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ABSTRACT

Acoustic scattering is strongly influenced by boundary geometry of

objects over which sound scatters. The present work proposes a

method to infer object geometry from scattering features by training

convolutional neural networks. The training data is generated from a

fast numerical solver developed on CUDA. The complete set of sim-

ulations is sampled to generate multiple datasets containing different

amounts of channels and diverse image resolutions. The robustness

of our approach in response to data degradation is evaluated by com-

paring the performance of networks trained using the datasets with

varying levels of data degradation. The present work has found that

the predictions made from our models match ground truth with high

accuracy. In addition, accuracy does not degrade when fewer data

channels or lower resolutions are used.

Index Terms— Object geometry prediction, acoustic scattering,

convolutional neural network, fast acoustic simulation

1. INTRODUCTION

Acoustic reflection models have been extensively researched to pre-

dict room geometry [1–20]. A widely-used approach is based on

the assumption that walls can be described by parametric lines in

a 2-D plane [1, 3–5, 9, 14, 16, 19]. In this approach, ellipses with

source-receiver pairs as their focal points are constructed. After a

sonic event, acoustic measurements such as time of arrival (TOA)

[1, 3, 5, 9, 14, 16, 19] and direction of arrival (DOA) [4, 14] are ex-

tracted from the room reflections and used to determine shapes of

the ellipses. The parametric lines forming the walls are determined

from common tangential lines of the ellipses. In another popular

approach, the virtual image sources mirrored from real sources are

used to determine the orientations of the walls [6,7,10–13,15,17,20].

In this approach, to determine the wall orientation, a series of circles

centered at different receiver locations are constructed. The radii of

these circles are determined by the TOAs of echos from the wall.

The image source is at the intersection of the circles and the wall is

perpendicular to the line segment connecting the image source and

the real source.

Recently, Lindell et al. [21] proposed predicting the shape of

an object hidden behind a corner using measurements of reflections.

In their work, acoustic waves experience 3 reflections before finally

arriving at a microphone array. A computational model is derived

for the mapping from received acoustic waves to surface geometry.

The object surface is reconstructed from the microphone-recorded

signals. Their work shows that reflection models are able to predict

object geometry in more complicated environments.

The previously mentioned studies only use reflection, despite

the many other main effects of acoustic scattering. Critical features

such as diffraction and occlusion are neglected. Recently, Fan et

al. [22] proposed to predict acoustic scattering from objects using

a convolutional neural network (CNN). The CNN was trained us-

ing images representing object geometry and acoustic fields. Reflec-

tions, diffractions, and occlusions were accurately constructed from

the CNN, according to their test cases. Inspired by [22], it is be-

lieved that the inverse problem, prediction of object geometry from

acoustic scattering using a CNN, is also feasible.

The present work presents the first study that predicts object ge-

ometry from acoustic scattering using CNNs. To achieve this goal,

we developed a fast acoustic solver on an Nvidia GPU to generate a

large amount of training pairs. An example of these pairs is shown

in Fig. 1. In reality, collecting data shown in Fig. 1 is expensive,

so we aim to reduce the number of channels and image resolution

for a more practical solution. Through selecting multiple source lo-

cations, differentiating low and high frequency ranges, and varying

density of virtual sensors, we created 24 datasets from the original

data and a separate CNN was trained for each of them. The 24 CNN

models were carefully studied to evaluate the influence of data degra-

dation on prediction accuracy.

Our work shows that synthetic data can be used with CNN mod-

els to accurately predict object geometry. Further, using degraded

acoustic images does not significantly decrease accuracy. The results

indicate that predicting object geometry from acoustic scattering us-

ing CNNs is a robust and promising approach. Our training and test

data and the numerical solver are shared at the following address:

https://faculty.eng.ufl.edu/soundpad-lab/research/aml/.

2. METHODOLOGY

2.1. Problem formulation

Let Ω denote a space of interest and R be a centered subspace of Ω.

There exist objects in R. In this initial study, we restrict the number

of objects to 1. Let V and ∂V denote the volume and boundary of this

object. Region R is inaccessible and information of ∂V is unknown.

Let S = Ω \ R be an open region free of objects. A sound source

can be placed at any location xs ∈ S. Our task is to predict ∂V ⊆ R
using acoustic information in S induced by sources and ∂V .

Pressure field p induced by a point source at xs at an angular

frequency ω is described by the Helmholtz equation:

∇2p (ω,x;xs)+k2p (ω,x;xs) = −δ (x− xs) , x ∈ Ω−V, (1)

where k = ω/c denotes the wave number and δ denotes the Dirac

delta. A unique solution of Eq. (1) is ensured by the Sommerfeld ra-

diation condition at infinity [23] and a frequency-dependent bound-
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Fig. 1: An input-output pair to the neural network of the largest possible number of channels and the highest resolution. The input is a

32-channel image, 4 channels for octave bands and 8 channels for source locations. Bright yellow pixels far from the dark region denote

locations near sound sources. Bright yellow curves radiating from the dark region denote reflection from the object. Dark blue streaks denote

occlusion of sound propagation. Green lobes between streaks of occlusion denote diffraction around the object. The output is a binary image

indicating the geometry of an object in the inaccessible region. White and black pixels denote object occupancy and air respectively.

Fig. 2: An input-output pair using low-frequency octave bands only and a spatial sampling factor of 2. Black pixels denote unknown loudness.

A much smaller number of measurements is needed for this input, as compared to that in Fig. 1. The number of sources can be reduced to

generate images of fewer source channels. Density of virtual probes can be further decreased to lower image resolution.

ary condition defined on ∂V:

α (ω,x) p (ω,x) + β (ω,x) q (ω,x) = γ (ω,x) , x ∈ ∂V, (2)

where q = ∂p/∂n (x) denotes the normal velocity on ∂V . Finally,

we define loudness at a point x as spectral energy concentration:

Li,j (x) = 10 log10
1

ωi+1 − ωi

∫ ωi+1

ωi

|p (ω,x;xs,j)|
2dω, x ∈ S,

(3)

where ωi = [ωi, ωi+1) denotes the i-th frequency range and xs,j

denotes the j-th source location.

Loudness fields L and boundary ∂V are related by Eq. (2). Two

boundary properties, geometry G and acoustic impedance Z are as-

sociated with ∂V . In this study, we assume ∂V to be acoustically

rigid, corresponding to the case α = γ = 0, β 6= 0 in Eq. (2). Thus,

the only variable related to ∂V is its geometry G. A total number of

Ns source locations xs,j uniformly distributed around an object and

Nf frequency ranges ωi in the form of octave bands are used. For

each G, Ns ·Nf loudness fields are defined on S, each loudness field

corresponding to a unique combination of ωi and xs,j . The mapping

M : {L} → {G} can be constructed with a large number of data

pairs (L,G). Once M is constructed, prediction of an unknown G
can be conveniently made if L measurements are provided.

2.2. Data representation

In this study, data pairs (L,G) are provided by simulations. Fan et al.

proposed a parallel acoustic solver developed in CUDA [24]. This

solver is based on GPU implementation of the boundary element

method [25] and provides a fast estimation of pressure distributions

on ∂V through solving Eq. (1). The solver was further developed to

extrapolate p on ∂V into Ω \ V and to calculate L of Eq. (3) in S.

Both L and G are represented using voxel grids. Similar to [26],

space Ω is divided into many small cubes and these cubes form a

voxel grid G (Ω) = G (R)∪G (S). Loudness samples Li,j (x) are

calculated at every center point of a voxel in G (S). Consequently,

each voxel in G (S) is associated with a numerical value in deci-

bels. Voxels in G (R) are associated with a special value denoting

unknown, as R is inaccessible. All the loudness grids form an image

I (L) of Nf ·Ns channels, each channel denoting one combination



Fig. 3: Illustration of our simulation region. Only 1 out of 8 potential

source locations around the region is shown.

of a source location and a frequency range. The geometric distribu-

tion of the object in Ω is also defined on G (Ω). Each voxel of G (Ω)
is associated with a binary value, 1 denoting object occupancy and

0 denoting air. This association leads to a binary image I (G) repre-

senting the geometry of the object. As objects are originally repre-

sented using mesh models composed of triangular elements, object

occupancy is determined from triangle-cube intersection tests.

As a result, both L and G of an object are represented using 3-D

images I (L) and I (G). The mapping M : {L} → {G} is then

turned into a new mapping M′ : {I (L)} → {I (G)}. CNNs are

a good candidate for constructing M′ in the form of images. Our

formulation is image segmentation in nature, where each pixel in an

output image is of two categories: occupied by an object or not.

3. EXPERIMENTAL EVALUATION

3.1. Simulation setup

The simulation region shown in Fig. 3 is 5.12m×5.12m×1.44m.

This region is turned into a voxel grid using unit cubes of volume

1 cm3. There is a 1m×1m square region at the center of the simu-

lation region. An object whose geometry is to be determined resides

within the square region. The distance from a sound source to the

center of the region is fixed at rs = 5m. The sound source can be

positioned at any of the following Ns = 8 directions:

θj = j · π/4, j = 0, 1, 2, . . . , 7. (4)

We also use Nf = 4 frequency ranges in the form of octave bands:

ωi = [ωi, ωi+1) , ωi = 2π · 125 · 2i+1, i = 0, 1, 2, 3. (5)

3.2. Generation of objects and input-output pairs

We make the assumption that objects to be predicted are horizon-

tally convex. We designed the pipeline shown in Fig. 4 for object

generation. The pipeline is adapted from [22]. Different from [22],

a step of translation is inserted before extrusion to ensure the di-

versity of object positions within the square region. We generated

five categories of prisms, namely, triangular, quadrilateral, pentago-

nal, hexagonal and heptagonal to simulate training data. There are

Ntc = 3150 instances in each category, summing up to a total num-

ber of Ntr = 15750. Examples of these objects are shown in Fig. 5.

We also generated a smaller dataset for generalization test. Instead

of collocating vertices on the circle inscribed to the square, we col-

located vertices on circles of 4 different radii: 0.3m, 0.35m, 0.4m
and 0.45m. The step scaling was not used in generating objects of

the test dataset. For each radius, we generated the same 5 categories

of prisms, each of 35 instances, summing up to Ntst = 700. We

compared our test objects to training objects to ensure no overlap.

We simulated loudness fields L for all objects in the training

set and the test set. For each object, combinations from Ns = 8

Fig. 4: Our pipeline to generate convex objects of diverse geome-

try, adapted from [22]. A translation step is added to ensure diverse

locations. Objects from this pipeline only vary horizontally.

Fig. 5: Examples of objects for our training dataset. The objects

cover 5 categories, each one extruded from a type of polygons.

source locations and Nf = 4 octave bands lead to 32 independent

simulations and they sum up to a 3-D image of 32 channels. We only

took the center slice from each channel, as there is no variation for

objects in the vertical direction. Thus, the input data of each object is

a 32-channel 2-D image. The output data is a 1-channel binary image

indicating object occupancy in the horizontal plane. The simulation

for 15 750 training objects took 20 days on a Tesla P100 GPU.

An example of our input-output pairs is shown in Fig. 1. On

the left-hand side are 32 image channels representing simulations of

loudness fields for 4 frequency ranges and 8 source directions. The

black region at the center of an image channel denotes region R,

which contains an object. Pixels for S are associated with numerical

values in decibels. On the right-hand side is an binary image repre-

senting object occupancy in R. Black pixels of value 0 denote air

occupancy and white pixels of value 1 denote object occupancy.

3.3. Resolution degradation and channel reduction

Acquisition of input images in Fig. 1 is expensive, considering the

spatial density of probes and the numbers of source locations and

energy bands. Thus, we aim to study the robustness of our approach

to the degradation of image resolution and the reduction of image

channels. Our frequency ranges are divided into a low group and a

high group, each of 2 octave bands. Using either one of them or both

leads to 3 situations. Further, using half of the source locations or

using all of them leads to 2 situations. Finally, we define 4 spatial

sampling factors: 1, 2, 4 and 8, which correspond to situations of no

sampling, sampling every 1 in 2 pixels, every 1 in 4 pixels and every

1 in 8 pixels in 2 dimensions. All the above situations lead to 24

combinations of image channels and resolutions. An example of the

dataset using all 8 source locations, low octave bands, and a spatial

sampling factor of 2 is shown in Fig. 2.

3.4. Convolutional neural network

We used the full resolution residual network (FRRN) [28] since it

has been shown to successfully learn the mapping from geometry to



Table 1: IMED [27] between predictions and ground truth, normal-

ized between 0 and 1. SSF is short for spatial sampling factor.

4 Sources 8 Sources

Frequency Band Frequency Band

SSF Low High Full Low High Full

8 0.1453 0.1819 0.1844 0.1420 0.1993 0.1680

4 0.1491 0.2136 0.1753 0.1524 0.1881 0.1610

2 0.1603 0.2036 0.1677 0.1499 0.1880 0.1732

1 0.1497 0.2004 0.1600 0.1480 0.1893 0.1679

Fig. 6: Comparison of predictions using different spatial subsapm-

ling factors. Notation “gt” is short for “ground truth”. Predictions

using spatial sapmling factors 8, 4, 1 are shown in separate rows.

Source numbers are uniformly 8 and only low octave bands are used.

Fig. 7: Comparison of predictions using different combinations of

octave bands. Predictions using lower octave bands, higher octave

bands and both are illustrated in different rows. Numbers of sources

are uniformly 8 and spatial sampling factors are uniformly 1.

Fig. 8: Comparison of predictions using different numbers of

sources. Predictions using 4 and 8 source channels are illustrated

in different rows. Spatial sampling factors are uniformly 1 and only

low octave bands are used.

loudness [22], adopting the implementation from Shah [29]. We kept

the architecture of the FRRN unchanged from Pohlen’s work [28]

and modified the numbers of input and output channels to our needs.

Cross-entropy was used as the loss metric. Targets were selected as

the binary images of size 100×100 denoting the inaccessible region.

We also adopted mini-batches of size 2, selected stochastic gradient

descent as our optimizer and set the learning rate, momentum, and

weight decay as 1e−5, 0.99 and 1.0e−5 respectively. Combinations

of spatial sampling factors, octave bands, and source locations were

differentiated in the data loader. We trained 24 networks correspond-

ing to the 24 datasets on a GPU cluster. Each network was trained

for at least 4 epochs. Training took a total of 4 days.

3.5. Generalization test

Our test data was processed in the same manner as the training data.

As a result, we obtained 24 test datasets for the 24 CNN models.

Test input images were fed into their corresponding models and each

model output 700 predictions for geometry of test objects. Examples

of the geometric predictions are shown in Fig. 6, Fig. 7 and Fig. 8.

For the comparison in Fig. 6, choices of octave bands and num-

ber of sources are kept the same and the only variable is the spa-

tial sampling factor. In general, severe degradation is not observed

when a coarser spatial resolution is used, as shown by a compari-

son between row 2, 3 and 4. A direct comparison between the pre-

dictions and the ground truth reveals that sharp corners in ground-

truth objects are rounded in predictions. This discrepancy is induced

by the smoothing effect of CNNs. It should also be noted that the

predictions of smaller objects are not as accurate as larger ones, as

shown by a comparison between columns 8, 9, and 10 and all pre-

vious columns. Specifically, only small portions of the triangles in

columns 9 and 10 are predicted and the predicted object boundaries

diverge from the ground truth. Similar tendencies can also be found

in Fig. 7 and Fig. 8, where the variables for comparison are respec-

tively frequency ranges and source distributions.

The IMage Euclidean Distance (IMED) [27] is used to quantify

prediction accuracy of the 24 models. Surprisingly, models using

low octave bands are superior to models using high octave bands or

both, as shown in Table 1. Diffraction is more prominent at lower

frequencies, and acoustic waves tend to “wrap” around objects as

diffraction takes place. Thus, one potential explanation for the supe-

riority of using low octave bands is, the “wrapping” effect of diffrac-

tion helps probe a whole surface, while only partial local features

are revealed by refection and occlusion, which are more prominent

at higher frequencies. Further, using coarser images or fewer source

locations does not significantly degrade prediction accuracy. This

finding is consistent with direct observation from Fig. 6 and Fig. 8.

The only model showing decreased accuracy with spatial sampling is

the one trained with 4 source locations and 2 frequency bands. Thus,

our CNN models are robust to reduction of both source channels and

spatial resolution.

4. CONCLUSION

In this study, inference of object geometry is formulated as image

segmentation. Training and test data are generated from a fast acous-

tic solver. CNN models are shown to predict object geometry with

high accuracy. Further, prediction robustness to reduction of acous-

tic image channels and of spatial resolution is validated. Specifically,

models trained using low-frequency images are superior to models

trained using high-frequency images or both, indicating the signifi-

cance of diffraction in the inference.

There is still much to improve in our work. Only one object is

considered in our inference and our objects are convex horizontally

and do not vary vertically. These simplifications restrict the gener-

alizability of our work. In the future, we aim to infer the geometry

of multiple prisms, lifting the restriction on convexity. Further, no

background noise is assumed. In a future work, reflections from

the ground should be included in datasets. Finally, our models are

trained and tested using only simulations, and it would be interesting

to examine the robustness of our approach to real measurements.
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