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Abstract
When solving ill-posed inverse problems, a good choice of the prior is crit-
ical for the computation of a reasonable solution. A common approach is to
include a Gaussian prior, which is defined by a mean vector and a symmetric
and positive definite covariance matrix, and to use iterative projection methods
to solve the corresponding regularized problem. However, a main challenge
for many of these iterative methods is that the prior covariance matrix must
be known and fixed (up to a constant) before starting the solution process. In
this paper, we develop hybrid projection methods for inverse problems with
mixed Gaussian priors where the prior covariance matrix is a convex combina-
tion of matrices and the mixing parameter and the regularization parameter do
not need to be known in advance. Such scenarios may arise when data is used to
generate a sample prior covariance matrix (e.g., in data assimilation) or when
different priors are needed to capture different qualities of the solution. The pro-
posed hybrid methods are based on a mixed Golub–Kahan process, which is an
extension of the generalized Golub–Kahan bidiagonalization, and a distinctive
feature of the proposed approach is that both the regularization parameter and
the weighting parameter for the covariance matrix can be estimated automat-
ically during the iterative process. Furthermore, for problems where training
data are available, various data-driven covariance matrices (including those
based on learned covariance kernels) can be easily incorporated. Numerical
examples from tomographic reconstruction demonstrate the potential for these
methods.
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1. Introduction

For many imaging systems, the ability to obtain good image reconstructions from observed
data requires the inclusion of a suitable prior. Priors provide a systematic and efficient means
to describe in probabilistic terms any prior knowledge about the unknowns [5, 11]. Often-
times prior knowledge will come from a combination of sources, and striking a good bal-
ance of information is critical. For example, priors may be learned from available training
data, but bias in the reconstructions can be a big concern (e.g., when the training set is
small or the desired image is very different from the training set) [2, 14, 28]. Thus, a safer
approach is to include a prior that combines learned information with conventional smooth-
ness properties. In other scenarios (e.g. in seismic tomography [1]), the desired solution
may consist of components with different smoothness properties, and the correct mixture
of smoothness priors can be difficult to know a priori. Using mixed Gaussian priors, where
the prior covariance matrix can be represented as a convex combination of matrices, is a
common approach to incorporate different prior covariance matrices [3]. However, various
computational challenges arise for problems where the number of unknowns is very large
and the regularization and mixing parameter are not known in advance. We address these
challenges by developing hybrid iterative projection methods for the efficient computation
of solutions to inverse problems with mixed Gaussian priors. By exploiting a project-then-
regularize framework, we enable statistical optimization tools for selecting the regularization
parameter and the mixing parameter automatically, which would be very costly for the original
problem.

We are interested in linear inverse problems of the form,

d = As+ ε, (1)

where d ∈ R
m contains the observed data, A ∈ R

m×n models the forward process, s ∈ R
n

represents the desired parameters, and ε ∈ R
m represents noise in the data. We assume that

ε ∼ N (0,R), where R is a symmetric positive definite matrix whose inverse and square root
are inexpensive (e.g., a diagonal matrix). The goal of the inverse problem is to compute an
approximation of s, given d and A.

Due to ill-posedness, small errors in the data may lead to large errors in the computed
approximation of s, and regularization is required to stabilize the inversion process. We follow
a Bayesian framework, where we assume a prior for s. That is, we treat s as a Gaussian random
variable with mean vectorμ ∈ R

n and covariancematrixQ ∈ R
n×n. That is, s ∼ N (μ,λ−2Q),

where λ is a scaling parameter (yet to be determined) for the inverse of the covariance
matrix.

In many applications, the choice of Q is pre-determined (e.g., using expert knowledge) and
is chosen to enforce smoothness or regularity conditions on the solution [9, 17, 31]. However,
in some cases, there is not enough information to determineQ completely or expensive proce-
dures are needed to determine an informative subset of covariates from a set of candidates (e.g.,
in geophysical imaging [43, 45, 46]). These scenarios motivate us to consider mixed Gaussian
priors, where the covariance matrix can be represented as a convex combination of matrices.
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Without loss of generality we consider prior covariance matrices of the form,

Q = γQ1 + (1− γ)Q2, (2)

where Q1 is a symmetric positive definite matrix, Q2 is a symmetric positive semi-definite
matrix, and mixing parameter 0 < γ � 1. We consider the case where computing matrix-
vector products with Q1 is easy, but accessing Q−1

1 or its symmetric factorization (e.g.,
Cholesky or eigenvalue factorization) is not feasible. Such scenarios arise, for example, when
the prior covariance matrix is modeled entry-wise using covariance kernels. In such cases, the
main challenge is that the resulting covariance matrices are large and dense, and factorizing
or inverting them can be computationally prohibitive. However, matrix-vector multiplications
can be done efficiently (e.g., via FFT embedding). A wide range of kernels, including nonsep-
arable spatio-temporal kernels [17], can be included. We assume that matrix-vector products
with Q2 can be done efficiently.

Covariance matrices of the form (2) are becoming more common, especially in modern
imaging applicationswhere data (e.g., in the formof training images) are playing a larger role in
the development of reconstruction algorithms [2]. Suppose we are given a dataset consisting of
N samples, s(i) ∈ R

n, i = 1, 2, . . . ,N. Then the training data can be used to obtain an unbiased
estimator of an n× n sample covariance matrix,

Q̂ =
1
N

N∑
i=1

(s(i) − s̄)(s(i) − s̄)�, (3)

where s̄ = 1
N

∑N
i=1 s

(i) is the sample mean. Notice that Q̂ = SS�, where the symmetric factor is
defined as S = 1√

N

([
s(1) . . . s(N)

]
− s̄⊗ 1�

)
with 1 ∈ R

N denoting the vector whose ele-

ments are all 1. For any vector x ∈ R
n, multiplication with Q̂ can be done efficiently if N � n,

e.g., using the following order of operations S(S�x). However, notice that Q̂ is likely positive
semi-definite rather than positive definite, so it is common to use Q̂+ γIwhere γ is a nudging
term. Such approaches are known as sample based priors [10]. Another common approach is
to use a convex combination, i.e., the prior covariance matrix is given as

Q = γD+ (1− γ)Q̂, (4)

whereD is chosen to be the identity matrix or a suitably chosen diagonal or correlation matrix,
which ensures thatQ is positive definite, and γ ∈ R is called the mixing parameter. The matrix
in (4) is called a shrinkage estimator of the covariance matrix [39]. It is worth noting that
covariance matrices of the form (4) are also used in hybrid methods for data assimilation that
combine an ensemble Kalman filter system with a variational (e.g., 3D-Var) system [3]. These
methods require careful tuning of the so-called blending parameter γ, and many of the existing
approaches require γ to be fixed in advance. We do not assume this.

Previous works on combining training data with regularization techniques typically follow
an optimal experimental design or empirical Bayes risk minimization framework [14, 28].
More recently, there has been significant work on using training data in the context of machine
learning to learn regularization functionals (e.g., [33, 40]) or to learn the ‘invisible’ regions
(e.g., [8]). The area of data-driven machine learning is currently a hot topic [2, 36], where the
main goal is to determine newways to combine physicalmodelswith deep learning techniques.
In this work, we incorporate training data in a Bayesian framework and exploit tools from
numerical linear algebra not only to compute solutions efficiently but also to determine the
appropriate weighting of the training data.
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In this paper we develop a hybrid iterative projection method that is based on a mixed,
generalized Golub–Kahan process to approximate the MAP estimate,

sMAP = argmin
s

1
2
‖As− d‖2R−1 +

λ2

2
‖s− μ‖2

Q−1 , (5)

whereQ is of the form (2). Our approach can handle a wide range of scenarios, including data-
informed regularization terms that use training or test images to define the prior. We assume
that γ is not known in advance and neither the inverse nor a factorization of Q is available.
The proposed method has two distinctive features. First, we assume that both γ and λ are
unknown a priori and we estimate them during the solution process. For large-scale prob-
lems where γ and hence Q is fixed in advance, generalized hybrid methods [17] have been
developed where λ can be estimated during the reconstruction process. On the other hand,
previous works have used linear combinations of ‘simple’ covariance matrices and statistical
methods to estimate mixing parameter γ, but the choice of regularization parameter λ is fixed
[12, 32]. To the best of our knowledge, both problems have not been addressed simultane-
ously, and developing a hybrid method where both λ and γ can be selected adaptively is not
an obvious extension of existing methods. We develop an iterative hybrid approach where the
problem is projected onto generalized Krylov subspaces of small but increasing dimension
and the regularization parameter and mixing parameter can be simultaneously and automati-
cally selected. Second, we describe and investigate various scenarios where training data can
be used to define Q1 and Q2, so our approach can be considered a learning approach for the
regularization term. There has been a large emphasis on using training data in the development
of reconstruction techniques for modern imaging problems, but the ability to balance train-
ing data with physical priors remains an open problem. A key feature of the proposed hybrid
methods is the ability to incorporate data-driven covariance matrices while simultaneously
balancing existing priors. In our numerical experiments, we have verified that such meth-
ods can perform better than classical shrinkage algorithms, especially when the data contain
artifacts.

An outline for the paper is as follows. In section 2 we provide some background on Gaus-
sian priors and focus on various data-driven prior covariance matrices. Then in section 3,
we describe mixed, generalized hybrid projection methods for approximating the MAP esti-
mate (5), where Q is of the form (2). The approach consists of two-steps: (1) project the
problem onto a subspace of small but increasing dimension using an extension of the gen-
eralized Golub–Kahan bidiagonalization approach. (2) Solve the projected problem where
the regularization parameter λ and mixing parameter γ can be selected automatically. Vari-
ous regularization parameter selection techniques will be investigated, and some theoretical
results will be provided. In section 4 numerical results on various image processing applica-
tions show the potential benefits and flexibility of these methods. Conclusions are provided in
section 5.

2. Mixed Gaussian priors

In this section, we motivate the need for mixed Gaussian priors and draw some connections to
existing works on multi-parameter Tikhonov regularization and shrinkage estimation.

To begin, we focus on using Gaussian random fields to represent prior information and
summarize some common choices for the (unscaled) prior covariance matrix Q. Oftentimes,
the covariance matrix is generated using a covariance function (also called a kernel function).
Covariance functions are crucial in many fields and encode assumptions about the form of
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Table 1. Summary of commonly-used covariance functions. The covariance functions
are written either as functions of zi and z j, or as a function of r = |zi − z j| and depend
on � or � and ν. Γ is the gamma function and Kν(·) is the modified Bessel function of
the second kind of order ν.

Covariance kernel function

Squared exponential exp
(
− r2

2�2

)

Matérn 1
2ν−1Γ(ν)

(√
2νr
�

)ν

Kν

(√
2νr
�

)
γ-exponential exp

(
−
(
r
�

)γ)
Rational quadratic

(
1+ r2

2ν�2

)−ν

Sinc sin(νr)
νr

the function that we are modeling. In most cases, the prior covariance matrix Q is large and
dense with entries directly computed as Qi j = κ(zi, z j), where {zi}ni=1 are the spatial points
in the domain and κ(·, ·) is a covariance kernel function. Some commonly used parametric
covariance functions [37] are provided in table 1.

For some kernel choices, the precision matrix (i.e., the inverse of the covariance matrix) is
sparse or structured, so working withQ−1 or its symmetric factorization has obvious computa-
tional advantages. However, in many applications, the precision matrix is not readily available,
and the aim is to develop computational methods that can work with Q directly and avoid the
need for the inverse or symmetric factorization. Such covariance kernels may arise in dynamic
scenarios with nonseparable, spatio-temporal priors [18, 24, 34] or from spatially-variant pri-
ors [22, 44]. It is worth mentioning that in a truly Bayesian framework, the regularization
parameter and the covariance kernel parameters could be included as hyperparameters and
explored usingMCMCmethods [5], but the computational costs of this approachwould be very
high.

One reason to use Gaussian mixtures as prior distributions is that it allows greater flexibility
in the definition of the prior. In this paper, we consider a mixture of two Gaussians, but one
could consider more general mixtures. From a statistical viewpoint, a general formulationwith
N Gaussian random vectors would correspond to a sum of covariance matrices. That is, let
x1, . . . , xN be N mutually independent n× 1 normal random vectors having meansμ1, . . . ,μN

and covariancematricesV1, . . . ,VN . Let B1, . . . ,BN be real L× n full rank matrices. Then the
L× 1 random vector

y =

N∑
i=1

Bixi (6)

has a normal distribution with mean Ey =
∑N

i=1 Biμi and covariance matrix of the form
Cov(y) =

∑N
i=1 BiViB�

i . Thus, a Gaussian mixture prior corresponds to an assumption that
the desired solution can be represented as a linear combination of Gaussian realizations (e.g.,
with different smoothness properties).

In the context of inverse problems, we point out a connection between mixed Gaussian pri-
ors and multi-parameter Tikhonov regularization. The basic idea of multi-parameter Tikhonov
regularization, see e.g. [6, 26, 35, 42], is to solve a problem of the form,

min
s
‖As− d‖2R−1 +

N∑
i=1

λ2
i ‖Lis‖22, (7)
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where λi ∈ R is the regularization parameter corresponding to regularization matrix Li for i =
1, . . . ,N. By including multiple penalty terms, this approach can enforce different smoothness
properties (e.g., at different frequency bands) and avoid difficulties in having to select just one
regularization matrix. In a Bayesian framework, the multi-parameter Tikhonov solution can
be interpreted as an MAP estimate, under the assumption of a Gaussian prior with mean 0

and covariance matrix
(∑N

i=1 λ
2
i L

�
i Li

)−1
. Notice that except for in very limited scenarios,

this is not the same as using mixed Gaussian priors, since here the precision matrix (not the
covariance matrix) is represented as a sum of matrices.

2.1. Data-driven prior covariance matrices

With the increasing amount of, and access to, data in many applications, an important and
challenging task is to determine how to efficiently and effectively incorporate prior knowledge
in the form of training data both in the solution computation process and the subsequent data
analyses. In this section, we describe various examples where training data can be used to
define the prior covariance matrix. For all cases, we assume that training data is provided and
the sample covariance matrix (3) has the form Q̂ = SS�.

As described in the introduction, the most common approach is to takeQ2 = Q̂ andQ1 = D
where D is easy to invert (e.g., diagonal or identity matrix). In this case, a very popular
approach called shrinkage estimation of covariance matrices, or more general biased esti-
mation, can be used to reduce the variance of the estimator. Typical shrinkage targets are
diagonal matrices (e.g., including the identity matrix), and approaches to estimate the optimal
shrinkage intensity γ have been proposed by Ledoit and Wolf, Rao and Blackwell, and others
[3, 13, 32, 39].

Another approach to incorporate training data is to force some structure or functional form
on the prior covariance kernel function. For kernel functions that depend on a few parameters,
the training data can be used to estimate these parameters. A similar idea was considered in
[28] where training data was used to learn parameters defining the regularization functional.
However, that approach requires solving an expensive constrained optimization problem, and
the learned regularization functional is tailored to the forward operator and the noise level.
We consider the case where the training data come from a prior defined by a covariance ker-
nel function (e.g., for simplicity, we consider Matérn kernels). We use the training data to
learn the parameters defining the prior. This reduces to an optimization problem where the
goal is to learn two parameters ν and � from the training data by solving the optimization
problem,

(ν̂, �̂) = argmin
ν>0,�>0

‖Q(ν, �)− Q̂‖2F. (8)

Once the parameters are computed, they can be used to defineQ1 = Q(ν̂, �̂), which can be used
directly in generalized hybrid methods, or they can be combined with the sample covariance
matrix, i.e.,Q as in (2) with Q1 = Q(ν̂, �̂) andQ2 = Q̂, and solvers described in section 3 can
be used.

Next, we describe some computationally efficient methods to estimate ν̂ and �̂. Notice
that

‖Q(ν, �)− Q̂‖2F = tr(Q(ν, �)− Q̂)�(Q(ν, �)− Q̂) (9)

= E(‖(Q(ν, �)− Q̂)ξ‖22), (10)

6
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where ξ is a random variable such that Eξ = 0 andE(ξξ�) = I. Although stochastic optimiza-
tion methods [41] could be use here, we follow an approximation approach where we use a
Hutchinson trace estimator. That is, we let ξ(i) ∈ R

n for i = 1, 2, . . . ,M be realizations of a
Rademacher distribution (i.e., ξ consists of ±1 with equal probability), and we consider the
approximate optimization problem,

(ν̌, �̌) = argmin
ν>0,�>0

1
M

M∑
i=1

‖(Q(ν, �)− Q̂)ξ(i)‖22. (11)

We used an interior-point method (fmincon.m in MATLAB) to minimize (11) with
M = 100. We observed no significant improvement for larger values of M. We mention that
for problems without training data, semivariogram hyperparameterswere investigated in [7] to
estimate Matérn parameters from the data.

3. Hybrid projection methods for mixed Gaussian priors

In this section, we describe a hybrid projection method to approximate the MAP estimate (5).
The distinguishing factor of this approach compared to generalized Golub–Kahan (genGK)
hybrid methods [17] is that we address problems where the prior covariance matrix is of
the form (2). That is, we consider priors of the form s ∼ N (μ,λ−2(γQ1 + (1− γ)Q2)), and
exploit a hybrid projection framework to enable tools for selecting both the regularization
parameter λ and the mixing parameter γ simultaneously. Using the following change of
variables,

x = Q−1(s− μ), b = d− Aμ,

we see that solving (5) is equivalent to solving

min
x

1
2
‖AQx− b‖2R−1 +

λ2

2
‖x‖2Q. (12)

If γ is known in advance, we can directly apply the genGK hybrid method and estimate λ
automatically [17]. However, if γ is not known in advance, significant computations would be
required for a different choice of γ. For this, we develop a variant of the genGKbidiagonlization
which we call a mixed Golub–Kahan (mixGK) process, where both γ and λ can be estimated
during the iterative process. Each iteration of the mixGK process requires two steps. The first
step is to run one iteration of the genGK bidiagonalization process with Q1. The second step
incorporates Q2 so that the regularized problem can be iteratively projected onto a smaller
subspace, and γ andλ can both be selected automatically. Next we describe the mixGK process
in detail.

Given matrices A, R, Q1, and vector b, with initializations β1 = ‖b‖R−1 , u1 = b/β1

and α1v1 = A�R−1u1, the kth iteration of the genGK bidiagonalization procedure with Q1

generates vectors uk+1 and vk+1 such that

βk+1uk+1 = AQ1vk − αkuk

αk+1vk+1 = A�R−1uk+1 − βk+1vk,

7
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Algorithm 1. Mixed Golub–Kahan (mixGK) process.

Require: matrices A, R, Q1 and Q2, and vector b.
1: β1u1 = b, where β1 = ‖b‖R−1

2: α1v1= A�R−1u1
3: for k = 1, 2, . . . do
4: βk+1uk+1= AQ1vk− αkuk, where βk+1 = ‖AQ1vk − αkuk‖R−1

5: αk+1vk+1= A�R−1uk+1− βk+1vk, where αk+1 = ‖A�R−1uk+1 − βk+1vk‖Q1

6: [Yk,Rk] = qr((I− Ũk+1Ũ�
k+1)LRAQ2Vk, 0);

7: end for

where scalars αi, βi � 0 are chosen such that ‖ui‖R−1 = ‖vi‖Q1 = 1. At the end of k steps, we
have

Bk ≡

⎡⎢⎢⎢⎢⎢⎢⎣

α1

β2 α2

β3
. . .
. . . αk

βk+1

⎤⎥⎥⎥⎥⎥⎥⎦ , Uk+1 ≡ [u1, . . . , uk+1], and

Vk ≡ [v1, . . . , vk],

where the following relations hold up to machine precision,

Uk+1β1e1 = b (13)

AQ1Vk = Uk+1Bk (14)

A�R−1Uk+1 = VkB�
k + αk+1vk+1e�k+1. (15)

Furthermore, in exact arithmetic, matrices Uk+1 and Vk satisfy the following orthogonality
conditions

U�
k+1R

−1Uk+1 = Ik+1 and V�
k Q1Vk = Ik. (16)

If we let Ũk+1 = LRUk+1 where R−1 = L�
RLR, then Ũ�

k+1Ũk+1 = Ik+1.
Next, in order to incorporateQ2, we additionally computem× kmatrixLRAQ2Vk. Assum-

ing that the columns of Ũk+1 and LRAQ2Vk are linearly independent, we can compute
the skinny QR factorization, (I− Ũk+1Ũ�

k+1)LRAQ2Vk = YkRk where Yk ∈ R
m×k contains

orthonormal columns and Rk ∈ R
k×k is upper triangular. Notice that since column vectors in

Yk and Ũk+1 are orthogonal, we get the skinny QR factorization,

[
Ũk+1 LRAQ2Vk

]
=

[
Ũk+1 Yk

] [Ik+1 Ũ�
k+1LRAQ2Vk

0 Rk

]
. (17)

The mixGK process is summarized in algorithm 1.
Notice that in addition to the computational cost of the genGK bidiagonalization, which

includes one matrix-vector product with A, one with A�, two with Q1, and two solves with
R, each iteration of the mixGK process requires one matrix-vector product with Q2 and a QR

8
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factorization in step 6. Instead of performing a standard QR factorization on an m-by-kmatrix,
an efficient rank-one update strategy can be used to alleviate the computational cost. More
specifically, we will describe it using mathematical induction. Let

(I− ŨkŨ�
k )LRAQ2Vk−1 = Yk−1Rk−1 (18)

be the skinnyQR factorization,whereY�
k−1Yk−1 = Ik−1 andRk−1 is an upper triangularmatrix.

Define Ũk+1 =
[
Ũk ũk+1

]
and Vk =

[
Vk−1 vk

]
. Then by (18), we have

(I− Ũk+1Ũ�
k+1)LRAQ2Vk =

[
(I− Ũk+1Ũ�

k+1)LRAQ2Vk−1 (I− Ũk+1Ũ�
k+1)LRAQ2vk

]
=

[
(I− ŨkŨ�

k − ũk+1ũ�k+1)LRAQ2Vk−1 (I− Ũk+1Ũ�
k+1)LRAQ2vk

]
=

[
Yk−1Rk−1 − ũk+1ũ�k+1Yk−1Rk−1 (I− Ũk+1Ũ�

k+1)LRAQ2vk
]
.

Since the first matrix is a rank-one update of a QR factorization, its QR factorization can be
obtained in O(mk) operations [21]. That is, we have

Yk−1Rk−1 − ũk+1(R�
k−1Y

�
k−1ũk+1)

� = Ŷk−1R̂k−1,

where Ŷ�
k−1Ŷk−1 = Ik−1 and R̂k−1 is an upper triangular matrix. Finally, let v̂k = (I−

Ũk+1Ũ�
k+1)LRAQ2vk, then one step of the Gram–Schmidt process gives the desired QR

factorization, [
Ŷk−1R̂k−1v̂k

]
= YkRk.

3.1. Solving the projected problem

Using the mixGK process described above, we now describe a hybrid iterative projection
method to solve (12). In particular, we consider the projected problem,

min
x∈R(Vk)

1
2
‖AQx− b‖2R−1 +

λ2

2
‖x‖2Q, (19)

whereR(·) denotes the column space. Let x = Vkywhere y ∈ R
k. Then using the relationships

from the mixGK process, we obtain the equivalent problems,

min
y

1
2
‖γAQ1Vky+ (1− γ)AQ2Vky− b‖2R−1

+
λ2

2
y�V�

k (γQ1 + (1− γ)Q2)Vky (20)

min
y

1
2

∥∥∥γŨk+1Bky+ (1− γ)LRAQ2Vky− LRb
∥∥∥2
2

+
λ2γ

2
y�y+

λ2(1− γ)
2

y�V�
k Q2Vky (21)

min
y

1
2

∥∥∥∥[Ũk+1 LRAQ2Vk

] [ γBk

(1− γ)Ik

]
y− LRb

∥∥∥∥2
2

+
λ2γ

2
‖y‖22 +

λ2(1− γ)
2

y�V�
k Q2Vky. (22)

9
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Using equation (17) and the fact that

[
Ũk+1 Yk

] [β1e1
0

]
= Ũk+1(β1e1) = LRb (23)

where
[
Ũk+1 Yk

]
contains orthonormal columns (so it can be taken out of the norm), the

projected, regularized problem becomes

min
y

1
2

∥∥∥∥[Ik+1 Ũ�
k+1LRAQ2Vk

0 Rk

] [
γBk

(1− γ)Ik

]
y−

[
β1e1
0

]∥∥∥∥2
2

+
λ2γ

2
‖y‖22 +

λ2(1− γ)
2

y�V�
k Q2Vky. (24)

Note that the solution subspace for x does not depend on γ and λ, but the solution of the
projection problem depends on both γ and λ. Let yk(λ, γ) denote the solution to (24), then the
k iterate of the mixGK method is given as

sk(λ, γ) = μ+ (γQ1 + (1− γ)Q2)Vkyk(λ, γ). (25)

In section 3.2 we describe some techniques for selecting λ and γ at each iteration, but first
we provide a theoretical result. We show that for fixed regularization parameter λ and fixed
mixing parameter γ, the proposed mixGK method converges in exact arithmetic to the desired
regularized solution.

Theorem 3.1. Assume λ > 0 and 0 < γ � 1. Let yk(λ, γ) be the exact solution to projected
problem (24). Then the kth iterate of the mixGK approach, written as

sk = μ+QVkyk(λ, γ) (26)

converges to the MAP estimate given by

sMAP = μ+Q(A�R−1AQ+ λ2In)−1A�R−1b. (27)

Proof. The proof is provided in appendix A. �

3.2. Regularization parameter selection methods

In this section, we describe two extensions of existing regularization parameter selection meth-
ods that can be used for selecting γ and λ at each iteration of the mixGK hybrid method. For
all theoretical results, we assume no breakdown of the algorithms. Notice that the solution at
the kth iteration can be written as

sk(λ, γ) = μ+ (γQ1 + (1− γ)Q2)Vkyk(λ, γ), (28)

where

yk(λ, γ) =
(
Dk(γ)�Dk(γ)+ λ2γIk + λ2(1− γ)V�

k Q2Vk

)−1
Dk(γ)�

[
β1e1
0

]
= Ck(γ,λ)

[
β1e1
0

]
(29)

10
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with

Dk(γ) =

[
Ik+1 Ũ�

k+1LRAQ2Vk

0 Rk

] [
γBk

(1− γ)Ik

]

=

[
γBk + (1− γ)Ũ�

k+1LRAQ2Vk

(1− γ)Rk

]
(30)

Ck(γ,λ) =
(
Dk(γ)�Dk(γ)+ λ2γIk + λ2(1− γ)V�

k Q2Vk

)−1
Dk(γ)�. (31)

As with regularization parameter selection methods for standard hybrid methods, there is not
onemethod that will work for all problems, so it is advised to try various approaches in practice.

In order to provide a comparison, we provide ‘optimal’ parameters which are computed as

(γopt,λopt) = argmin
0<γ�1, λ

‖sk(γ,λ)− strue‖22, (32)

where strue is the true solution (that is not available in practice).
Unbiased predictive risk estimation (UPRE).We can select parameters γ,λ such that

(γproj
u ,λproj

u ) = argmin
0<γ�1, λ

Uproj(γ,λ)

=
1

2k + 1
‖rprojk (γ,λ)‖22 +

2σ2

2k+ 1
tr(Dk(γ)Ck(γ,λ))− σ2, (33)

where σ2 is noise level, and

rprojk (γ,λ) = Dk(γ)yk(γ,λ)−
[
β1e1
0

]
(34)

and

tr(Dk(γ)Ck(γ,λ)) = tr(Ck(γ,λ)D(γ))

= tr
((
(Dk(γ))

�Dk(γ)+ λ2γIk

+ λ2(1− γ)V�
k Q2Vk

)−1
(Dk(γ))�Dk(γ)

)
. (35)

When the noise level σ2 is not provided, a noise level estimation algorithm (e.g., based on a
wavelet decomposition of the observation) can be utilized [23].
Generalized cross validation (GCV).Without a priori knowledge of the noise level, another
option is to use an extension of theGCVmethod [27, 29]. The basic idea is to select parameters,

(γproj
g ,λproj

g ) = argmin
0<γ�1, λ

Gproj(γ,λ) =
‖rprojk (γ,λ)‖22

(tr(I2k+1 − Dk(γ)Ck(γ,λ)))2
, (36)

where rprojk (γ,λ), Dk(γ), and Ck(γ,λ) are same as (33).
Notice that rprojk and tr(Dk(γ)Ck(γ,λ)) are functions of k in both the GCV and UPRE

functions. In order to prove convergence of the parameters chosen by UPRE and GCV, we
begin with a lemma that shows convergence of the projected residual rprojk and trace term

11
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tr(Dk(γ)Ck(γ,λ)) to their full counterparts. The derivations of (33) and (36) are provided in
appendix C.

Lemma 3.2. With (34) and (35), if k = n, then

rprojk = rfull(γ,λ)
tr(Dk(γ)Ck(γ,λ)) = tr(A(γ,λ)),

(37)

where

rfull(γ,λ)= LRAQx(γ,λ)− LRb
A(γ,λ) = LRAQ(Q�A�R−1AQ+ λ2Q)−1Q�A�L�

R .
(38)

and rfull(γ,λ) = rprojn (γ,λ).

Proof. The proof is provided in appendix B. �

Next we provide convergence results for the UPRE and GCV selected parameters that are
similar to results provided in [38] but are extended to the mixed hybrid methods. In particu-
lar, we show in theorem 3.3 that the UPRE parameters for the projected problem converge to
the UPRE parameters for the full problem. Then, we show that with an additional weighting
parameter, the same result holds for GCV parameters.

Theorem 3.3. The UPRE parameters for the full problem (12) are given by

(γfull
u ,λfull

u ) = argmin
0<γ�1, λ

Ufull(γ,λ) =
1
m
‖rfull(γ,λ)‖22 +

2σ2

m
tr(A(γ,λ))− σ2. (39)

For k = n,

(γproj
u ,λproj

u ) = (γfull
u ,λfull

u ). (40)

Proof. Since when k = n, ‖rprojk ‖22 = ‖rfull‖22 and tr(Dk(γ)Ck(γ,λ)) = tr(A(γ,λ)) as shown
in lemma 3.2,

argmin
0<γ�1, λ

Uproj(γ,λ) = argmin
0<γ�1, λ

Ufull(γ,λ)

when k = n for the same noise level σ2. �

For the full problem, the GCV parameters are given by

(γfull
g ,λfull

g ) = argmin
0<γ�1, λ

Gfull(γ,λ) =
‖rfull(γ,λ)‖22

(tr(Im − A(γ,λ)))2
. (41)

In contrast with UPRE, (γproj
g ,λproj

g ) does not minimize (41) when k = n because the trace of
I2k+1 − Dk(γ)Ck(γ,λ) is not equal to the trace of Im − A(γ,λ). To compensate for this, we
define a weighted GCV (WGCV) method by including an additional parameter ω in (36), and
computing the WGCV parameters for the projected problem as,

(λproj
ω , γproj

ω ) = argmin
0<γ�1, λ

Wproj(γ,λ) =
‖rprojk (γ,λ)‖22

(tr(I2k+1 − ωDk(γ)Ck(γ,λ)))2
, (42)

12
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where ω = 2k+1
m . Since

(tr(I2k+1 − ωDk(γ)Ck(γ,λ)))
2 =

2k+ 1
m

(tr(Im − Dk(γ)Ck(γ,λ)))
2, (43)

Gfull(γ,λ) is minimized by (λproj
ω , γproj

ω ) when k = n. Similar modified GCV functions were
considered in [15, 38].

Remark. It is worth mentioning that although optimization problem (12) resembles the
widely-studied multi-parameter Tikhonov problem, there are some important distinctions.
For our proposed mixHyBR method, we have Q = γQ1 + (1− γ)Q2. Under the additional
assumption that Q2 is positive definite, (12) can be written as

min
x

1
2
‖AQx− b‖2R−1 +

λ2γ

2
‖x‖2Q1

+
λ2(1− γ)

2
‖x‖2Q2

(44)

= min
x

1
2
‖AQx− b‖2R−1 +

λ̃2
1

2
‖L1x‖2 +

λ̃2
2

2
‖L2x‖2, (45)

whereQ1 = L�
1 L1,Q2 = L�

2 L2, λ̃1 = λ
√
γ and λ̃2 = λ

√
(1− γ).We can see that although the

regularization terms are similar in the multi-parameter Tikhonov problem (7) and in problem
(45), the problems are very different. In multi-parameter Tikhonov, regularization parameters
λ1 and λ2 only control the corresponding regularization terms. For mixHyBR, from (44), we
can see that the weighting parameter γ affects both the regularization term and the data fit
term, which is also evident in the projected problem (24). Furthermore, since mixHyBR does
not require Q2 to be positive definite, more general covariance matrices such as data-driven
matrices can be included.

4. Numerical results

In this section, we provide various numerical results from tomography to investigate our
proposed hybrid method based on the mixGK process, which we denote as ‘mixHyBR’.
First, in section 4.1 we investigate data-driven mixed Gaussian priors where we assume that
training data are available, and we compare various hybrid methods to existing shrinkage
algorithms. Then, we consider a seismic crosswell tomography reconstruction problem in
section 4.2, where we show that using a combination of covariance kernels can result in
improved reconstructions.

For selecting the UPRE, GCV, and WGCV regularization parameters for the mixGK
approach, we solve nonlinear constrained optimization problems (33), (36) and (42) respec-
tively. We use an interior-point method as implemented in MATLAB’s fmincon.m function
with an initial guess of γ0 = 0.5 and λ0 = 0 at the first mixGK iteration. Then, for subsequent
iterations, we used the computed values of γ and λ from the previous iteration as an initial
guess. In general, the regularization parameter selection functions may have many minimiz-
ers, but we observed that by using an adaptive strategy, we are able to guide the optimization
methods toward appropriate parameters. For the stopping criteria for mixHyBR, we use a com-
bination of approaches described in [15–17], where the iterative process is terminated if either
of the following three criteria is satisfied: (i) a maximum number of iterations is reached,
(ii) depending on the chosen regularization parameter selection method, the function (33) for
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Figure 1. Spherical tomography example. On the left, the true image is provided, along
with a few of the integration curves whose centers are located at 45◦ . Four sample images
from the training dataset are provided on the right.

UPRE, (36) for GCV, or (42) for WGCV attains a minimum or flattens out, and (iii) tolerances
on residuals are achieved.

4.1. Spherical tomography example

For our first example, we use a spherical means tomography reconstruction problem. Such
models are often used in imaging problems from photoacoustic or optoacoustic imaging. The
true image strue consists of 128× 128 pixels and is provided in the left panel of figure 1. The
forward model matrix A was constructed using the IRTools toolbox [25, 30] and represents a
ray-tracing operation along semi-circle curves where the angle of centers range from 0◦ to 90◦

at steps of (90/64)◦. The number of circles at each angle is 90. Thus the dimension of A is
5, 760× 16, 384 and the sinogram is 90× 64. The simulated observed sinogramwas obtained
as in (1), where we have included 3% additive Gaussian white noise, i.e., ‖ε‖

‖Astrue‖ = 0.03. Other
conditions are chosen as the default settings provided by the toolbox; see [25] for details.

Next, we assume that we have a dataset of training images for this problem consisting of 49
images; four of the training images are provided in the right panel of figure 1. All of the images
contain a circular mask to denote the region of interest or region of visibility. The inner regions
of the images are generated using a linear combination of sine-squared functions, where the
coefficients are random numbers uniformly distributed between 0.5 and 1, and the random
numbers in sine-squared functions are uniformly distributed between 0 and 128. Furthermore,
each image is contaminated by at most 8 ‘freckles’ generated as white disks, where 5 of them
have radius 3 and the rest have radius 4. The freckles are randomly placed, where the origins
of the freckles are uniformly distributed. The true image was generated in a similar manner,
but notice that there are no freckles in the true image.

Given the training dataset {s(1), . . . , s(49)}, we compute the (vectorized) mean image s̄ and
the sample covariance matrix Q̂ is defined as in (3). Next, assuming that the prior covariance
matrix represents a Matérn kernel, we solve optimization problem (11) to obtain ‘learned’
Matérn parameters ν̌ and �̌ and consider the covariancematrixQlearn = Q(ν̌, �̌). To obtain (ν̌, �̌),
we used ν0 = 1 and �0 = 1 as initial guess.

14
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Figure 2. Comparison of relative reconstruction error norms for various iterative hybrid
approaches for spherical tomography reconstruction. The top left plot corresponds to
using the optimal regularization parameters. Other plots correspond to different methods
to choose the regularization parameters, including UPRE, GCV, and WGCV.

We consider four hybrid iterative reconstruction methods, all with initial vector s̄. Given the
training data, we run the genHyBR algorithm withQ = Qlearn which we denote as ‘genHyBR-
data-driven’. We also provide results for ‘mixHyBR’ where Q = γQlearn + (1− γ)Q̂ where
γ and λ are selected during the iterative process. For comparison, we provide results for gen-
HyBRwithQ = γI+ (1− γ)Q̂where γ was pre-selected using the Rao–Blackwell Ledoit and
Wolf estimator (rblw) [12, 13, 32]. We also provide results for HyBRwhereQ = I, but remark
that this approach only uses the training data for the initial (sample mean) vector. Note that for
all considered methods, the regularization parameter λ must be selected, and we investigate
various approaches to do this.

In figure 2, we provide relative reconstruction error norms computed as
‖sk − strue‖2/‖strue‖2, where sk is the reconstruction at the kth iteration. Each plot corre-
sponds to a different method for selecting the regularization parameters. For comparison,
we provide in the top left plot results corresponding to the optimal regularization param-
eter, although these parameters cannot be computed in practice. We observe that both
genHyBR-data-driven and mixHyBR result in small error norms and that even with the
optimal regularization parameter λ, the rblw approach performs poorly because of the
poorly-estimated mixing parameter γ. We remark that we also compared these results to a
shrinkage algorithm based on the oracle approximating shrinkage (OAS) estimator [12, 13]
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Figure 3. Relative reconstruction error norms per iteration of mixHyBR, for various
regularization parameter choice methods. Black dots denote the automatically computed
stopping iteration.

for obtaining γ. However, we observed very similar results as rblw, so we do not include them
here.

For the automatic parameter selection methods, we observe that mixHyBR reconstructions
with GCV andWGCVand genHyBR-data-driven reconstructionswith UPRE have the smallest
relative reconstruction error norms per iteration, compared to the other methods. Thus, we
observe that including a data-driven covariancematrix, if done properly, can be beneficial. The
black dots denote the (automatically-selected) stopping iteration for mixHyBR. Although one
may wish to tweak the stopping criteria, all of the examples with mixHyBR resulted in a good
reconstruction with the described stopping criteria. For a better comparison of the different
parameter selection methods, we provide all relative reconstruction errors for mixHyBR in
figure 3, where it is evident that relative errors for WGCV are very close to those for the
optimal regularization parameter for this example.

Absolute error images, computed as |sk − strue|, reshaped as an image, and displayed in
inverted colormap, are provided in figure 4. For better comparison, all error images have been
put on the same scale, and dark regions corresponds to larger absolute errors. Relative recon-
struction error norms are provided in the titles. In the top row, we compare reconstructions at
iteration 140 using the optimal regularization parameter. Absolute error images in the bottom
row correspond to mixHyBR reconstructions with automatic regularization parameter selec-
tion and correspond to the iteration determined by the stopping criteria. We notice that even
with the optimal regularization parameter, the HyBR-optimal reconstruction suffers from the
lack of sufficient prior information, and the rblw-optimal reconstruction contains large errors
due to the poor choice of γ and disruptions due to freckles in the training data. Notice that
the rblw-optimal reconstruction has a slight streak along the diagonal of the image, which is
a result of the covariance matrix depending heavily on the training data. The mixHyBR and
genHyBR-data-driven reconstructions have overall smaller absolute errors in the image.More-
over, we see that by including a combination of covariancematrices and allowing the observed

16



Inverse Problems 37 (2021) 044002 T Cho et al

Figure 4. Absolute error images (in inverted colormap), with relative reconstruction
error norms provided in the titles. The top row compares reconstructions using optimal
regularization parameters, and the bottom row compares mixHyBR reconstructions with
different parameter choice methods.

data to inform the choice of γ, mixHyBR methods can reduce the deleterious effects from cor-
ruptions in the training data. For this example, all parameter selection methods combined with
the stopping iteration performed reasonably well.

4.2. Seismic tomography example

In this experiment, we consider a linear inversion problem from crosswell tomography [1].
Crosswell tomography is used to image the seismic wave speed in some region of inter-
est, given data collected from multiple source–receiver pairs. The sources send out a seis-
mic wave, and the receivers measure the travel time taken by the seismic wave to hit the
receiver. The goal of the inverse problem is to image the slowness (reciprocal wave veloc-
ity) of the medium in the domain. We consider an example from continuous active source
seismic monitoring (CASSM) [20], where the goal is to monitor the spatial development of
a small scale injection of CO2 into a high quality reservoir. We consider reconstruction at
a single time point and investigate the impact of including mixed Gaussian priors on the
reconstruction.

The inverse problem can be represented as (1) where the goal is to reconstruct the slowness
s ∈ R

n×1 of the medium from the measured travel times d ∈ R
m×1 which are assumed to be

corrupted by Gaussian white noise ε ∈ R
m×1. In our problem setup, the true slowness field

was discretized into n = 188, 356 cells, where the slowness within each cell is assumed to be
constant. The true image (normalized between 0 and 1) is of size 434× 434 and was obtained
from [19]. For the observations, there were ms = 20 sources and mr = 50 receivers, so a total
of m = mrms measurements. Each row of the forward model matrix A ∈ R

m×n corresponds to
a source–receiver pair. Since the wave travels along a straight line from source to receiver, only
the cells lying on the straight line contribute to the non-zero entries. Hence, A is very sparse
withO(

√
mn) non-zero entries. The true image along with a schematic of the source–detector

pairs are given in the left panel of figure 5. The observations, which contain 1% noise, are
provided in the right panel of figure 5.

Next we investigate the impact of different choices of Q on the reconstruction. First, we
consider the genHyBR method with three different prior covariance matrices Q1,Q2, and
Q3 defined by a Matérn kernel with ν = 1 and � = 0.2, a rational quadratic with ν = 2 and
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Figure 5. CASSM example. In the left panel, we provide the true slowness field
image, along with some of the locations of the sources and the detectors. Seven of the
source–receiver pairs are highlighted in the figure. In the right panel, we provide the
observations corresponding to 20 sources and 50 receivers.

� = 0.1, and the identity matrix I, respectively. These approaches are denoted by ‘genHyBR1’,
‘genHyBR2’, and ‘HyBR’ respectively. Then we consider two mixHyBR approaches that
include mixed Gaussian priors, where mixHyBR(Q1,Q2) uses covariance matrix Q = γQ1 +
(1− γ)Q2 and mixHyBR(Q1, I) uses covariance matrix Q = γQ1 + (1− γ)I, where the mix-
ing parameter γ is selected during the reconstruction process. For the optimally selected
regularization parameters, we provide in figure 6 the relative reconstruction error norms per
iteration.

We observe that if a good covariance matrix (in this case, Q1) is known in advance,
stand-alone genHyBR can perform well and result in small relative reconstruction errors.
Otherwise, the relative reconstruction errors may remain large, and multiple solves with dif-
ferent covariance matrices would be needed to determine a good prior. In this case, the
mixHyBR approach can prove beneficial. The mixHyBR approaches produce reconstruc-
tions with overall smaller relative reconstruction errors than genHyBR with each covari-
ance matrix alone. Image reconstructions, including a zoomed subregion, are provided in
figure 7. Notice that the mixed Gaussian priors are better able to resolve some details of
the true image. While the reconstructions of genHyBR1 and genHyBR2 are too smooth,
mixHyBR(Q1,Q2) and mixHyBR(Q1, I) reconstructions reveal multiple layered regions that
are present in the true field. Thus, incorporating mixed Gaussian priors can lead to improved
reconstructions.

Next we investigate the performance of different regularization parameter selection meth-
ods within the mixHyBR methods. Reconstructions corresponding to GCV, WGCV, and
UPRE parameter choices are provided in figure 8, with stopping iterations and relative recon-
struction errors provided in the titles. For the stopping criteria, we used a tolerance of
10−6 for the residual norm. Although the relative reconstruction error norms are larger than
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Figure 6. Comparison of relative reconstruction error norms for genHyBR and mix-
HyBR with optimal parameters γ and �.

Figure 7. Reconstructions with zoomed subimages for CASSM example. All of the
reconstructions use the optimal regularization parameter and relative reconstruction
errors are provided in the titles.

those for the optimal regularization parameter, which is likely due to the increased errors
in the surrounding flat regions, the reconstructed images can all distinguish the two yellow
layers.
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Figure 8. Reconstructions of mixHyBR(Q1,Q2) (top row) and mixHyBR(Q1, I) (bot-
tom row) for different parameter choice methods. The automatically detected stopping
iteration (iter) and corresponding relative reconstruction error norm are provided in the
titles.

5. Conclusions

This paper describes a hybrid iterative projection method, dubbed mixHyBR, that is based
on an extension of the generalized Golub–Kahan bidiagonalization and that can be used for
solving inverse problems (i.e., computing MAP estimates) with mixed Gaussian priors. The
main advantage of this approach is that the mixing or blending parameter does not need to
be known a priori, but rather can be estimated during the iterative process along with the
regularization parameter. Various methods for selecting these parameters were considered and
evaluated. Furthermore, mixHyBR methods can easily incorporate data-driven priors where
training data are used to define the prior covariance matrix itself (e.g., sample based priors) or
to learn parameters for the covariance kernel function. Comparisons to widely-used shrinkage
algorithms reveal that the mixed hybrid approaches are more robust under the presence of noise
or artifacts in the data and enable greater flexibility when selecting suitable priors. Numerical
results from both spherical and seismic tomography show the potential of these methods.

Acknowledgments

This work was partially supported by NSF DMS 1723005 and NSF DMS 1654175. J Chung
would also like to acknowledge support from the Alexander von Humboldt Foundation.

Appendix A. Proof of theorem 3.1

Proof. Based on (29) and (30),

yk(λ, γ) = Ck(γ,λ)

[
β1e1
0

]
(46)
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With k = n, by (13)–(15), and (47),

sn = μ+QVnyn

= μ+QVnCn(γ,λ)

[
β1e1
0

]
= μ+QVn(V�

n Q
�A�L�

RLRAQVn + λ2V�
n QVn)−1V�

n QA�R−1b

= μ+Q(Q�A�L�
RLRAQ+ λ2Q)−1QA�R−1b

= μ+Q(A�R−1AQ+ λ2In)−1A�R−1b

= sMAP.

Therefore, the solution for (33) converges to the solution for (39) and the solution for (36)
converges to the solution for (41) as k increases.

�

Appendix B. Proof of lemma 3.2

Proof. For the projected residual for xk,

∥∥∥rprojk (γ,λ)
∥∥∥2
2
=

∥∥∥∥D(γ)yk(γ,λ)− [
β1e1
0

]∥∥∥∥2
2

= ‖(γLRAQ1Vk + (1− γ)LRAQ2Vk)yk(γ,λ)− LRb‖22

=

∥∥∥∥[Ik+1 Ũk+1AQ2Vk

0 Rk

] [
γBk

(1− γ)Ik

]
yk(γ,λ)−

[
β1e1
0

]∥∥∥∥2

2

=

∥∥∥∥[Ũk+1 LRAQ2Vk

] [ γBk

(1− γ)Ik

]
yk(γ,λ)− LRb

∥∥∥∥2
2

=
∥∥∥(γŨk+1Bk + (1− γ)LRAQ2Vk)yk(γ,λ)− LRb

∥∥∥2
2

= ‖(γLRAQ1Vk + (1− γ)LRAQ2Vk)yk(γ,λ)− LRb‖22
= ‖LRAQxk(γ,λ)− LRb‖22 .

When k = n, we have

‖LRAQxk(γ,λ)− LRb‖22 →‖LRAQxn(γ,λ)− LRb‖22 .

Since ‖LRAQxn(γ,λ)− LRb‖22 =
∥∥rfull(γ,λ)∥∥2

2
, when k = n we have

∥∥∥rprojk (γ,λ)
∥∥∥2
2
=

∥∥rfull(γ,λ)∥∥2
2
.
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For kth iteration in the projected problem (29),

Dk(γ)�Dk(γ) =

[
γBk + (1− γ)Ũ�

k+1LRAQ2Vk

(1− γ)Rk

]� [
γBk + (1− γ)Ũ�

k+1LRAQ2Vk

(1− γ)Rk

]
= γ2B�

k Bk + 2γ(1− γ)B�
k U

�
k+1L

�
RLRAQ2Vk

+ (1− γ)2V�
k Q

�
2 A

�L�
RLRUk+1U�

k+1L
�
RLRAQ2Vk + (1− γ)2R�

k Rk

= γ2V�
k Q

�
1 A

�L�
RLRAQ1Vk + 2γ(1− γ)V�

k Q
�
1 A

�L�
RLRAQ2Vk

+ (1− γ)2V�
k Q

�
2 A

�L�
RLRUk+1U�

k+1L
�
RLRAQ2Vk

+ (1− γ)2V�
k Q

�
2 A

�L�
R(Ik+1 − LRUk+1U�

k+1L
�
R)LRAQ2Vk

= γ2V�
k Q

�
1 A

�L�
RLRAQ1Vk + 2γ(1− γ)V�

k Q
�
1 A

�L�
RLRAQ2Vk

+ (1− γ)2V�
k Q

�
2 A

�L�
RLRAQ2Vk

= (LRAQVk)�LRAQVk

Therefore,

tr(Dk(γ)Ck(γ,λ)) = tr(Dk(γ)(Dk(γ)�Dk(γ)+ λ2γIk + λ2(1− γ)V�
k Q2Vk)−1Dk(γ)�)

= tr((Dk(γ)�Dk(γ)+ λ2γIk + λ2(1− γ)V�
k Q2Vk)−1Dk(γ)�Dk(γ))

= tr(((LRAQVk)�LRAQVk + λ2V�
k QVk)−1(LRAQVk)�(LRAQVk))

= tr((LRAQVk)((LRAQVk)�LRAQVk + λ2V�
k QVk)−1(LRAQVk)�)

→ tr((LRAQVn)((LRAQVn)�LRAQVn + λ2V�
n QVn)−1(LRAQVn)�)

= tr((LRAQVn)V−1
n ((LRAQ)�LRAQ+ λ2Q)−1V−�

n (LRAQVn)�)

= tr((LRAQ)((LRAQ)�LRAQ+ λ2Q)−1(LRAQ)�)

= tr(A(γ,λ))

(47)

with the invertible Vn since V�
n Q1Vn = In and Vn ∈ R

n×n is square matrix. �

Appendix C. Derivation of regularization parameter selection methods for
mixHyBR

The derivations for both UPRE and GCV follow derivations for the Tikhonov case, see e.g. [5].
For UPRE for mixHyBR, the goal is to select parameters λ and γ that minimize the predictive
risk,

E‖Dk(γ)y
(γ,λ)
k − Dk(γ)yk(γ,λ)‖22, (48)

where y(γ,λ)k is the solution to (24) with fixed γ andλ, δ =

[
βe1
0

]
, y(γ,λ)k = Ck(γ,λ)δ, andDk(γ)

andCk(γ,λ) are defined in (30) and (31) respectively. For the projected problem (24), the vector
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δ consists of a deterministic and a stochastic part as described in [38], so δ = Dk(γ)yk(γ,λ)+
η where η ∼ N (0, σ2I) and η ∈ R

2k+1. Then, (48) can be written as

E‖Dk(γ)Ck(γ,λ)δ − Dk(γ)yk(γ,λ)‖
2
2

= E‖(Dk(γ)Ck(γ,λ)− I2k+1)Dk(γ)yk(γ,λ)+ Dk(γ)Ck(γ,λ)η‖22
= ‖(Dk(γ)Ck(γ,λ)− I2k+1)Dk(γ)yk(γ,λ)‖

2
2 + Eη�(Dk(γ)Ck(γ,λ))2η

= ‖(Dk(γ)Ck(γ,λ)− I2k+1)Dk(γ)yk(γ,λ)‖
2
2 + σ2tr((Dk(γ)Ck(γ,λ))

2).

(49)

Next the expectation of the projected residual can be written as

E‖Dk(γ)y
(γ,λ)
k − δ‖22

= E‖Dk(γ)Ck(γ,λ)δ − δ‖22

= E
∥∥(Dk(γ)Ck(γ,λ)− I2k+1

)
δ
∥∥2
2

= E
∥∥(Dk(γ)Ck(γ,λ)− I2k+1

)
Dk(γ)yk(γ,λ)+

(
Dk(γ)Ck(γ,λ)− I2k+1

)
η
∥∥2
2

=
∥∥(Dk(γ)Ck(γ,λ)− I2k+1

)
Dk(γ)yk(γ,λ)

∥∥2
2
+ E(η�(Dk(γ)Ck(γ,λ)− I2k+1

)2
η)

=
∥∥(Dk(γ)Ck(γ,λ)− I2k+1

)
Dk(γ)yk(γ,λ)

∥∥2
2
+ σ2tr((Dk(γ)Ck(γ,λ))

2)

− 2σ2tr(Dk(γ)Ck(γ,λ))+ σ2(2k+ 1). (50)

By combining (49) and (50), we get

E‖Dk(γ)y
(γ,λ)
k − Dk(γ)yk(γ,λ)‖22

= E

∥∥∥Dk(γ)y
(γ,λ)
k − δ

∥∥∥2
2
+ 2σ2tr(Dk(γ)Ck(γ,λ))− σ2(2k+ 1)

≈
∥∥∥Dk(γ)y

(γ,λ)
k − δ

∥∥∥2
2
+ 2σ2tr(Dk(γ)Ck(γ,λ))− σ2(2k+ 1). (51)

By dividing the function in (51) by 2k+ 1, we get the following UPRE function at the kth
iteration of the mixHyBR method,

Uproj(γ,λ) =
1

2k+ 1
‖rprojk (γ,λ)‖22 +

2σ2

2k+ 1
tr(Dk(γ),Ck(γ,λ))− σ2, (52)

where rprojk (γ,λ) = Dk(γ)y
(γ,λ)
k − δ.

The GCV method for selecting a regularization parameter is an approximation of a leave-
one-out cross validation (LOOCV) method. However, for large-scale problems, the direct
application of LOOCV and GCV for parameter selection is not feasible. Following the
derivation from [4], we get

V(γ,λ) =
1

2k+ 1

2k+1∑
i=1

(
[Dk(γ)y

(γ,λ)
k ]i − [δ]i

1− [Dk(γ)Ck(γ,λ)]ii

)2

, (53)
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where [·]i represents the ith component of a vector and [·]i j represents the ith row and
jth column component of a matrix. Next, since computing diagonal entries of Dk(γ)Ck(γ,λ)
can be expensive, the entries are replaced by the average of diagonal entries such that we get
tje GCV function for the mixHyBR method,

G(γ,λ) =
(2k+ 1)‖Dk(γ)y

(γ,λ)
k − δ‖22

(tr(I2k+1 − Dk(γ)Ck(γ,λ)))2
. (54)

Notice that this is a scalar multiple of the GCV function (with constant 2k+ 1) as given
in (36).
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