms in M13−nGan clusters and
centered Ga atom can transfer more electrons than surface located Ga.
However, the numbers of effective electron transfer to CO2 are similar
for both Ga- and M-centered clusters. The empty σ orbital of CO2 is the
electron acceptor. The larger energy drop of σ orbital of CO2 occurs, the
more active CO2 is. In addition, the nature of CO2 adsorption on clusters
relates to the interaction of σ orbital of CO2 with the d orbitals of cluster
near the Fermi level. The effective interaction of Ga and M relates to the
p orbitals of Ga with d orbitals of M, which explains that M-centered
M12Ga clusters can make CO2 more active. This finding helps to design
and produce efficient CO2 activation materials and sheds a light on the
details of their molecular and electronic structures.
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