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HYBRID PROJECTION METHODS WITH RECYCLING
FOR INVERSE PROBLEMS˚

JIAHUA JIANG: , JULIANNE CHUNG: , AND ERIC DE STURLER:

Abstract. Iterative hybrid projection methods have proven to be very effective for solving large
linear inverse problems due to their inherent regularizing properties as well as the added flexibility
to select regularization parameters adaptively. In this work, we develop Golub--Kahan-based hybrid
projection methods that can exploit compression and recycling techniques in order to solve a broad
class of inverse problems where memory requirements or high computational cost may otherwise be
prohibitive. For problems that have many unknown parameters and require many iterations, hybrid
projection methods with recycling can be used to compress and recycle the solution basis vectors to
reduce the number of solution basis vectors that must be stored, while obtaining a solution accuracy
that is comparable to that of standard methods. If reorthogonalization is required, this may also
reduce computational cost substantially. In other scenarios, such as streaming data problems or
inverse problems with multiple datasets, hybrid projection methods with recycling can be used to
efficiently integrate previously computed information for faster and better reconstruction. Additional
benefits of the proposed methods are that various subspace selection and compression techniques can
be incorporated, standard techniques for automatic regularization parameter selection can be used,
and the methods can be applied multiple times in an iterative fashion. Theoretical results show that,
under reasonable conditions, regularized solutions for our proposed recycling hybrid method remain
close to regularized solutions for standard hybrid methods and reveal important connections among
the resulting projection matrices. Numerical examples from image processing show the potential
benefits of combining recycling with hybrid projection methods.

Key words. Golub--Kahan bidiagonalization, hybrid projection methods, recycling, compres-
sion, inverse problems, tomography
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1. Introduction. Inverse problems arise in many applications, where the goal
is to approximate some unknown parameters of interest from indirect measurements
or observations [21, 25, 22, 47, 12]. We consider discretized linear inverse problems of
the form

b “ Axtrue ` \bfitepsilon ,(1.1)

where A P RMˆN models the forward process, b P RM contains observed data, xtrue P

RN represents the desired parameters, and \bfitepsilon P RM is assumed to be Gaussian white
noise. Given b andA, the goal is to compute an approximation of xtrue. An important
problem with discretized linear inverse problems is that there are many small singular
values smoothly decaying to zero (though leveling off at machine precision). The
noise-free problem typically satisfies the discrete Picard condition, that is, the absolute
values of the components of the right-hand side along the left singular vectors decay
faster to zero than the singular values. However, in the presence of noise this is no
longer true, and naive (regular or least-squares) inversion, A:b “ A:Axtrue `A:\bfitepsilon ,
results in very large noise components in directions corresponding to the small singular
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RECYCLING HYBRID PROJECTION FOR INVERSE PROBLEMS S147

values (where A: is the pseudoinverse of A). So }A:\bfitepsilon }2 " }A:Axtrue}2, which
completely spoils the approximate solution.

In iterative Krylov subspace methods, like LSQR, this problem manifests itself
through a phenomenon called semiconvergence, where during the early iterations the
solution converges to the true solution, but once the Krylov subspace starts to ap-
proximate left singular vectors corresponding to the small singular values, the cor-
responding noise components in the approximate solution are significantly amplified,
and the approximate solution diverges from xtrue and converges to the naive solution;
see Figure 4.2 for an illustration.

To compute a meaningful solution, a regularized problem is solved instead. A
common approach is to solve the Tikhonov regularized problem,

min
\bfx 
}Ax´ b}

2
2 ` \lambda 2 }x}

2
2 ,(1.2)

where \lambda ě 0 is a (yet-to-be-determined) regularization parameter that balances the
data-fit term and the regularization term. We remark that extensions to the general-
form Tikhonov problem can be made, which often requires a transformation to stan-
dard form [22]. Although the Tikhonov problem has been studied for many years,
various computational challenges have motivated the development of hybrid iterative
projection methods for computing an approximate solution to (1.2); seminal papers
include [36, 5]. In a hybrid projection method, the original problem is projected onto
small subspaces of increasing dimension and the projected problem is solved using
variational regularization. By regularizing the projected problem, hybrid methods
can stabilize the convergence behavior of the method, and the regularization parame-
ter does not need to be known in advance. An additional benefit is that these iterative
methods can handle problems where matrices A and AJ are so large that they can
not be constructed but can be accessed via function evaluations.

However, one of the main disadvantages of hybrid methods compared to standard
iterative methods is the need to store the basis vectors for solution computation,
which can present significant computational bottlenecks if many iterations are needed
or if there are many unknowns. Furthermore, these methods are typically embedded
within a larger problem that needs to be solved, e.g., optimal experimental design or
nonlinear frameworks. So, it may be required to solve a sequence of inverse problems,
e.g., where the forward model is parameterized such that the change in the model
from one problem to the next is relatively small, or to compute and update solutions
from streaming data. Rather than start each solution computation from scratch, we
assume that a few vectors for the solution subspace can be provided, and our goals are
to improve upon the given subspace and to compute a regularized solution efficiently
in the improved subspace.

In this paper, we develop recycling Golub–Kahan-based hybrid projection meth-
ods that combine a recycling Golub–Kahan bidiagonalization (recycling GKB) process
with tools from compression to solve a broad class of inverse problems. More specif-
ically, our proposed hybrid projection method uses recycling techniques to improve
a given solution subspace and then efficiently computes a regularized solution to the
projected problem, with automatic regularization parameter selection. The general
approach consists of three steps, which can be used in an iterative fashion. First, we
begin with a suitable set of orthonormal basis vectors, denoted Wk´1 P RNˆpk´1q.
This may be provided (e.g., from a related problem or from expert knowledge) or
may need to be determined (e.g., via compression of previous solutions). With an
initial guess of the solution, xp1q, the second step is to use a recycling GKB process
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S148 JIAHUA JIANG, JULIANNE CHUNG, AND ERIC DE STURLER

to generate the columns of rV\ell P RNˆ\ell that span a particular Krylov subspace, and
extend the solution space to be \scrR prWk´1 xp1q rV\ell sq where \scrR p¨q denotes the column
space of a matrix. The third step is to find a suitable regularization parameter \lambda and
compute a solution to the regularized projected problem,

min
\bfx P\scrR 

´”

Wk´1 xp1q rV\ell 

ı¯

}Ax´ b}
2
2 ` \lambda 2 }x}

2
2 .(1.3)

The main approach (corresponding to steps 2 and 3) is described in subsections 3.1
and 3.2, and some compression approaches that can be used in step 1 are provided in
subsection 3.3.

Recycling techniques for iterative methods have been considered for multiple
Krylov solvers and a wide range of applications, but mainly for square system matrices
and for well-posed problems [38, 45, 49, 30, 1, 44, 28, 29, 13, 32]. Augmented LSQR
methods have been described in [3, 2] for well-posed least-squares problems that re-
quire many LSQR iterations. By augmenting Krylov subspaces using harmonic Ritz
vectors that approximate singular vectors associated with the small singular values,
this approach can reduce computational cost by using implicit restarts for improved
convergence. However, when applied to ill-posed inverse problems, the augmented
LSQR method without an explicit regularization term exhibits semiconvergence be-
havior. Other approaches for augmenting or enriching Krylov subspaces are described
in [23, 6, 27], where Krylov subspaces are combined with vectors containing impor-
tant information about the desired solution (e.g., a low-dimensional subspace). These
methods can improve the solution accuracy by incorporating information about the
desired solution into the solution process, but the improvement in accuracy signif-
icantly depends on the quality of the provided vectors. Modifications to include
specified solution vectors have been considered for the conjugate gradient method [6]
and for the TSVD approach [27]. A hybrid enriched bidiagonalization (HEB) method
that stably and efficiently augments a ``well-chosen enrichment subspace"" with the
standard Krylov basis associated with LSQR is described in [23]. Contrary to the
HEB method, our recycling GKB method generates the extension subspace vectors
rV\ell such that we improve on the space, rather than just augment it. Thus, as we will
demonstrate in section 4, our approach can handle a wider range of problems and
provide more accurate solutions.

The paper is organized as follows. In section 2, we provide a brief overview on
hybrid projection methods, where we focus on methods based on the standard GKB
process. Then in section 3, we propose new hybrid projection methods that are based
on the recycling GKB process and describe techniques for incorporating regulariza-
tion automatically and efficiently. We also describe some examples of compression
methods that can be used in step 1 of the proposed approach and provide theoretical
results. In particular, we investigate the impact of compression and recycling on the
projected problem and show important results that relate the regularized solution
from a recycling approach to that from a standard approach. Numerical results are
provided in section 4, and conclusions are provided in section 5.

2. Background on hybrid iterative methods. Hybrid approaches that em-
bed regularization within iterative methods date back to seminal papers by O'Leary
and Simmons in 1981 [36] and Bj\"orck in 1988 [5], and the number of extensions and
developments in the area of hybrid methods continues to grow; see, e.g., [17, 23, 15,
16, 40, 4, 8, 9, 10, 39]. We focus on hybrid methods based on the GKB process, which
generate an m-dimensional Krylov subspace using matrix AJA and vector AJb,

\scrK m

`

AJA,AJb
˘

“ span
 

AJb, pAJAqAJb, . . . , pAJAqm´1AJb
(

.
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RECYCLING HYBRID PROJECTION FOR INVERSE PROBLEMS S149

The GKB process1 [19] can be described as follows. Let \beta 1 “ }b}2, u1 “ b{\beta 1, and
\alpha 1v1 “ AJu1. Then at the jth iteration of the GKB process, we generate vectors
uj`1 and vj`1 such that

\beta j`1uj`1 “ Avj ´ \alpha juj and \alpha j`1vj`1 “ AJuj`1 ´ \beta j`1vj ,(2.1)

and after m iterations we have the relationships

AVm “ Um`1Bm,(2.2)

AJUm`1 “ VmBJm ` \alpha m`1vm`1e
J
m`1 “ Vm`1L

J
m`1,(2.3)

where Vm “
“

v1 . . . vm

‰

P RNˆm and Um`1 “
“

u1 . . . um`1

‰

P RMˆpm`1q

contain orthonormal columns,

Bm “

»

—

—

—

—

—

–

\alpha 1

\beta 2 \alpha 2

. . .
. . .

\beta m \alpha m

\beta m`1

fi

ffi

ffi

ffi

ffi

ffi

fl

P Rpm`1qˆm(2.4)

is a bidiagonal matrix, and Lm`1 “
“

Bm \alpha m`1em`1

‰

. Given these relations, an
approximate least-squares solution can be computed as xm “ Vmym where ym is the
solution to the projected least-squares problem,

min
\bfx P\scrR p\bfV mq

}Ax´ b}22 “ min
\bfy 
}Bmy ´ \beta 1e1}

2
2.(2.5)

In standard LSQR implementations, the columns of Vm and Um`1 do not need to
be stored and efficient updates can be used to minimize storage requirements. That
is, the storage cost is very low (e.g., M ` 2N for LSQR) due to a 3-term recurrence
property. For such iterative methods, the main computational cost at each iteration
is a matrix-vector product with A and its transpose.

However, when applied to ill-posed inverse problems, standard iterative methods
exhibit semiconvergent behavior, whereby solutions improve in early iterations but
become contaminated with inverted noise in later iterations [22]. Thus, it is desirable
to consider a hybrid iterative projection method that combines iterative regularization
with a variational regularization method such as Tikhonov regularization. One ap-
proach is to solve the Tikhonov problem (1.2) by applying any iterative least-squares
solver (e.g., LSQR) to the equivalent augmented system,

min
\bfx 

›

›

›

›

„

A
\lambda I



x´

„

b
0


›

›

›

›

2

2

.(2.6)

The main challenge is that the regularization parameter \lambda must be selected a priori,
which can be difficult especially for large-scale problems. Another hybrid iterative
approach is to project the problem onto Krylov subspaces of increasing dimension

1We assume no termination of the iteration, and therefore the dimension of KmpAJA,AJbq is
m.
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S150 JIAHUA JIANG, JULIANNE CHUNG, AND ERIC DE STURLER

and to compute the solution at the mth iteration as xm “ Vmym where ym solves
the projected, regularized problem,

min
\bfx P\scrR p\bfV mq

}Ax´ b}22 ` \lambda 2 }x}
2
2 “ min

\bfy 
}Bmy ´ \beta 1e1}

2
2 ` \lambda 2 }y}

2
2 .(2.7)

One benefit of this approach is that the regularization parameter for the projected
problem can be easily and automatically estimated during the iterative process [31,
8, 40]. However, a potential disadvantage is the storage of Vm which is needed for
solution computation. For some problems where the solution can be represented in
only a few basis vectors, this additional storage is not a concern. However, for large-
scale problems where storage of these vectors becomes too demanding, the proposed
hybrid projection methods with recycling and compression that we describe in the
next section can be used to reduce this computational cost.

3. Hybrid projection methods with recycling. Using iterative hybrid pro-
jection methods to solve large-scale inverse problems can be quite effective. We are
interested in scenarios where one has an initial solution subspace (e.g., from a prior
reconstruction or from a sequence of reconstructions), and the goal is to incorporate
such information to not only augment but also improve or enhance the solution sub-
space, thereby improving the quality of the subsequent solution approximations. For
example, for problems requiring many iterations, the memory required to store the
basis vectors for solution computation in canonical hybrid projection methods can
exceed capabilities or result in significantly longer computational times. The pro-
posed hybrid projection methods with recycling can be used to ameliorate the memory
requirements without sacrificing the quality of the solution, where a main ingredient
is the recycling GKB process. Here, we modify the classical GKB process to augment
and enhance a given orthonormal basis. Then, the recycling GKB process can be com-
bined with a regularization technique to give an efficient hybrid projection method.
Finally, by exploiting various compression approaches, compression and recycling can
be repeated in an iterative fashion until a desired reconstruction is obtained. An
overview of the general approach is provided in Algorithm 3.1.

Algorithm 3.1 Hybrid projection method with recycling and compression.

Require: A, b, Wk´1, x
p1q

1: while desired solution not obtained do
2: \ell “ 1
3: Construct Wk; see subsection 3.1.
4: while storage is available and stopping criteria not satisfied do
5: Use recycling GKB to compute augmented subspace rV\ell ; see subsection 3.1.
6: Compute regularization parameter.
7: Solve regularized, projected problem; see subsection 3.2.
8: \ell “ \ell ` 1
9: end while

10: Use compression to get Wk´1; see subsection 3.3.
11: end while

Notice that even though a large number of iterations can be performed, the size of
the projected problem will never exceed the set storage limit. Furthermore, theoretical
results provided in subsection 3.4 show that under reasonable conditions, regularized
solutions obtained from the recycling GKB approach remain close to the standard
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GKB solution. We will also address a special case where Wk´1 and xp1q come from
a standard Krylov approach and TSVD is used for compression.

For all derivations and results in this section, we assume exact arithmetic and no
breakdown of the algorithms.

3.1. Recycling Golub--Kahan bidiagonalization. In this section, we assume
that an approximate solution (or initial guess) xp1q and a matrix Wk´1 P RNˆpk´1q

with orthonormal columns are given, and we describe the recycling GKB process that
can be used to augment the solution subspace using recycling techniques. First,
assuming xp1q R \scrR pWk´1q, we set Wk “

“

Wk´1 qxp1q
‰

P RNˆk where qxp1q “
`

xp1q ´Wk´1W
J
k´1x

p1q
˘

{
›

›xp1q ´Wk´1W
J
k´1x

p1q
›

›

2
. Now, Wk represents the recy-

cled subspace and WJ
k Wk “ Ik, and the approximate solution (or initial guess) xp1q

is always in the search space. Thus subsequent (regularized) approximations may
preserve this search direction. If xp1q P \scrR pWk´1q, then Wk´1 can be used as the
recycled subspace.

Next, take the skinny QR factorization of AWk,

AWk “ YkRk P RMˆk,(3.1)

compute qrp1q “ b´Aqxp1q, and set

rb “ qrp1q ´Yk\bfitzeta where \bfitzeta “ YJ
k qr
p1q.(3.2)

The basic approach is to extend the solution space with an additional \ell vectors gener-
ated by the recycling GKB process. Starting with ru1 “ rb{r\beta 1 where r\beta 1 “ }rb}2 (note
ru1 K Yk) and r\alpha 1rv1 “ AJru1, at the jth iteration of the recycling GKB process, we
generate vectors ruj`1 and rvj`1 as

r\beta j`1ruj`1 “
`

I´YkY
J
k

˘

Arvj ´ r\alpha jruj ,(3.3)

r\alpha j`1rvj`1 “ AJruj`1 ´ r\beta j`1rvj ,(3.4)

and after \ell iterations, we have the following recurrence relation (cf. (2.2)–(2.3)):

`

I´YkY
J
k

˘

ArV\ell “ rU\ell `1
rB\ell ,(3.5)

AJ rU\ell `1 “ rV\ell 
rBJ\ell ` r\alpha \ell `1rv\ell `1e

J
\ell `1,(3.6)

where rV\ell “
“

rv1 . . . rv\ell 

‰

P RNˆ\ell , rU\ell `1 “
“

ru1 . . . ru\ell `1

‰

P RMˆp\ell `1q, and bidi-

agonal matrix rB\ell P Rp\ell `1qˆ\ell is constructed during the iterative process. Notice that
by construction rUJ\ell `1Yk “ O, where O is the zero matrix, and hence AJruj K Wk

for j “ 1, . . . , p\ell ` 1q, since WJ
k A

J
rU\ell `1 “ RJkY

J
k
rU\ell `1 “ O. Hence, rv1 KWk, and

if we assume that rvi KWk for i “ 1, . . . , j, then by induction we have from (3.4),

r\alpha j`1W
J
k rvj`1 “WJ

k A
J
ruj`1 ´ r\beta j`1W

J
k rvj “ 0.

Thus, Wk K rV\ell in exact arithmetic, without explicit orthogonalization. We notice
from (3.5) that ArV\ell “ YkY

J
k A

rV\ell ` rU\ell `1
rB\ell , so we have the recycling GKB relation,

A
”

Wk
rV\ell 

ı

“

”

Yk
rU\ell `1

ı

«

Rk YJ
k A

rV\ell 

0 rB\ell 

ff

,(3.7)

where rWk
rV\ell s and rYk

rU\ell `1s both contain orthonormal columns.
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Thus far, we have described a recycling GKB approach that can be used to aug-
ment a given solution subspace. A distinguishing factor of this approach compared
with existing enhancement methods is that the new, augmented, Krylov subspace de-
pends on the recycled subspace. Indeed, one can characterize the augmented solution
subspace as a Krylov subspace of the form

\scrR 
´

rV\ell 

¯

“ \scrK \ell 

´

AJ
`

I´YkY
J
k

˘

A,AJ
`

I´YkY
J
k

˘

qrp1q
¯

.

3.2. Hybrid projection methods using the recycling GKB. Next, we de-
scribe how the recycling GKB process can be incorporated within a hybrid projection
method for efficient regularized solution computation. Suppose we have performed \ell 
iterations of the recycling GKB process, and we are interested in computing approx-
imate Tikhonov solutions in the augmented solution subspace \scrR prWk

rV\ell sq, i.e., we

are looking for solutions of the form xk,\ell “ rWk
rV\ell sy where y “

“

cJ dJ
‰J

for

some vectors c P Rk and d P R\ell . Using the fact that rb “ qrp1q´Yk\bfitzeta “ r\beta 1
rU\ell `1e1 and

qxp1q “Wkek, we have

b “ qrp1q `Aqxp1q “ Yk\zeta ` r\beta 1
rU\ell `1e1 `AWkek(3.8)

“

”

Yk
rU\ell `1

ı

„

\zeta `Rkek
r\beta 1e1



.(3.9)

Then, using (3.7), the residual can be written as

(3.10)

b´A
”

Wk
rV\ell 

ı

„

c
d



“

”

Yk
rU\ell `1

ı

˜

„

\bfitzeta `Rkek
r\beta 1e1



´

«

Rk YJ
k A

rV\ell 

O rB\ell 

ff

„

c
d



¸

.

Thus, the next iterate of the hybrid projection method with recycling is given by

xp2q “
”

Wk
rV\ell 

ı

ry\lambda ,(3.11)

where

ry\lambda “ argmin
\bfy 

›

›

›

›

›

«

Rk YJ
k A

rV\ell 

O rB\ell 

ff

y ´

„

\bfitzeta `Rkek
r\beta 1e1



›

›

›

›

›

2

2

` \lambda 2 }y}
2
2 .(3.12)

Notice that the coefficient matrix in the projected problem

pBk,\ell “

«

Rk YJ
k A

rV\ell 

0 rB\ell 

ff

P Rpk`\ell `1qˆpk`\ell q(3.13)

is modest in size. Thus, standard regularization parameter selection methods can be
used to choose \lambda for (3.12). Based on the above derivation, we can interpret iterates
of the hybrid projection method with recycling as optimal solutions in a pk ` \ell q
dimensional subspace. That is, for fixed \lambda ě 0,

xp2q “ argmin
\bfx P\scrR 

´”

Wk
rV\ell 

ı¯

||Ax´ b||22 ` \lambda 2 }x}
2
2 .(3.14)
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If the solution is not sufficiently accurate, the process can be repeated in an

iterative fashion by selecting a new subspace\scrR pWpnewq
k´1 q Ă \scrR prWk

rV\ell sq (for example,

using one of the compression approaches provided in the next section), where W
pnewq
k´1

has orthonormal columns, and set W
pnewq
k “ rW

pnewq
k´1 qxp2qs with

qxp2q “

ˆ

I´W
pnewq
k´1

´

W
pnewq
k´1

¯J
˙

xp2q{

›

›

›

›

ˆ

I´W
pnewq
k´1

´

W
pnewq
k´1

¯J
˙

xp2q
›

›

›

›

2

.

Note, that \scrR pWpnewq
k q Ă \scrR prWk

rV\ell sq. Next, we set qrp2q “ b ´Aqxp2q, and repeat
the steps above.

We remark on the additional computational cost if full reorthogonalization is
desired. In particular, the recursion

r\alpha j`1rvj`1 “
`

I´WkW
J
k

˘

AJruj`1 ´ r\beta j`1rvj(3.15)

can be used in place of (3.4) to ensure that the solution basis vectors rWk
rV\ell s are

orthogonal in floating point arithmetic. In this case, the additional computational
cost is 4kN operations for each iteration.

3.3. Compression approaches. One feature of the hybrid projection methods
with recycling is the ability to combine compression and extension of the solution space
in an iterative manner. That is, compression techniques can reduce the total number
of solution vectors that we need to store, which can be followed by enhancement of
the space, and this can be done without significantly degrading the accuracy of the
resulting reconstruction. More specifically, let Vc represent the current set of basis
vectors, and assume that we can only afford to store m vectors of length N . When
the number of columns in Vc reaches m, we can compress the vectors in Vc to get
Wk´1 P RNˆpk´1q (see line 10 in Algorithm 3.1). Then, we can construct Wk using
an initial guess or current approximate solution and use the method described in
subsection 3.1 to augment the space with rV\ell , where \ell “ m´ k.

In this section, we focus on four compression strategies for constructing Wk´1 that
are well-suited for solving inverse problems with the recycling GKB process. These
include TSVD, reduced basis decomposition (RBD), solution-oriented compression,
and sparsity enforcing compression. The described compression strategies follow two
perspectives: (1) decompose pBk,\ell P Rpm`1qˆm defined in (3.13) and use truncation
(e.g., TSVD and RBD) or (2) use components in the solution of the projected problem
(3.12) to identify the important columns of Vc (e.g., sparsity enforcing and solution-
oriented compression). Throughout this subsection, we define 1 ď q ă m as the
largest number of length N vectors we wish to keep after compression and \epsilon tol ą 0 is
a tolerance for the compression.

First we describe the TSVD approach for compressing Vc. Let the SVD of pBk,\ell 

be given as

pBk,\ell “ \Psi m`1\Sigma m\Phi Jm,(3.16)

where \Psi m`1 P Rpm`1qˆpm`1q and \Phi m P Rmˆm are orthogonal matrices, and \Sigma m P

Rpm`1qˆm is a diagonal matrix containing singular values \sigma i, i “ 1, . . . ,m. If \sigma q ă \epsilon tol,
we let k ´ 1 “ i, where i is the largest index such that \sigma i ě \epsilon tol; otherwise k ´ 1 “ q.
The key point of this compression strategy is that we identify the important columns
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S154 JIAHUA JIANG, JULIANNE CHUNG, AND ERIC DE STURLER

of Vc as those corresponding to the large singular values of pBk,\ell . The compressed
representation of Vc is given by

Wk´1 “ Vc\Phi k´1,(3.17)

where \Phi k´1 contains the first k ´ 1 columns of \Phi m.
Second, we exploit tools from reduced order modeling [7] to compress the solution

vectors. For 1 ď i ď q, we consider the RBD of pBJk,\ell ,

pBJk,\ell “ SiTi,(3.18)

where Si P Rmˆi contains orthonormal columns and transformation matrix Ti P

Riˆpm`1q. Define \scrE i “ max1ďjďpm`1q }
pBJk,\ell p:, jq ´ SiTip:, jq}. If \scrE q ă \epsilon tol, we let

k´1 “ i, where i is the largest index such that \scrE i ě \epsilon tol; otherwise k´1 “ q. We use
Sk´1 to indicate important columns of Vc, thus the compressed vectors are obtained
as Wk´1 “ VcSk´1.

The third compression approach is motivated by the notion that the absolute value

of each component of the solution to the projected problem ry\lambda “
“

\~y1, . . . , \~ym
‰J

is
indicative of the important columns of Vc. We define Im, Jm as an index set at the
mth iteration:

Im “ ti : |\~yi| ą \epsilon tol, 1 ď i ď Nu,(3.19)

Jm “ ti : |\~yi| are the largest q components, 1 ď i ď Nu.(3.20)

For solution-oriented compression, we define Wk´1 “
“

vm1 . . . vmk´1

‰

, where k´

1 “ |Im X Jm|, tmju
k´1
j“1 Ď pIm X Jmq and m1 ď ¨ ¨ ¨ ď mk´1.

The fourth compression approach called sparsity-enforcing compression is intu-
itively similar to the solution-oriented method. The basic idea is to use ry\lambda to identify
the important vectors in Vc; however, the difference is that we employ a sparsity
enforcing regularization term on the projected problem. A standard algorithm such
as SpaRSA [50] can be used to solve for ry\lambda , and then corresponding vectors of Vc

can be extracted similarly to solution-oriented compression. It is worth mentioning
that ry\lambda is only used for identifying important columns of Vc (i.e., for compression)
and not for the solution computation.

3.4. Theoretical analysis of hybrid projection methods with recycling.
In this section, we analyze theoretical properties of regularized solutions and the
projected system using compression and recycling, in the important case that we run
m steps of standard GKB (see section 2), compress the search space to dimension k,
as described in section 3.3 with \scrR pWkq Ă \scrR pVmq, and carry out \ell steps of recycling
GKB (see section 3.1) which is incorporated in a hybrid projection method (see section
3.2). This scenario corresponds to the case where we can store a maximum of m
vectors of length N , but a hybrid projection method with standard GKB requires
more iterations to converge.

First, we analyze the storage requirements. Let j denote the number of iterations
for a standard hybrid method. Without full reorthogonalization, we need to save
Vj P RNˆj , bidiagonal matrix Bj P Rpj`1qˆj , and uj`1 P RMˆ1, where the storage
cost is dominated by Vj if N is large. The total storage cost of standard hybrid
iterative methods is

\scrC HyBRpjq :“ 2j ` pN ` 2qj `M.
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As j increases, \scrC HyBRpjq is dominated by Nj. Thus, for very-large-scale problems,
\scrC HyBRpjq increases rapidly and can easily exceed the storage limit. For the proposed
recycling GKB hybrid method, we need to save Wk P RNˆk,Yk P RMˆk,Rk P

Rkˆk, ek P Rkˆ1, rB\ell P Rp\ell `1qˆ\ell , rV\ell P RNˆ\ell , \bfitzeta P Rkˆ1, YJ
k A

rV\ell P Rkˆ\ell , and ru\ell P

RMˆ1, where Rk is an upper triangular matrix and rB\ell is a bidiagonal matrix. Since
\ell “ m´ k, the storage cost of recycling GKB is

\scrC HyBR-recycle :“ k2{2` pN `M ` 2qk ` 2\ell ` pN ` 1q\ell ` k\ell 

“ pN ` 2qm`Mk ` k2{2` \ell pk ` 1q

ă m2{2` pN `M ` 2qm.

Therefore, the storage requirements of \scrC HyBR-recycle do not grow with the number of
iterations.

Next, we consider several consequences of compression and augmentation for the
projected problem. We are interested in comparing the properties of the GKB matrix
pBk,\ell obtained with recycling with properties of the GKB matrix Bm`\ell obtained with
m` \ell standard GKB iterations. In addition, we show that under reasonable assump-
tions and for the same regularization parameter, the regularized solution from the
recycling approach is close to the regularized solution from the standard approach.
For the particular case of TSVD compression, we give precise and (a posteriori) com-
putable bounds.

We start with a lemma that shows important relations between the generated
subspaces and then consider its consequence for relations between pBk,\ell and Bm`\ell .

Lemma 3.1. Let Vm`\ell , Um`\ell `1, and Bm`\ell be the matrices computed after m`\ell 
iterations of standard GKB, following (2.1). Let xp1q be a (arbitrary) regularized
solution computed from \scrR pVmq, \scrR pWk´1q Ă \scrR pVmq (obtained by any compression
method), and Wk be computed as described at the start of section 3.1 with Yk, Rk

given in (3.1). In addition, let rU\ell `1 “
“

ru1 . . . ru\ell `1

‰

and rV\ell “
“

rv1 . . . rv\ell 

‰

be
obtained after \ell iterations of recycling GKB following (3.3)--(3.4). Then

\scrR 
´

rU\ell `1

¯

Ă \scrR pUm`\ell `1q and \scrR 
´

rV\ell 

¯

Ă \scrR pVm`\ell q.(3.21)

Proof. We prove the result by induction. In recycling GKB, ru1 “ rb{}rb}2 with
rb “ qrp1q ´ YkY

J
k qr
p1q and qrp1q “ b ´ Aqxp1q. By construction, qxp1q P \scrR pVmq, and

hence Aqxp1q P \scrR pAVmq. We also have \scrR pYkq Ă \scrR pAVmq, and, using (2.2)–(2.3),
\scrR pAVmq Ă \scrR pUm`1q. Since b “ \beta 1u1 P \scrR pUm`1q, we have ru1 P \scrR pUm`1q. There-
fore, AJru1 P \scrR pAJUm`1q “ \scrR pVm`1q, and as r\alpha 1rv1 “ AJru1, rv1 P \scrR pVm`1q.

Since Arv1 P \scrR pAVm`1q Ă \scrR pUm`2q and r\beta 2ru2 “ pI´YkY
J
k qArv1 ´ r\alpha 1ru1, it follows

that ru2 P \scrR pUm`2q. Now assume that rui`1 P \scrR pUm`i`1q and rvi P \scrR pVm`iq for
i “ 1, . . . , j. Since \scrR pYkq Ă \scrR pUm`1q, we get from (3.3)–(3.4) that

rvj`1 P \scrR pVm`j`1q and ruj`1 P \scrR pUm`j`1q.

The next result is presented without its (straightforward) proof.

Lemma 3.2. Let A P RMˆN and b P RM , and let P P RNˆN and Q P RMˆM be
orthogonal matrices. For any given \lambda , the Tikhonov solutions

x\lambda “ argmin
\bfx PRN

}Ax´ b}22 ` \lambda 2}x}22,

rx\lambda “ argmin
r\bfx PRN

}QAPJrx´Qb}22 ` \lambda 2}rx}22

satisfy x\lambda “ PJrx\lambda .
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Next, we derive the orthogonal transformations that relate the Lanczos bases
for the recycling GKB iteration with compression to those of the standard GKB
iteration, and the resulting relations between pBk,\ell and Bm`\ell . From Lemma 3.1

and the construction of Wk and Yk, we see that \scrR pWkq `\scrR prV\ell q Ă \scrR pVm`\ell q and

\scrR pYkq`\scrR prU\ell `1q Ă \scrR pUm`\ell `1q. In addition, by construction the matrices rWk
rV\ell s,

rYk
rU\ell `1s, Vm`\ell , and Um`\ell `1 have orthonormal columns. Hence, there exist or-

thogonal matrices T “
“

T1 T2 Tc

‰

P Rpm`\ell `1qˆpm`\ell `1q and Z “
“

Z1 Z2 Zc

‰

P

Rpm`\ell qˆpm`\ell q such that Yk “ Um`\ell `1T1, rU\ell `1 “ Um`\ell `1T2, Wk “ Vm`\ell Z1, and
rV\ell “ Vm`\ell Z2. The subspace \scrR pVm`\ell Zcq is the orthogonal complement of the com-
pressed solution space \scrR 

`

Vm`\ell 

“

Z1 Z2

‰˘

with respect to the (full) GKB solution
space \scrR pVm`\ell q. An analogous relation holds for \scrR pUm`\ell `1Tcq. Substituting these
relations in (3.7) and using the fact that Um`\ell `1 rT1 T2s has orthonormal columns,
we obtain

A
”

Wk
rV\ell 

ı

“

”

Yk
rU\ell `1

ı

«

Rk YJ
k A

rV\ell 

0 rB\ell 

ff

ô AVm`\ell rZ1 Z2s “ Um`\ell `1 rT1 T2s pBk,\ell 

ñ pBk,\ell “
“

T1 T2

‰J
UJm`\ell `1AVm`\ell 

“

Z1 Z2

‰

“
“

T1 T2

‰J
Bm`\ell 

“

Z1 Z2

‰

.(3.22)

Blockwise, we have TJ1 Bm`\ell Z1 “ Rk, T
J
1 Bm`\ell Z2 “ YJ

k A
rV\ell , T

J
2 Bm`\ell Z1 “ O, and

TJ2 Bm`\ell Z2 “ rB\ell . For the (3,1) block we have

TJc Bm`\ell Z1 “ TJc U
J
m`\ell `1AVm`\ell Z1 “ TJc U

J
m`\ell `1AWk “ TJc U

J
m`\ell `1YkRk

“ TJc U
J
m`\ell `1Um`\ell `1T1Rk “ O.

For the (3,2) block we have

TJc Bm`\ell Z2 “ TJc U
J
m`\ell `1AVm`\ell Z2 “ TJc U

J
m`\ell `1A

rV\ell 

“ TJc U
J
m`\ell `1pYkY

J
k A

rV\ell ` rU\ell `1
rB\ell q

“ TJc U
J
m`\ell `1Um`\ell `1

“

T1 T2

‰

«

YJ
k A

rV\ell 

rB\ell 

ff

“ O.

This gives the following lemma.

Lemma 3.3.

(3.23)

“

T1 T2 Tc

‰J
Bm`\ell 

“

Z1 Z2 Zc

‰

“

»

–

Rk YJ
k A

rV\ell TJ1 Bm`\ell Zc

O rB\ell TJ2 Bm`\ell Zc

O O TJc Bm`\ell Zc

fi

fl .

Next we consider the difference between the regularized solution to (3.12) and the
regularized solution to the full (transformed) problem with system matrix (3.23). In
particular, we analyze the backward error, and then consider bounds on the backward
error for the special case of compression based on the TSVD. Let \lambda be given, typically
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an appropriate \lambda for the regularized problem (3.12), and let ry\lambda be given as in (3.12),
i.e.,

´

pBJk,\ell 
pBk,\ell ` \lambda 2I

¯

ry\lambda “ pBJk,\ell 

„

Rkek ` \bfitzeta 
r\beta 1e1



.(3.24)

We consider the residual of the approximate solution
“

ryJ\lambda 0J
‰J

for the regularized
(transformed) full problem. According to (3.23),

´

`

TJBm`\ell Z
˘J `

TJBm`\ell Z
˘

` \lambda 2I
¯

y

“
`

TJBm`\ell Z
˘J

TJe1\beta 1 “
`

TJBm`\ell Z
˘J

TJUJm`\ell `1b

“
`

TJBm`\ell Z
˘J

”

Yk
rU\ell `1 Um`\ell `1Tc

ıJ

b “
`

TJBm`\ell Z
˘J

»

–

Rkek ` \bfitzeta 
r\beta 1e1
0

fi

fl .

The residual for
“

ryJ\lambda 0J
‰J

for the full transformed problem is given by

r\lambda “

„

pBJk,\ell O

ZJc B
J
m`\ell 

“

T1 T2

‰

ZJc B
J
m`\ell Tc



»

–

„

Rkek ` \bfitzeta 
r\beta 1e1



0

fi

fl(3.25)

´

«

pBJk,\ell 
pBk,\ell ` \lambda 2I pBJk,\ell 

“

T1 T2

‰J
Bm`\ell Zc

ZJc B
J
m`\ell 

“

T1 T2

‰

pBk,\ell ZJc B
J
m`\ell Bm`\ell Zc ` \lambda 2I

ff

„

ry\lambda 

0



“

»

–

0

ZJc B
J
m`\ell 

“

T1 T2

‰

ˆ„

Rkek ` \bfitzeta 
r\beta 1e1



´ pBk,\ell ry\lambda 

˙

fi

fl .

Note that

pr\lambda “

„

Rkek ` \bfitzeta 
r\beta 1e1



´ pBk,\ell ry\lambda (3.26)

is just the residual for the regularized solution of (3.12) with the chosen \lambda , and its

norm is known. The corresponding residuals for the full system are rYk
rU\ell `1spr\lambda ,

obtained with compression and recycling, and rYk
rU\ell `1 pUm`\ell `1Tcqs r\lambda , obtained

with m`\ell steps of standard GKB, but with the regularization parameter and solution
from the compression and recycling approach. This gives the following theorem.

Theorem 3.4. Let Z, T, Bm`\ell , r\lambda , and pr\lambda be defined as above. Then,

r\lambda “

„

0
ZJc B

J
m`\ell 

“

T1 T2

‰

pr\lambda 



,

}r\lambda }2 “
›

›ZJc B
J
m`\ell 

“

T1 T2

‰

pr\lambda 
›

›

2
.

Before we analyze }r\lambda }2 and what it means for the difference between the solu-
tions from the regularized compressed problem with recycling and the regularized full
problem for the same regularization parameter, consider the case that this residual
of the regularized full problem is (relatively) small. In that case, the backward er-
ror is (relatively) small, and for a well-chosen regularization parameter the matrix is
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well-conditioned. Hence the difference between the regularized solution for the full
problem and the regularized solution for the compressed problem is small. Assuming
the regularization parameter is larger than the smallest singular values, the condition
number of the regularized matrix depends on the largest singular value and the reg-
ularization parameter. In general, \sigma maxpBm`lq « \sigma maxppBk,\ell q, and hence choosing \lambda 
such that the compressed Tikhonov problem is well-conditioned implies that the full
Tikhonov problem would be well-conditioned for the same \lambda .

Analysis for TSVD-based compression. Next, we consider a more detailed
analysis in the case that compression is done using TSVD. For simplicity, we consider
compression after the first m iterations of standard GKB, so (2.2) is satisfied, and \ell 
subsequent steps of recycling GKB. We can extend this to an analysis for multiple
compression and recycling steps, but this is left for future work.

Let Bm “ \Psi m`1\Sigma m\Phi Jm be the SVD of Bm with

\Sigma m “ diagp\sigma 1, . . . , \sigma mq,(3.27)

and let xp1q be a regularized solution. We take Wk “ Vm

“

\Phi k´1 \bfitxi 
‰

, where, following

section 3.1, wk “ qxp1q and so \bfitxi “ VJmqxp1q. This gives

YkRk “ AWk “ Um`1Bm

“

\Phi k´1 \bfitxi 
‰

“ Um`1

“

\Psi k´1\Sigma k´1 r\bfiteta 
‰

with r\bfiteta “ Bm\bfitxi . Since \bfitxi K \Phi k´1, we have r\bfiteta K \Psi k´1, and for the QR decomposition
YkRk “ AWk,

(3.28)

Yk “ Um`1

“

\Psi k´1 \bfiteta 
‰

, Rk “ diag p\sigma 1, . . . , \sigma k´1, rkkq with rkk “ }r\bfiteta }2 ď \sigma k.

Next, we bound }r\lambda }2 by bounding }ZJc B
J
m`\ell 

“

T1 T2

‰

}F , which is an obvious

upper bound for }ZJc B
J
m`\ell 

“

T1 T2

‰

}2. We note that this Frobenius norm bound

is computable a posteriori (without extra cost). First, consider ZJc B
J
m`\ell T1. Since

\scrR pAJYkq Ă \scrR pVm`1q and ZJc B
J
m`\ell T1 “ ZJc V

J
m`\ell A

JYk,

}ZJc B
J
m`\ell T1}

2
F “ }A

JYk}
2
F ´ }Z

J
1 B

J
m`\ell T1}

2
F ´ }Z

J
2 B

J
m`\ell T1}

2
F .

We have

AJYk “ AJUm`1

“

\Psi k´1 \bfiteta 
‰

“ Vm`1

„

BJm
eJm`1\alpha m`1



“

\Psi k´1 \bfiteta 
‰

ñ }AJYk}
2
F “ }\Sigma k´1}

2
F ` }B

J
m\bfiteta }22 ` \alpha 2

m`1}e
J
m`1

“

\Psi k´1\bfiteta 
‰

}22

ď \sigma 2
1 ` ¨ ¨ ¨ ` \sigma 2

k´1 ` \sigma 2
k ` \alpha 2

m`1.

Note that BJm\bfiteta and eJm`1

“

\Psi k´1 \bfiteta 
‰

can be computed at negligible cost during
the algorithm. Also, ZJ1 B

J
m`\ell T1 “ RJk , which implies }ZJ1 B

J
m`\ell T1}

2
F “ \sigma 2

1 ` ¨ ¨ ¨ `

\sigma 2
k´1 ` r2kk (with rkk “ }Bm\bfitxi }2), and }Z

J
2 B

J
m`\ell T1}

2
F “ }Y

J
k A

rV\ell }
2
F , which also can

be computed at negligible cost during the algorithm. This gives

(3.29)

}ZJc B
J
m`\ell T1}

2
F “ }B

J
m\bfiteta }22 ´ }Bm\bfitxi }22 ` \alpha 2

m`1}e
J
m`1

“

\Psi k´1 \bfiteta 
‰

}22 ´ }Y
J
k A

rV\ell }
2
F

ď \sigma 2
k ´ r2kk ` \alpha 2

m`1 ´ }Y
J
k A

rV\ell }
2
F .(3.30)
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Note that \bfiteta “ Bm\bfitxi {}Bm\bfitxi }2, and hence }BJm\bfiteta }22 ´ }Bm\bfitxi }22 tends to be small. For
ZJc B

J
m`\ell T2, we have

ZJc B
J
m`\ell T2 “ ZJc V

J
m`\ell A

JUm`\ell `1T2 “ ZJc V
J
m`\ell A

J
rU\ell `1

“ ZJc V
J
m`\ell 

´

rV\ell 
rBJ\ell ` r\alpha \ell `1rv\ell `1e

J
\ell `1

¯

“ r\alpha \ell `1Z
J
c V

J
m`\ell rv\ell `1e

J
\ell `1,

and hence

}ZJc B
J
m`\ell T2}F “ |r\alpha \ell `1|}Z

J
c V

J
m`\ell rv\ell `1}2 ď |r\alpha \ell `1|.(3.31)

This derivation proves the following theorem.

Theorem 3.5. Let A, b, Vm`\ell , Um`\ell `1, Bm`\ell , and pBk,\ell be defined as above
(using TSVD for compression). Then r\lambda in (3.25) satisfies

}r\lambda }2 ď }pr\lambda }2

´

\sigma 2
k ´ r2kk ` \alpha 2

m`1 ´ }Y
J
k A

rV\ell }
2
F ` r\alpha 2

\ell `1

¯1{2

,(3.32)

where pr\lambda is given in (3.26).

Finally, we provide a few more useful properties of the matrix TJBm`\ell Z. First,
we would like a bound on its maximum singular value, so we can estimate the condition
number of the regularized matrix in (3.25). Note that its smallest eigenvalue is larger
than \lambda 2, where \lambda is the regularization parameter. Using \sigma maxp¨q to denote the largest
singular value of a matrix,

\sigma max

`

TJBm`\ell Z
˘

ď \sigma max

`

TJBm`\ell 

“

Z1 Z2

‰˘

` \sigma maxpT
JBm`\ell Zcq(3.33)

ď \sigma max

`

TJBm`\ell 

“

Z1 Z2

‰˘

` }TJBm`\ell Zc}F .(3.34)

Estimating TJc Bm`\ell Zc is difficult, and we use a conjecture that we test numerically
below. Consider the blocks of Bm`\ell ,

(3.35)

Bm`\ell “

»

—

—

–

Bm

„

0mˆ\ell 

\alpha m`1e
J
1



0\ell ˆm B\ell 

fi

ffi

ffi

fl

with B\ell “

»

—

—

—

–

\beta m`2 \alpha m`2

. . .
. . .

\beta m`\ell \alpha m`\ell 

\beta m`\ell `1

fi

ffi

ffi

ffi

fl

P R\ell ˆ\ell .

We also define

B\ell “

»

–

\alpha m`1e
J
1

B\ell 

fi

fl .(3.36)

Since }Bm}
2
F ` }B\ell }

2
F “ }Bm`\ell }

2
F “ }TJBm`\ell Z}

2
F “ }TJBm`\ell 

“

Z1 Z2

‰

}2F `

}TJBm`\ell Zc}
2
F , we get

}TJBm`\ell Zc}
2
F “ }Bm}

2
F ´ }Rk}

2
F ´ }Y

J
k A

rV\ell }
2
F `

´

}B\ell }
2
F ´ }

rB\ell }
2
F

¯

.(3.37)

Since the sequences of vectors rv1, rv2, . . . and vm`1,vm`2, . . . both extend the Krylov
space beyond \scrR pVmq, and both sequences are orthogonal to the approximate domi-
nant singular vectors Wk, we conjecture as follows.
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Conjecture 1. }B\ell }
2
F « }

rB\ell }
2
F .

We provide numerical confirmation of this conjecture at the end of this section.
Using Conjecture 1, (3.37), (3.27), and (3.28), we obtain the following (approximate)
bound:

}TJBm`\ell Zc}
2
F “ \sigma 2

k ´ r2kk ` \sigma 2
k`1 ` . . . \sigma 2

m ´ }Y
J
k A

rV\ell }
2
F `

´

}B\ell }
2
F ´ }

rB\ell }
2
F

¯

(3.38)

Æ \sigma 2
k ´ r2kk ` \sigma 2

k`1 ` ¨ ¨ ¨ ` \sigma 2
m.(3.39)

This gives the approximate bound,

\sigma maxpBm`\ell q “ \sigma maxpT
JBm`\ell Zq

Æ

¨

˝\sigma max
2

¨

˝

»

–

Rk YJ
k A

rV\ell 

0 rB\ell 

0 0

fi

fl

˛

‚` \sigma 2
k ´ r2kk ` \sigma 2

k`1 ` . . .` \sigma 2
m

˛

‚

1{2

,(3.40)

which in general is only modestly larger than \sigma 1. Note that the first term on the
right-hand side, which equals \sigma max

2ppBk,\ell q, is easily computable.
Using (3.38), (3.29)–(3.31), and \sigma k ě }B

J
m\bfiteta }2 ě rkk, we also obtain an approxi-

mate bound for the bottom right block of TJBm`\ell Z,

}TJc Bm`\ell Zc}
2
F “ \sigma 2

k ´ r2kk ` \sigma 2
k`1 ` ¨ ¨ ¨ ` \sigma 2

m ´ }Y
J
k A

rV\ell }
2
F(3.41)

`

´

}B\ell }
2
F ´ }

rB\ell }
2
F

¯

´ }BJm\bfiteta }22

` r2kk ´ \alpha 2
m`1}e

J
m`1

“

\Psi k´1 \bfiteta 
‰

}22

` }YJ
k A

rV\ell }
2
F ´ r\alpha 2

\ell `1}Z
J
c V

J
m`\ell rv\ell `1}

2
2

Æ \sigma 2
k ´ r2kk ` \sigma 2

k`1 ` ¨ ¨ ¨ ` \sigma 2
m.

Finally, we note that, in general, as the dominant singular vectors are captured
relatively quickly and progressively better in the Krylov spaces, the coefficients |\alpha j |

and |\beta j`1| have a decreasing trend. Hence, |\alpha m`1| and |r\alpha \ell `1| tend to be small com-
pared with \sigma k. In Figure 3.1, we numerically verify this trend for \alpha j for the example
in subsection 4.1.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 3.1. Values of \alpha m`1 for the example in subsection 4.1.
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Table 3.1
Differences as defined in (3.42) for various image deblurring examples with the blur function

being a Gaussian with a missing piece. The noise level is 0.2\%.

Image d
›

›

›
B\ell 

›

›

›

2

F

›

›

›

rB\ell 

›

›

›

2

F
\sigma 30

grain 0.0593 9.3606 9.3013 0.6280
plane 0.1345 9.4065 9.2720 0.6332
peppers 0.1548 9.4280 9.2732 0.6286
cameraman 0.1261 9.4353 9.3092 0.6283

Table 3.2
Differences as defined in (3.42) for the grain example with different blur functions. The noise

level is 0.2\%.

Blurring information d
›

›

›
B\ell 

›

›

›

2

F

›

›

›

rB\ell 

›

›

›

2

F
\sigma 30

Gaussian with a missing piece 0.0593 9.3606 9.3013 0.6280
Nonsymmetric Gaussian blur with parameters r2, 3, 0s 0.1094 9.4610 9.3515 0.6153
Nonsymmetric out of focus blur with radius 9 0.1134 9.4804 9.3670 0.6160
Box car blur (11ˆ 11 blur) 0.1440 9.4977 9.3538 0.6155

Table 3.3
Differences as defined in (3.42) for different noise levels for the grain example with the blur

function being a Gaussian with a missing piece.

Noise level d
›

›

›
B\ell 

›

›

›

2

F

›

›

›

rB\ell 

›

›

›

2

F
\sigma 30

0.005 0.0586 9.3599 9.3013 0.6280
0.01 0.0580 9.3593 9.3013 0.6279
0.05 0.0592 9.3605 9.3013 0.6275
0.1 0.0605 9.3618 9.3013 0.6271

To get a better understanding of the final term in the bound, we provide the
difference

d “

ˇ

ˇ

ˇ

ˇ

›

›

›
B\ell 

›

›

›

2

F
´

›

›

›

rB\ell 

›

›

›

2

F

ˇ

ˇ

ˇ

ˇ

(3.42)

for some commonly used numerical examples from RestoreTools [34]. For all examples,
we set m “ 50, k “ q “ 30, and \ell “ 20. All images are 256 ˆ 256. In Table 3.1 we
consider different images, in Table 3.2 we consider different types of blur, and in
Table 3.3 we consider different noise levels. We observe that d is much smaller than
\sigma k in regular scenarios, so \sigma k likely dominates the upper bound of }TJc Bm`\ell Zc}

2
F in

(3.41).

4. Numerical results. In this section, we compare the performance of the pro-
posed hybrid projection methods with recycling to that of the conventional hybrid
methods using examples from image processing. We consider various scenarios where
the recycling hybrid projection methods can alleviate storage requirements and im-
prove reconstructions when solving inverse problems. In subsection 4.1 we consider a
linear image deblurring problem where standard hybrid methods may be limited by the
storage of many vectors in the solution space. We investigate the performance of var-
ious compression methods and parameter selection methods. Then in subsection 4.2,
we consider two tomographic reconstruction examples, one for a streaming data prob-
lem and another for a problem with modified projection angles using real data.
MATLAB codes will be provided at https://github.com/juliannechung/HyBRrecycle.

D
ow

nl
oa

de
d 

08
/0

9/
21

 to
 4

5.
3.

72
.1

64
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

https://github.com/juliannechung/HyBRrecycle


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

S162 JIAHUA JIANG, JULIANNE CHUNG, AND ERIC DE STURLER

4.1. Image deblurring example. This example is an image deblurring prob-
lem from RestoreTools [34], where the goal is to reconstruct a true image of a grain,
which has 256 ˆ 256 pixels, from an observed blurred image that contains Gaussian

white noise at a noise level of 0.2\%, i.e.,
}\bfitepsilon }2

}\bfA \bfx true}2
“ 0.002. The true image, blurred

and noisy image, and point spread function (PSF) for the grain example are shown
in Figure 4.1. An image deblurring problem with a smaller noise level usually re-
quires more iterations to converge, which for standard hybrid methods means that
we need to store more solution vectors. For this example, assume that we can store
at most 50 solution basis vectors, each of size 65536 ˆ 1. We will show that the pro-
posed hybrid projection method with recycling and compression, henceforth denoted
HyBR-recycle, can handle this scenario. We will investigate various compression tech-
niques from subsection 3.3, where the stopping criteria are (1) the maximum number
of basis vectors saved after compression is q “ 30 and (2) the compression tolerance
is \varepsilon tol “ 10´6.

In Figure 4.2, we provide the relative reconstruction error norms per iteration
of HyBR-recycle with various compression strategies, where for comparison we in-
clude the relative error norms for LSQR (with no additional regularization) and for
a standard hybrid method denoted by HyBR. In the left plot, we use the optimal
regularization parameter at each iteration, which is not available in practice, and
in the right plot, we use the weighted GCV (WGCV) [8] method for regularization

(a) True image (b) Noisy blurred image (c) PSF

Fig. 4.1. Image deblurring example.
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(a) Optimal (b) WGCV

Fig. 4.2. Relative reconstruction error norms for hybrid projection methods with recycling using
different compression strategies. The left plot corresponds to selecting the optimal regularization
parameter at each iteration, and the right plot corresponds to selecting the regularization parameter
using WGCV. For all methods, we assume that storage of solution basis vectors is limited to 50.
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0 50 100 150 200 250

iterations
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

re
la

tiv
e 

er
ro

r

HyBR-recycle-opt-tsvd
HyBR-recycle-wgcv-tsvd
HyBR-recycle-upre-tsvd
HyBR-recycle-dp-tsvd

0 50 100 150 200 250

iterations
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

re
la

tiv
e 

er
ro

r

HyBR-recycle-opt-solution
HyBR-recycle-wgcv-solution
HyBR-recycle-upre-solution
HyBR-recycle-dp-solution

(a) TSVD (b) Solution-oriented method

Fig. 4.3. Relative reconstruction errors for hybrid projection methods with recycling and com-
pression for the grain deblurring example with different regularization parameter choice methods.

parameter selection. We observe that LSQR exhibits semiconvergence, and HyBR-opt
is not able to achieve high accuracy due to the fact that the storage limit was capped
at 50 solution vectors. These results demonstrate the competitiveness of hybrid pro-
jection methods with recycling in limited storage situations. Moreover, we notice that
for both regularization parameter choice methods, solution-oriented compression and
sparsity-enforcing compression resulted in slightly smaller relative error norms than
TSVD and RBD.

Next, in Figure 4.3 we compare various methods for selecting regularization pa-
rameters in hybrid projection methods with recycling. We consider two compression
techniques (TSVD and solution-oriented), and we provide relative reconstruction er-
ror norms for parameter choice methods: the WGCV, the unbiased predictive risk
estimator (UPRE) [48, 46], and the discrepancy principle (DP) [33]. These parameter
choice methods are among many that have been investigated in the context of hybrid
iterative methods; e.g., see [18] and references therein. For these experiments, we use
the true noise level for both UPRE and DP, but estimates of the noise level can be
obtained in practice [11, 35, 26]. For comparison, we provide results for the optimal
regularization parameter. We observe that all of the considered regularization param-
eter selection methods result in relative reconstruction error norms that are close to
those for the optimal regularization parameter.

The absolute error images (in inverted colormap) corresponding to reconstruc-
tions of the grain image are provided in Figure 4.4. The top row corresponds to
reconstructions obtained using WGCV, and the bottom row corresponds to recon-
structions obtained using DP. For HyBR-recycle-WGCV, we provide results for TSVD
and solution-oriented compression. For HyBR-recycle-DP, we provide results for RBD
and sparsity enforcing compression. The HyBR-recycle results correspond to 239 it-
erations. For comparison, we provide absolute error images for the standard hybrid
methods after 50 iterations. Notice that due to the forced storage limit, absolute errors
for HyBR-WGCV and HyBR-DP reconstructions are large (corresponding to darker
regions in Figures 4.4(a) and (d), respectively). These observations are consistent
with the relative error norms provided in Figure 4.2.

Finally, we use this example to numerically demonstrate the bound derived in
Theorem 3.5. In Figure 4.5, we provide the norm of the residual for the transformed
problem and the derived upper bound from (3.32) for one cycle of HyBR-recycle after
compression with TSVD. At each iteration, the same regularization parameter was

D
ow

nl
oa

de
d 

08
/0

9/
21

 to
 4

5.
3.

72
.1

64
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

S164 JIAHUA JIANG, JULIANNE CHUNG, AND ERIC DE STURLER

0.05

0.35

0.05

0.35
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0.35

(a) HyBR-WGCV (b) HyBR-recycle-WGCV-TSVD (c) HyBR-recycle-WGCV-solution
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(d) HyBR-DP (e) HyBR-recycle-DP-RBD (f) HyBR-recycle-DP-sparse

Fig. 4.4. Absolute error images (in inverted colormap) for the grain image for WGCV and DP.
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Fig. 4.5. Illustration of bound on the residual norm derived in Theorem 3.5.

used to compute the residual from HyBR-recycle (i.e., }pr\lambda }2) and the residual from the
regularized full GKB for the HyBR-recycle solution (i.e., }r\lambda }2). Although the bound
is an overestimate, the result shows that we do not expect the solution of HyBR-
recycle after compression to be far from the solution to the regularized Tikhonov
problem when using the full GKB.

4.2. Tomography reconstruction examples. Next, we investigate various
scenarios in tomographic reconstruction where multiple reconstruction problems must
be solved, and the hybrid projection methods with recycling can be used to incorporate
information (e.g., basis vectors) from previous reconstructions to solve the current
reconstruction problem. We consider two scenarios.

1. In the case of dynamic or streaming data inverse problems, reconstructions
must be updated as data are being collected. This may arise in applications
such as microCT, where immediate reconstructions are used as feedback to
inform the data acquisition process [37].
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2. Oftentimes, we must solve several reconstruction problems where the projec-
tion angles are slightly modified. This might arise in an optimal experimental
design framework where the goal is to determine the optimal angles for image
formation [42] or in a sampling framework [43].

Before describing the details of the experiments, we describe four general ap-
proaches. Assume that we have r reconstruction problems,

min
\bfx 
}A1x´ b1}

2
2 ` \lambda 2

1 }x}
2
2 ,(4.1)

...

min
\bfx 
}Aix´ bi}

2
2 ` \lambda 2

i }x}
2
2 ,(4.2)

...

min
\bfx 
}Arx´ br}

2
2 ` \lambda 2

r }x}
2
2 .(4.3)

Depending on the problem setup and noise level, the regularization parameter for
each problem \lambda 1, . . . , \lambda r may be different. Thus, in all of our approaches, we select
these regularization parameters automatically in a hybrid framework.

1. Using A1 and b1, we run m iterations of the standard GKB on (4.1), com-
press the computed solution vectors into k1´1 orthonormal vectors Wk1´1 P

RNˆpk1´1q, and save matrix Wk1
“

“

Wk1´1 qxp1q
‰

, where

qxp1q “ pxp1q ´Wk1´1W
J
k1´1x

p1qq{

›

›

›
xp1q ´Wk1´1W

J
k1´1x

p1q
›

›

›

2

and xp1q is the corresponding solution of (4.1). Then for a subsequent problem

with Ai and bi (1 ă i ă r), we use W
pnewq
ki´1 obtained from the previous

problem and run HyBR-recycle on (4.2) saving matrix W
pnewq
ki

. Finally we

solve (4.3) using HyBR-recycle starting with W
pnewq
kr´1 .

2. We run a standard HyBR method with automatic regularization parameter
selection on any of the r reconstruction problems (e.g., the last one).

3. For comparison, we provide the results for HyBR with automatic regulariza-
tion parameter selection on the entire problem,

min
\bfx 

›

›

›

›

›

›

›

»

—

–

A1

...
Ar

fi

ffi

fl

x´

»

—

–

b1

...
br

fi

ffi

fl

›

›

›

›

›

›

›

2

2

` \lambda 2 }x}
2
2 .(4.4)

We remark that in streaming scenarios, this can be considered as the ideal case
and should produce the solution with overall smallest relative error. However,
we assume that this cannot be computed in practice and use it merely as a
comparison.

4. We take an average of solutions computed from (4.1) to (4.3) independently;
this is common in tomography.

4.2.1. Streaming data. For the first experiment, we use the parallel tomogra-
phy example from IRTools [14, 24], where the true image is a 1024ˆ1024 Shepp–Logan

phantom so xtrue P R10242 . The true image can be found in Figure 4.6(a). We test two
cases for this example, where the first case has two reconstruction problems (r “ 2)
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and the second case has four reconstruction problems (r “ 4). The DP is used for
regularization parameter selection in all the results presented in this subsection.

Case 1. We assume that data is being streamed such that the first reconstruction
problem corresponds to 90 equally spaced projection angles between 0˝ and 89˝, and
the second problem corresponds to 90 equally spaced projection angles between 90˝

and 179˝. In terms of dimensions, A1,A2 P R90¨1448ˆ10242

and b1,b2 P R90¨1448. The

noise level for each observed image is 0.02, which means that
}\bfitepsilon i}2

}\bfA i\bfx true}2
“ 0.02 for

i “ 1, 2. The observations are provided in Figure 4.6. The limit of the storage of
solution basis vectors (each 1,048,576ˆ 1) is assumed to be 50. The stopping criteria
for compression are defined by the maximum number of the basis vectors we want to
keep after each compression, which we assume here to be 10, and a tolerance, which
we assume to be \varepsilon tol “ 10´6.

A plot of the relative reconstruction error norms per iteration for the four ap-
proaches described above is provided in Figure 4.7. The average of images is not an
iterative process, but the relative error norm corresponding to the average solution is
denoted with a dotted line, for comparison. We see that HyBR-recycle produces recon-
structions with relative reconstruction error norms that are smaller than both HyBR
with the second dataset and the average of images, demonstrating that the inclusion

(a) True image (b) b1: 0
˝ ´ 89˝ (c) b2: 90

˝ ´ 179˝

Fig. 4.6. Streaming tomography example, Case 1. The true image is provided in (a), along
with two observed sinograms b1,b2 corresponding to projections taken at 1˝ intervals from 0˝ to
89˝ and 90˝ to 179˝, respectively.
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Fig. 4.7. Streaming tomography example, Case 1: Relative reconstruction error norms.
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of the 11 basis images in the HyBR-recycle framework was beneficial. Notice that
HyBR with all of the data produces reconstructions with smallest reconstruction er-
ror norm, as expected. We also compare to the HEB approach without regularization.
The main point of this comparison is to demonstrate that HEB is not as accurate as
HyBR-recycle since the generated basis is not improved. Image reconstructions with
corresponding absolute error images in inverted colormap are provided in Figure 4.8.
In terms of CPU time, HyBR-recycle-dp-svd took 79.85 sec, HyBR with the second
dataset took 98.21 sec and HyBR with the entire dataset took 181.64 sec.

In general, we found that our methods are stable with respect to the choice of
q as long as we don't choose extreme values (i.e., q should not be too small or too
close to the storage limit). For this example, we provide in Figure 4.9 the relative
reconstruction error norms per iteration for various choices of q, where we observe
that good results can be obtained even when q is quite small. However, this is not
always the case (for the example in section 4.2.2, selecting q too small resulted in poor
reconstructions because too many important vectors were removed).

Case 2. Next we assume that data is being streamed such that we have four re-
construction problems corresponding to 45 equally spaced projection angles in 0˝–44˝,
45˝–90˝, 91˝–135˝, and 136˝–179˝ respectively. In terms of dimensions, A1,A2,A3,
A4 P R45¨1448ˆ10242

and b1,b2,b3,b4 P R45¨1448. The noise level for each observed

image is 0.02, which means that
}\bfitepsilon i}2

}\bfA i\bfx true}2
“ 0.02 for i “ 1, 2, 3, 4. The observed

sinograms are provided in Figure 4.10.
This time, we limit the storage of the solution basis vectors (each still 1,048,576ˆ

1) to be 15. For the stopping criteria for compression, we set the maximum number

HyBR-recycle-dp-svd HyBR on 2nd dataset HyBR for all data Average of images

Fig. 4.8. Streaming tomography example, Case 1: Reconstructions and error images (in in-
verted colormap).
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Fig. 4.9. Streaming tomography example, Case 1: Investigating different values of q.
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(a) b1: 0
˝ ´ 44˝ (b) b2: 45

˝ ´ 89˝ (c) b3: 90
˝ ´ 134˝ (d) b4: 135

˝ ´ 179˝

Fig. 4.10. Streaming tomography example, Case 2. The true image is provided in Figure 4.6(a),
and the four observed sinogram images are provided here.
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Fig. 4.11. Streaming tomography example, Case 2: Relative reconstruction error norms.

of saved vectors after each compression to be 5 and the compression tolerance to be
\varepsilon tol “ 10´6. For the first reconstruction problem, we run standard HyBR for m “ 15
iterations.

A plot of the relative reconstruction error norms per iteration is provided in
Figure 4.11. For the HyBR-recycle-dp-svd method, we provide relative reconstruction
error norms from the second to the last reconstruction problem (that is, the 1st
to 14th iterations correspond to the first problem with standard HyBR, the 15th
to 31st iterations correspond to the second problem, the 32nd to 48th iterations
correspond to the third problem, and the 49th to 110th iterations correspond to the
fourth problem). Image reconstructions with absolute error images are provided in
Figure 4.12, and reconstructions from HyBR-recycle-dp-svd at various iterations are
provided in Figure 4.13. In terms of overall CPU time, HyBR-recycle took 43.10
sec, HyBR with one dataset took 96.72 sec (i.e., the time to compute an average of
solutions), and HyBR with the entire dataset took 226.70 sec.

We observe that HyBR-recycle produces reconstructions with relative reconstruc-
tion error norms that are much smaller than the average of images. HyBR with all
of the data is the most accurate approach, as expected, but it is more costly. Fur-
thermore, for large-scale sequential problems where it is not desirable to wait until
all data have been collected to perform reconstruction, HyBR-recycle provides an
efficient approach to compute regularized solutions with comparable accuracy.

4.2.2. Tomographic reconstruction of a walnut. To test the practicality
of the hybrid projection methods with recycling, we present reconstruction results
from actual tomographic x-ray projection data from a walnut [20]. This example
consists of four reconstruction problems, where the projection angles for each problem
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HyBR-recycle-dp-svd HyBR for all data Average of images

Fig. 4.12. Streaming tomography example, Case 2: Reconstructions and error images (in in-
verted colormap).

Fig. 4.13. Streaming tomography example, Case 2: Reconstructions from the HyBR-recycle-
dp-svd method at iterations 14, 31, 48, and 110, respectively.

are slightly modified. The need to solve multiple problems with modified projection
angles arises in various scenarios including optimal experimental design frameworks
[42] and optimization to correct for uncertain angles [41]. We investigate the use
of hybrid projection methods with recycling to reuse the solution and solution basis
vectors acquired from one reconstruction to efficiently solve another reconstruction
problem with modified angles. Since the data for this example are taken from real
experiments, the true solution is not available.

We are given a set of 120 fan-beam projections taken at an angular step of three
degrees. The number of rays per projection is 328. The first system corresponds to 30
equally spaced projection angles between 3˝ and 351˝, which gives A1 P R30¨328ˆ3282

and b1 P R30¨328. The second system is generated using 30 equally spaced projection
angles between 6˝ and 354˝, which gives A2 P R30¨328ˆ3282 and b2 P R30¨328. The
third system is generated using 30 equally spaced projection angles between 9˝ and
357˝, which gives A3 P R30¨328ˆ3282 and b3 P R30¨328. The fourth system is generated
using 30 equally spaced projection angles between 12˝ and 360˝, which gives A4 P

R30¨328ˆ3282 and b4 P R30¨328.
For HyBR-recycle, we initialize withm “ 100 iterations of the standard GKB with

A1 and b1 to get xp1q, and we compress the basis vectors V100 to get W90. Then
W91 “

“

W90 qxp1q
‰

, where qxp1q “ pxp1q ´W90W
J
90x

p1qq{
›

›xp1q ´W90W
J
90x

p1q
›

›

2
.

Given the initial set of basis vectors in W91, we use HyBR-recycle with the four
different compression techniques described in subsection 3.3. For all of the considered
methods for this problem, we allow storage for a maximum of 100 solution vectors.
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HyBR on 4th dataset HyBR for all data Average of imagesHyBR-recycle-solution

Fig. 4.14. Tomography walnut example: Image reconstructions.

Table 4.1
Tomography walnut example: Relative differences computed as }x´ xall}2 { }xall}2 where xall

represents the numerical solution computed by HyBR for all data. For solution-oriented compression,
we provide results for various choices of q. All results use GCV for selecting the regularization
parameter.

HyBR on 4th dataset 0.3102 Average of images 0.2679
HyBR-recycle-tsvd 0.1814 HyBR-recycle-solution (q=90) 0.1841
HyBR-recycle-rbd 0.1732 HyBR-recycle-solution (q=20) 0.2271

HyBR-recycle-sparse 0.1832 HyBR-recycle-solution (q=1) 0.9008

For HyBR-recycle, the maximum number of vectors to save at compression is 90 with
the compression tolerance being \varepsilon tol “ 10´6. We allow two cycles of HyBR-recycle
for each dataset.

We compare these results to HyBR on the fourth dataset, HyBR for all data,
and the average of images obtained from four separate HyBR reconstructions, one for
each dataset. The reconstructions from the standard approaches are obtained after
100 iterations. For all of these experiments, GCV is used to select the regularization
parameter. From the image reconstructions provided in Figure 4.14, we observe that
the lack of data for HyBR on the fourth dataset results in artifacts, whereas the
average of images is quite blurry. We only provide the HyBR-recycle reconstruction
using solution-oriented compression, but we remark that similar results were observed
for all compression approaches. Let xall denote the solution from HyBR for all data.
For various reconstructions x, we provide in Table 4.1 relative differences computed
as }x´ xall}2 { }xall}2. We also provide relative differences for different choices of q to
emphasize that our methods are not very sensitive to the choice of q but that it should
not be selected too small. In summary, the HyBR-recycle reconstructions contain
some noise, but are overall sharper than taking an average of image reconstructions
(this is clear especially around the edges), and do not suffer from artifacts from limited
data.

5. Conclusions. In this paper, we have described Golub–Kahan-based hybrid
projection methods with recycling that use compression and recycling to overcome
potential memory limitations. We described a variety of problems that can be solved
using these methods. For example, we can solve very large problems where the num-
ber of basis vectors becomes too large for memory storage. These methods can be
used to efficiently solve a sequence of regularized problems (e.g., changing regulariza-
tion terms or nonlinear solvers) and problems with streaming data. We emphasize
that the general approach can also be used in an iterative fashion to improve on
existing solutions. The main computational benefits include improved regularized so-
lutions, reduced memory requirements, and automatic selection of the regularization
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parameter. Theoretical results show connections between projected problems and
relationships between regularized solutions. Numerical results demonstrate that our
approach can efficiently and accurately solve various inverse problems from image
processing.
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