RusTEE: Developing Memory-Safe ARM

TrustZone Applications

Shengye Wan
The College of William & Mary
George Mason University
swan@email.wm.edu

Ning Zhang
Washington University in St. Louis
zhang.ning@wustl.edu

ABSTRACT

In the past decade, Trusted Execution Environment (TEE) provided
by ARM TrustZone is becoming one of the primary techniques for
enhancing the security of mobile devices. The isolation enforced
by TrustZone can protect the trusted applications running in the
TEE against malicious software in the untrusted rich execution en-
vironment (REE). However, TrustZone cannot completely prevent
vulnerabilities in trusted applications residing in the TEE, which
can then be used to attack other trusted applications or even the
trusted OS. Previously, a number of memory corruption vulnera-
bilities have been reported on different TAs, which are written in
memory-unsafe languages like C.

Recently, various memory-safe programming languages have
emerged to mitigate the prevalent memory corruption bugs. In
this paper, we propose RusTEE, a trusted application mechanism
that leverages Rust, a newly emerged memory-safe language, to
enhance the security of TAs. Though the high-level idea is quite
straight-forwarding, we resolve several challenges on adopting
Rust in mobile TEEs. Specifically, since Rust currently does not
support any TrustZone-assisted TEE systems, we extend the ex-
isting Rust compiler for providing such support. Also, we apply
comprehensive security mechanisms to resolve two security issues
of trusted applications, namely, securely invoking high-privileged
system services and securely communicating with untrusted REE.
We implement a prototype of RusTEE as the trusted applications’
SDK, which supports both emulator and real hardware devices.
The experiment shows that RusTEE can compile applications with
close-to-C performance on the evaluated platforms.

CCS CONCEPTS

« Security and privacy — Software security engineering; Mo-
bile platform security.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACSAC °20, December 07-11, 2020, Online

© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Mingshen Sun
Baidu Security
sunmingshen@baidu.com

Kun Sun
George Mason University
ksun3@gmu.edu

Xu He
George Mason University

xhe6@gmu.edu

KEYWORDS
TrustZone, Rust, Trusted Applications, Memory-safety

ACM Reference Format:

Shengye Wan, Mingshen Sun, Kun Sun, Ning Zhang, and Xu He. 2020.
RusTEE: Developing Memory-Safe ARM TrustZone Applications. In ACSAC
"20: Annual Computer Security Applications Conference, December 07-11,
2020, Online. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION

In recent years, TrustZone has been leveraged extensively to pro-
vide security protection on the ARM platforms [4, 8, 26, 43, 52].
It enables system-wide isolation by creating a Trusted Execution
Environment (TEE) for security-sensitive code and data protection
and therefore protects the TEE’s software from the untrusted Rich
Execution Environment (REE). The isolation is enforced via the
hardware features built in the processor as well as the system bus
interconnect. Due to the protection of hardware-assisted isolation,
it becomes common for TrustZone-based systems [4, 8, 47] to as-
sume the trust of entire TEE, including the trusted applications
(TAs) running in the TEE. Also, the functionalities of TEE systems
are extended dramatically by installing various TAs in the trusted
isolated environment.

Though TrustZone technology can assure isolation between
TEE and REE, dozens of software-based vulnerabilities have been
reported to compromise the entire TEE system [13, 22, 51]. Among
the reported vulnerabilities, most of them are caused by memory
corruption of the memory-unsafe TAs [9]. The risk of TEE systems
being compromised will increase along with the number of TAs
installed. Under the latest ARM TrustZone architecture, the term
"Trusted Application" only refers to an application that should be
trusted to run in TEE, but it does not mean the application is bug-
free. Due to two architectural features of TAs, namely, conducting
the cross-world communication with the REE and invoking kernel-
privileged system-service APIs, TAs could be manipulated by REE-
side attackers to compromise the entire TEE system. Researchers
propose to move the execution of TAs from the TEE to the REE
and thus prevent one vulnerable TA from corrupting other TAs or
the Trusted OS [8, 10, 43]. Though these solutions can effectively
mitigate the risk of vulnerable TAs, they will inevitably introduce
non-negligible overhead over the system.

https://www.acsac.org/2020/submissions/papers/artifacts/
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACSAC °20, December 07-11, 2020, Online

Recently, many programming languages focus effort on enhanc-
ing their memory-safety, and several new languages are proposed
with memory-safety as one of the goals, such as Rust and Go. Mean-
while, researchers have applied the memory-safe languages from
upper application layer (e.g., Intel SGX Enclave programs [48]) to
lower system layer (e.g., embedded system OSes [30, 31]). One pre-
condition to the engineering effort to rewrite the code base in these
memory-safe languages is relatively small, so that developers can
afford to convert the existing software into the memory-safe style.
Meanwhile, since ARM TrustZone is proposed to protect a limited
number of small security tasks, TAs become another ideal target to
be rewritten in the memory-safe language.

In this paper, we propose a mechanism called RusTEE to build
TrustZone-assisted applications in the memory-safe style, using
Rust [35] as the programming language. The basic idea is to leverage
newly emerging memory-safe languages and provide a Rust-based
Software Development Kit (SDK) on compiling memory-safe TAs to
prevent against memory-corruption vulnerabilities. Specifically, we
resolve several challenges to develop a TA with Rust. The first chal-
lenge is that none of TrustZone-assisted TEE system and associated
ARM platform has been recognized as the official support target to
the Rust. Therefore, we need to integrate all the Rust fundamen-
tal support such as the standard library into the TA development.
Second, TAs are required to invoke the APIs of different system
services, which are typically implemented as the kernel-privileged
libraries. Since some low-level libraries require specific ARM as-
sembly instructions that are not supported in Rust, it is impractical
to rewrite all the libraries in Rust. Inspired by a recent work Rust-
SGX [48], we solve this challenge by providing a binding layer
between the Rust application and C system. The binding provides
all the necessary interfaces for the TA dependent libraries while
also enforcing the Rust’s memory-safe standard on the bounded
interfaces. Third, we resolve a TA-specific challenge, i.e., providing
a secure cross-world communication channel for the TA in the TEE
world to communicate with the software in the REE world. The
security of the cross-world communication is ensured by regulating
the TA’s usage on any shared parameters between the two worlds.

After systematically studying the architectural specification of
TrustZone-assisted systems, we successfully import Rust into TA
development environment, and further apply multiple security
enhancements to reliably invoke system-service APIs and securely
conduct the cross-world communication. We develop a prototype
of RusTEE based on an open-source project OP-TEE OS [34] and
provide a variety of examples to demonstrate the functionalities and
efficiency of RusTEE. We have open sourced the RusTEE prototype
along with the memory-safe TA examples. The system evaluation
has been conducted on multiple ARM platforms, including the
AArché4 simulation and a real-world development board Juno r1 [3].
According to our experimental results, RusTEE only introduces
1% performance overhead on average on the evaluated examples.
Moreover, RusTEE enables the TAs to be integrated with millions
of existing Rust libraries, noticeably extending the functionalities
of the TAs in the TEE.

In summary, we make the following contributions.

Shengye Wan, Mingshen Sun, Kun Sun, Ning Zhang, and Xu He

(1) We propose RusTEE, the first memory-safe trusted applica-
tion development environment with comprehensive func-
tionalities for TrustZone-assisted systems. By utilizing the
built-in security properties and benefits of the Rust pro-
gramming language, our trusted application environment
removes most known memory-unsafe implementation bugs
in trusted applications and thus enhance the security of TEE.

(2) We address two security concerns of the TrustZone-assisted
TEE systems, namely, the widely exposed system-service
APIs and cross-world communication channels, to enhance
the security of Rust-based trusted applications.

(3) We implement a prototype of RusTEE and evaluate its per-
formance in both a simulation environment and a real de-
velopment board. Our experimental results show that our
system can comply with strictly safe Rust, and it only in-
curs a minimal overhead. We will open source the system
prototype.

The rest of the paper is organized as follows. Section 2 provides
the background of ARM TrustZone architecture and programming
language Rust. Section 3 presents the motivation associated with the
specific challenges of this work. Section 4 describes the overview
and detailed design of RusTEE, and the implementation of RusTEE’s
prototype is presented in Section 5. Section 6 first evaluates the
efficiency of Rust on the ARM platform, and then compares the per-
formance of Rust-based TAs with the traditional C-based versions.
Section 7 discusses the future directions of our work. Section 8
surveys the related works. Finally, Section 9 concludes the paper.

2 BACKGROUND

2.1 TrustZone Architecture

Adapting Trusted Execution Environment (TEE) has become a popu-
lar method for system developers to protect their security-sensitive
software. To provide a reliable hardware-assisted TEE, ARM deploys
TrustZone technology on its most recent application processors.
TrustZone creates the TEE as an isolated environment that runs op-
posite to the vulnerable and untrusted Rich Execution Environment
(REE). From the hardware perspective, ARM relies on its AMBA
BUS feature [2] to divide the entire System-on-Chip resources into
two worlds, where the normal world serves as the REE, and the
secure world serves as the TEE.

From the software perspective, ARM website [2] recognizes Glob-
alPlatform TEE Specification (aka, GPD specification) [20] as a widely
used TEE architecture on the latest ARM processors. The GPD spec-
ification defines a clear security boundary for TrustZone-assisted
TEE systems by providing a completed set of software definitions
between REE and TEE. Currently, multiple real-world TEE systems,
such as Linaro OP-TEE [34] and Trustonic Application Protection
Solution [45], apply the design of GPD specification into their im-
plementations.

2.2 GlobalPlatform TEE Specification

According to the GPD specification, an REE hosts the rich OS (e.g.,
Android, Linux) in association with the user-privileged applica-
tions. While most applications are deployed and used entirely in
REE as normal applications, some security-sensitive applications
can enable the TrustZone protection on their sensitive operations.

RusTEE: Developing Memory-Safe ARM TrustZone Applications

A security-sensitive application divides itself into two components,
an REE-side component called Client Application (CA) and a TEE-
side component called Trusted Application (TA). The CA supports
most non-sensitive functionalities like user interactions; however,
neither the counterpart TA nor the TEE trusts the CA. Meanwhile,
all sensitive operations are isolated as the TA, which usually runs
on a Trusted OS inside the TEE. By leveraging TrustZone hardware-
assisted isolation, the confidentiality and integrity of TAs are pro-
tected from the untrusted REE. The entire GlobalPlatform Archi-
tecture for a TrustZone-assisted device is shown in Figure 1.

Shared Shared
Memory 1 Me_m ory
' View
' Trusted Trusted
Normal Client Ve O
[Applications] [Applications] [Appll;:atlon] [Appllgatlon]

Rich OS Trusted OS

Public Trusted

Device A Agont || Semices || D90

Drivers Drivers
A A A

\ 4 -

4 ~
Public —!_ Mesage 1
Peripherals S===
2 Cross-world Communication Channel

1
1
1
1
1
1
1
1
, TEE Internal APIs
1
1
1
1
1
1
1
1
1

Trusted
Peripherals

Figure 1: GlobalPlatform TEE Architecture

Since the CA and the TA run in two isolated environments, they
perform cross-world communication in reliance upon an REE Agent
and a TEE Agent for passing a command or exchanging the data.
To request the trusted execution of a TA, the CA calls the TEE
Client APIs [18] to ask the REE agent to send out the Message and
build up the cross-world communication channel with a specific
TA. Once the TEE Agent receives the Message, it initializes the
corresponding TA to respond to incoming REE-side commands.
The related responding APIs are defined as Cross-world Commu-
nication Channel APIs that belong to TEE Internal APIs [19]. To
exchange data between two environments, the CA first allocates
the communication memory called Shared Memory in the REE and
then shares the memory with the corresponding TA. Since the TEE
has a higher privilege on accessing the REE’s memory, the TA can
also operate on the shared memory in parallel with the CA.

Besides the communication functions, GlobalPlatform also de-
fines its TEE Internal APIs to provide essential System Services, such
as cryptography-related operation, secure storage, and big-number
calculation. Since all TEE Internal APIs are provided to all TAs for
calling directly, TAs are not required further to implement their
own functionalities for these security services. Moreover, many of
the GPD TEE Internal APIs are involved with dedicated memory-
related operations, which should be thoroughly inspected before
running them inside TEE.

ACSAC ’20, December 07-11, 2020, Online

2.3 Rust

Rust [35] is a programming language designed to achieve both reli-
ability and efficiency. To achieve reliability in two distinct aspects,
namely, memory-safety and thread-safety, Rust provides the follow-
ing mechanisms: (1) claiming the ownership of each data object; (2)
automatically checking the read/write permissions (mutability) of
each object; (3) enforcing the lifetime managements on all objects;
(4) forbidding unsafe typecasting (type-safety); (5) disabling danger-
ous raw pointer operations like pointer aliasing or dangling pointers.
During the program compilation, if the code violates any Rust’s
security criteria, the Rust compiler raises errors and generates error
messages to help developers correct their code accordingly. Besides
improving the code security, Rust brings other benefits such as
the highly efficient parallelization, the developer-friendly compil-
ing messages, and thousands of crates (similar to the libraries in C
language) for supporting different development requirements.
Rust-safe vs. Rust-unsafe. Though Rust is designed to achieve
strict security criteria by default, to guarantee any program can
indeed be written in Rust, it also provides the keyword unsafe [44]
for developers to inject memory-unsafe code segments. Rust pro-
vides this unsafe option for two primary reasons: 1) allowing de-
velopers to develop some “special” functions the cannot pass the
compiler’s default inspection; and 2) allowing the code to interact
with system/hardware components directly. A segment marked
as unsafe can bypass the Rust built-in check and therefore may
conduct vulnerable behaviors, such as writing on an immutable vari-
able, conducting a non-standard typecasting, or using raw pointers
directly. A typical scenario of using unsafe code segment in Rust
happens when the Rust code has to invoke the C-based functions,
which is defined as Foreign Function Interface (FFI) in Rust. Com-
ing with the advantages of extended capabilities, unsafe Rust also
introduces security risks. Several related works [6, 7, 44, 46] have
revealed that unsafe Rust can introduce potential security risks.

3 MOTIVATION AND CHALLENGES
3.1 Motivation

Over the past decades, more than one hundred vulnerabilities have
been reported for TrustZone-assisted TEE systems [11-13]. Among
these reported vulnerabilities, most of them are software-related,
which means the vulnerabilities can get exploited even if the device
enables and configures TrustZone hardware components appropri-
ately. Recently, Cerdeira et al. [9] provide a systematized summary
about the vulnerabilities of existing TEE systems, and they summa-
rize the software-related vulnerabilities in two categories, namely
implementation issues and architectural issues. The implementation
issues refer to the bugs triggered by specific implementation de-
tails of one TEE system, such as lacking proper security checks
on the sensitive variables. Meanwhile, architectural issues include
shared deficiencies or design flaws among different TEE systems,
regardless of systems’ implementation details.

In order to mitigate software-related vulnerabilities on TrustZone-
assisted TEE systems, one critical and challenging task is enhancing
the security of TAs. Nowadays, commercial TEE systems integrate
more and more TA functionalities into the TEE, excessively in-
creasing the total size and semantic complexity of the TEE. With
such a large number of complicated TAs, it is impractical for the

ACSAC °20, December 07-11, 2020, Online

TEE system’s administrator to conduct either artificial or automatic
validation on each TA’s correctness. Consequently, TAs may get
imported into the TEE with potential implementation issues, such
as conducting sensitive operations without appropriate validations.
Moreover, when TAs are developed in memory-unsafe languages
like C language, these implementation issues are difficult to be fully
reviewed since a memory-unsafe language can perform dangerous
memory operations and cause implementation issues with many
possibilities.

Besides introducing implementation issues, TA is also the critical
component of two TrustZone-specific architectural issues. First, the
TA’s capability of invoking kernel-privileged system services can be
abused to attack the TrustZone-assisted TEE system and even lead
to a compromised TEE. To support the incremental functionalities
of TAs, Trusted OSes deploy many system services and expose wide
interfaces to TAs; however, there is no security regulation on the
interactions between TAs and the Trusted OSes. Therefore, if the
vulnerable TAs can be manipulated to invoke system interfaces
maliciously, the entire mobile system may be compromised as well.
How to govern the interface between the Trusted OS and TAs is
an essential architectural challenge when deploying TEE systems.
Second, most TEE systems allow TAs to accept input from the REE
via the cross-world communication channel. However, since the
REE is untrusted and may be fully controlled by attackers, the cross-
world communication channel expands the attack surface of the
TEE system.

In real-world scenarios, when both the implementation and archi-
tectural issues exist in a single TA, they may be exploited together
and lead to severe consequences. For instance, a recently reported
vulnerability CVE-2018-14491 [22] utilizes a vulnerable One-Time-
Password TA for executing arbitrary code on Samsung S5 smart
phones. Similar security issues have been reported in other CVEs
such as CVE-2015-6639 [11] and CVE-2016-2431 [12]. Motivated by
resolving both implementation and architectural issues, we propose
to implement TAs in a strict memory-safe style and further mitigate
the identified issues of TAs. In the following section, we present
three particular challenges and our basic ideas for solving them.

3.2 Challenges

The primary object of RusTEE is to provide a secure mechanism that
assists developers in building TAs with a memory-safe regulation.
Specifically, there are three main challenges we need to resolve to
build the required secure TAs.

Challenge-1: Tackling memory corruptions in TA. One fundamen-
tal attribute of a secure TA is that the TA does not contain any
memory-unsafe implementation issues. In other words, our method
should ensure to remove memory corruptions from TAs, such as
Use-After-Free or Data Race. To address this problem, we propose
to write TAs in the memory-safe programming language Rust.

Challenge-2: Providing secure system-service APIs. Unlike some
TEE architecture (e.g., SGX) that can provide multiple hardware-
enforced-isolated enclaves, the TrustZone-assisted TEE system only
deploys one shared Trusted OS for executing all TAs. Therefore, any
compromised TA may utilize the widely provided system-service
APIs to attack the shared Trusted OS and compromise all other TAs.
In order to eliminate the side-effect of exposing wide APIs to TAs,

Shengye Wan, Mingshen Sun, Kun Sun, Ning Zhang, and Xu He

we provide a binding solution that enforces the Rust’s memory-
safety on the existing unsafe APIs to prevent TAs form misusing
any kernel-privileged TEE system services.

Challenge-3: Building protection on cross-world communication.
As an architectural feature of TEE systems, the cross-world commu-
nication channel is a must to support the collaboration between TEE
and REE. However, this channel also provides another vehicle for
the REE-side attackers to manipulate TAs’ behavior, especially con-
sidering that the communication channel is connected via the un-
trusted REE’s memory. To enhance the security of the cross-world
communication channel, we redesign the cross-communication in-
terfaces of TA, which conduct security checks on the passed-in
parameters and limit the use cases of untrusted parameters.

4 SYSTEM DESIGN

In this section, we first present the threat model and overview
architecture of RusTEE. Then we elaborate on the detailed security
enhancements of RusTEE for resolving TA’s security challenges.

4.1 Assumptions and Threat Model

We assume the device is equipped with ARM TrustZone technology,
and the technology is can provide the hardware-enforced isolation.
We assume all TEE system’s software components, including the
secure monitor, Trusted OS, and all TEE kernel-privileged libraries,
are implemented in compliance with the GlobalPlatform TEE spec-
ification. In this case, TAs use the GlobalPlatform-defined (GPD-
defined) APIs to interact with system services and the cross-world
communication channel. We also assume these system components
are well written, so there is no insecure flaw in Trusted OS or lower
level software. As such, we focus on protecting the memory-safety
of TAs that run above Trusted OS. Finally, we assume the TA de-
velopers are benign while he or she may still program a TA in a
vulnerable way, which is a common scenario recognized in the
recent CVEs [11-13].

4.2 Overview

We present the overview architecture of RusTEE in Figure 2. The
main idea of RusTEE is serving as a Rust-based TA SDK in the TEE.
The SDK supports most general development requirements, such
as operating primitive data-types, in the strict Rust-safe style by
providing Rust standard library and associated essential compo-
nents to TA developers. With the assistance of the Rust compiler’s
built-in security checks, RusTEE ensures the TA’s source code is
free of known memory-corruption bugs and therefore mitigates
Challenge-1. Since the major challenges for porting Rust standard
library into ARM platforms are implementation-related, we will
introduce them later in the Implementation Section 5.

Besides performing general-purpose operations, a TA also needs
to invoke functions of particular TEE’s system services, which
are out of the scope of Rust standard library. Therefore, RusTEE
integrates the extra libraries into SDK to support these require-
ments. There are two design options for shipping a Rust-based
SDK with additional libraries. The first option is rewriting all the
requested libraries in Rust. The other option is building up the
Rust-based SDK based on full-fledged C-based libraries, and further
providing a trustworthy binding between Rust and C components.

RusTEE: Developing Memory-Safe ARM TrustZone Applications

/ [Rust—safe} [Rust—safe] [Rust—safe} [Rust—safe] \

1
1
CA1 cA2 | TA 1 TA2
1
1
REE ! TEE
User ' User
_____ Rust-safe REE | __: _______| Rustsafe TEE |______
SDK ' SDK
—
/ N N\ 1
Rich OS 1 Trusted OS
1
REE : TEE TEE M standard
Agent ' Agent Service Library
g , Libraries
A
REE . Crossworld. : TEE
Kernel Communigation Kernel
___________________ L o m e m - ——————————— == = ===

Secure
K Monitor /

Figure 2: RusTEE Architecture

Though the first option offers better independence and memory-
safety, it faces two non-trivial challenges when implemented on
the ARM TrustZone-assisted platforms. The first challenge is that
some TEE’s system services involve the TrustZone-specific opera-
tions (e.g., reading a secure timer), while these operations can only
be implemented with the explicit essential ARM instructions that
are unavailable in the Rust’s standard supports. Another challenge
is that for some TEE’s system services (e.g., cryptography), the
C-based libraries have better performance than the Rust ones. In
consideration of these challenges, we propose to provide the SDK
as the binding solution. After systematized studying all critical data
structure and function definitions of these additionally involved
libraries, RusTEE converts all the interfaces into Rust-safe style to
resolve the Challenge-2.

Meanwhile, TAs used to face the challenge of handling the com-
mands and parameters that are passed-in via the cross-world com-
munication channel, since these data are generated by the untrusted
REE. By carefully reviewing the calling convention of existing cross-
world communications, we redesign the connection interface be-
tween the TEE’s system communication component (TEE Agent)
and TAs. The redesigned communication interfaces promise that all
parameters are used under secure standards and therefore handle
Challenge-3.

Finally, RusTEE provides the REE-side SDK, which follows a sim-
ilar scheme of the TEE-side SDK, as a complementary component
to regulate the behaviors of CAs. Note that the security of TA does
not depend on whether the REE utilizes the REE-side SDK or not,
and the REE-side SDK is provided only in the case that benign CA
developers want to improve a CA’s memory-safety. In the following
section, we focus on presenting our methodology for mitigating the
architectural issues for the Rust-based TAs, particularly, securing
the widely exposed system-service APIs (hereinafter referred to as
"service APIs") and cross-world communication channel.

ACSAC ’20, December 07-11, 2020, Online

4.3 Secure System-service APIs

In the design of RusTEE, the Trusted OS implements TEE’s system
services as the C-based libraries for the best practicality, and the
OS provides C-based service APIs to the upper-layer applications.
To make these APIs available for Rust-based TAs, RusTEE should
reliably convert these C-based interfaces into the Rust-based inter-
faces. We call this conversion as the binding solution. To bridge the
semantic gap between Rust and C language, Rust officially provides
a standard crate std: : 1ibc, which matches all data types and struc-
tures that are shared by two languages, such as c_int and c_char.
Also, Rust provides the Foreign Function Interface (FFI) mechanism
to allow Rust-based programs for invoking C-based functions in
the Rust-unsafe way. By utilizing these two Rust’s components, we
can straightforwardly convert the C-based interfaces as the Rust-
unsafe interfaces via FFI mechanism, and allow the upper-level
TAs to interact with the low-level APIs via the parameters that are
matched by std: : libc.

However, the FFI-based bindings are not memory-safe for TAs to
invoke. As we explained in the Background Section 2.3, since Rust’s
built-in security checks ignore any code segment marked as FFI,
the bonded APIs can still contain memory-unsafe vulnerabilities.
To ensure the security of these bindings, RusTEE applies multiple
security-enhancements on the service APIs. In this subsection, we
first introduce four general principles that are adapted as the en-
hancements for all bonded C-based service APIs. Then we present
two particular binding principles that we propose for protecting
GPD-defined service APIs.

Secure C-based APIs. As one close-related work of RusTEE,
Rust-SGX [48] provides a secure binding for Intel SGX between
Rust enclave applications and C-based SDK. More importantly, the
authors conclude two common challenges for providing binding be-
tween Rust and C worlds, which are providing safe memory access
of C/C++ objects and raw-bytes. The first challenge is introduced
for achieving the type-safety in Rust. Ideally, every type in the
Rust program has a precise definition for providing clear semantics
about types’ use cases. Moreover, an explicit type definition can
describe all the legitimate scenarios for casting one type to another.
However, in C-based libraries, many complicated data types can
only refer to a pointer type void, and the pointers can be danger-
ously accessed with the wrong interfaces when the developer uses
them carelessly or confused. The second challenge happens when
C-based libraries access the memory chunks directly based on their
pointer and length, which is considering as unsafe and not-allowed
in Rust. Such pointer/length combinations frequently appear in
C-based libraries.

To resolve these two challenges, Rust-SGX defines four princi-
ples, which notated as Bytes, ContiguousMemory, Sanitizable[T],
and Handle;. These four notations can regulate how to convert the
challenging C-style APIs into Rust-safe style. Specifically, Handle,
maps each C-based unsafe pointer into specific secure type in Rust.
Bytes constructs the concrete memory in the format of arrays for se-
curing memory accesses. The rest two notations ContiguousMemory
and Sanitizable[T] are provided for handling the conversion be-
tween other unsafe C-based types T and the proposed Bytes. More-
over, Rust-SGX provides solid formalization to prove the four nota-
tions’ security with the system defined in CCured [38].

ACSAC °20, December 07-11, 2020, Online

Since RusTEE shares a similar binding solution as Rust-SGX, we
adopt all four principles proposed in Rust-SGX. For example, we
provide a specific handler for each critical data type. We further
realize the other three security principles to bind the service APIs
securely. Similar to the solution of Rust-SGX, the realizations of
these principles require manual effort to review all libraries’ critical
data structures and understand the associated memory utilization.
To the best of our knowledge, there is no automatic mechanism that
can promise a perfect conversion from C-based APIs to Rust-based
ones. Hence, we claim such a manual process is acceptable and has
the most reliable security-promise for the bonded APIs.

Secure GPD-defined APIs. After thoroughly reviewing all APIs
defined in the GPD specification, we identified two additional is-
sues besides the four principles proposed by Rust-SGX. The first
issue is that some TEE Internal APIs have complicated dependency-
checks. For example, an API-a may only be allowed to be invoked
when the API-b returns a specific value-c as the running result.
To avoid the case that the developer misses any dependency-check,
we enforce every depending API (e.g., API-a) to conduct such check
automatically, and therefore promise the function of API-a is only
executed when the required condition is met. For any case that the
dependency-check fails, GPD specification defines the invocation
on API should be interrupted, and we relay the unexpected status
to the Rust error-handling process.

The second issue is that some GPD-defined services require mul-
tiple APIs to work in a specific sequence, especially for memory
allocation and release. However, TAs can be programmed to in-
voke these APIs in the wrong order, or even missing some critical
steps. To avoid the TA misuses any memory object, we enforce the
Resource-Acquisition-Is-Initialization (RAII) [42] standard on such
APIs. According to the RAII standard, any data structure, named
as struct in Rust, should be promised with a correct initialization.
Moreover, when the developer finished the task on the struct,
the data structure should provide the correct function to free the
resource as well. By enforcing the RAII standard on critical data
structures, the memory-related APIs are promised to get execution
in the correct sequence.

We present an example for applying our GPD-specific principles
in List 1, which is a redesigned Rust-based data structure Opera-
tionHandle used in TEE’s encryption-related operations. As shown
in line #9 and line #10, when the structure is allocated, the TA can
only move forward if the allocation’s return value is raw: : TEE_-
SUCCESS, while all the other return values are forwarded to Err
handler. In this case, as long as developers utilize the redesigned
API OperationHandle: :allocate to acquire the data, the API is
promised to check any “potential dangerous return value” and avoid
the first issue. Furthermore, when the TA finishes using the allo-
cated data structure, the data is freed automatically because the Rust
compiler would execute the function Drop (from line #17 to line #23)
by default. Therefore, the redesigned struct OperationHandle is
protected from the second issue.

4.4 Secure Cross-world Communication

As an architectural feature of TrustZone-assisted TEE systems, the
cross-world communication channel supports the TEE-side TAs to
work coordinately with the REE-side CAs. According to the GPD

Shengye Wan, Mingshen Sun, Kun Sun, Ning Zhang, and Xu He

/* Implement the details of the structure to enforce security
< principles */
impl OperationHandle {
fn allocate(algo:AlgorithmId,
mode: OperationMode,
max_key_size: usize) -> Result<Self> {
match unsafe { raw::TEE_AllocateOperation(...) }

/* Check the allocation result automatically */
raw: : TEE_SUCCESS => Ok(Self::from_raw(raw_handle)),
code => Err(Error::from_raw_error(code)),

}

/* Enforce the resource release with the assistance of the
— language's type security */
impl Drop for OperationHandle {

fn drop(&mut self) {

unsafe { raw::TEE_FreeOperation(self.handle()); 2}

Listing 1: A Redesigned Encryption-related Data Structure

specification, four key data structures are defined and used across
the entire CA/TA cooperation process, namely Context, Session,
Command and Parameter. Starting from the beginning, the CA is
required to register its Context in the TEE, without requesting any
specific TA to collaborate. Next, the same CA needs to set up a
connected Session between it and a specific TA, and this Session is
only valid under a registered Context. Once the Session has been
correctly set up, the CA can make the following requests to the
TA via passing different Commands. If any Command requires the
usage of cross-world shared memory (e.g., sharing the plaintex-
t/ciphertext across REE and TEE worlds), the Command can be
passed with at most four pairs of Parameters. Each Parameter can
represent either a numeric value or a memory chunk. For the entire
process of a cross-world communication, we identify three security
issues of these four data structures and propose the corresponding
security enhancements.

Secure Context’s and Session’s Lifetime. One premise of suc-
cessful communication is that the two fundamental data structures,
namely the Context and the Session, are correctly initialized. How-
ever, this prerequisite can get challenged in several ways with the
GPD specification. According to the GPD specification, these two
structures are referred to as unsafe raw pointers, and the caller
function has no way to tell whether the callee structure is correctly
initialized or not. Moreover, a wrongly used structure may lead to a
compromised communication scenario. For example, a C-based CA
can get manipulated to connect its Session with another malicious
CA’s Context without getting any error. In such a case, any further
operation may get exposed or even manipulated by the malicious
CA. To protect the usages on these two structures, we redesign the
Context and Session structure as Rust type-safe structures, which
can promise the structures are always adequately initialized before
use. Furthermore, We take advantage of Rust’s Drop function to

RusTEE: Developing Memory-Safe ARM TrustZone Applications

promise these two structures’ resources are released as the GPD-
defined serialization and, hence, promise the corresponding data is
erased after use.

Secure Parameter’s Type-safety. We discovered two security
issues of the communication data Parameter. First, the Parameter
is defined as type-unsafe in the GPD specification, because TAs
access Parameters without a clearly defined type. In this case, a
TA can use a numerical Parameter as a memory pointer, or vice
versa. To provide Parameter as type-safe, we convert all existing
Parameter use cases into two specific Rust-safe data types, namely
int and slice, to pass the numerical value and memory chunks,
respectively. With the enforced type definition, any misusing will
get detected during the compilation stage. The use of slice can also
regulate CA’s behavior to share the memory chunks. Previously,
REE allocates all memory buffers for a Parameter. Then REE shares
the memory region with the TEE by providing the corresponding
memory’s raw pointer and size. This memory-sharing process is
unsafe since the attacker can manipulate the pointer and size to
mislead the TA to access the memory out-of-scope. By converting
the Parameter as Rust slice, the memory pointer and associated
size are guaranteed to get a securely typecasting, which can prevent
TAs from further being manipulated to access the wrong memory
region.

Secure Parameter’s Mutability. Another security concern of
Parameter is that a TA may access the TA with incorrect read/write
permissions. The GPD specification defines three permissions of
Parameters as input, output, and inout, and the Parameters are
supposed to get accessed as read-only, write-only, and read/write,
respectively. However, a GPD-defined communication channel pro-
vides these permissions as independent flags from the correspond-
ing variables, which makes these permissions easily violated. For
example, even a memory chunk is designed as a read-only input
Parameter, a TA can still write on this Parameter as long as the
developer does not manually check the Parameter’s permission.
In Rust, all the read and write permissions are managed via the
mutability feature by default. By taking advantage of the mutability,
RusTEE enforces the permission-check for every Parameter and
therefore prevents future violations.

5 SYSTEM IMPLEMENTATION

We develop the prototype of RusTEE based on the project OP-
TEE [34], which is one of the most well-known open-sourced TEE
projects for ARM platforms. OP-TEE implements its Trusted OS
and associated software interfaces in compliance with the GPD
specification. Currently, the OP-TEE project is available for many
ARM TrustZone-assisted devices [33], including the simulation
environment QEMU [39], and experimental development boards
such as HiKey family [1], Raspberry Pi 3 [40], and Juno [3]. In
the following section, we present our modifications to the OP-
TEE project for two aspects, namely porting Rust into OP-TEE
and binding OP-TEE’s Internal APIs (including service APIs and
cross-world communication APIs). Meanwhile, we implement the
REE-side SDK and rewrite all OP-TEE official C-based examples in
Rust. Our rewritten examples demonstrate RusTEE’s practicality.
Note that we already release RusTEE as an open-source project on

ACSAC ’20, December 07-11, 2020, Online

GitHub!, and the latest version supports building both TA and CA
in the Rust-safe style. Moreover, RusTEE is configurable to build
applications for two most popular ARM architectures: AArch32
and AArch64.

5.1 Porting Rust into OP-TEE

Though Rust officially provides the compilation-support on multi-
ple platforms, none of the OP-TEE-supported platforms is recog-
nized by Rust yet. Moreover, in order to balance the functionalities
and Trusted Computing Base (TCB) size of TEE, OP-TEE redesigns
its basic library libutil, which makes it unmatched to the Rust
official crate std: : 1ibc. To resolve these challenges, we first mod-
ify the Rust fundamental components compiler-builtins and
rust/libstd to add OP-TEE as the supported targets, which can
be further configured based on the architectural features of arm
(AArch32) or aarch64 (AArch64). Furthermore, we manually in-
spect the OP-TEE’s basic library libutil and match it with the
libc crate. As the libutil does not fully implement all featured
functions presented in 1ibc, the matching process is realized as a
best-effort solution by acceptably sacrificing some functionalities.
For example, due to the implementation limitation, a TA runs in
OP-TEE OS is implemented as a single-thread task, and the kernel
does not provide any multi-threading management. In this case,
whenever a Rust program invokes the thread-related operations, we
raise panic messages for these operations to remind the developers.

Trusted |
Application |~

third-party

- optee-utee

1
[EOmIID-] [libc] [rust/libstd] [Op‘ee'”tee']
builtins sys

[:] C library [:] Rust foundation layer Rust crates

Figure 3: Porting Rust into OP-TEE

Besides the three discussed components of Rust’s foundation
layer, we also provide one extra component optee-utee-sys to
bind OP-TEE’s specific library 1ibutee for providing functional-
ities of all Internal APIs. We further wrap the raw component
optee-utee-sys as a safe Rust crate optee-utee. The details of
this binding can be found in Section 5.2. By integrating all the foun-
dation components along with optee-utee, RusTEE provides the
comprehensive functions for the TA developers to program a TA in
Rust-safe style. Finally, RusTEE also supports developers to import
trusted third-party Rust crates into the TA development. The entire
implementation structure is presented in Figure 3.

! The project has been evaluated as an ACM Reusable Artifact by ACSAC 2020.
Open-source link: https://github.com/sccommunity/rust-optee-trustzone-sdk

https://github.com/sccommunity/rust-optee-trustzone-sdk

ACSAC °20, December 07-11, 2020, Online

5.2 Binding OP-TEE’S TEE Internal APIs

GlobalPlatform TEE Internal Core API Specification [19] defines
six types of the necessary APIs for TA development. The first type
Trusted Core Framework API defines the APIs that provide basic
OS functionalities for all kinds of TAs, such as memory manage-
ment, system-information retrieving, and cross-world communi-
cations. For example, each TA should call the same set of APIs
to construct and maintain the communication channel with the
REE. Moreover, in the current implementation of cross-world com-
munication, we label two operations, Parameter: :as_value and
Parameter: :as_memref, as unsafe operations because OP-TEE’s
Parameter are implemented as unsafe from Rust’s ownership and
thread-safety perspective. Specifically, whenever a TA receives the
data in the shared memory, the CA and REE still have the privilege
to modify the Parameter, so there exists a potential concurrent issue
for using shared Parameters. Currently, these two operations are
the only two exceptions that can appear in the TA source code as
unsafe segment. Note that the unsafe labels here do not mean
any memory vulnerability is actually introduced, while they are
more to syntactical definitions to alert the developers. For example,
whenever the TA is supposed to use any passed-in data array ex-
clusively, it should copy the data from the unsafe Parameters into
a safe array, and then conduct rest operations reliably.

The second type is Trusted Storage API for Data and Keys, which
provides reliable storing for security-sensitive structures, and mostly
applied on the cryptography keys’ materials. Thirdly, Cryptographic
Operation API defines the APIs for extensive cryptographic-related
tasks such as generating the key, conducting synchronous/asyn-
chronous encryption, and hashing calculations. Next, Time API can
return the trusted time for TAs, where the time can be selected from
different perspectives such as per-TA time, Trusted OS’s unified
time, or even REE’s Rich OS’s time. Moreover, TEE Arithmetical API
are the essential functions that majorly serve for calculating big
numbers and primes. Lastly, Peripheral and Event APIis designed
to allow TAs to interact with the hardware peripherals. Most of
the peripheral-APIs are platform-specific as different platforms can
equip a variety of peripherals. Since OP-TEE OS only implements
the first five types of APIs, our prototype binds all of the imple-
mented APIs, and we list the Lines-of-Code (LOC) of each type in
Table 1.

5.3 REE and Examples

Besides the TEE-side SDK, we also implement the crate optee-
teec as the REE-side SDK, which integrates the Rust standard li-
brary and other GPD-defined Client API-related libraries to support
building secure CAs. Presently, OP-TEE provides six examples to
demonstrate the CA/TA workflow in several aspects, such as basic
communication functionalities, secure storage, and cryptography-
related tasks. To prove the practicality of RusTEE, we completely
migrate these six examples by rewriting them in Rust. Moreover,
we provide six more examples to present RusTEE’s capabilities of
interacting with all types of TEE Internal APIs. Finally, we provide
one additional example for exhibiting the case that integrates third-
party Rust crate Serde into TA development. The detailed examples
and corresponding performance evaluation are presented in the

Shengye Wan, Mingshen Sun, Kun Sun, Ning Zhang, and Xu He

Table 1: RusTEE Component’s LOC

Component Lines of Code
TEE
Trusted Core Framework API 2076
Trusted Storage API 544
Cryptographic Operation API 672
Time API 52
TEE Arithmetical API 258
REE
Client API 687
Examples
Rewritten OP-TEE Examples 1964
Newly Added Examples 2105
Total 8358

Evaluation Section 6. The latest project’s LOC?, which includes
both worlds’ SDK and examples, are summarized in Table 1.

6 EVALUATION

In this section, we present the performance evaluation of RusTEE.
Compared to the previous TA-development mechanisms, our mech-
anism introduces performance overhead in two aspects: the general
overhead of changing programming language and specific overhead
of API-related enhancements. First, since RusTEE replaces the pre-
vious programming language C with Rust, RusTEE may introduce
the overhead because of using the new language. Though some ex-
isting benchmarks already presented the difference between these
two languages on the x86 platform, we notice their performances
vary a lot on ARM devices. Therefore, we present the language-
wise difference between C and Rust for ARM devices specifically.
We implement four benchmark programs in both languages and
evaluate the programs’ performances on the ARM-based Juno r1 [3]
development board. Furthermore, we re-run the benchmark on the
emulator environment QEMU [39] with the same ARM architecture
to validate the observation.

Besides the differences in programming languages, RusTEE may
introduce extra overhead because it performs multiple security
enhancements on the TEE Internal APIs. Since the overhead of
invoking APIs is tightly coupled with the real-world use cases,
we evaluate this overhead based on five real-world TAs provided
by OP-TEE [32]. We rewrite each TA in Rust and then compare
our rewritten TA with OP-TEE’s C-based TA. The difference be-
tween the two TAs’ execution time can indicate the overhead of
corresponding APIs.

6.1 Language-wise Overhead

To present the fundamental difference between languages C and
Rust on ARM devices, we evaluate them with four benchmark cases
of the open-source programming language benchmark-set [21]. The
benchmark-set provides dozens of cases in different languages for
evaluating their computation efficiencies on x86 devices. However,
it is non-trivial to migrate all benchmark programs on ARM devices

2The LOC are counted at the time of this paper is written and may change in the future
version of the open-source project.

RusTEE: Developing Memory-Safe ARM TrustZone Applications

because many programs rely on the libraries that are not supported
by either C or Rust compiler on ARM platforms. Moreover, as OP-
TEE OS only provides limited functionalities in the TEE, TAs are
not capable of integrating any benchmark’s program completely.
After manually reviewing the benchmark-set, we select four cases
that can get compiled and executed on ARM platforms stably for
both languages. We implement the benchmark programs in the REE
to get the support of the Rich OS, which equips the Linux kernel in
our implementation.

Among the evaluated cases, case n-body models the orbits of
Jovian planets as a double-precision simulation; case fasta gener-
ates and rewrites DNA sequences; case fannkuch-redux performs
the indexed-access to tiny integer-sequence with the approximated
time complexity n * log n; case spectral-norm resolves the mathe-
matical challenge [49] that requires to calculate the spectral norm
of an infinite matrix. Currently, the benchmark-set already pro-
vides detailed performance of C and Rust about each case on x86
platforms, including their execution time, memory space, and CPU
utilization. Also, every case can get accomplished with different
algorithms.

Since previous coders and researchers already evaluated the
thorough performances of two languages on x86 platforms, our
experiment focuses on presenting the performances’ variations
after benchmark programs are migrated from x86 platforms to
ARM platforms. We assume an algorithm of one case is executed as
100% time on x86 platforms, and we normalize the execution time of
this algorithm on the Juno board accordingly. For each benchmark
case, we evaluate all algorithms that can get compiled with both
languages’ ARM compiler. After collecting all algorithms’ results
for one case, we calculate the average value of the normalized
execution time, and we present the final result in Figure 4.

S =3 C onJuno
[Rust on Juno

1206.21218.3

Zo 1500

%

1380.1

1000 -

710.7
609.6

Normalized Execution Time ('

5

o

o
T

205.2
129.9
S < N &R
o0 «© > <2
i\ ,\a(\(\

&
eQeé(
Figure 4: C vs. Rust Performance on Juno

According to our experiment, all the benchmark programs run
slower on the Juno board than the x86 platform. The numerical
difference can be introduced because of the different hardware
configuration (i.e., CPU cores and total memory space). Specifically,
for the first two cases n-body and spectral-norm, C language
performs relatively better than Rust after normalization, while the
other two cases present the contrast observation. Meanwhile, for

ACSAC ’20, December 07-11, 2020, Online

all evaluated cases, the normalized differences between the two
languages are less than 40%.

600

3 ConJjuno
[Ruston Juno 304.4 s

__ 500 Bl C on QEMU 4
= EEE Rust on QEMU
o 381.7 s
E
=
= 400 B
S
=
3
[}
2
W 300 1
=
(<3
N
‘©
E
S 200 1
=

1001} 65.6 s 76.1s |

n-body Benchmark on ARM Platforms

Figure 5: QEMU vs. Juno Performance

Different Platforms Evaluation. To validate the performance
we evaluated on Juno is representative across different ARM de-
vices, we provide an extra evaluation of the emulation environment
QEMU. We re-implement the benchmark n-body in two languages
on QEMU, and then evaluate the performances as presented in
Figure 5. We assume the execution time of Juno board’s programs
are 100%, and then normalize the time of QEMU’s programs accord-
ingly. As the experiment shows, comparing to the Juno board, the
emulator introduces around 3.5 times extra overhead for both C and
Rust languages. Meanwhile, the extra overhead is introduced with
a similar ratio for two languages, which means the relative differ-
ence between C and Rust stays at the same level on both Juno and
QEMU. In conclusion, we claim that the language-wise difference
we evaluate in Figure 4 is representative of the ARM architecture.
Also, the evaluations on either development board or emulation
environment present the same pattern of the difference.

6.2 Enhanced APIs’ Overhead

To present the overall overhead of enhancing APIs, we evaluate
TAs’ performance in five real-world cases to invoke different types
of APIs. For each case, we use the same CA to invoke two TAs
compiled in C and Rust, respectively. Meanwhile, both C-based and
Rust-based TAs are programmed to execute the same task with
the same algorithm, while the major difference is that all Rust-
based TEE Internal APIs are enhanced by RusTEE. Among the
five cases, case Secure_Storage provides the functionalities for
reading, creating, and deleting the secure-storage objects. We use
the time of creating an empty secure-storage object to represent
related tasks efficiency; case Random generates a 16-bytes random
number; case Hotp generates ten HMAC-based one-time passwords
according to the RFC4226 algorithm [37]; case Aes conducts the
AES-128 encryption with CTR mode on a 4096-bytes plaintext; case
Acipher conducts RSA Public-Key Cryptography Standards (PKCS)
encryption with the 1024-bits key and the 100-bytes plaintext.

We evaluate each case 10,000 times in total, and we calculate the
cases’ average execution time with the data set that excludes 10%
data outliers (5% largest and 5% smallest data). The comparison of C-
based TA and Rust-based TA is presented in Figure 6. For each case,

ACSAC °20, December 07-11, 2020, Online

110

& C TA performance
[Rust TA performance

g 105 3413
° s
£ 4010
= 1740 17,29 5293153/,3500 1979 1985 3310 3978 us
S 100 Jis Jis s 1S s s
g
2
]
B
g o5
©
E
S
=

90+

85 =3 X

o e x© & &
S < BS P O
P ‘e:,x_o p®
Y
e

Figure 6: Performances of C-based TAs vs. Rust-based TAs

we labeled the average execution time above the corresponding
TA’s bar. As the baseline data, the average context switch time
(without conducting any task in TEE) is 676 us for both C and Rust
case, with a negligible variation. We consider the C-based TA’s
execution time as 100% and then normalizing the Rust-based TA’s
data accordingly. As the figure presents, for the five evaluated cases,
RusTEE only introduces the performance degradation from 0.27%
to 3.08%, and four of the five cases are affected with less than 1%
overhead.

7 DISCUSSION

Verifying Third-party TAs’ Security. Currently, RusTEE is re-
leased as an open-sourced project to benefit any TA developer who
wants to enhance the TA’s security. Meanwhile, we believe that our
mechanism can bring extra benefits for the mobile manufacturers to
quickly review the security of third-party TAs. Before RusTEE, the
manufacture can only verify a TA’s security via manual inspection,
which requires the verifier to understand the complicated logic in-
side TA. In this case, if the SDK is opened to third-party developers,
many human efforts will be introduced to verify the third-party
TAs. Moreover, such manual verification only provides the security
promise based on personal experience, without any formal proof.
After adapting RusTEE into the manufacturer’s SDK, the manufac-
turer will have a straightforward and reliable verification method,
which is checking if the TA’s source code contains any unsafe
segment or calls any untrusted crate. We consider providing the
automatic verification script for checking third-party TAs in future
work.

Binding the Rust and C Worlds. The major limitation of our
mechanism is that we do not provide an automatic solution to
bind the C and Rust worlds. Therefore, our mechanism may re-
quire extra human effort in the future if the dependent libraries
are changed. Alternatively, if the system administrator wants to
extend the support for a C-based library rapidly, she can utilize the
Rust FFI mechanism to include the library’s functions with the Rust
world. However, as we argued before, such a mechanism is memory-
unsafe, so it does not fit RusTEE’s primary objects. Moreover, since
a TrustZone-assisted TEE only has a limited-size TCB and relatively
stable libraries, we believe such TEE is a perfect target for manually
binding with acceptable engineering effort.

10

Shengye Wan, Mingshen Sun, Kun Sun, Ning Zhang, and Xu He

8 RELATED WORK
8.1 Rust-assisted Systems

In past years, Rust language has become an attractive program-
ming language for developers who have an interest in enhancing
application security. As a memory-safe language, Rust’s safety has
been formally proved in RustBelt [27] in 2017. Meanwhile, lines
of works [5, 29-31, 48] have been proposed to adapt Rust into
the development of traditional C/C++ based systems. For exam-
ple, TockOS [30] presents the idea to write a complete embedded
system OS in Rust. Moreover, Rust has been integrated with TEE
development [15, 16, 48]. For Intel SGX, Wang et al. [48] propose
the open-source project Rust-SGX to deliver the Rust-based SDK
for SGX enclave developers, and Fortanix Rust EDP [16] has im-
plemented a similar idea. Regarding the TrustZone technology,
RustZone [15] first demonstrates the possibilities to migrate Rust
into TrustZone TA development, while lacking a thorough analysis
of the security for each component insides TAs. To the best of our
knowledge, RusTEE is the first work that presents the complete
development kit set for TrustZone TA developers and provides the
default features to compile TAs in Rust-safe style.

8.2 Security of TEE

The TEE technology has evolved rapidly during recent years. Re-
searchers [23, 24, 36] first propose the software-only solutions that
utilize the virtualization technique to create the TEEs. Nowadays,
many hardware-assisted TEE architectures [2, 25, 50] have been
proposed to provide isolated environments with more reliable tech-
nologies and work for different real-world scenarios. Among these
recently popular hardware-assisted TEE systems, some architec-
tures such as Intel SGX [14, 25] can provide multiple TEEs within
a single device, while other architectures like ARM TrustZone [2]
present the single-TEE solution to partition the device into one REE
and one TEE.

The security of ARM platforms has been discussed in several
aspects in the previous works [4, 17, 26, 28, 52]. Among these
TrustZone-related works, one leading category is using Trusted
Applications for protecting the REE’s rich OS. For example, Trust-
Zone has been exploited to conduct either integrity checking [47]
or run-time rich OS activities monitoring [4, 17]. Besides the REE
side, several previous works [26, 52] also present the analysis and
enhancement on the security of TEE side.

Since TrustZone only provides one TEE to run multiple TAs
simultaneously, how to guarantee the security of the ported TAs
becomes a critical question for ARM manufactures. Previously, mul-
tiple solutions [2, 8, 10, 41] have been proposed to answer this
question. For example, TrustICE [43] executes different TAs sep-
arately in a time-slicing fashion, and the timing-based isolation
prevents one vulnerable TA from accessing other TA’s resources.
Brasser et al. [8] propose the idea to allocate different software-
generated “enclave” for every TA in REE and then utilize the shared
TEE to manage all allocated enclaves. As the shared threat model,
both previous works assume TAs compiled as vulnerable and fo-
cus on preventing the vulnerable TA from attacking other TEE
software. Unlike these related works, RusTEE presents the capa-
bility to compile TAs with the proven memory-safety regulations.
Therefore, our mechanism can promise all TAs are memory-safe

RusTEE: Developing Memory-Safe ARM TrustZone Applications

to get executed in the shared TEE without using any sophisticated
isolation mechanisms.

9 CONCLUSION

In this paper, we presented RusTEE, a Rust-based TrustZone appli-
cation SDK, which assists developers to compile the TA with the en-
forced memory-safety features. The TA relies on the language-wise
benefit of Rust to mitigate the previously reported implementation
issues. Furthermore. RusTEE redesigns the system-services APIs
and cross-world communication channel of TA to resolve two archi-
tectural issues of TrustZone-assisted TEE systems. We implement
RusTEE based on the existing C-based SDK OP-TEE, and evaluate
the mechanism on multiple platforms that include both emulators
and development boards. According to our evaluation, RusTEE in-
troduces slight performance overhead while significantly increases
the application’s memory-safety in multiple aspects. Finally, we
open-source the entire RusTEE with various examples.

ACKNOWLEDGMENTS
This work is partially supported by NSF grant #1815650.

REFERENCES

[1] 96 Boards. Accessed in June 2020. HiKey Website. https://www.96boards.org/
product/hikey/.

[2] ARM. Accessed in June 2020. ARM Security Technology: Building a Secure System
using TrustZone® Technology. https://developer.arm.com/ip-products/security-
ip/trustzone.

[3] ARM. Accessed in June 2020. Juno Arm Development Platform.
https://developer.arm.com/products/system-design/development-boards/juno-
development-board.

[4] Ahmed M Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad

Ganesh, Jia Ma, and Wenbo Shen. 2014. Hypervision across worlds: Real-time

kernel protection from the arm trustzone secure world. In Proceedings of the

2014 ACM SIGSAC Conference on Computer and Communications Security. ACM,

90-102.

Abhiram Balasubramanian, Marek S Baranowski, Anton Burtsev, Aurojit Panda,

Zvonimir Rakamari¢, and Leonid Ryzhyk. 2017. System programming in Rust:

Beyond safety. In Proceedings of the 16th Workshop on Hot Topics in Operating

Systems. 156-161.

[6] Ariel Ben-Yehuda. 2015. Can mutate in match-arm using a closure. Rust issue
#27282. https://github.com/rust-lang/rust/issues/27282.

[7] Christophe Biocca. 2017. std vec Intolter as_mut_slice borrows &self, returns
&mut of contents. Rust issue #39465. https://github.com/rust-lang/rust/issues/
39465.

[8] Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and
Emmanuel Stapf. 2019. SANCTUARY: ARMing TrustZone with User-space
Enclaves.. In NDSS.

[9] David Cerdeira, Nuno Santos, Pedro Fonseca, and Sandro Pinto. 2020. SoK:

Understanding the Prevailing Security Vulnerabilities in TrustZone-assisted TEE

Systems. In Proceedings of the IEEE Symposium on Security and Privacy (S&P), San

Francisco, CA, USA. 18-20.

Yeongpil Cho, Jun-Bum Shin, Donghyun Kwon, MyungJoo Ham, Yuna Kim, and

Yunheung Paek. 2016. Hardware-Assisted On-Demand Hypervisor Activation

for Efficient Security Critical Code Execution on Mobile Devices.. In USENIX

Annual Technical Conference. 565-578.

Common Vulnerabilities and Exposures. 2015. CVE-2015-6639. https://cve.mitre.

org/cgi-bin/cvename.cgi?name=CVE-2015-6639.

Common Vulnerabilities and Exposures. 2016. CVE-2016-2431. https://cve.mitre.

org/cgi-bin/cvename.cgi?name=CVE-2016-2431.

Common Vulnerabilities and Exposures. Accessed in June 2020. CVE Search

Results for TrustZone. https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=

trustzone.

Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology

ePrint Archive 2016, 086 (2016), 1-118.

Eric Evenchick. 2018. RustZone: Writing Trusted Applications in Rust. https:

//github.com/ericevenchick/rustzone.

Fortanix. Accessed in June 2020. The Fortanix Rust Enclave Development Plat-

form. https://edp.fortanix.com/.

(5

=

[10

[11]
[12]

[13]

[14]
[15]

[16

11

(17

[18

[19

[20

[21]

~
5,

[23

[24

[25]

I
o

[27

[28

[29

[30

[31

[32

[33

[34

[35

'S
S

[37

[38

(39]
[40

[41

[42

[44

[45

ACSAC ’20, December 07-11, 2020, Online

Xinyang Ge, Hayawardh Vijayakumar, and Trent Jaeger. 2014. Sprobes: Enforcing
kernel code integrity on the trustzone architecture. arXiv preprint arXiv:1410.7747
(2014).

GlobalPlatform. 2010. TEE Client API Specification v1.0. https://globalplatform.
org/specs-library/tee-client-api-specification/.

GlobalPlatform. 2019. TEE Internal Core API Specification v1.2.1. https:
//globalplatform.org/specs-library/tee-internal-core-api-specification-v1-2/.
GlobalPlatform. 2019. TEE Management Framework including asn.1 Profile
v1.0.1. https://globalplatform.org/specs-library/tee-management-framework-
including-asn1-profile/.

Gouy, Isaac. Accessed in June 2020. The Computer Language Benchmarks Game.
https://benchmarksgame-team.pages.debian.net/benchmarksgame/.

Joffrey Guilbon. 2018. Attacking the ARM’s TrustZone. https://blog.quarkslab.
com/attacking-the-arms-trustzone.html.

Owen S Hofmann, Sangman Kim, Alan M Dunn, Michael Z Lee, and Emmett
Witchel. 2013. Inktag: Secure applications on an untrusted operating system. In
Proceedings of the eighteenth international conference on Architectural support for
programming languages and operating systems. 265-278.

Zhichao Hua, Jinyu Gu, Yubin Xia, Haibo Chen, Binyu Zang, and Haibing Guan.
2017. vIZ: Virtualizing { ARM } TrustZone. In 26th { USENIX} Security Symposium
({USENIX} Security 17). 541-556.

Intel. Accessed in June 2020. Intel Software Guard Extensions.
https://software.intel.com/content/www/us/en/develop/topics/software-
guard-extensions.html.

Jin Soo Jang, Sunjune Kong, Minsu Kim, Daegyeong Kim, and Brent Byunghoon
Kang. 2015. SeCReT: Secure Channel between Rich Execution Environment and
Trusted Execution Environment.. In NDSS.

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2017.
RustBelt: Securing the foundations of the Rust programming language. Proceed-
ings of the ACM on Programming Languages 2, POPL (2017), 1-34.

Hojoon Lee, Hyungon Moon, Ingoo Heo, Daehee Jang, Jinsoo Jang, Kihwan Kim,
Yunheung Paek, and Brent Kang. 2017. KI-Mon ARM: A Hardware-assisted Event-
triggered Monitoring Platform for Mutable Kernel Object. IEEE Transactions on
Dependable and Secure Computing (2017).

Amit Levy, Michael P Andersen, Bradford Campbell, David Culler, Prabal Dutta,
Branden Ghena, Philip Levis, and Pat Pannuto. 2015. Ownership is theft: Experi-
ences building an embedded OS in Rust. In Proceedings of the 8th Workshop on
Programming Languages and Operating Systems. 21-26.

Amit Levy, Bradford Campbell, Branden Ghena, Daniel B Giffin, Pat Pannuto, Pra-
bal Dutta, and Philip Levis. 2017. Multiprogramming a 64kb computer safely and
efficiently. In Proceedings of the 26th Symposium on Operating Systems Principles.
234-251.

Amit Levy, Bradford Campbell, Branden Ghena, Pat Pannuto, Prabal Dutta, and
Philip Levis. 2017. The case for writing a kernel in Rust. In Proceedings of the 8th
Asia-Pacific Workshop on Systems. 1-7.

Linaro. Accessed in June 2020. OP-TEE Sample Applications. https://github.
com/linaro-swg/optee_examples.

Linaro. Accessed in June 2020. OPTEE Device. https://optee.readthedocs.io/en/
latest/building/index.html.

Linaro. Accessed in June 2020. OPTEE Secure OS.
TEE/optee_os.

Nicholas D Matsakis and Felix S Klock II. 2014. The rust language. In ACM
SIGAda Ada Letters, Vol. 34. ACM, 103-104.

Jonathan M McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Vir-
gil Gligor, and Adrian Perrig. 2010. TrustVisor: Efficient TCB reduction and
attestation. In Security and Privacy (SP), 2010 IEEE Symposium on. IEEE, 143-158.
et al. M'Raihi. Accessed in June 2020. RFC4226: HOTP: An HMAC-Based One-
Time Password Algorithm. https://tools.ietf.org/html/rfc4226.

George C Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley
Weimer. 2005. CCured: Type-safe retrofitting of legacy software. ACM Transac-
tions on Programming Languages and Systems (TOPLAS) 27, 3 (2005), 477-526.
QEMU. Accessed in June 2020. QEMU Website. https://www.qemu.org/.
Raspberry Pi. Accessed in June 2020. Raspberry Pi Serial Products.
//www.raspberrypi.org/products/.

Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec Wolman. 2014. Using ARM
TrustZone to build a trusted language runtime for mobile applications. ACM
SIGARCH Computer Architecture News 42, 1 (2014), 67-80.

Bjarne Stroustrup. Accessed in June 2020. Why doesn’t C++ provide a "finally”
construct? http://www.stroustrup.com/bs_faq2.html.

He Sun, Kun Sun, Yuewu Wang, Jiwu Jing, and Haining Wang. 2015. Trustice:
Hardware-assisted isolated computing environments on mobile devices. In De-
pendable Systems and Networks (DSN), 2015 45th Annual IEEE/IFIP International
Conference on. IEEE, 367-378.

The Rust Programming Language Core Team. Accessed in June 2020. Unsafe
Rust. https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html.

Trustonic. Accessed in June 2020. Application Protection & Security Mobile
in-app protection for critical mobile apps. https://www.trustonic.com/solutions/
trustonic-application-protection-tap/.

https://github.com/OP-

https:

https://www.96boards.org/product/hikey/
https://www.96boards.org/product/hikey/
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/products/system-design/development-boards/juno-development-board
https://developer.arm.com/products/system-design/development-boards/juno-development-board
https://github.com/rust-lang/rust/issues/27282
https://github.com/rust-lang/rust/issues/39465
https://github.com/rust-lang/rust/issues/39465
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6639
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-6639
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2431
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2431
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=trustzone
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=trustzone
https://github.com/ericevenchick/rustzone
https://github.com/ericevenchick/rustzone
https://edp.fortanix.com/
https://globalplatform.org/specs-library/tee-client-api-specification/
https://globalplatform.org/specs-library/tee-client-api-specification/
https://globalplatform.org/specs-library/tee-internal-core-api-specification-v1-2/
https://globalplatform.org/specs-library/tee-internal-core-api-specification-v1-2/
https://globalplatform.org/specs-library/tee-management-framework-including-asn1-profile/
https://globalplatform.org/specs-library/tee-management-framework-including-asn1-profile/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://blog.quarkslab.com/attacking-the-arms-trustzone.html
https://blog.quarkslab.com/attacking-the-arms-trustzone.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://github.com/linaro-swg/optee_examples
https://github.com/linaro-swg/optee_examples
https://optee.readthedocs.io/en/latest/building/index.html
https://optee.readthedocs.io/en/latest/building/index.html
https://github.com/OP-TEE/optee_os
https://github.com/OP-TEE/optee_os
https://tools.ietf.org/html/rfc4226
https://www.qemu.org/
https://www.raspberrypi.org/products/
https://www.raspberrypi.org/products/
http://www.stroustrup.com/bs_faq2.html
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
https://www.trustonic.com/solutions/trustonic-application-protection-tap/
https://www.trustonic.com/solutions/trustonic-application-protection-tap/

ACSAC °20, December 07-11, 2020, Online

[46] Aaron Turon. 2015. Abstraction without overhead: Traits in Rust. https://blog.
rust-lang.org/2015/05/11/traits.html.

[47] Shengye Wan, Jianhua Sun, Kun Sun, Ning Zhang, and Qi Li. 2019. SATIN:
A Secure and Trustworthy Asynchronous Introspection on Multi-Core ARM
Processors. In 2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 289-301.

[48] Huibo Wang, Pei Wang, Yu Ding, Mingshen Sun, Yiming Jing, Ran Duan, Long Li,
Yulong Zhang, Tao Wei, and Zhigiang Lin. 2019. Towards Memory Safe Enclave
Programming with Rust-SGX. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. 2333-2350.

[49] Wolfram Research, Inc. Accessed in June 2020. Hundred-Dollar, Hundred-Digit

Challenge Problems. http://mathworld.wolfram.com/Hundred-DollarHundred-

DigitChallengeProblems.html.

Fengwei Zhang and Hongwei Zhang. 2016. Sok: A study of using hardware-

assisted isolated execution environments for security. In Proceedings of the Hard-

ware and Architectural Support for Security and Privacy 2016. ACM, 3.

[51] Ning Zhang, He Sun, Kun Sun, Wenjing Lou, and Y Thomas Hou. 2016. CacheKit:

Evading memory introspection using cache incoherence. In 2016 IEEE European

Symposium on Security and Privacy (EuroS&P). IEEE, 337-352.

Ning Zhang, Kun Sun, Wenjing Lou, and Y Thomas Hou. 2016. Case: Cache-

assisted secure execution on arm processors. In Security and Privacy (SP), 2016

IEEE Symposium on. IEEE, 72-90.

[50

(52

12

Shengye Wan, Mingshen Sun, Kun Sun, Ning Zhang, and Xu He

https://blog.rust-lang.org/2015/05/11/traits.html
https://blog.rust-lang.org/2015/05/11/traits.html
http://mathworld.wolfram.com/Hundred-DollarHundred-DigitChallengeProblems.html
http://mathworld.wolfram.com/Hundred-DollarHundred-DigitChallengeProblems.html

	Abstract
	1 Introduction
	2 Background
	2.1 TrustZone Architecture
	2.2 GlobalPlatform TEE Specification
	2.3 Rust

	3 Motivation and Challenges
	3.1 Motivation
	3.2 Challenges

	4 System Design
	4.1 Assumptions and Threat Model
	4.2 Overview
	4.3 Secure System-service APIs
	4.4 Secure Cross-world Communication

	5 System Implementation
	5.1 Porting Rust into OP-TEE
	5.2 Binding OP-TEE'S TEE Internal APIs
	5.3 REE and Examples

	6 Evaluation
	6.1 Language-wise Overhead
	6.2 Enhanced APIs' Overhead

	7 Discussion
	8 Related Work
	8.1 Rust-assisted Systems
	8.2 Security of TEE

	9 Conclusion
	References

