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ABSTRACT

Acoustic scattering is strongly influenced by boundary geometry of
objects over which sound scatters. The present work proposes a
method to infer object geometry from scattering features by training
convolutional neural networks. The training data is generated from a
fast numerical solver developed on CUDA. The complete set of sim-
ulations is sampled to generate multiple datasets containing different
amounts of channels and diverse image resolutions. The robustness
of our approach in response to data degradation is evaluated by com-
paring the performance of networks trained using the datasets with
varying levels of data degradation. The present work has found that
the predictions made from our models match ground truth with high
accuracy. In addition, accuracy does not degrade when fewer data
channels or lower resolutions are used.

Index Terms— Object geometry prediction, acoustic scattering,
convolutional neural network, fast acoustic simulation

1. INTRODUCTION

Acoustic reflection models have been extensively researched to pre-
dict room geometry [1-20]. A widely-used approach is based on
the assumption that walls can be described by parametric lines in
a 2-D plane [1,3-5,9, 14,16, 19]. In this approach, ellipses with
source-receiver pairs as their focal points are constructed. After a
sonic event, acoustic measurements such as time of arrival (TOA)
[1,3,5,9,14, 16, 19] and direction of arrival (DOA) [4, 14] are ex-
tracted from the room reflections and used to determine shapes of
the ellipses. The parametric lines forming the walls are determined
from common tangential lines of the ellipses. In another popular
approach, the virtual image sources mirrored from real sources are
used to determine the orientations of the walls [6,7,10-13,15,17,20].
In this approach, to determine the wall orientation, a series of circles
centered at different receiver locations are constructed. The radii of
these circles are determined by the TOAs of echos from the wall.
The image source is at the intersection of the circles and the wall is
perpendicular to the line segment connecting the image source and
the real source.

Recently, Lindell et al. [21] proposed predicting the shape of
an object hidden behind a corner using measurements of reflections.
In their work, acoustic waves experience 3 reflections before finally
arriving at a microphone array. A computational model is derived
for the mapping from received acoustic waves to surface geometry.
The object surface is reconstructed from the microphone-recorded
signals. Their work shows that reflection models are able to predict
object geometry in more complicated environments.

The previously mentioned studies only use reflection, despite
the many other main effects of acoustic scattering. Critical features

such as diffraction and occlusion are neglected. Recently, Fan et
al. [22] proposed to predict acoustic scattering from objects using
a convolutional neural network (CNN). The CNN was trained us-
ing images representing object geometry and acoustic fields. Reflec-
tions, diffractions, and occlusions were accurately constructed from
the CNN, according to their test cases. Inspired by [22], it is be-
lieved that the inverse problem, prediction of object geometry from
acoustic scattering using a CNN, is also feasible.

The present work presents the first study that predicts object ge-
ometry from acoustic scattering using CNNs. To achieve this goal,
we developed a fast acoustic solver on an Nvidia GPU to generate a
large amount of training pairs. An example of these pairs is shown
in Fig. 1. In reality, collecting data shown in Fig. 1 is expensive,
so we aim to reduce the number of channels and image resolution
for a more practical solution. Through selecting multiple source lo-
cations, differentiating low and high frequency ranges, and varying
density of virtual sensors, we created 24 datasets from the original
data and a separate CNN was trained for each of them. The 24 CNN
models were carefully studied to evaluate the influence of data degra-
dation on prediction accuracy.

Our work shows that synthetic data can be used with CNN mod-
els to accurately predict object geometry. Further, using degraded
acoustic images does not significantly decrease accuracy. The results
indicate that predicting object geometry from acoustic scattering us-
ing CNNss is a robust and promising approach. Our training and test
data and the numerical solver are shared at the following address:
https://faculty.eng.ufl.edu/soundpad-lab/research/aml/.

2. METHODOLOGY

2.1. Problem formulation

Let €2 denote a space of interest and R be a centered subspace of 2.
There exist objects in R. In this initial study, we restrict the number
of objects to 1. Let V and 9V denote the volume and boundary of this
object. Region R is inaccessible and information of 9V is unknown.
Let S = Q \ R be an open region free of objects. A sound source
can be placed at any location &, € S. Our task is to predict 0V C R
using acoustic information in S induced by sources and 9V .

Pressure field p induced by a point source at s at an angular
frequency w is described by the Helmholtz equation:

V2D (W, ®; ) +k°p (0, ;) = =0 (& — x5), & € Q=V, (1)
where k = w/c denotes the wave number and ¢ denotes the Dirac
delta. A unique solution of Eq. (1) is ensured by the Sommerfeld ra-
diation condition at infinity [23] and a frequency-dependent bound-
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Fig. 1: An input-output pair to the neural network of the largest possible number of channels and the highest resolution. The input is a
32-channel image, 4 channels for octave bands and 8 channels for source locations. Bright yellow pixels far from the dark region denote
locations near sound sources. Bright yellow curves radiating from the dark region denote reflection from the object. Dark blue streaks denote

occlusion of sound propagation. Green lobes between streaks of occlusion denote diffraction around the object. The output is a binary image
indicating the geometry of an object in the inaccessible region. White and black pixels denote object occupancy and air respectively.
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Fig. 2: An input-output pair using low-frequency octave bands only and a spatial sampling factor of 2. Black pixels denote unknown loudness.
A much smaller number of measurements is needed for this input, as compared to that in Fig. 1. The number of sources can be reduced to
generate images of fewer source channels. Density of virtual probes can be further decreased to lower image resolution.

ary condition defined on 0V:
a(w,z)p(w,x)+ B (w,z)q(w ) =7(w,z), €V, (2

where ¢ = Op/0n (x) denotes the normal velocity on 9. Finally,
we define loudness at a point & as spectral energy concentration:

Wi+1 2
/ ‘p(wuzvvwﬁj)' dwa 4 681
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where w; = [wz-, wH_l) denotes the ¢-th frequency range and x; ;
denotes the j-th source location.

Loudness fields L and boundary 0V are related by Eq. (2). Two
boundary properties, geometry G and acoustic impedance Z are as-
sociated with 0V. In this study, we assume 9V to be acoustically
rigid, corresponding to the case &« = v = 0, 8 # 0 in Eq. (2). Thus,
the only variable related to JV is its geometry G. A total number of
N source locations @ ; uniformly distributed around an object and
Ny frequency ranges w; in the form of octave bands are used. For
each G, N, - Ny loudness fields are defined on S, each loudness field
corresponding to a unique combination of w; and x ;. The mapping

M : {L} — {G} can be constructed with a large number of data
pairs (L, G). Once M is constructed, prediction of an unknown G
can be conveniently made if L measurements are provided.

2.2. Data representation

In this study, data pairs (L, G) are provided by simulations. Fan et al.
proposed a parallel acoustic solver developed in CUDA [24]. This
solver is based on GPU implementation of the boundary element
method [25] and provides a fast estimation of pressure distributions
on JV through solving Eq. (1). The solver was further developed to
extrapolate p on V into 2 \ V and to calculate L of Eq. (3) in S.
Both L and G are represented using voxel grids. Similar to [26],
space (2 is divided into many small cubes and these cubes form a
voxel grid G (2) = G (R)UG (S). Loudness samples L; ; (x) are
calculated at every center point of a voxel in G (S). Consequently,
each voxel in G (S) is associated with a numerical value in deci-
bels. Voxels in G (R) are associated with a special value denoting
unknown, as R is inaccessible. All the loudness grids form an image
Z (L) of Ny - N, channels, each channel denoting one combination



Fig. 3: Nllustration of our simulation region. Only 1 out of 8 potential
source locations around the region is shown.

of a source location and a frequency range. The geometric distribu-
tion of the object in 2 is also defined on G (£2). Each voxel of G (£2)
is associated with a binary value, 1 denoting object occupancy and
0 denoting air. This association leads to a binary image Z (G) repre-
senting the geometry of the object. As objects are originally repre-
sented using mesh models composed of triangular elements, object
occupancy is determined from triangle-cube intersection tests.

As aresult, both L and G of an object are represented using 3-D
images Z (L) and Z (G). The mapping M : {L} — {G} is then
turned into a new mapping M’ : {Z (L)} — {Z(G)}. CNNs are
a good candidate for constructing M’ in the form of images. Our
formulation is image segmentation in nature, where each pixel in an
output image is of two categories: occupied by an object or not.

3. EXPERIMENTAL EVALUATION

3.1. Simulation setup

The simulation region shown in Fig. 3 is 5.12mx5.12mx1.44 m.
This region is turned into a voxel grid using unit cubes of volume
1cm?®. There is a 1 mx 1 m square region at the center of the simu-
lation region. An object whose geometry is to be determined resides
within the square region. The distance from a sound source to the
center of the region is fixed at s = 5m. The sound source can be
positioned at any of the following N, = 8 directions:

0;=j-7/4,j=0,1,2,...,7. 4)
We also use Ny = 4 frequency ranges in the form of octave bands:

wi = [wi,wit1), wi = 27125271 i =0,1,2,3.  (5)

3.2. Generation of objects and input-output pairs

We make the assumption that objects to be predicted are horizon-
tally convex. We designed the pipeline shown in Fig. 4 for object
generation. The pipeline is adapted from [22]. Different from [22],
a step of translation is inserted before extrusion to ensure the di-
versity of object positions within the square region. We generated
five categories of prisms, namely, triangular, quadrilateral, pentago-
nal, hexagonal and heptagonal to simulate training data. There are
N¢. = 3150 instances in each category, summing up to a total num-
ber of V;,» = 15750. Examples of these objects are shown in Fig. 5.
We also generated a smaller dataset for generalization test. Instead
of collocating vertices on the circle inscribed to the square, we col-
located vertices on circles of 4 different radii: 0.3m, 0.35m, 0.4 m
and 0.45m. The step scaling was not used in generating objects of
the test dataset. For each radius, we generated the same 5 categories
of prisms, each of 35 instances, summing up to N¢sx = 700. We
compared our test objects to training objects to ensure no overlap.
We simulated loudness fields L for all objects in the training
set and the test set. For each object, combinations from N, = 8

rotation

collocation

scaling translation extrusion

Fig. 4: Our pipeline to generate convex objects of diverse geome-
try, adapted from [22]. A translation step is added to ensure diverse
locations. Objects from this pipeline only vary horizontally.
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Fig. 5: Examples of objects for our training dataset. The objects
cover 5 categories, each one extruded from a type of polygons.

source locations and Ny = 4 octave bands lead to 32 independent
simulations and they sum up to a 3-D image of 32 channels. We only
took the center slice from each channel, as there is no variation for
objects in the vertical direction. Thus, the input data of each object is
a 32-channel 2-D image. The output data is a 1-channel binary image
indicating object occupancy in the horizontal plane. The simulation
for 15 750 training objects took 20 days on a Tesla P100 GPU.

An example of our input-output pairs is shown in Fig. 1. On
the left-hand side are 32 image channels representing simulations of
loudness fields for 4 frequency ranges and 8 source directions. The
black region at the center of an image channel denotes region R,
which contains an object. Pixels for S are associated with numerical
values in decibels. On the right-hand side is an binary image repre-
senting object occupancy in R. Black pixels of value O denote air
occupancy and white pixels of value 1 denote object occupancy.

3.3. Resolution degradation and channel reduction

Acquisition of input images in Fig. 1 is expensive, considering the
spatial density of probes and the numbers of source locations and
energy bands. Thus, we aim to study the robustness of our approach
to the degradation of image resolution and the reduction of image
channels. Our frequency ranges are divided into a low group and a
high group, each of 2 octave bands. Using either one of them or both
leads to 3 situations. Further, using half of the source locations or
using all of them leads to 2 situations. Finally, we define 4 spatial
sampling factors: 1, 2, 4 and 8, which correspond to situations of no
sampling, sampling every 1 in 2 pixels, every 1 in 4 pixels and every
1 in 8 pixels in 2 dimensions. All the above situations lead to 24
combinations of image channels and resolutions. An example of the
dataset using all 8 source locations, low octave bands, and a spatial
sampling factor of 2 is shown in Fig. 2.

3.4. Convolutional neural network

We used the full resolution residual network (FRRN) [28] since it
has been shown to successfully learn the mapping from geometry to



Table 1: IMED [27] between predictions and ground truth, normal-
ized between 0 and 1. SSF is short for spatial sampling factor.

4 Sources 8 Sources
Frequency Band Frequency Band
SSF Low High Full Low High Full
8 0.1453 0.1819 0.1844 0.1420 0.1993 0.1680
4 0.1491 0.2136 0.1753 0.1524 0.1881 0.1610
2 0.1603 0.2036 0.1677 0.1499 0.1880 0.1732
1 0.1497 0.2004 0.1600 0.1480 0.1893 0.1679

Fig. 6: Comparison of predictions using different spatial subsapm-
ling factors. Notation “gt” is short for “ground truth”. Predictions
using spatial sapmling factors 8, 4, 1 are shown in separate rows.
Source numbers are uniformly 8 and only low octave bands are used.

Fig. 7: Comparison of predictions using different combinations of
octave bands. Predictions using lower octave bands, higher octave
bands and both are illustrated in different rows. Numbers of sources
are uniformly 8 and spatial sampling factors are uniformly 1.

Fig. 8: Comparison of predictions using different numbers of
sources. Predictions using 4 and 8 source channels are illustrated
in different rows. Spatial sampling factors are uniformly 1 and only
low octave bands are used.

loudness [22], adopting the implementation from Shah [29]. We kept
the architecture of the FRRN unchanged from Pohlen’s work [28]
and modified the numbers of input and output channels to our needs.
Cross-entropy was used as the loss metric. Targets were selected as
the binary images of size 100x 100 denoting the inaccessible region.
We also adopted mini-batches of size 2, selected stochastic gradient
descent as our optimizer and set the learning rate, momentum, and
weight decay as 1e—5, 0.99 and 1.0e—5 respectively. Combinations
of spatial sampling factors, octave bands, and source locations were

differentiated in the data loader. We trained 24 networks correspond-
ing to the 24 datasets on a GPU cluster. Each network was trained
for at least 4 epochs. Training took a total of 4 days.

3.5. Generalization test

Our test data was processed in the same manner as the training data.
As a result, we obtained 24 test datasets for the 24 CNN models.
Test input images were fed into their corresponding models and each
model output 700 predictions for geometry of test objects. Examples
of the geometric predictions are shown in Fig. 6, Fig. 7 and Fig. 8.

For the comparison in Fig. 6, choices of octave bands and num-
ber of sources are kept the same and the only variable is the spa-
tial sampling factor. In general, severe degradation is not observed
when a coarser spatial resolution is used, as shown by a compari-
son between row 2, 3 and 4. A direct comparison between the pre-
dictions and the ground truth reveals that sharp corners in ground-
truth objects are rounded in predictions. This discrepancy is induced
by the smoothing effect of CNNs. It should also be noted that the
predictions of smaller objects are not as accurate as larger ones, as
shown by a comparison between columns 8, 9, and 10 and all pre-
vious columns. Specifically, only small portions of the triangles in
columns 9 and 10 are predicted and the predicted object boundaries
diverge from the ground truth. Similar tendencies can also be found
in Fig. 7 and Fig. 8, where the variables for comparison are respec-
tively frequency ranges and source distributions.

The IMage Euclidean Distance IMED) [27] is used to quantify
prediction accuracy of the 24 models. Surprisingly, models using
low octave bands are superior to models using high octave bands or
both, as shown in Table 1. Diffraction is more prominent at lower
frequencies, and acoustic waves tend to “wrap” around objects as
diffraction takes place. Thus, one potential explanation for the supe-
riority of using low octave bands is, the “wrapping” effect of diffrac-
tion helps probe a whole surface, while only partial local features
are revealed by refection and occlusion, which are more prominent
at higher frequencies. Further, using coarser images or fewer source
locations does not significantly degrade prediction accuracy. This
finding is consistent with direct observation from Fig. 6 and Fig. 8.
The only model showing decreased accuracy with spatial sampling is
the one trained with 4 source locations and 2 frequency bands. Thus,
our CNN models are robust to reduction of both source channels and
spatial resolution.

4. CONCLUSION

In this study, inference of object geometry is formulated as image
segmentation. Training and test data are generated from a fast acous-
tic solver. CNN models are shown to predict object geometry with
high accuracy. Further, prediction robustness to reduction of acous-
tic image channels and of spatial resolution is validated. Specifically,
models trained using low-frequency images are superior to models
trained using high-frequency images or both, indicating the signifi-
cance of diffraction in the inference.

There is still much to improve in our work. Only one object is
considered in our inference and our objects are convex horizontally
and do not vary vertically. These simplifications restrict the gener-
alizability of our work. In the future, we aim to infer the geometry
of multiple prisms, lifting the restriction on convexity. Further, no
background noise is assumed. In a future work, reflections from
the ground should be included in datasets. Finally, our models are
trained and tested using only simulations, and it would be interesting
to examine the robustness of our approach to real measurements.
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