

1 **OPT3 plays a central role in both copper and iron homeostasis and signaling due to its**
2 **ability to deliver copper as well as iron to the phloem in *Arabidopsis***

3
4 Ju-Chen Chia¹, Jiapei Yan¹, Maryam Rahmati Ishka¹, Marta Marie Faulkner¹, Rong Huang³,
5 Louisa Smieska³, Arthur Woll³, Ryan Tappero⁴, Andrew Kiss⁴, Chen Jiao⁵, Zhangjun Fei^{5,6},
6 Miguel Piñeros^{2,5,6}, Leon V. Kochian^{6†}, Elsbeth Walker⁷, Olena K. Vatamaniuk^{1,2*}

7
8 ¹Crop and Soil Sciences Section, School of Integrative Plant Science, Cornell University, NY,
9 USA

10 ²Plant Biology Section, School of Integrative Plant Science, Cornell University, NY, USA

11 ³Cornell High Energy Synchrotron Source (CHESS), Cornell University, NY, USA

12 ⁴National Light Source II, Brookhaven National Laboratory, USA

13 ⁵Boyce Thompson Institute for Plant Research, Ithaca, NY, USA

14 ⁶Robert W. Holley Center for Agriculture and Health, USDA-ARS, NY, USA

15 ⁷University of Massachusetts, MA, USA

16 [†]Current address: Global Institute for Food Security, University of Saskatchewan, Saskatoon,
17 Canada.

18

19 *Corresponding Author:

20 Olena K. Vatamaniuk

21 Email: okv2@cornell.edu

22

23 **Short title:**

24 AtOPT3 mediates iron - copper crosstalk

25

26 **Abstract**

27 Copper and iron are micronutrients but are toxic when they accumulate in cells in excess. Crosstalk
28 between copper and iron homeostasis in *Arabidopsis thaliana* has been documented and includes iron
29 accumulation under copper deficiency and *vice versa*. However, molecular components of this crosstalk
30 are not well understood. Iron concentration in the phloem has been suggested to act systemically,
31 negatively regulating iron uptake to the root. Consistently, systemic iron signaling is disrupted in *A.*
32 *thaliana* mutants lacking the phloem companion cell-localized iron transporter, AtOPT3, and *opt3*
33 mutants hyperaccumulate iron. Here, we report that in addition to iron, AtOPT3 transports copper and
34 mediates copper loading to the phloem for delivery from sources to sinks. As a result of this function, the
35 *opt3-3* mutant accumulates less copper in the phloem, roots, developing leaves and embryos compared to
36 wild type, is sensitive to copper deficiency, and mounts transcriptional copper deficiency response.
37 Because copper deficiency has been shown to stimulate iron accumulation, we propose that reduced
38 copper concentration in the phloem of the *opt3-3* mutant and its constitutive copper deficiency contribute
39 to iron overaccumulation in its tissues. Our data assign new transport capabilities to AtOPT3 and increase
40 understanding of copper - iron interactions and signaling.

41

42 **Introduction**

43

44 Iron and copper are essential elements, required in trace amounts to complete the life cycle of all
45 organisms, including plants and humans. However, these elements are toxic to cells if they
46 accumulate in ionic form (Broadley et al., 2012; Ravet and Pilon, 2013). The essential and yet
47 toxic nature of iron and copper is attributed to the ease with which they accept and donate
48 electrons (Broadley et al., 2012; Ravet and Pilon, 2013). This ability has been capitalized by
49 nature for vital physiological processes, including photosynthesis, respiration and scavenging of
50 reactive oxygen species. In addition to these processes, copper is involved in cell wall
51 lignification and reproduction (Epstein and Bloom, 2005; Broadley et al., 2012; Chen et al., 2020;
52 Rahmati Ishka and Vatamaniuk, 2020; Sheng et al., 2021). Recent studies implicate copper in
53 light-dependent seed germination (Jiang et al., 2020), shaping the shoot architecture, transition to
54 flowering, stigmatic papillae development and senescence (Rahmati Ishka and Vatamaniuk, 2020;
55 Sheng et al., 2021). Mounting evidence from studies in animal species also implicates copper in
56 cell signaling through its untraditional role as a modulator of MAPK signaling and mTOR-
57 dependent autophagic kinase signaling (Turski and Thiele, 2009; Turski et al., 2012; Chang,
58 2015; Tsang et al., 2020). In plants, copper participates in hormone signaling and accumulation
59 (Rodríguez et al., 1999; Wu et al., 2012; Yan et al., 2017; Schott-Verdugo et al., 2019). Iron is
60 also involved in nitrate and sulfate assimilation and chlorophyll synthesis, and ethylene and
61 jasmonic acid accumulation (Broadley et al., 2012; Li and Lan, 2017; Cui et al., 2018).

62 Copper and iron uptake by plant roots, internal transport and storage are rigorously
63 regulated at transcriptional and posttranscriptional levels in response to the availability of these
64 elements in a local environment and the demands of the developing shoot (Burkhead et al., 2009;
65 Ravet and Pilon, 2013; Kobayashi, 2019; Pottier et al., 2019; Spielmann and Vert, 2020). To
66 maintain copper homeostasis, plants regulate cellular copper uptake and economize on copper by
67 recycling it during deficiency from non-essential to essential copper enzymes (Burkhead et al.,
68 2009; Ravet et al., 2011; Shahbaz et al., 2015). In *A. thaliana*, both processes are controlled by a
69 conserved transcription factor, SPL7 (Squamosa Promoter Binding Protein-like7 (Yamasaki et
70 al., 2009; Bernal et al., 2012). In addition to SPL7, a member of the basic helix-loop-helix
71 (bHLH) family, CTF1 (Copper Deficiency-induced Transcription Factor 1, *alias* bHLH160)
72 regulates copper uptake into roots, delivery to leaves, flowers and anthers (Yan et al., 2017).

73 CITF1 acts together with SPL7, and the function of both is required for copper delivery to
74 reproductive organs and fertility (Yan et al., 2017). SPL7-dependent regulon includes Iron
75 (Fe)/Cu reductase oxidases, *FRO4* and *FRO5*, and several copper transporters, including *COPT1*,
76 *COPT2* and, in part, *COPT6*, that are members of the CTR/COPT/SLC31 (Copper
77 Transporter/Copper Transporter/Solute Carrier 31) family (Yamasaki et al., 2009; Bernal et al.,
78 2012; Jung et al., 2012; Gayomba et al., 2013; Jain et al., 2014; Araki et al., 2018; Alexander et
79 al., 2019). *FRO4/5* and *COPT2* are also downstream targets of CITF1 (Yan et al., 2017). Altered
80 expression of SPL7- and CITF1-regulated genes and the increased expression of *CITF1*
81 constitute a signature of copper deficiency response.

82 Regulation of iron homeostasis in *A. thaliana* involves a hierarchy of transcription factors
83 from the bHLH family (Jeong et al., 2017; Kim et al., 2019). Specifically, a member of the IVb
84 subgroup of the bHLH family, URI (Upstream Regulator of IRT1, bHLH121), acts upstream as
85 an iron-dependent switch (Kim et al., 2019; Gao et al., 2020). It heterodimerizes with a subgroup
86 IVc bHLH members to regulate the expression of the master regulator of iron homeostasis FIT
87 (FER-like iron deficiency-induced transcription factor, alias bHLH29) (Kim et al., 2019; Gao et
88 al., 2020). FIT forms heterodimers with the Ib subgroup of bHLH transcription factors to
89 regulate expression of multiple genes in *A. thaliana* roots, among which are some components of
90 the iron uptake system, *IRT1* (Iron-Regulated Transporter 1), *FRO2* and *AHA2* (Plasma
91 Membrane Proton ATPase) (reviewed in (Jeong et al., 2017; Schwarz and Bauer, 2020). The
92 upregulated expression of *Ib* bHLH genes, *FIT*, *AHA2*, *FRO2* and *IRT1*, and the newly
93 discovered *IMA/FEP* is a hallmark of root iron-deficiency response (Jeong et al., 2017; Grillet et
94 al., 2018; Hirayama et al., 2018; Schwarz and Bauer, 2020). Expression of these and other iron-
95 responsive genes is regulated via local and systemic iron status signaling (Gayomba et al., 2015;
96 Jeong et al., 2017; Grillet et al., 2018; Hirayama et al., 2018; Schwarz and Bauer, 2020).

97 Several mutants with the disrupted shoot-to-root iron deficiency signaling have been
98 identified in *A. thaliana* and other plant species all showing constitutive activation of iron-
99 acquisition genes even when grown under iron-sufficient conditions ((Kumar et al., 2017) and
100 reviewed in (Gayomba et al., 2015). Of these, a member of the OPT (Oligo Peptide Transporter)
101 clade of the OPT transporter family, *A. thaliana* OPT3, is considered as a key player in systemic
102 signaling of iron deficiency (Stacey et al., 2002; Stacey et al., 2008; Mendoza-Cózatl et al., 2014;
103 Zhai et al., 2014). While the *opt3-1* knockout allele is embryo lethal, the *opt3-2* and *opt3-3*

104 alleles that possess residual levels of *OPT3* expression, hyperaccumulate iron in roots and leaves
105 but cannot turn off the expression of *AHA2*, *IRT1* and *FRO2* and other iron deficiency-
106 responsive genes (Stacey et al., 2002; Stacey et al., 2008; Mendoza-Cózatl et al., 2014; Zhai et
107 al., 2014). AtOPT3 transports iron ions in *Xenopus laevis* oocytes and *Saccharomyces cerevisiae*,
108 localizes to companion cells of the phloem, mediates iron loading to the phloem, and facilitates
109 iron delivery from sources (mature leaves) to sinks (roots and seeds) (Zhai et al., 2014). Based
110 on these findings it is suggested that by loading iron into the phloem in leaves, OPT3
111 communicates iron sufficiency status to the root. Consistent with this suggestion, the loss of the
112 iron transport function in the *opt3-3* mutant and the decreased iron accumulation in its phloem
113 sap not only leads to a decreased iron accumulation in seeds but also is perceived as the iron
114 deficiency signal by the root (Zhai et al., 2014). Local sensing of high iron status in the shoot
115 seems not to be disrupted in the *opt3* mutant, as evidenced by the increased expression of genes
116 encoding iron-storage proteins *FER3* and *FER4* (Khan et al., 2018).

117 It is noteworthy that the fluctuations of cellular iron concentrations alter the ratio of other
118 transition elements and thus, have a profound effect on the metal composition of the cell (Baxter
119 et al., 2008). In this regard, crosstalk between iron and copper is now well documented. The
120 hallmark of this crosstalk is the overaccumulation of iron under copper deficiency and
121 overaccumulation of copper under iron deficiency (Bernal et al., 2012; Waters and Armbrust,
122 2013; Kastoori Ramamurthy et al., 2018; Kroh and Pilon, 2020; Rai et al., 2021; Sheng et al.,
123 2021). Consistent with the increased copper uptake under iron deficiency, iron deficiency acts
124 oppositely from copper deficiency on the expression of copper-deficiency-regulated genes
125 (Waters et al., 2012; Waters et al., 2014; Yan et al., 2017). High iron can also reduce copper
126 accumulation in *A. thaliana* and animal systems (Klevay, 2001; Waters and Armbrust, 2013; Ha
127 et al., 2016). Together, these studies suggest that altered copper or iron accumulation under iron
128 or copper deficiency, or under iron oversupply could disturb the signaling of copper and/or iron
129 status of the shoot transmitted to the root.

130 Here we show that in addition to iron, AtOPT3 transports copper in *Xenopus* oocytes and
131 *S. cerevisiae*. Loss of this function in the *opt3-3* mutant results in a decreased copper
132 accumulation in the phloem and reduced copper recirculation from sources (mature leaves) to
133 sinks (roots, young leaves, siliques and developing embryos) compared to wild type. In addition,
134 the *opt3-3* mutant experiences copper deficiency as evidenced by low copper accumulation in

135 roots and young leaves, and increased expression of copper deficiency marker genes. These
136 defects are rescued by copper application. Considering that copper deficiency leads to iron over
137 accumulation in roots and leaves of *A. thaliana*, our data raise an intriguing possibility that
138 decreased copper accumulation in the phloem, roots and young leaves of the *opt3-3* mutant, and
139 its constitutive copper-deficient status contributes to iron overaccumulation in tissues of the
140 *opt3-3* mutant.

141

142 **Results**

143 **The Spatial Distribution of Iron and Copper but not of Manganese or Zinc is Altered in the** 144 **Vasculature of the *opt3-3* Mutant.**

145 Our previous studies showed that iron concentration in the phloem sap is significantly lower
146 while in the xylem sap is significantly higher in the *opt3-3* mutant compared to wild type (Zhai
147 et al., 2014). This finding suggested that the distribution of iron in the vascular tissue of the
148 mutant vs. wild type might have been altered. To test this hypothesis, we used synchrotron x-ray
149 fluorescence (XRF) microscopy to compare the spatial distribution of iron and other elements in
150 the vasculature of the *opt3-3* mutant (from here on referred to as *opt3*) vs. wild type. We first
151 evaluated mineral distribution in mature leaves that serve as sources of nutrients for developing
152 leaves at the vegetative stage (Figure 1). Consistent with our past findings (Zhai et al., 2014), the
153 *opt3* mutant accumulated more iron throughout the leaf blade, with the bulk of iron located in
154 minor veins compared to wild type (Figure 1A). We also found that in addition to iron, mature
155 leaves of the *opt3* mutant accumulated more copper, manganese and zinc (Figure 1B to D). The
156 spatial distribution of manganese and zinc was not altered in the *opt3* mutant compared to wild
157 type: manganese was spread throughout the leaf blade with the highest accumulation in basal
158 cells of trichomes, while zinc was also noticeable in the vasculature (Figure 1C, D). Copper also
159 hyperaccumulated in the vasculature of the *opt3* mutant, and its distribution pattern in minor
160 veins resembled the distribution of iron (Figure 1A and B). We then used 2D-XRF in a confocal
161 mode (2D-CXRF) using a specialized x-ray collection optic to obtain a micron-scale resolution
162 enabling analyses of mineral localization in the phloem vs. xylem in the *opt3* mutant vs. wild
163 type. For the current study, this technique is preferable to traditional XRF methods (both 2D
164 XRF and 3D micro-XRF tomography) because it allows quantitative comparisons of metal
165 distributions among different samples without the need to control or limit the sample thickness or

166 lateral size (Mantouvalou et al., 2012). Using 2D-CXRF, we found that the localization of iron
167 and copper but not of manganese or zinc was altered in the *opt3* mutant compared to wild type
168 (Figure 1 E to H). Specifically, while iron was evenly distributed between the xylem and the
169 phloem in the wild type, the bulk of iron was associated with the xylem and xylem parenchyma
170 cells in the *opt3* mutant. (Figure 1E). Consistent with our past findings (Zhai et al., 2014), the
171 *opt3* mutant accumulated significantly more iron in the xylem and xylem parenchyma cells than
172 wild type. While copper was mainly associated with the phloem in the wild type, the *opt3* mutant
173 accumulated most of the copper in the xylem area (Figure 1F). The loss of OPT3 function led to
174 a significant increase in the concentration of manganese and zinc in both the xylem and the
175 phloem of the mutant compared to wild type, but the spatial distribution of these elements in the
176 vasculature was the same as in the wild type (Figure 1G, H). These results suggested that in
177 addition to iron, OPT3 may also mediate copper loading to the phloem. Indeed, we found that the
178 concentration of copper in the phloem was significantly decreased in the *opt3* mutant compared
179 to the wild type (Figure 2A). The decreased accumulation of copper in the phloem of the *opt3*
180 mutant vs. wild type was independently found by the Walker lab (Supplemental Fig. S1 online).
181

182 **Roots, Young Leaves and Developing Embryos of the *opt3* Mutant Accumulate Less
183 Copper.**

184 Past studies have shown that mutant alleles of *OPT3* over accumulate iron, manganese and zinc
185 in roots and leaves (Stacey et al., 2008; Mendoza-Cózatl et al., 2014; Zhai et al., 2014). Since the
186 2D-CXRF analysis of mineral distribution in the vasculature has also pointed to the role of OPT3
187 in copper homeostasis, we refined our past analysis of total internal metal accumulation to
188 include copper. Consistent with past findings, roots and both mature and young leaves of the
189 *opt3* mutant accumulated significantly more iron, manganese and zinc compared to the
190 corresponding organs of wild type (Supplemental Fig. S2 online). By contrast, the
191 concentration of copper in the *opt3* mutant was reduced to less than 1/3 of the wild type level
192 (Figure. 2B). We also found that the copper concentration was higher in mature leaves (sources)
193 and lower in young leaves (sinks) in the *opt3* mutant vs. wild type (Figure 2B).

194 We then analyzed copper and other mineral accumulation and distribution in other source
195 tissues such as silique valves and their sinks, developing embryos and seeds (Figure 3). ICP-MS
196 analysis disclosed that silique valves of the *opt3* mutant hyperaccumulated copper, iron,

197 manganese and zinc compared to wild type (**Figure 3A**). Using 2D-XRF we found that
198 developing embryos of the mutant accumulated less copper and iron but more manganese and
199 zinc (**Figure 3B**), suggesting that copper and iron delivery from sources to sinks is reduced in
200 the mutant vs. wild type. It was noticeable that the 2D-XRF detectable spatial distribution of
201 copper in developing embryos was distinct from iron. Specifically, copper was associated
202 primarily with the developing seed coat, while iron was mostly localized in the embryo
203 vasculature in both wild type and the *opt3* mutant.

204 We then used high-resolution 2D computed tomography XRF (CT-XRF) to visualize
205 minerals in mature seeds. Similar to embryos, copper was associated mainly with the seed coat
206 and was detected throughout the seed and the vasculature (**Figure 3C**). It is noteworthy that in
207 some areas of the seed coat, copper concentration was lower in the wild type than in the mutant,
208 while the level of copper in the vasculature was lower in the mutant than in the same areas of
209 wild type (**Figure 3C**). This subtle difference in copper distribution in mutant vs. wild type
210 seeds translated to the overall similar internal seed copper concentration in both genotypes
211 (**Figure 3D**). As was shown previously, iron was associated with the vascular parenchyma cells
212 in mature wild type seeds (Kim et al., 2006). Iron distribution did not change in the mutant,
213 although iron accumulation in the *opt3* vascular parenchyma cells was significantly lower than in
214 wild type (**Figure 3C**). Consistently, the total internal iron concentration was lower in the *opt3*
215 mutant seeds vs. wild type (**Figure 3D**). While the distribution of manganese and zinc did not
216 change in the mutant vs. wild type, the *opt3* mutant seeds accumulated significantly more zinc
217 (**Figure. 3C, D**). Together, our data suggested that OPT3 contributes to the phloem-based
218 redistribution of copper from mature leaves to young leaves and from siliques to
219 developing embryos, and thus, in addition to iron may also transport copper.

220

221 **OPT3 Mediates Copper Transport in Heterologous Systems.**

222 The ability of OPT3 to transport copper was studied in *Xenopus laevis* oocytes as we have
223 previously shown that in this expression system, OPT3 localizes to the plasma membrane and
224 transports iron and cadmium ions (Zhai et al., 2014). As potential transport substrates, we tested
225 Cu²⁺ (provided as CuSO₄) and copper complexed with its established ligand, nicotianamine (Cu-
226 NA) (**Figure 4**). We found that OPT3 transported both free copper ions as well as the Cu-NA
227 complex (**Figure 4A**). However, it is noteworthy that OPT3-expressing oocytes accumulated 4.2

228 times more copper when it was provided as a free ion rather than when complexed with
229 nicotianamine (NA). This finding suggested that free copper ions are a preferred OPT3 substrate,
230 at least in this heterologous system.

231 The ability of OPT3 to transport copper was further validated by functional
232 complementation assays in the *S. cerevisiae*, which lack the capability to synthesize
233 nicotianamine. We used a copper-deficient *S. cerevisiae* *ctr1Δctr2Δctr3Δ* mutant lacking the
234 high-affinity plasma membrane copper uptake transporters Ctr1p and Ctr3p and the vacuolar
235 membrane copper efflux transporter, Ctr2p (Dancis et al., 1994; Rees et al., 2004). Due to low
236 internal copper, the *ctr1Δctr2Δctr3Δ* mutant cells manifest a respiratory defect because of the
237 altered activity of the copper-dependent cytochrome *c* oxidase complex of the mitochondrial
238 respiratory chain. This defect can be visualized by the failure of the *ctr1Δctr2Δctr3Δ* mutant to
239 grow on non-fermentable carbon sources such as ethanol and glycerol (YPEG medium) unless
240 copper is supplied exogenously (Dancis et al., 1994). As expected, the *ctr1Δctr2Δctr3Δ* cells
241 expressing the empty YES3-Gate vector accumulated 10-fold less copper than the vector-
242 expressing wild type (Figure 4B). The expression of *OPT3* in mutant cells increased their copper
243 accumulation by 5-fold compared to the vector expressing cells, although did not bring it to the
244 level of the vector-expressing wild type cells (Figure 4B).

245 Growth of *ctr1Δctr2Δctr3Δ* mutant and wild type strains expressing the empty YES3-
246 Gate vector and the *ctr1Δctr2Δctr3Δ* mutant transformed with YES3-Gate with the *OPT3* cDNA
247 insert was also compared on a medium containing non-fermentable carbon sources, ethanol and
248 glycerol (YPEG). The *ctr1Δctr2Δctr3Δ* mutant transformed with the *A. thaliana* copper
249 transporter, *COPT2*, was used as an additional positive control (Gayomba et al., 2013). As
250 shown previously, the vector-expressing *ctr1Δctr2Δctr3Δ* cells did not grow on YPEG medium
251 even when the medium was supplemented with low (10 and 20 μ M) concentration of copper but
252 grew well on YPEG supplemented with 100 μ M CuSO₄ (Figure 4C and (Gayomba et al., 2013)).
253 Unlike *COPT2* expressing cells, *OPT3* expressing mutant cells did not grow on YPEG medium
254 without supplemental copper. However, in contrast to vector expressing *ctr1Δctr2Δctr3Δ* cells,
255 *OPT3* expressing cells were able to grow when 10 or 20 μ M CuSO₄ was added to the medium
256 (Figure 4C). These results are consistent with the role of OPT3 in copper uptake and suggest
257 that, unlike CTR/COPTs, OPT3 might be a low-affinity copper transporter. Together, our results
258 show that OPT3 mainly contributes to the transport of copper ions in heterologous systems.

259

260 **The *opt3* Mutant is Sensitive to Copper Deficiency.**

261 We next tested the sensitivity of the *opt3* mutant to copper deficiency by comparing its growth
262 and development to the wild type, both grown hydroponically with or without copper
263 supplementation (Figure 5). As we observed previously, the rosette size of the *opt3* mutant was
264 smaller than that in wild type even under control conditions (Figure 5A and (Zhai et al., 2014))
265 and decreased further under copper deficiency vs. control conditions; by contrast, copper
266 deficiency did not affect the rosette size of the wild type (Figure 5A) early in the vegetative
267 stage of the development. As evidenced by the shorter root length and lower fresh weight of the
268 *opt3* mutant, the increased sensitivity of the *opt3*-3 mutant vs. wild type to copper deficiency was
269 also observed in seedlings grown on solid medium supplemented with the copper chelator
270 bathocuproine disulfonate (BCS) (Supplemental Figure S3A, B and C online). Consistent with
271 the increased sensitivity of the *opt3* mutant to copper deficiency and our finding that it
272 experiences copper deficiency, cupric reductase activity was significantly higher in roots of the
273 *opt3* mutant vs. wild type (Supplemental Figure S3D online).

274 We then tested whether the transition to flowering is delayed in the *opt3* mutant under
275 control conditions and/or under copper deficiency because we recently found that copper is
276 involved in this process (Rahmati Ishka and Vatamaniuk, 2020). Consistent with our recent
277 findings, wild type plants flowered significantly later and developed more rosette leaves when
278 grown without vs. with copper (Figure 5B to D and Table 2). The *opt3* mutant failed to flower
279 within the time frame of the experiment (8 weeks) and developed 30%- and 90% more rosette
280 leaves than wild type in the medium without or with CuSO₄, respectively (Figure 5C, D and
281 Table 1). Leaves of the *opt3* mutant were significantly shorter and were extensively chlorotic
282 compared to wild type, both grown without added copper (Figure 5E, F). Although the length of
283 the rosette leaves of mutant and wild type plants was comparable at control copper (125 nM
284 CuSO₄), the leaves of the mutant possessed characteristic chlorotic spots (Figure 5F). The
285 delayed transition to flowering, the increased number, and the length of rosette leaves of the
286 mutant were rescued by transferring the mutant to the medium with high (500 nM) CuSO₄
287 (Figure 5C to E, Table 1 and Supplemental Figure 4A online). Transferring the mutant to a
288 lower (250 nM) copper also rescued the small size of the mutant, although to a lesser extent
289 compared to high copper (Supplemental Figure 4B online).

290

291 **The *opt3* Mutant Mounts Transcriptional Iron-Deficiency Responses in Roots but not in**
292 **Shoots.**

293 We next used deep transcriptome sequencing to test whether the expression of copper
294 deficiency-responsive genes is altered in roots, mature and young leaves of the *opt3* mutant
295 compared to wild type. Using Illumina sequencing, we obtained 54, 79 and 59 million clean
296 reads from roots, mature and young leaves, respectively (Supplemental data set 1). Of these,
297 86% reads from roots and mature leaves, and 93% reads from young leaves were mapped to the
298 *A. thaliana* genome and employed to estimate the transcript abundance and differential
299 expression. Compared to wild type, 376, 673 and 1,942 genes were differentially expressed in
300 the *opt3-3* mutant roots, young leaves and mature leaves, respectively (ratio ≥ 1.5 or ≤ 0.67 ,
301 false-discovery rate [FDR] < 0.05 ; Fig. 6A). As expected, the expression of canonical iron
302 deficiency-responsive genes, known to positively regulate iron-deficiency responses to facilitate
303 iron uptake (e.g., *FIT*, *IRT1*, *FRO2*, *bHLH38*, *bHLH39*, *bHLH100*, *bHLH101*, *MYB10*, *MYB72*),
304 iron-sensing peptide *FEP2/IMA2*, coumarin synthesis and transport (*CYP82C4*, *S8H* and
305 *PDR9/ABCG37*) was highly up-regulated in roots of the *opt3* mutant (Figure 6B and
306 Supplemental Data Set 2). In addition, *IRT1* polypeptide was detected in roots of the *opt3*
307 mutant grown under control conditions and roots of wild type grown under iron deficiency but
308 not in roots of wild type or the *fit-2* mutant grown under control conditions (Supplemental
309 Figure S5 online). Of other iron deficiency-regulated genes, the chloroplast-localized *FRO3* and
310 iron exporter *IREG3/FPN3* that is dual-targeted to mitochondria and chloroplast, were also
311 upregulated in roots of the *opt3* mutant compared to the wild type (Figure 6B and Supplemental
312 Data Set 2). Of 237 genes upregulated in roots of the *opt3* mutant, 32 were among the robust
313 *FIT* targets and 6 were among PYE targets (Supplemental data set 2 and (Mai et al., 2015)),
314 suggesting that the *opt3* mutant mounts primarily *FIT*-regulated iron deficiency response under
315 iron sufficiency.

316 Notably, the expression of negative *FIT* regulators, *ZAT12* and *BTSL1* was upregulated in
317 roots of the *opt3* mutant vs. wild type as well (Figure 6B and Supplemental Data Set 2). In
318 addition, the expression of genes mediating cellular response to iron overload was upregulated.
319 Specifically, the expression of *FER1* encoding a chloroplast-localized iron-sequestering protein,
320 whose expression is upregulated by iron overload to prevent chloroplasts from iron toxicity, was

321 upregulated in roots of the *opt3* mutant *vs.* wild type (Figure 6B and **Supplemental Data Set 2**).
322 The expression of *IREG2/FPN2*, *VTL1, 2, 5* mediating iron sequestration into the vacuole was
323 upregulated too (Figure 6B and **Supplemental Data Set 2**). These data suggest that despite the
324 upregulated FIT-transcriptional network, root cells also perceived the iron-sufficiency/overload
325 signal and responded by increasing the expression of FIT negative regulators and genes involved
326 in the mitigation of iron-overload toxicity.

327 We then compared the expression of iron-deficiency responsive genes in young and
328 mature leaves of the *opt3* mutant *vs.* wild type. Unlike roots, both mature and young leaves of the
329 *opt3* mutant did not show transcriptional iron deficiency response. Specifically, none of the
330 canonical iron-deficiency upregulated genes were upregulated in young or mature leaves of the
331 *opt3* mutant (Figure 6B and **Supplemental Data Set 3 and 4**). Moreover, *FEP1/IMA3*, shown
332 to be involved in iron sensing and typically upregulated in leaves and roots under iron deficiency
333 (Grillet et al., 2018), was downregulated in mature leaves of the *opt3* mutant *vs.* wild type;
334 *At5g05250*, encoding a protein with unknown function, was upregulated by iron deficiency in
335 leaves of different *A. thaliana* ecotypes (Waters et al., 2012), was downregulated in both young
336 and mature leaves of the *opt3* mutant *vs.* wild type. Iron deficiency downregulated genes *NAS3*,
337 *YSL1* and *YSL3* were highly upregulated in mature leaves, and *YSL1* was also upregulated in
338 young leaves of the *opt3* mutant compared to wild type (Figure 6B and **Supplemental Data Set**
339 **3 and 4**). The chloroplast-localized ferric chelate reductase *FRO7* and plasma membrane-
340 localized *FRO6*, although not regulated by iron deficiency in shoots of *A. thaliana* (Mukherjee et
341 al., 2006), were highly upregulated in mature leaves of the *opt3* mutant *vs.* wild type (Figure 6B
342 and **Supplemental Data Set 3**). At the same time, iron-sufficiency markers, *FER1*, *FER3* and
343 *FER4*, were highly upregulated in both mature and young leaves of the *opt3* mutant compared to
344 wild type (Figure 6B and **Supplemental Data Set 3 and 4**). Together, our RNA-seq data
345 unraveled the details of contrasting responses of the iron-regulon in roots, young and mature
346 leaves of the *opt3-3* mutant and supported the past observation that leaves of the *opt3* mutants
347 sensed iron overload (Khan et al., 2018).

348

349 **The *opt3* Mutant Mounts Transcriptional Copper Deficiency Response.**

350 Since roots of the *opt3* mutant accumulated significantly less copper than roots of wild type
351 plants, we predicted that the expression of genes belonging to copper-deficiency regulon in *A.*

352 *thaliana* would be altered in the *opt3* mutant as well. Indeed, the expression of canonical copper-
353 deficiency induced genes, responsible for copper uptake (*CITF1*, *COPT2*, *FRO4* and *FRO5*) was
354 up-regulated in roots of the *opt3* mutant compared to wild type (Table 2, Figure 6B and
355 Supplemental Data Set 2). Also, copper deficiency-repressed genes, contributing to copper
356 economy/metal switch, *CSD1*, *CSD2* and *BCB*, encoding Cu/Zn superoxide dismutases 1 and 2
357 and blue-copper-binding protein, respectively, were downregulated by more than 2-fold.
358 Consistently, the expression of *FSD1* (Fe-containing superoxide dismutase) was upregulated by
359 2.7-fold in roots of the *opt3* mutant vs. wild type (Table 2, Figure 6C and Supplemental Data
360 Set 2). In addition, several other canonical copper-deficiency upregulated genes (*bHLH23*, *ZIP2*,
361 *YSL2*, *TCH4*, *AT2G47010*, *AT4G10500*, *AT1G31710*) were upregulated in roots of the *opt3*
362 mutant compared to wild type (Table 2, Figure 6B and Supplemental Data Set 2). Of 16
363 copper-deficiency regulated genes in the *opt3* mutant, 10 are regarded as SPL7-dependent
364 (Supplemental Data Set 2). These results show that roots of the *opt3-3* mutant manifest
365 molecular symptoms of copper deficiency even though plants were grown under copper-
366 sufficient conditions. These data are consistent with a lower copper concentration in roots of the
367 *opt3* mutant vs. wild type (Figure 2B).

368 We also found that young leaves of the *opt3* mutant manifested molecular symptoms of
369 copper deficiency as evident by the increased expression of *YSL1* and *YSL2*, typically
370 upregulated under copper deficiency and involved in lateral movement of minerals including
371 copper (Figure 6B, C and Table 2, Supplemental Data Set 3). Genes associated with either
372 copper buffering (*MT1A* and *MT2A*) or copper economy (*CSD1*, *CSD2*, *CCS1*, *ARP1*, *UCC2*)
373 were downregulated, while *FSD1* was upregulated (Figure 6B, C and Supplemental Data Set
374 3).

375 Regarding mature leaves, a different set of genes was differentially expressed in the *opt3*
376 mutant vs. wild type, and the pattern of the regulation (up- or down-) of canonical copper-
377 deficiency-regulated was not symptomatic for either deficiency or sufficiency (Supplemental
378 Data Set 4). Specifically, as would be expected under copper deficiency, the expression of genes
379 associated with copper uptake and lateral movement, *COPT1*, *YSL1* and *YSL3*, was upregulated
380 in the *opt3-3* mutant vs. wild type. Other *A. thaliana* copper-deficiency upregulated genes,
381 including *AT1G32350* and *AT5G02670*, were also upregulated in mature leaves of the *opt3*
382 mutant. Of genes typically downregulated by copper deficiency, *AT4G15660* was also

383 downregulated in the *opt3* mutant vs. wild type as well as *PETE2*, associated with copper sparing
384 and *MT1B*, associated with copper buffering. By contrast, the expression of another copper sink,
385 *UCC2*, typically downregulated by copper deficiency, was upregulated in mature leaves of the
386 *opt3* mutant vs. wild type while *NRT2.7*, typically upregulated by copper deficiency in *A.*
387 *thaliana*, was downregulated in the *opt3* mutant vs. wild type.

388 To conclude, our RNA-Seq data show that both roots and young leaves of the *opt3*
389 mutant mounted transcriptional copper deficiency response while only roots of the mutant
390 manifested transcriptional iron deficiency response.

391

392 ***OPT3* is Transcriptionally Upregulated by the Short-term Copper Deficiency.**

393 While *OPT3* is robustly upregulated in roots and leaves by iron deficiency, it was not found
394 among copper-deficiency-responsive genes in the existing RNA-seq data. In these RNA-seq
395 analyses, plants were exposed to copper deficiency for a minimum of three days. Since *OPT3*
396 responds to iron deficiency within 24 h (Khan et al., 2018), we hypothesized that *OPT3* might
397 also be transcriptionally upregulated by short-term exposure to copper deficiency. Thus, we
398 compared the *OPT3* expression in *A. thaliana* subjected to copper deficiency for 24 or 96 h. We
399 also examined the expression of a copper-deficiency marker, *CITF1*, to validate the efficiency of
400 treatments. *CITF1* was up-regulated in roots by 16-fold after 24 h of copper deficiency and
401 remained highly upregulated after 96 h. The expression of *OPT3* was also upregulated, although
402 to a lesser extent, after 24 h of copper deficiency, but unlike *CITF1*, the transcript abundance of
403 *OPT3* decreased after 96 h of treatment (Figure 7). It is noteworthy that the expression of *IRT1*
404 while not upregulated by copper deficiency after 24h, started to increase relative to time 0 after
405 96h (Figure 7).

406

407 **The Molecular Symptoms of Copper Deficiency in the *opt3* Mutant are Rescued by 408 Supplemental Copper.**

409 Since transferring the *opt3* mutant to higher copper concentrations decreased its time to
410 flowering to the level of wild type and rescued the length of rosette leaves (Figure 5 and
411 Supplemental Fig. 4 online), we predicted that supplemental copper would also decrease the
412 expression of copper-deficiency responsive genes. To test this hypothesis, we compared the
413 transcript abundance of copper deficiency markers, *CITF1*, *COPT2*, *FRO4* and *FRO5* in roots of

414 the *opt3* vs. wild type. In parallel, we also tested the expression of key iron deficiency markers,
415 *IRT1* and *FRO2*. Consistent with RNA-seq data (Table 2), the expression of *CITF1*, *COPT2*,
416 *FRO4* and *FRO5* was upregulated in roots of the *opt3* mutant vs. wild type, both grown under
417 control conditions (Figure 8). The transcript abundance of copper deficiency markers decreased
418 in roots of the *opt3* mutant after transfer to higher concentrations of copper (Figure 8A to H).
419 We note that transferring wild type plants to higher copper also decreased the expression of
420 *CITF1*, *COPT2*, *FRO4* and *FRO5*, suggesting that 125 nM CuSO₄ was somewhat copper limiting
421 even though the growth and development of wild type plants were not affected. Supplemental
422 copper in both concentrations also decreased the expression of *IRT1* and *FRO2* in roots of the
423 *opt3* mutant compared to their expression levels under control conditions (Figure 8 J to M). It is
424 noteworthy that high copper (500 nM) increased expression of both *IRT1* and *FRO2* in roots of
425 wild type, reinforcing the existence of interactions between copper and iron homeostasis.
426

427 **Copper Deficiency Response in Roots of the *opt3* Mutant is Regulated by the Shoot.**

428 We next tested whether the increased expression of copper deficiency markers in roots of the
429 *opt3* mutant is due to its altered shoot-to-root signaling. To do so, we used reciprocal grafting
430 with wild type and *opt3* plants and examined the transcript abundance of copper deficiency
431 markers *CITF1*, *COPT2*, *FRO4*, *FRO5* in roots (Figure 9). The expression of these genes was
432 up-regulated in roots of grafted *opt3/opt3* (*opt3* scions grafted to *opt3* rootstocks) compared to
433 the grafted WT/WT (wild type scions grafted with wild type rootstocks [control grafts], Figure
434 9A). The expression of *CITF1*, *COPT2*, *FRO4* and *FRO5* was also elevated in roots of grafts
435 with *opt3* scions and wild type rootstock (Figure 9A). In contrast, grafting of the wild type
436 shoots onto the *opt3* rootstocks downregulated *CITF1*, *COPT2*, *FRO4* and *FRO5* expression
437 relative to control grafts (Figure 9A). These data shown that the OPT3 function in the shoot is
438 sufficient to regulate the transcriptional copper deficiency responses in the root.

439 Grafted plants preformed as expected as evidenced by the expression of iron-deficiency
440 markers, *IRT1* and *FRO2* in different graft combinations (Figure 9B and (Zhai et al., 2014)). As
441 we showed previously, *IRT1* and *FRO2* were up-regulated in roots of *opt3/opt3* compared to
442 WT/WT grafts (Figure 9B and (Zhai et al., 2014)). Grafting wild type shoots onto *opt3* mutant
443 roots downregulated *IRT1* and *FRO2* expression relative to their expression in control grafts
444 (Figure 9B). In contrast, grafting of *opt3* shoots onto wild type roots increased the expression of

445 iron deficiency markers (Figure 9B). Together, these data show that OPT3 function in the shoot
446 regulates both iron and copper deficiency responses of the root.

447

448 **Copper and Iron Deficiency Autonomously Regulate the Expression of *CITF1* and *FIT* in**
449 **Roots of *A. thaliana* Under Simultaneous Copper and Iron Deficiency.**

450 We showed that copper and iron accumulation in the phloem was lower in the *opt3* mutant than
451 in wild type and that OPT3 function is important for regulating copper and iron deficiency
452 responses in the root (Figures. 1 and 9). To mimic the effect of simultaneous copper and iron
453 deficiency in the phloem of the *opt3* mutant and its effect on the expression of corresponding
454 deficiency markers in roots, we subjected *A. thaliana* wild type to deficiency of these metals
455 applied concurrently (Figure 10). We tested the expression of *CITF1*, because it is highly
456 regulated by copper deficiency and is downregulated by iron deficiency (Yan et al., 2017). We
457 also tested the expression of *FIT* as it is responsive to iron but not copper deficiency (Colangelo
458 and Guerinot, 2004; Bernal et al., 2012). As expected, copper and iron deficiency applied
459 individually had an opposite effect on the expression of *CITF1* (Figure 10A); *FIT* expression
460 was upregulated under iron but not copper deficiency (Figure 10B). In contrast, the expression
461 of both genes was highly upregulated when iron and copper deficiencies were applied
462 simultaneously (Figure 10A, B). This result suggested that iron and copper deficiency applied
463 simultaneously act in parallel/autonomously on the expression of these regulatory genes.

464

465 **Copper and Iron Deficiency Applied Simultaneously Increase Iron Uptake and Delivery to**
466 **Shoots.**

467 Because copper deficiency drives iron uptake, we hypothesized that copper deficiency in the
468 *opt3* mutant and its low copper, in addition to low iron, accumulation in the phloem, contributes
469 to iron hyperaccumulation in its roots and leaves. To test this hypothesis, we exposed wild type
470 to copper and iron deficiency individually and concurrently. We then analyzed iron accumulation
471 in roots and leaves of wild type plants. As was found previously, copper deficiency increased
472 iron accumulation in both roots and leaves of *A. thaliana* wild type compared to control
473 conditions (Figure 10C and (Bernal et al., 2012; Waters et al., 2012; Kastoori Ramamurthy et al.,
474 2018; Sheng et al., 2021)). As expected, iron accumulation was reduced in both roots and shoots
475 under iron deficiency. Interestingly, the simultaneous application of copper and iron deficiency

476 increased iron accumulation in both roots and shoots compared to iron deficiency applied
477 individually (Figure 10C). We note that plants were subjected to iron deficiency for one week
478 and prior to that they were grown under iron replete conditions. Thus, it is possible that root
479 apoplastic iron reserves were absorbed and accounted for iron accumulation under simultaneous
480 iron and copper deficiencies. We recognize that this experiment does not perfectly match the
481 scenario in the *opt3* mutant that experiences the internal copper and iron deficiency under control
482 conditions. Nevertheless, our results favor the intriguing suggestion that decreased copper
483 accumulation in roots and leaves and the reduced iron and copper accumulation in the phloem
484 contribute to iron overaccumulation in the *opt3* mutant.

485

486 **Discussion**

487

488 **AtOPT3 Transports Copper and Copper-NA Complex, but Free Copper Ions are 489 Preferred Substrates in the Heterologous System.**

490 The nature of the transport substrate of OPT3 has been under scrutiny and a matter of debates in
491 the literature. OPT3 belongs to the OPT family that is phylogenetically divided into two groups:
492 the Yellow Stripe-Like (YSL) and Oligopeptide Transporter (PT) clades (Lubkowitz, 2011).
493 Analyses of the transport capabilities of some members of *A. thaliana* and *Oryza sativa* OPT
494 family have disclosed their capacity to transport synthetic tetra- and pentapeptides in
495 heterologous systems (Osawa et al., 2006), while members of the YSL clade are expected to
496 transport metal-chelate complexes (Osawa et al., 2006). Given the role of OPT3 in iron
497 homeostasis and signaling, it was expected to transport either peptides that can serve as metal
498 ligands (e.g., glutathione [GSH]) or metal-ligand complexes (e.g., metal-nicotianamine [metal-
499 NA]) (Stacey et al., 2008; Lubkowitz, 2011). Thus, our past finding that OPT3 transports naked
500 ions, iron and cadmium when expressed in *Xenopus* oocytes or the yeast iron uptake mutant, *fet3*
501 *fet4* was unexpected (Zhai et al., 2014).

502 Here, we show that OPT3, in addition to iron and cadmium ions, also transported copper
503 ions when expressed in *Xenopus* oocytes or the *S. cerevisiae* copper transport mutant (Figure 4).
504 We also found that OPT3 was able to transport both free copper ions as well as the Cu-NA
505 complex (Figure 4A). It is noteworthy, however, that OPT3-expressing oocytes accumulated 4.2
506 times more copper when it was provided as a free ion rather than complexed with nicotianamine,

507 suggesting that free copper ions but not Cu-NA complex is a preferred OPT3 substrate in this
508 heterologous system. A recent report has shown that members of the YSL clade of the OPT
509 transporter family, *Brachypodium distachyon* YSL3 and maize YS1 also transport copper ions in
510 *Xenopus* oocytes (Sheng et al., 2021). Unlike AtOPT3, BdYSL3 mediated transport of copper
511 ions but not Cu-NA complex. Similar to AtOPT3, ZmYS1 was capable of transporting both
512 copper ions as well as Cu-NA complexes; similar to AtOPT3, copper ions were the preferred
513 transport substrates of ZmYS1 in the *Xenopus* oocyte heterologous system (Sheng et al., 2021).

514 Recent *in silico* analysis using protein secondary and tertiary structure simulation and
515 binding affinity results of the docking analyses suggested that AtOPT3 and its counterpart from
516 maize, ZmOPT3 may transport iron complexed with GSH (Kurt, 2021)). Despite this prediction,
517 AtOPT3 does not transport GSH when expressed in the GSH transport mutant, *hgt1Δ*, and the
518 addition of GSH to the *Xenopus* oocytes bathing medium reduces cadmium transport (Zhai et al.,
519 2014). Our finding that AtOPT3 does not transport GSH in yeast has been recently validated by
520 (Zhang et al., 2016). AtOPT3 counterpart from rice, OsOPT7 is essential for iron homeostasis
521 and sources to sink partitioning but does not transport Fe-NA, Fe-DMA complexes, or GSH in
522 oocytes as well (Bashir et al., 2015). It is noteworthy that unlike AtOPT3, other OPT family
523 members in *A. thaliana*, AtOPT4 and AtOPT6 and the closest OPT3 homolog from *Brassica*
524 *juncea*, BjGt1 transport GSH (BOGS et al., 2003; Cagnac et al., 2004; Zhang et al., 2016).
525 Recent analyses of the *Arabidopsis opt6* mutant implicated AtOPT6 in GSH long-distance
526 transport and delivery to sink organs, especially flowers (Wongkaew et al., 2018). It is
527 noteworthy that similar to the *opt3* mutant, the loss-of-function of AtOPT6 delays the transition
528 from the vegetative to reproductive stage of the development (Wongkaew et al., 2018). It would
529 be interesting to test whether mineral nutrient homeostasis is disrupted in the *opt6* mutant.
530

531 **AtOPT3 Mediates Copper (and Iron) Loading to the Phloem for the Delivery to Sink 532 Tissues.**

533 The role of AtOPT3 in iron and copper loading to the phloem for subsequent partitioning from
534 source to sink tissues is evidenced by the decreased accumulation of these metals in the phloem
535 of the *opt3* mutant (Figures 1E, F; 2A, **Supplemental Figure S1 online** and (Zhai et al., 2014)).
536 At the whole plant level, this function of AtOPT3 is important for the phloem-based delivery of
537 copper and iron from sources to sinks, including roots and young leaves (Figure 2B and (Zhai et

538 al., 2014) respectively). Here we also show that AtOPT3 is important for copper and iron
539 delivery to developing embryos and that in addition to leaves, siliques might act as sources
540 of these minerals for developing seeds (Figure 3A, B). This suggestion is based on our findings
541 that siliques of the mutant hyperaccumulated iron and copper while developing embryos
542 accumulated less iron and copper compared to wild type (Figure 3 A, B). We note that unlike
543 copper and iron, manganese and zinc were hyperaccumulated in the vasculature and both siliques
544 valves and embryos, while zinc was also hyperaccumulated in seeds of the *opt3* mutant
545 compared to corresponding tissues in wild type (Figure 1G, H and 3). Together, these data
546 suggest that AtOPT3 functions in copper and iron but not manganese and zinc loading to the
547 phloem and the phloem-based delivery to sink tissues.

548 We note that while the role of AtOPT3 and OsOPT7 in iron delivery to seeds is
549 evidenced by the lower iron concentration in mature seeds (Figure 3C, D and (Stacey et al.,
550 2008; Mendoza-Cózatl et al., 2014; Zhai et al., 2014; Bashir et al., 2015), copper accumulation in
551 mature seeds was not affected in the *opt3* mutant (Figure 3D and (Stacey et al., 2008)). However,
552 we noted a subtle difference in copper distribution in the mature seed of the *opt3* mutant vs. wild
553 type (Figure 3C). Specifically, less copper was associated with the vasculature of the *opt3*
554 mutant vs. wild type, and somewhat more copper was associated with the seed coat of the mutant
555 (Figure 3C). However, this subtle difference in copper distribution was not sufficient to account
556 for total seed concentration.

557

558 **AtOPT3 Mediates Copper Homeostasis and the *opt3* Mutant Mounts the Transcriptional
559 Copper Deficiency Response in Roots and Young Leaves.**

560 Our finding that OPT3 transports copper in heterologous systems and that the *opt3* mutant
561 accumulates less copper in roots and young leaves compared to wild type (Figures 2 and 4)
562 suggested that the mutant might be more sensitive to copper deficiency and/or manifest
563 molecular symptoms of copper deficiency. Indeed, the size of rosette leaves of the *opt3* mutant
564 grown under copper deficiency was significantly smaller compared to control conditions, and its
565 leaves were extensively chlorotic compared to wild type also grown without added copper
566 (Figure 5A, E and F). Furthermore, consistent with our recent findings of the role of copper in
567 transition to flowering (Rahmati Ishka and Vatamaniuk, 2020), the *opt3* mutant failed to flower
568 within the time frame of the experiment and developed more rosette leaves than the wild type

569 when grown in the medium without and even with copper (Figure 5C, D). Copper deficiency-
570 associated phenotypes were rescued by transferring the mutant to a medium with higher copper
571 concentrations (Figure 5C to E and **Supplemental Figure 4** online).

572 In addition, the *opt3* mutant mounted molecular copper-deficiency responses even when
573 it was grown under control conditions. This was evidenced by the increased activity of cupric
574 reductase in roots of the *opt3* mutant vs. wild type and the upregulated expression of copper-
575 deficiency regulon in roots and young leaves (Figure 5 and **Supplemental Datasets 2 to 4**).
576 Changes in the transcriptome of mature leaves of the *opt3* mutant were indicative of neither
577 deficiency nor sufficiency. The transcriptional copper deficiency responses of roots and young
578 leaves and an unspecific response of mature leaves are consistent with their copper accumulation
579 in the corresponding tissues of the *opt3* mutant (Figures 2, 5 and **Supplemental Datasets 2 to 4**).
580 In addition, our finding of the distinct transcriptional response and metal accumulation in mature
581 vs. young leaves of the mutant emphasizes the need to separate these leaves in analyses of
582 mutant phenotypes.

583

584 **AtOPT3 Mediates Crosstalk Between Iron and Copper Homeostasis and Loss of this**
585 **Function in the *opt3* Mutant Contributes to Altered Iron Signaling and Iron Overload.**

586 Owing to its well-established role in iron loading into the phloem and iron distribution from
587 sources to sinks, including roots, AtOPT3 is considered to mediate signaling of the shoot iron
588 status to the root (Stacey et al., 2008; Mendoza-Cózatl et al., 2014; Zhai et al., 2014). Thus, the
589 loss of the AtOPT3 function in *opt3* mutant alleles constitutively upregulates *FIT* and the *FIT*-
590 regulon resulting in iron overaccumulation in roots as well as shoots (Figure 6 and
591 **Supplemental Dataset 2 to 4** and (Stacey et al., 2008; Mendoza-Cózatl et al., 2014; Zhai et al.,
592 2014; Khan et al., 2018)). In contrast to roots, the transcriptome of mature and young leaves
593 reacted to iron overload by upregulating the expression of iron-scavengers, *FER1*, *FER3*, *FER4*
594 and genes involved in the redistribution of metal-nicotianamine complexes, *NAS3*, *YSL1* and
595 *YSL3* (Figure 6 and **Supplemental Dataset 2 to 4**).

596 The distinct expression of *FEPI/IMA3* that we have observed in young and mature leaves
597 of the *opt3* mutant deserves attention (Figure 6 and **Supplemental Dataset 2 to 4**). *FEPI/IMA3*
598 is expressed in the vasculature of roots and leaves, transcriptionally upregulated by iron
599 deficiency, is sufficient to upregulate the expression of the root iron uptake system and is

600 suggested to function in systemic iron-deficiency signaling (Grillet et al., 2018; Hirayama et al.,
601 2018). We found that *FEPI/IMA3* was downregulated in mature but not young leaves (Figure 6
602 and Supplemental Dataset 3 and 4). This finding suggested that iron is more available in
603 mature leaves than in young leaves since the vasculature of mature but not young leaves
604 perceived iron sufficiency resulting in downregulation of *FEPI/IMA3*. It is important to note that
605 although iron distribution from mature to young leaves is significantly reduced compared to wild
606 type (Zhai et al., 2014), young leaves still accumulated more iron than young leaves of the wild-
607 type (Supplemental Figure S2 online). In contrast, young leaves of the *opt3* mutant
608 accumulated significantly less copper while mature leaves accumulated significantly more
609 copper compared to corresponding leaves of the wild type (Figure 2B). Furthermore, roots of the
610 *opt3* mutant were also copper deficient (Figure 2B). Past findings from different research groups,
611 showing the overaccumulation of iron under copper deficiency in roots and leaves of *A. thaliana*,
612 are especially relevant (Figure 11A based on (Bernal et al., 2012; Waters and Armbrust, 2013;
613 Kastoori Ramamurthy et al., 2018; Kroh and Pilon, 2020; Rai et al., 2021; Sheng et al., 2021).
614 These past findings, together with our data showing that AtOPT3, in addition to iron, loads
615 copper to the phloem for redistribution from sources to sinks, invoke the role of AtOPT3 in the
616 regulation of the crosstalk between copper and iron homeostasis and contribute to the
617 understanding of the nature of altered iron deficiency signaling and iron overaccumulation in the
618 *opt3* mutant (Figure 11B).

619 Specifically, we consider two not mutually exclusive and, most likely, concurrent
620 scenarios (Figure 11B). 1). A *conservative scenario*: as it was suggested in the past, it is possible
621 that altered iron signaling in the *opt3* mutant due to its inability to load iron to the phloem,
622 causes a constitutive iron deficiency response in the root. As a result, iron overaccumulation
623 occurs in roots and leaves because of the subsequent continual uptake of iron from the outside
624 medium. Considering the signature of the crosstalk between iron and copper, high iron in the
625 *opt3* mutant due to its altered iron deficiency signaling decreases copper uptake, causes copper
626 deficiency and associated molecular signature of copper deficiency. In favor of this scenario are
627 past findings that the accumulation of other metals is significantly altered in the *opt3* mutant
628 (Stacey et al., 2008; Zhai et al., 2014; Khan et al., 2018). 2). An *alternative hypothesis*: the
629 decreased copper accumulation in the phloem of the *opt3* mutant due to its reduced ability to
630 load copper into the phloem, leads to constitutive copper deficiency in young leaves and roots

631 that, in turn, stimulates iron uptake. In favor of this hypothesis is our finding that the symptoms
632 of copper deficiency and the expression of copper and iron deficiency markers in the *opt3* mutant
633 are rescued by supplemental copper (Figure 8). In contrast, the foliar iron application does not
634 rescue the expression of root iron-acquisition genes in the *opt3-2* mutant (Maas et al., 1988;
635 Garcia et al., 2013).

636 It is most likely that both scenarios occur simultaneously and originate from the function
637 of OPT3 in phloem loading of both copper and iron. The reduced ability to do so in the *opt3*
638 mutant results in a constitutive copper and iron deficiency in the phloem (Figure 11B). In
639 support of this suggestion are our data from the grafting experiments showing that wild type
640 shoots grafted onto the *opt3* rootstocks decreased the expression of iron and copper deficiency
641 markers (Figure 9). Consistently, the *opt3* scions cause the constitutive upregulation of both iron
642 and copper deficiency marker genes. Furthermore, the simultaneous application of copper and
643 iron deficiency increased iron uptake and delivery to shoots and simulated the expression of
644 copper and iron deficiency markers, *CITF1* and *FIT*, respectively (Figure 10).

645 We also suggest that copper and iron deficiency occurring simultaneously in the phloem
646 of the *opt3* mutant act autonomously in regulating copper and iron deficiency genes. This
647 suggestion is based on the finding that the expression of *CITF1*, normally downregulated by iron
648 deficiency while upregulated by copper deficiency when applied independently, was upregulated
649 under simultaneous application of both deficiencies (Figure 1A). Likewise, although *FIT* is
650 upregulated by iron deficiency and does not respond transcriptionally to copper deficiency, it
651 was upregulated by the simultaneous application of copper and iron deficiency (Figure 10B).

652 To conclude, our studies have assigned new functions to AtOPT3 in loading copper into
653 the phloem and subsequent distribution to sink tissues. We have also discovered a role for OPT3
654 in copper-iron crosstalk that is important for normal homeostasis of both elements.
655 Understanding the basic mechanisms plants use to coordinate iron and copper demands with
656 their uptake, transport and utilization will provide promising avenues for targeted biofortification
657 strategies directed at increasing iron density in the edible portions of crops and improving
658 agricultural productivity on iron and copper-deficient soils.

659

660 Materials and Methods

661

662 **Plant Material and Growth Conditions**

663 *Arabidopsis thaliana* (cv. Col-0) and a previously described *opt3-3* T-DNA insertion mutant (cv.
664 Col-0; SALK_058794C; (Zhai et al., 2014) were obtained from ABRC. Soil-grown plants were
665 directly sown onto Lambert 111 irrigated with regular fertilizer. For copper deficiency treatments,
666 plants were either grown on half-strength Murashige and Skoog (MS) medium (Sigma-Aldrich,
667 M5519) with 1% sucrose and 0.7% agar or hydroponically in a medium containing 1.25 mM
668 KNO₃, 0.625 mM KH₂PO₄, 0.5 mM MgSO₄, 0.5 mM Ca(NO₃)₂, 10 μM Fe(III)HBED and the
669 following micronutrients: 17.5 μM H₃BO₃, 3.5 μM MnCl₂, 0.25 μM ZnSO₄, 0.05 μM NaMoO₄,
670 2.5 μM NaCl and 0.0025 μM CoCl₂ (Arteca and Arteca 2000), and the indicated concentrations
671 of copper with 125 nM copper considered as control (Yan et al., 2017). For growing plants
672 hydroponically, seeds were surface-sterilized before sowing onto 0.7% (w/v) agar aliquoted in 10
673 μL pipette tips. Pipette tips were cut before placing them into floats made of foam boards. The
674 roots of seedlings were immersed into the hydroponic solution after 7-8 days of growth. To
675 ensure that both wild type and the *opt3-3* mutant were treated at the same growth stage, all plants
676 were transferred when the rosette reached to 50% of final size (principal growth stage 3.5 as
677 documented in (Boyes et al., 2001)). In this case, wild type and the *opt3-3* plants were
678 transferred 3 and 4 weeks after sowing seeds, respectively. The solution was replaced on a
679 weekly basis and was replaced for one more time 24 hours before collecting samples All plants
680 were grown in a growth chamber at 22°C, 14 h light/10 h dark photoperiod at a photon flux
681 density of 110 μmol m⁻² s⁻¹.

682

683 **High-Throughput Sequencing of mRNA, Sequence Mapping and Differential Gene
684 Expression Analysis**

685 *A. thaliana* wild type and *opt3-3* plants were grown hydroponically with 0.125 μM CuSO₄ for 4
686 weeks. The total RNA was isolated from roots, mature and young leaves using the TRIzol
687 reagent (Invitrogen). The strand-specific RNA-Seq libraries were constructed using 3 μg of total
688 RNA according to procedures described previously (Zhong et al., 2011). RNA-Seq libraries were
689 sequenced on the Illumina HiSeq 2500 system using the single-end mode. Three replicates per
690 sample were used in experiments. Trimmomatic (Bolger et al. 2014) was employed to remove
691 adaptor and low-quality sequences in the Illumina raw reads. Reads shorter than 40 bp were
692 discarded. The resulting reads were aligned to the ribosomal RNA database using Bowtie with 3

693 mismatches allowed (Langmead et al., 2009; Quast et al., 2013), and those aligned were
694 discarded. The final clean reads were aligned to the *Arabidopsis* genome sequence (TAIR 10)
695 using TopHat with 1 mismatch allowed (Trapnell et al., 2009). Finally, the counts of mapped
696 reads for each gene model from each sample were derived and normalized to RPKM (reads per
697 kilobase of exon model per million mapped reads). DESeq2 was used to identify differentially
698 expressed genes (DEGs) with the raw count data (Love et al., 2014). Raw *p* values were
699 corrected for multiple testing using the false discovery rate (FDR; (Benjamini and Hochberg,
700 1995). Genes with an FDR less than 0.05 and fold-changes greater than or equal to 1.5 were
701 regarded as DEGs. GO term enrichment and gene functional classification analyses were
702 performed using Plant MetGenMap (Joung et al., 2009).

703

704 **ICP-MS Analysis of Copper Concentration in Plant Tissues**

705 Root and shoot tissues were collected from plants grown hydroponically as described above. Iron
706 and other elements were desorbed from root cell walls by washing roots in 10 mM EDTA and a
707 solution with 0.3 mM bathophenanthroline disulphonate (BPS) and 5.7 mM sodium dithionite.
708 The fully expended leaves and the upmost leaves less than 3 mm long were rinsed with deionized
709 water 3 times and then pooled separately as mature leaves and young leaves. The dry seeds and
710 valves were collected from plants grown in soil, and the seeds were separated from the valves
711 with 500 μ m mesh. Four to eight plants were pooled for one measurement in each experiment.
712 Three measurements and three independent experiments were conducted. All the samples were
713 dried in an 80°C oven before measuring the weight. Elemental analysis was performed using
714 ICP-MS.

715

716 **RT-qPCR Analysis**

717 Roots and leaves were collected from plants at Zeitgeber time 7 (Zeitgeber time is defined as the
718 hours after lights-on) and flash-frozen in liquid nitrogen before the homogenization. Total RNA
719 was isolated using TRIzol reagent (Invitrogen) according to the manufacturer's instructions.
720 cDNA templates used for qPCR analysis were synthesized by using AffinityScript QPCR cDNA
721 synthesis kit. One μ g of total RNA was treated with DNase I (New England Biolabs) prior to the
722 first-strand cDNA synthesis to eliminate genomic DNA contamination. Real-time PCR analysis
723 was performed in a total volume of 15 mL containing 1x iQSYBR GreenSupermix (Bio-Rad),

724 500 nM concentration of each PCR primer and 2 μ L of 15x diluted cDNA templates using
725 CFX96 real-time PCR system (Bio-Rad) as described (Gayomba et al., 2013). Each experiment
726 was conducted using three independent biological samples, each consisting of 2-3 technical
727 replicates. Data were normalized to the expression of ACTIN2 (AT3G18780). The fold
728 difference ($2^{-\Delta\Delta C_t}$) and the statistical parameters were calculated using the CFX Manager
729 Software, version 3.1 (Bio-Rad).

730

731 **Grafting Experiments**

732 The grafting method was described previously with slight modification (Marsch-Martínez et al.
733 2013). All of the procedures were performed under Leica S6E microscope. Briefly, wild type and
734 *opt3-3* seeds were germinated and grown vertically on half-strength MS medium with 0.5%
735 sucrose for 6-7 days. Cotyledons were removed by using sterile scalpels with No.11 blades right
736 before grafting. The scions and rootstocks were then separated and moved to half-strength MS
737 plates with 0.5% sucrose and 0.7% agar for alignment. After grafting, the plants were grown
738 vertically on the plates for another 10 days. Successfully grafted plants without adventitious
739 roots above the graft junction were then transferred to the hydroponic system with 0.25 μ M
740 CuSO₄ for 24 days before qPCR analysis.

741

742 **Synchrotron X-Ray Fluorescence Imaging**

743 Fresh samples were detached immediately before the analysis and were placed in a wet chamber
744 made between two layers of metal-free Kaptonfilm, and mounted onto 35-mm slide frames. The
745 spatial distribution of Cu and Fe was imaged via SXRF microscopy at the F3 station at the
746 Cornell High Energy Synchrotron Source (CHESS). The 2D Cu and Fe raster maps were
747 acquired at the 25- μ m resolution, 0.2 s/pixel dwell time using a focused, monochromatic incident
748 x-ray beam at 12.8 keV and photon flux of $\sim 10^{10}$ photons/s. The monochromatic beam was
749 generated with 0.6% energy bandwidth multilayers. Focusing was achieved using a single-
750 bounce moncapillary (named PEB605) fabricated at CHESS. These settings did not cause
751 detectable damage to plant tissues within the 6- to 9-h scans required for analysis of the full set
752 of samples. Element-specific x-ray fluorescence was detected using a Vortex ME-4 silicon drift
753 detector. Quantifications were done by calibrating using a thin metal foil film standard during
754 each experiment and concentrations were expressed as μ g cm⁻². Data was processed with the

755 software Praxes, which was developed at CHESS and employs PyMCA libraries in batch mode
756 (Solé et al., 2007).

757

758 **Synchrotron-based Confocal XRF Microscopy**

759 Confocal XRF experiments were obtained at beamline 5-ID (SRX). The beamline
760 monochromator and focusing optics were employed to deliver 3×10^{11} photons/second in a 1x1
761 μm^2 beam, with incident beam energy of 10.0 keV and bandwidth of approximately 1 eV. The
762 confocal geometry was achieved by placing a collimating channel array (CCA) (Agyeman-Budu
763 et al., 2016) onto a single-element Vortex SDD detector perpendicular to the beam. The sample
764 stage was oriented such that the horizontal translation axis of the stage is 35 degrees from that of
765 the incident beam, and 55 degrees from the detector axis. The particular CCA employed for these
766 measurements has a series of 175, 2- μm channels etched into a 1-mm thick Germanium substrate,
767 etched to an approximate depth of 300 μm . The working distance between the sample and optic
768 is 1.5 mm. Due to the finite width of the optic at its front tip, the maximum probe depth of the
769 system in this configuration is 0.8 mm. Quantitative calibration of the confocal XRF system was
770 achieved by methods described in (Malzer and Kanngießer, 2005; Mantouvalou et al., 2012).

771

772 **Synchrotron-based X-ray Fluorescence Computed Microtomography (F-CMT)**

773 Internal distributions of copper, iron and other micronutrient elements in wild type and the *opt3-*
774 *3* mutant seeds were measured *in vivo* by synchrotron-based X-ray Fluorescence Computed
775 Microtomography (F-CMT) at the X-ray Fluorescence Microprobe (XFM) beamline at the
776 National Synchrotron Light Source II (NSLS-II) in Upton, NY. XFM (4-BM) beamline is
777 designed for monochromatic operation in the 2.3 to 23 keV range and optimized for high-quality,
778 spatially-resolved X-ray absorption spectroscopy (Sulfur to Technetium K-edges) in conjunction
779 with element-specific imaging and microdiffraction. XFM beamline can also be operated in a
780 pink beam “imaging” mode that delivers a 1-micron spot with up to 1000X more flux than the
781 XFM monochromatic beam. XFM filtered pink beam (12 – 20 keV broadband) was focused by
782 Kirkpatrick-Baez (KB) mirrors to a 1-micron spot for F-CMT measurements of seeds. Seeds
783 were mounted to a quartz post that interfaces with a Huber goniometer head on a rotation stage
784 attached to a fast-scanning translation stage. F-CMT images were acquired at the seed center by
785 rotating and translating the specimen in the microbeam while recording the fluorescence

786 intensities with a Hitachi 4-element Vortex SDD coupled to Quantum Detectors Xspress3
787 electronics. F-CMT data were collected using 0.75 – 3.0° degree angular steps, 2 – 8 µm
788 translation steps and 50 ms dwell time. Tomographic image reconstructions using a conventional
789 filtered back projection algorithm were processed using tomo-Py plugin to GSE Mapviewer in
790 the LARCH package (Newville, 2013). The image intensity scale for mutant lines was adjusted
791 to match the wild type control.

792

793 **Copper Uptake in *Xenopus laevis* Oocytes**

794 The basal uptake solution consisted of a modified ND96 solution containing 96 mM NaCl, 1 mM
795 KCl, 0.9 mM CaCl₂, buffered with 5 mM 2-(N-morpholino) ethanesulfonic acid/NaOH to pH 6.0,
796 as previous studies determined these conditions were suitable to minimize endogenous transport
797 in oocytes (Zhai et al., 2014). The uptake solution was supplemented with 100 µM Cu-NA or
798 100 µM CuSO₄. Each sample contained 8 – 10 oocytes, with 5 replicates per data point. At a
799 given time point, the uptake was terminated by washing oocytes six consecutive times with an
800 ice-cold basal uptake solution. Oocytes were collected and samples were digested in 100 µL of
801 70% HClO₄, re-suspended in 5 ml of 0.1 M nitric acid, and analyzed using inductively coupled
802 plasma mass spectrometry (Sciex ICP-MS).

803

804 **Functional Complementation Assays in *Saccharomyces cerevisiae*.**

805 *S. cerevisiae* SEY6210 (*MATa ura3-52 leu2-3,-112 his3Δ200 trp1Δ901 lys2-801 suc2Δ9*) wild
806 type and the *ctr1Δctr2Δctr3Δ* triple mutant (*MATa ura3-52 his3Δ200 trp1-901 ctr1::ura3::Knr*
807 *ctr2::HIS3 ctr3::TRP1*) were used for functional complementation assays. *YES3-Gate-OPT3*
808 construct or *YES3-Gate* lacking the cDNA insert were transformed into appropriate yeast line
809 using the Frozen-EZ Yeast Transformation II kit (Zymo Research). Transformants were selected
810 for uracil prototrophy on YNB medium containing 6.7% (w/v) yeast nitrogen base without amino
811 acids (Difco), 0.77% (w/v) CSM-URA, 0.5% (w/v) NaCl, 2% glucose, 2% (w/v) agar.

812 Functional complementation assays included analyses of the respiration competence and
813 copper accumulation in yeast cells as described (Jung et al., 2012). Specifically, the respiration
814 competence of different cell lines was tested by the ability of cells to grow on non-fermentable
815 carbon sources (Dancis et al., 1994). To do so, different cell lines transformed with *YES3-Gate*
816 with or without *OPT3* cDNA insert were grown in liquid YNB-URA to an OD_{600 nm} = 1.0,

817 serially 10-fold diluted, and spotted onto YPEG medium containing 1% (w/v) yeast extract, 2%
818 (w/v) bacto-peptone, 3% (v/v) glycerol, 2% (v/v) ethanol, and 2% (w/v) agar and the indicated
819 concentrations of CuSO₄. Plates were incubated for 3 days at 30°C.

820 To analyze copper accumulation, different yeast lines were grown to exponential log
821 phase in liquid YNB media described above. An aliquot (150 µl) of the overnight grown culture
822 was inoculated into 20 ml of the fresh YNB media with 40 µg/L CuSO₄ and cells were grown at
823 30°C. After 24 h, cells were collected by centrifugation, washed with deionized water before
824 copper was desorbed from yeast cell wall followed by washings in desorbing buffer containing
825 1mM EDTA and 100 µM of a copper chelator, bathocuproine disulfonate BCS, pH8.0. Cells
826 were then washed two more times in de-ionized water and collected by centrifugation. The cell
827 pellet was dried, digested by heating with a combination of purified concentrated nitric and
828 perchloric acids, and finally dissolved in 10 ml of 5% nitric acid. The concentration of copper in
829 processed yeast cells was analyzed by inductively coupled plasma mass spectroscopy (ICP-MS;
830 Agilent 7500).

831

832 **Collection and Analysis of Phloem Sap**

833 Phloem sap was collected from wild type and *opt3-3* mutant plants grown hydroponically at the
834 late vegetative stage as described (Zhai et al., 2014). Briefly, leaf numbers 9 and 10 collected
835 from one plant were pooled together, and the xylem sap was flashed by placing the petioles in a
836 tube filled with 300 µL of deionized water and incubated in an illuminated growth chamber for
837 15 min followed by further incubation in darkness for 1 h. The petioles were then recut in 5 mM
838 Na₂-EDTA (pH 7.5) under low light before placing the petioles in 250 µL of 5 mM Na₂-EDTA
839 (pH 7.5). Leaves were then incubated in darkness for 1 h in a high-humidity chamber lined with
840 wet paper towels and sealed with Vaseline. Samples were diluted with 5 mL of 5% HNO₃ for
841 subsequent detection of K or Cu by ICP-MS.

842

843 **Statistical analysis**

844 Statistical analyses of experimental data were performed using the ANOVA single-factor
845 analysis and Tukey HSD using JMP® Pro 14 (SAS Institute Inc., Cary, NC, 1989-2007).

846

847 **Accession numbers**

848 Sequence data of the genes from this article can be found in the Arabidopsis Genome Initiative
849 or GenBank/EMBL databases under the following accession numbers: *OPT3* (AT4G16370),
850 *CITF1* (AT1G71200), *FRO4* (AT5G23980), *FRO5* (AT5G23990), *COPT1* (AT5G59030),
851 *COPT2* (AT3G46900), *YSL1* (AT4G24120), *YSL2* (AT5G24380), *YSL3* (AT5G53550), *CSD1*
852 (AT1G08830), *CSD2* (AT2G28190), *IRT1* (AT4G19690), *FRO2* (AT1G01580), *FRO6*
853 (AT5G49730), *FRO7* (AT5G49740), *FSD1* (AT4G25100), *ARP1* (AT2G02850), *BCB*
854 (AT5G20230), *CCS1* (AT1G12520), *UCC2* (AT2G44790), *FER1* (AT5G01600), *FER3*
855 (AT3G65090), *FER4* (AT2G40300), *ZIP2* (AT5G59520), *bHLH23* (AT4G28790), *TCH4*
856 (AT5G57560), *BTSL1* (AT1G74770), *ZAT12* (AT5G59820), *FEP2/IMA2* (AT1G47395),
857 *FEP1/IMA3* (AT2G30766), *IREG2/FPN2* (AT5G03570), *VTL1* (AT1G21140), *VTL2*
858 (AT1G76800), *VTL5* (AT3G25190), *NAS3* (AT1G09240), *PETE2* (AT1G20340), *MT1B*
859 (AT5G56795), *NRT2.7* (AT5G14570), *MT1B* (AT5G56795), *MT1A* (AT1G07600), *MT2A*
860 (AT3G09390), *AT2G47010*, *AT4G10500*, *At1G31710*, *At1G32350*, *At5G02670*, and *At5g05250*.
861

862 **Author Contributions and Acknowledgements:**

863 J-C. C. and O. K. V. designed experiments; all authors contributed to different experiments
864 presented in this manuscript. J.C. and O. K. V. wrote the manuscript with contribution from all
865 authors. We thank Mary Lou Guerinot (Dartmouth, USA) for providing seed of the *fit-2* mutant
866 and for constructive comments on the manuscript. We thank a former member of the
867 Vatamaniuk lab, Nanditha Vimalakumari for her contribution to Figure 4 and all current lab
868 members for constructive comments on the manuscript. We thank Dr. John Grazul at the Cornell
869 Center for Materials Research (CCMR) for assisting in preparation samples for 2D-CXRF. The
870 CCMR facility is supported by the National Science Foundation under Award Number DMR-
871 1719875. Parts of this research used the XFM and SRX Beamlines of the National Synchrotron
872 Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated
873 for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-
874 SC0012704. This work is based upon research conducted at the Cornell High Energy
875 Synchrotron Source (CHESS), which during the period of research was supported by the
876 National Science Foundation under award DMR-1332208; the Center for High Energy X-ray
877 Sciences (CHEXS) is presently supported by the National Science Foundation under award

878 DMR-1829070. This study was funded by NSF-IOS #1656321 to O. K. V. and NSF-IOS
879 #1754966 to E. W., O. K. V. and M. P.

880

881 **References**

882 Agyeman-Budu DN, Choudhury S, Coulthard I, Gordon R, Hallin E, Woll AR (2016)
883 Germanium Collimating micro-Channel Arrays For High Resolution, High Energy
884 Confocal X-ray Fluorescence Microscopy. Icxom23: International Conference on X-Ray
885 Optics and Microanalysis 1764

886 Alexander SPH, Kelly E, Mathie A, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding
887 SD, Pawson AJ, Sharman JL, et al. (2019) THE CONCISE GUIDE TO
888 PHARMACOLOGY 2019/20: Transporters. British Journal of Pharmacology 176: S397-
889 S493

890 Araki R, Mermod M, Yamasaki H, Kamiya T, Fujiwara T, Shikanai T (2018) SPL7 locally
891 regulates copper-homeostasis-related genes in Arabidopsis. J Plant Physiol 224-225: 137-
892 143

893 Bashir K, Ishimaru Y, Itai RN, Senoura T, Takahashi M, An G, Oikawa T, Ueda M, Sato A,
894 Uozumi N, et al. (2015) Iron deficiency regulated OsOPT7 is essential for iron
895 homeostasis in rice. Plant Molecular Biology 88: 165-176

896 Baxter IR, Vitek O, Lahner B, Muthukumar B, Borghi M, Morrissey J, Guerinot ML, Salt DE
897 (2008) The leaf ionome as a multivariable system to detect a plant's physiological status.
898 Proceedings of the National Academy of Sciences 105: 12081-12086

899 Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate: A Practical and
900 Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B
901 (Methodological) 57: 289-300

902 Bernal M, Casero D, Singh V, Wilson GT, Grande A, Yang H, Dodani SC, Pellegrini M, Huijser
903 P, Connolly EL, et al. (2012) Transcriptome sequencing identifies SPL7-regulated copper
904 acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in
905 Arabidopsis. Plant Cell 24: 738-761

906 Bernal M, Casero D, Singh V, Wilson GT, Grande A, Yang H, Dodani SC, Pellegrini M, Huijser
907 P, Connolly EL, et al. (2012) Transcriptome Sequencing Identifies SPL7-Regulated
908 Copper Acquisition Genes FRO4/FRO5 and the Copper Dependence of Iron Homeostasis
909 in Arabidopsis. The Plant Cell Online 24: 738-761

910 Bernal M, Casero D, Singh V, Wilson GT, Grande A, Yang H, Dodani SC, Pellegrini M, Huijser
911 P, Connolly EL, et al. (2012) Transcriptome Sequencing Identifies SPL7 -Regulated
912 Copper Acquisition Genes FRO4 FRO5 and the Copper Dependence of Iron
913 Homeostasis in Arabidopsis The Plant Cell 24: 738-761

914 BOGS J, BOURBOULOUX A, CAGNAC O, WACHTER A, RAUSCH T, DELROT S (2003)
915 Functional characterization and expression analysis of a glutathione transporter, BjGT1,
916 from Brassica juncea: evidence for regulation by heavy metal exposure. Plant, Cell &
917 Environment 26: 1703-1711

918 Broadley M, Brown P, Cakmak I, Rengel Z, Zhao F (2012) Chapter 7 - Function of Nutrients:
919 Micronutrients A2 - Marschner, Petra. *In Marschner's Mineral Nutrition of Higher Plants*
920 (Third Edition). Academic Press, San Diego, pp 191-248

921 Burkhead JL, Gogolin Reynolds KA, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper
922 homeostasis. *New Phytologist* 182: 799-816

923 Cagnac O, Bourbouloux A, Chakrabarty D, Zhang MY, Delrot S (2004) AtOPT6 transports
924 glutathione derivatives and is induced by primisulfuron. *Plant Physiology* 135: 1378-
925 1387

926 Chang CJ (2015) Searching for harmony in transition-metal signaling. *Nat Chem Biol* 11: 744-
927 747

928 Chen C, Galon Y, Rahmati Ishka M, Malihi S, Shimanovsky V, Twito S, Rath A, Vatamaniuk
929 OK, Miller G (2020) ASCORBATE PEROXIDASE6 delays the onset of age-dependent
930 leaf senescence. *Plant Physiology*

931 Colangelo EP, Guerinot ML (2004) The essential basic helix-loop-helix protein FIT1 is required
932 for the iron deficiency response. *Plant Cell* 16: 3400-3412

933 Cui Y, Chen CL, Cui M, Zhou WJ, Wu HL, Ling HQ (2018) Four IVa bHLH Transcription
934 Factors Are Novel Interactors of FIT and Mediate JA Inhibition of Iron Uptake in
935 *Arabidopsis*. *Mol Plant* 11: 1166-1183

936 Dancis A, Haile D, Yuan DS, Klausner RD (1994) The *Saccharomyces cerevisiae* copper
937 transport protein (Ctr1p). Biochemical characterization, regulation by copper, and
938 physiologic role in copper uptake. *J Biol Chem* 269: 25660-25667

939 Epstein E, Bloom A (2005) Mineral nutrition of plants: principles and perspectives, 2nd eds.
940 Sunderland, Mass Sinauer: 292-305

941 Gao F, Robe K, Bettembourg M, Navarro N, Rofidal V, Santoni V, Gaynard F, Vignols F,
942 Roschzttardtz H, Izquierdo E, et al. (2020) The Transcription Factor bHLH121 Interacts
943 with bHLH105 (ILR3) and Its Closest Homologs to Regulate Iron Homeostasis in
944 *Arabidopsis*. *Plant Cell* 32: 508-524

945 Garcia MJ, Romera FJ, Stacey MG, Stacey G, Villar E, Alcantara E, Perez-Vicente R (2013)
946 Shoot to root communication is necessary to control the expression of iron-acquisition
947 genes in Strategy I plants. *Planta* 237: 65-75

948 Gayomba SR, Jung H-i, Yan J, Danku J, Rutzke MA, Bernal M, Kramer U, Kochian LV, Salt
949 DE, Vatamaniuk OK (2013) The CTR/COPT-dependent copper uptake and SPL7-
950 dependent copper deficiency responses are required for basal cadmium tolerance in *A.*
951 *thaliana*. *Metallomics* 5: 1262-1275

952 Gayomba SR, Jung HI, Yan J, Danku J, Rutzke MA, Bernal M, Kramer U, Kochian LV, Salt DE,
953 Vatamaniuk OK (2013) The CTR/COPT-dependent copper uptake and SPL7-dependent
954 copper deficiency responses are required for basal cadmium tolerance in *A. thaliana*.
955 *Metallomics* 5: 1262-1275

956 Gayomba SR, Zhai Z, Jung HI, Vatamaniuk OK (2015) Local and systemic signaling of iron
957 status and its interactions with homeostasis of other essential elements. *Front Plant Sci* 6:
958 716

959 Grillet L, Lan P, Li W, Mokkapati G, Schmidt W (2018) IRON MAN is a ubiquitous family of
960 peptides that control iron transport in plants. *Nat Plants* 4: 953-963

961 Ha JH, Doguer C, Wang X, Flores SR, Collins JF (2016) High-Iron Consumption Impairs
962 Growth and Causes Copper-Deficiency Anemia in Weanling Sprague-Dawley Rats.
963 *PLoS One* 11: e0161033

964 Hirayama T, Lei GJ, Yamaji N, Nakagawa N, Ma JF (2018) The Putative Peptide Gene FEP1
965 Regulates Iron Deficiency Response in *Arabidopsis*. *Plant Cell Physiol* 59: 1739-1752

966 Jain A, Wilson G, Connolly E (2014) The diverse roles of FRO family metalloreductases in iron
967 and copper homeostasis. *Frontiers in Plant Science* 5

968 Jeong J, Merkovich A, Clyne M, Connolly EL (2017) Directing iron transport in dicots:
969 regulation of iron acquisition and translocation. *Curr Opin Plant Biol* 39: 106-113

970 Jiang A, Guo Z, Pan J, Zhuang Y, Zuo D, Hao C, Gao Z, Xin P, Chu J, Zhong S, et al. (2020)
971 The *PIF1-MIR408-Plantacyanin* Repression Cascade Regulates Light Dependent Seed
972 Germination. *bioRxiv*: 2020.2007.2020.212340

973 Joung J-G, Corbett AM, Fellman SM, Tieman DM, Klee HJ, Giovannoni JJ, Fei Z (2009) Plant
974 MetGenMAP: An Integrative Analysis System for Plant Systems Biology. *Plant
975 Physiology* 151: 1758-1768

976 Jung H-i, Gayomba SR, Rutzke MA, Craft E, Kochian LV, Vatamaniuk OK (2012) COPT6 is a
977 plasma membrane transporter that functions in copper homeostasis in *Arabidopsis* and is
978 a novel target of SQUAMOSA promoter-binding protein-like 7. *The Journal of biological
979 chemistry* 287: 33252-33267

980 Jung HI, Gayomba SR, Rutzke MA, Craft E, Kochian LV, Vatamaniuk OK (2012) COPT6 is a
981 plasma membrane transporter that functions in copper homeostasis in *Arabidopsis* and is
982 a novel target of SQUAMOSA promoter-binding protein-like 7. *J Biol Chem* 287: 33252-
983 33267

984 Kastoori Ramamurthy R, Xiang Q, Hsieh EJ, Liu K, Zhang C, Waters BM (2018) New aspects
985 of iron-copper crosstalk uncovered by transcriptomic characterization of Col-0 and the
986 copper uptake mutant *spl7* in *Arabidopsis thaliana*. *Metallomics* 10: 1824-1840

987 Khan MA, Castro-Guerrero NA, McInturf SA, Nguyen NT, Dame AN, Wang J, Bindbeutel RK,
988 Joshi T, Jurisson SS, Nusinow DA, et al. (2018) Changes in iron availability in
989 *Arabidopsis* are rapidly sensed in the leaf vasculature and impaired sensing leads to
990 opposite transcriptional programs in leaves and roots. *Plant, Cell & Environment* 41:
991 2263-2276

992 Khan MA, Castro-Guerrero NA, McInturf SA, Nguyen NT, Dame AN, Wang J, Bindbeutel RK,
993 Joshi T, Jurisson SS, Nusinow DA, et al. (2018) Changes in iron availability in
994 *Arabidopsis* are rapidly sensed in the leaf vasculature and impaired sensing leads to
995 opposite transcriptional programs in leaves and roots. *Plant Cell Environ* 41: 2263-2276

996 Kim SA, LaCroix IS, Gerber SA, Guerinot ML (2019) The iron deficiency response in
997 *Arabidopsis thaliana* requires the phosphorylated transcription factor URI. *Proceedings
998 of the National Academy of Sciences* 116: 24933-24942

999 Kim SA, Punshon T, Lanzilotti A, Li L, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006)
1000 Localization of Iron in *Arabidopsis* Seed Requires the Vacuolar Membrane
1001 Transporter VIT1. *Science* 314: 1295-1298

1002 Klevay LM (2001) Iron overload can induce mild copper deficiency. *J Trace Elem Med Biol* 14:
1003 237-240

1004 Kobayashi T (2019) Understanding the Complexity of Iron Sensing and Signaling Cascades in
1005 Plants. *Plant Cell Physiol* 60: 1440-1446

1006 Kroh GE, Pilon M (2020) Micronutrient homeostasis and chloroplast iron protein expression is
1007 largely maintained in a chloroplast copper transporter mutant. *Funct Plant Biol* 47: 1041-
1008 1052

1009 Kumar RK, Chu H-H, Abundis C, Vasques K, Rodriguez DC, Chia J-C, Huang R, Vatamaniuk
1010 OK, Walker EL (2017) Iron-Nicotianamine Transporters Are Required for Proper Long
1011 Distance Iron Signaling. *Plant Physiology* 175: 1254-1268

1012 Kumar RK, Chu HH, Abundis C, Vasques K, Rodriguez DC, Chia JC, Huang R, Vatamaniuk
1013 OK, Walker EL (2017) Iron-Nicotianamine Transporters Are Required for Proper Long
1014 Distance Iron Signaling. *Plant Physiol* 175: 1254-1268

1015 Kurt F (2021) An Insight into Oligopeptide Transporter 3 (OPT3) Family Proteins. *Protein and*
1016 *Peptide Letters* 28: 43-54

1017 Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment
1018 of short DNA sequences to the human genome. *Genome Biology* 10: R25

1019 Li WF, Lan P (2017) The Understanding of the Plant Iron Deficiency Responses in Strategy I
1020 Plants and the Role of Ethylene in This Process by Omic Approaches. *Frontiers in Plant*
1021 *Science* 8

1022 Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for
1023 RNA-seq data with DESeq2. *Genome Biology* 15: 550

1024 Lubkowitz M (2011) The Oligopeptide Transporters: A Small Gene Family with a Diverse
1025 Group of Substrates and Functions? *Mol Plant* 4: 407-415

1026 Maas FM, van de Wetering DA, van Beusichem ML, Bienfait HF (1988) Characterization of
1027 phloem iron and its possible role in the regulation of Fe-efficiency reactions. *Plant*
1028 *Physiol* 87: 167-171

1029 Mai HJ, Lindermayr C, von Toerne C, Fink-Straube C, Durner J, Bauer P (2015) Iron and FER-
1030 LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR-dependent
1031 regulation of proteins and genes in *Arabidopsis thaliana* roots. *Proteomics* 15: 3030-3047

1032 Malzer W, Kanngießer B (2005) A Model for the Confocal Volume of 3D Micro X-ray
1033 Fluorescence Spectrometer. *Spectrochimica Acta Part B: Atomic Spectroscopy* 60: 1334-
1034 1341

1035 Mantouvalou I, Malzer W, Kanngießer B (2012) Quantification for 3D micro X-ray fluorescence.
1036 *Spectrochimica Acta Part B: Atomic Spectroscopy* 77: 9-18

1037 Mantouvalou I, Malzer W, Kanngießer B (2012) Quantification for 3D micro X-ray
1038 fluorescence. *Spectrochimica Acta Part B-Atomic Spectroscopy* 77: 9-18

1039 Mendoza-Cózatl DG, Xie Q, Akmakjian GZ, Jobe TO, Patel A, Stacey MG, Song L, Demoin
1040 DW, Jurisson SS, Stacey G, et al. (2014) OPT3 is a component of the iron-signaling
1041 network between leaves and roots and misregulation of OPT3 leads to an over-
1042 accumulation of cadmium in seeds. *Mol Plant* 7: 1455-1469

1043 Mukherjee I, Campbell NH, Ash JS, Connolly EL (2006) Expression profiling of the *Arabidopsis*
1044 ferric chelate reductase (FRO) gene family reveals differential regulation by iron and
1045 copper. *Planta* 223: 1178-1190

1046 Newville M (2013) Larch: An Analysis Package for XAFS and Related Spectroscopies. *J. Phys.:*
1047 *Conf. Ser.* 430

1048 Osawa H, Stacey G, Gassmann W (2006) ScOPT1 and AtOPT4 function as proton-coupled
1049 oligopeptide transporters with broad but distinct substrate specificities. *Biochemical*
1050 *Journal* 393: 267-275

1051 Pottier M, Dumont J, Masclaux-Daubresse C, Thomine S (2019) Autophagy is essential for
1052 optimal translocation of iron to seeds in *Arabidopsis*. *Journal of experimental botany* 70:
1053 859-869

1054 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The
1055 SILVA ribosomal RNA gene database project: improved data processing and web-based
1056 tools. *Nucleic Acids Research* 41: 7

1057 Rahmati Ishka M, Vatamaniuk OK (2020) Copper deficiency alters shoot architecture and
1058 reduces fertility of both gynoecium and androecium in *Arabidopsis thaliana*. *BioRxiv*
1059 Rahmati Ishka M, Vatamaniuk OK (2020) Copper deficiency alters shoot architecture and
1060 reduces fertility of both gynoecium and androecium in *Arabidopsis thaliana*. *Plant Direct*
1061 4: e00288

1062 Rai S, Singh PK, Mankotia S, Swain J, Satbhai SB (2021) Iron homeostasis in plants and its
1063 crosstalk with copper, zinc, and manganese. *Plant Stress* 1: 100008

1064 Ravet K, Danford FL, Dihle A, Pittarello M, Pilon M (2011) Spatiotemporal Analysis of Copper
1065 Homeostasis in *Populus trichocarpa* Reveals an Integrated Molecular Remodeling for a
1066 Preferential Allocation of Copper to Plastocyanin in the Chloroplasts of Developing
1067 Leaves. *Plant Physiology* 157: 1300-1312

1068 Ravet K, Pilon M (2013) Copper and Iron Homeostasis in Plants: The Challenges of Oxidative
1069 Stress. *Antioxidants & Redox Signaling* 19: 23

1070 Rees EM, Lee J, Thiele DJ (2004) Mobilization of Intracellular Copper Stores by the Ctr2
1071 Vacuolar Copper Transporter. *Journal of Biological Chemistry* 279: 54221-54229

1072 Rodríguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB (1999) A Copper
1073 Cofactor for the Ethylene Receptor ETR1 from *Arabidopsis*. *Science* 283: 996-998

1074 Schott-Verdugo S, Müller L, Classen E, Gohlke H, Groth G (2019) Structural Model of the
1075 ETR1 Ethylene Receptor Transmembrane Sensor Domain. *Scientific Reports* 9: 8869

1076 Schwarz B, Bauer P (2020) FIT, a regulatory hub for iron deficiency and stress signaling in roots,
1077 and FIT-dependent and -independent gene signatures. *J Exp Bot* 71: 1694-1705

1078 Shahbaz M, Ravet K, Peers G, Pilon M (2015) Prioritization of copper for the use in
1079 photosynthetic electron transport in developing leaves of hybrid poplar. *Frontiers in Plant
1080 Science* 6

1081 Sheng H, Jiang Y, Ishka MR, Chia J-C, Dokuchayeva T, Kavulych Y, Zavodna T-O, Mendoza
1082 PN, Huang R, Smieshka LM, et al. (2021) YSL3-mediated copper distribution is required
1083 for fertility, grain yield, and size in *Brachypodium*. *Plant Physiology*:
1084 2019.2012.874396

1085 Sheng H, Jiang Y, Ishka MR, Chia JC, Dokuchayeva T, Kavulych Y, Zavodna TO, Mendoza PN,
1086 Huang R, Smieshka LM, et al. (2021) YSL3-mediated copper distribution is required for
1087 fertility, seed size and protein accumulation in *Brachypodium*. *Plant Physiol* 186: 655-
1088 676

1089 Solé VA, Papillon E, Cotte M, Walter P, Susini J (2007) A multiplatform code for the analysis of
1090 energy-dispersive X-ray fluorescence spectra. *Spectrochimica Acta Part B: Atomic
1091 Spectroscopy* 62: 63-68

1092 Spielmann J, Vert G (2020) The many facets of protein ubiquitination and degradation in plant
1093 root iron-deficiency responses. *Journal of Experimental Botany* 72: 2071-2082

1094 Stacey MG, Koh S, Becker J, Stacey G (2002) AtOPT3, a Member of the Oligopeptide
1095 Transporter Family, Is Essential for Embryo Development in *Arabidopsis*. *The Plant Cell*
1096 14: 2799-2811

1097 Stacey MG, Patel A, McClain WE, Mathieu M, Remley M, Rogers EE, Gassmann W, Blevins
1098 DG, Stacey G (2008) The *Arabidopsis* AtOPT3 Protein Functions in Metal Homeostasis
1099 and Movement of Iron to Developing Seeds. *Plant Physiology* 146: 589-601

1100 Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq.
1101 *Bioinformatics* 25: 7

1102 Tsang T, Posimo JM, Gudiel AA, Cicchini M, Feldser DM, Brady DC (2020) Copper is an
1103 essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma.
1104 *Nature cell biology* 22: 412-424

1105 Turski ML, Brady DC, Kim HJ, Kim BE, Nose Y, Counter CM, Winge DR, Thiele DJ (2012) A
1106 novel role for copper in Ras/mitogen-activated protein kinase signaling. *Mol Cell Biol* 32:
1107 1284-1295

1108 Turski ML, Thiele DJ (2009) New roles for copper metabolism in cell proliferation, signaling,
1109 and disease. *J Biol Chem* 284: 717-721

1110 Waters BM, Armbrust LC (2013) Optimal copper supply is required for normal plant iron
1111 deficiency responses. *Plant Signal Behav* 8: e26611

1112 Waters BM, McInturf SA, Amundsen K (2014) Transcriptomic and physiological
1113 characterization of the fefe mutant of melon (*Cucumis melo*) reveals new aspects of iron-
1114 copper crosstalk. *New Phytol* 203: 1128-1145

1115 Waters BM, McInturf SA, Stein RJ (2012) Rosette iron deficiency transcript and microRNA
1116 profiling reveals links between copper and iron homeostasis in *Arabidopsis thaliana*. *J
1117 Exp Bot* 63: 5903-5918

1118 Wongkaew A, Asayama K, Kitaiwa T, Nakamura SI, Kojima K, Stacey G, Sekimoto H,
1119 Yokoyama T, Ohkama-Ohtsu N (2018) AtOPT6 Protein Functions in Long-Distance
1120 Transport of Glutathione in *Arabidopsis thaliana*. *Plant and Cell Physiology* 59: 1443-
1121 1451

1122 Wu Y, Zhang D, Chu Jee Y, Boyle P, Wang Y, Brindle Ian D, De Luca V, Després C (2012) The
1123 *Arabidopsis* NPR1 Protein Is a Receptor for the Plant Defense Hormone Salicylic Acid.
1124 *Cell Reports* 1: 639-647

1125 Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009) SQUAMOSA Promoter
1126 Binding Protein-Like7 Is a Central Regulator for Copper Homeostasis in *Arabidopsis*.
1127 *Plant Cell* 21: 347-361

1128 Yan J, Chia J-C, Sheng H, Jung H-i, Zavodna T-O, Zhang L, Huang R, Jiao C, Craft EJ, Fei Z, et
1129 al. (2017) *Arabidopsis* Pollen Fertility Requires the Transcription Factors CITF1 and
1130 SPL7 That Regulate Copper Delivery to Anthers and Jasmonic Acid Synthesis. *The Plant
1131 Cell* 29: 3012-3029

1132 Zhai Z, Gayomba SR, Jung H-I, Vimalakumari NK, Piñeros M, Craft E, Rutzke MA, Danku J,
1133 Lahner B, Punshon T, et al. (2014) OPT3 Is a Phloem-Specific Iron Transporter That Is
1134 Essential for Systemic Iron Signaling and Redistribution of Iron and Cadmium in
1135 *Arabidopsis*. *The Plant cell* 26: 2249-2264

1136 Zhai Z, Gayomba SR, Jung H-i, Vimalakumari NK, Piñeros M, Craft E, Rutzke MA, Danku J,
1137 Lahner B, Punshon T, et al. (2014) OPT3 is a phloem-specific iron transporter that is
1138 essential for systemic iron signaling and redistribution of iron and cadmium in
1139 *Arabidopsis*. *Plant Cell* 26: 2249-2264

1140 Zhang Z, Xie Q, Jobe TO, Kau AR, Wang C, Li Y, Qiu B, Wang Q, Mendoza-Cózatl DG,
1141 Schroeder JI (2016) Identification of AtOPT4 as a Plant Glutathione Transporter. *Mol
1142 Plant* 9: 481-484

1143 Zhong S, Joung J-G, Zheng Y, Chen Y-r, Liu B, Shao Y, Xiang JZ, Fei Z, Giovannoni JJ (2011)
1144 High-Throughput Illumina Strand-Specific RNA Sequencing Library Preparation. *Cold
1145 Spring Harbor Protocols* 2011: pdb.prot5652

1146

1147

1148 **Figure Legends**

1149

1150 **Figure 1. Iron and copper distribution is altered in the vasculature of the *opt3* mutant.**

1151 Plants were grown hydroponically with 250 nM CuSO₄ for 26 days (in A to D) or for 5 weeks (in
1152 E to H) before tissues were collected. A to D show 2D XRF maps of the indicated minerals in
1153 mature leaves; E to H show 2D-CXRF maps of indicated elements in the vasculature of mature
1154 leaves petioles. Bars = 1 mm; Xy and Ph indicate the location of the xylem and the phloem,
1155 respectively.

1156

1157 **Figure 2. AtOPT3 mediates copper loading to the phloem and redistribution from mature**
1158 **leaves to young leaves and roots.**

1159 The concentration of copper in the phloem sap (A) and the indicated plant tissues (B) of wild
1160 type and the *opt3* mutant. Plants were grown hydroponically under iron and copper sufficient
1161 conditions. Shown values are arithmetic means \pm S.E. Asterisks indicate statistically significant
1162 differences from wild type ($p < 0.05$, Student's *t* test, $n = 3$ to 4 experiments).

1163

1164 **Figure 3. The *opt3* mutant accumulates less copper and iron in developing embryos and**
1165 **seeds.**

1166 ICP-MS analysis of mineral accumulation in dry siliques (A) and seeds (D) collected from
1167 soil-grown plants. Shown values are arithmetic means \pm S.E. Asterisks indicate statistically
1168 significant differences from wild type ($p < 0.05$, Student's *t* test, $n = 3$ independent experiments
1169 with tissues pooled from four to five plants per experiment). B. Fifteen-mm-long developing
1170 siliques were collected from soil-grown plants and subjected to 2D-SXRF analysis. White arrows
1171 point to embryos C. Dry seeds were collected as described for A and D and subjected to 2D CT-
1172 XRF. Blue arrows point to the vasculature, blue boxes to regions in the seed coat with
1173 contrasting copper accumulation. B and C show representative images of at least three scanned
1174 specimens.

1175

1176 **Figure 4. OPT3 transports copper in *X. laevis* oocytes and *S. cerevisiae***

1177 (A) Copper uptake into *Xenopus* oocytes injected with either *OPT3* cRNA (OPT3) or water
1178 (Mock). Copper uptake was measured at 3 h. The basal uptake solution was supplemented with

1179 100 μ M CuSO₄ (Cu²⁺) or 100 μ M Cu-NA (Cu-NA). Presented values are arithmetic means \pm
1180 S.E. (n = 5). Asterisks indicate statistically significant differences (**, p < 0.01, using Student's
1181 t-test). (B) Copper concentration in *S. cerevisiae* wild-type, SEY6210 and its isogenic
1182 *ctr1Δ2Δ3Δ* mutant both expressing the empty *YES3-Gate* vector (*Wt* and *ctrΔ*, respectively) or
1183 the *ctr1Δ2Δ3Δ* mutant expressing *YES3-Gate-OPT3* (*OPT3*). Levels not connected with the same
1184 letter are statistically different (n = 4 to 5, Tukey HSD test). (C) The wild type and the
1185 *ctr1Δ2Δ3Δ* *S. cerevisiae* mutant transformed with the empty YES3-Gate vector or the *ctr1Δ2Δ3Δ*
1186 transformed with the vector containing the *OPT3* cDNA or the *A. thaliana* copper transporter,
1187 *COPT2*, were serially 10-fold diluted and spotted onto solid YPEG medium supplemented with
1188 different concentrations of CuSO₄. Colonies were visualized after incubating plates for 3 days at
1189 30°C. Dilution series are indicated on the right. *S. cerevisiae* lines were designated as in (B)
1190 except that *OPT3-1* and *OPT3-2* designate two distinct *OPT3* expressing clones that were
1191 selected and propagated after yeast transformation).

1192

1193 **Figure 5. The *opt3* mutant is sensitive to copper deficiency.**

1194 In (A) and (B), wild type and the *opt3* mutant were grown hydroponically with or without 125
1195 nM CuSO₄ (+ Cu or - Cu, respectively). Images were taken after 4 weeks (A) or 9 weeks (B)
1196 from the seed sowing. (C), (D) and (E) show time to flowering, primary rosette leaf number and
1197 leaf length, respectively. Plants were germinated and growth hydroponically without or with
1198 copper (0 or 125, respectively and white bars). After four weeks of growth, a subset of plants
1199 grown with or without copper was transferred to 500 nM CuSO₄ (500 and grey bars).
1200 Measurements were taken after one week of growth and when plants were eight-week-old. Data
1201 show mean values \pm S.E. Levels not connected by the same letter are statistically different
1202 (Tukey HSD, JMP Pro 14 software package, n = 3 independent experiments with data collected
1203 from 3 to 6 plants per each experiment). (F) shows a representative image of leaves (from young
1204 to old in the direction from left to right) of wild type and the *opt3* mutant both grown
1205 hydroponically for 4 weeks with or without copper (125 nM Cu or 0 nM Cu, respectively).

1206

1207 **Figure 6. The *opt3* mutant mounts copper deficiency response in roots and young leaves.**

1208 A. Total number of differentially expressed genes in roots, mature leaves and young leaves of the
1209 *opt3* mutant vs wild type, according to RNA-seq data (ratio ≥ 1.5 or ≤ 0.67 , false-discovery

1210 rate [FDR] < 0.05). Venn diagrams show the number of upregulated (B) or downregulated (C)
1211 genes in roots, mature and young leaves. Overlaps indicate the number of genes co-regulated in
1212 indicated tissues. Genes associated with iron and copper homeostasis are shown in (B) and (C).
1213 Genes involved in copper homeostasis are marked in bold; genes associated with both iron and
1214 copper deficiency responses are marked in bold and underlined.

1215

1216 **Figure 7. The expression of *OPT3* is upregulated by copper deficiency.**

1217 Four-week-old plants grown hydroponically with 250 nM CuSO₄ and a subset of plants was
1218 transferred to a fresh medium without copper. Roots were collected after 1 or 4 days of
1219 treatments for RT-qPCR analysis. *CITF1* was used as a marker of copper deficiency to validate
1220 the efficiency of treatment. Shown are mean values ± S.E. Asterisks indicate statistically
1221 significant differences from the expression of genes under control condition, set to one ($p < 0.05$,
1222 Student's *t* test, $n = 3$ independent experiments).

1223

1224 **Figure 8. Copper supplementation partially rescues the molecular symptoms of copper**
1225 **deficiency in the *opt3* mutant.**

1226 Plants were grown hydroponically under control conditions (white bars) until the late-vegetative
1227 stage before a subset of plants was transferred to a fresh medium with higher copper
1228 concentrations (250 nM CuSO₄, light grey bars in A, B, E, F, J, K or 500 nM CuSO₄, dark
1229 grey bars in C, D, G, H, L, M). Plants were grown for another week prior to tissue collection
1230 and RT-qPCR analysis. The transcript abundance of indicated genes was normalized to the wild
1231 type grown under control conditions. Data show mean values ± S.E. Levels not connected by the
1232 same letter are statistically different (Tukey HSD, JMP Pro 14 software package, $n = 3$
1233 independent experiments with roots pooled from 3 plants per each experiment).

1234

1235 **Figure 9. The expression of copper deficiency markers is controlled by the *OPT3* function**
1236 **in the shoot.**

1237 The transcript abundance of copper- (A) and iron-deficiency (B) markers in roots of grafted
1238 plants. Wild type and the *opt3* mutant were used for reciprocal grafting. *WtS/WtR*, wild type
1239 scion grafted to wild type rootstock (control); *opt3S/opt3R*, *opt3* scion grafted to *opt3* rootstock;
1240 *WtS/opt3R*, wild type scion grafted to *opt3* rootstock; *opt3S/WtR*, *opt3* scion grafted to wild

1241 type rootstock. Shown values represent means \pm S.E. Asterisks (*) indicate statistically
1242 significant values of the expression level is > 2 or < 0.5 compared to control grafts ($p < 0.05$,
1243 based on CFX Manager 3.1 (BIO-RAD). Shown data are representative of three independent
1244 experiments.

1245

1246 **Figure 10. Copper and iron deficiency applied simultaneously increase the expression of**
1247 ***CITF1* and *FIT*, iron uptake and delivery to shoots.**

1248 The transcript abundance of *CITF1* (A) and *FIT* (B) and iron concentration in roots (C) were analyzed in
1249 roots of plants grown under control conditions (Ctr) or without cooper but with iron (-Cu) for four weeks
1250 prior to tissue collection. To achieve iron deficiency, plants were grown under control conditions for three
1251 weeks, transferred to a solution without iron and grown for one additional week (-Fe). For the
1252 simultaneous iron and copper deficiency treatment, plants were grown without copper but with iron for
1253 three weeks and then transferred to a fresh hydroponic medium lacking both copper and iron. Tissues
1254 were collected and analysed after an additional week of growth (-Cu - Fe). Mean values \pm S.E are
1255 shown. Levels not connected by the same letter are statistically different (Tukey HSD, JMP Pro
1256 14 software package, $n = 3$ independent experiments with roots pooled from 3 plants per each
1257 experiment).

1258

1259 **Figure 11. Altered Fe-Cu crosstalk in the *opt3* mutant contributes to iron over-**
1260 **accumulation.** As illustrated in (A), iron deficiency in the outside medium causes copper
1261 accumulation in roots and leaves of *A. thaliana* wild type while copper deficiency in the outside
1262 medium results in iron accumulation (Bernal et al., 2012; Waters et al., 2012; Waters and
1263 Armbrust, 2013; Waters et al., 2014). By contrast, high iron status can repress copper
1264 accumulation in *A. thaliana* (Waters and Armbrust, 2013). This has been also documented in
1265 animal species (Klevay, 2001; Ha et al., 2016). In the *opt3* mutant (B) the scenario is different in
1266 that, although both iron and copper are available in the outside medium, the *opt3* mutant
1267 experiences simultaneous iron and copper deficiency in the phloem (**Low Fe in the phloem;**
1268 **Low Cu in the Phloem**, respectively). Low iron accumulation in the phloem stimulates
1269 transcriptional iron deficiency response and iron accumulation since iron is available in the
1270 outside medium. Copper deficiency in the phloem, roots and leaves also lead to iron
1271 accumulation and transcriptional copper deficiency response. Increased iron accumulation from
1272 both pathways, in turn, decreases copper uptake further altering Fe-Cu crosstalk.

1273

1274 **Supplemental Figure S1. Copper accumulation in the phloem exudates of wild type and the**
1275 ***opt3* mutant.** Error bars indicate S.E. Asterisks indicate statistically significant differences from
1276 wild type ($p < 0.05$, Student's *t* test). A minimum of ten replicates per sample were performed.
1277 Plants were grown and phloem sap collected as described in (Kumar et al., 2017).

1278

1279 **Supplemental Figure S2. The *opt3* mutant accumulates high concentration of metals in**
1280 **vegetative tissues.**

1281 Plants were grown hydroponically with 125 nM (A) or 250 nM CuSO₄ (B) for 30 days prior to
1282 tissue collection for ICP-MS analysis. Shown values are arithmetic means \pm S.E. Asterisks
1283 indicated statistically significant differences from wild type ($p < 0.05$, Student's *t* test, $n = 3$
1284 independent experiments. In each experiment, tissues were pooled from four to five plants per
1285 measurement).

1286

1287 **Supplemental Figure S3. Seedlings of the *opt3* mutant are sensitive to copper deficiency.**

1288 Plants were grown on $\frac{1}{2}$ MS solid medium with or without 200 μ M or 500 μ M of a copper
1289 chelator BCS. (A) shows a representative image of plants after 10 days of growth after which
1290 root length (B), fresh weight (C) and cupric reductase activity (D) were analyzed. In B to D data
1291 are means \pm S.E. Levels not connected by the same letter are significantly different ($p < 0.05$,
1292 Tukey-Kramer HSD test). In B, $n = 3$ independent experiments with the root length analyzed
1293 from 88 seedlings; in C, $n = 3$ independent experiments with 30 to 40 seedlings in each
1294 experiment; in D, $n = 3$ independent experiments with 20 seedlings analyzed in each experiment.

1295

1296 **Supplemental Figure S4. Transferring the *opt3* mutant to high copper rescues its growth.**

1297 (A) Wild type and the *opt3* mutant were germinated and grown hydroponically 125 nM Cu for 4
1298 weeks before transferring to a fresh hydroponic medium with 500 nM (A) or 250 nM (B) copper.
1299 Images were taken after one week of growth.

1300

1301 **Supplemental Figure S5. The *opt3* mutant accumulates IRT1 protein in roots under Fe**
1302 **sufficient growth conditions.**

1303 (A) Western blots analysis of IRT1 protein accumulation in roots of wild type and the *opt3-3*
1304 mutant. Plants were grown hydroponically with 125 nM CuSO₄ and 10 mM Fe-HBED for 4
1305 weeks prior to tissues collection. (B) Western blots analysis of iron deficiency-induced IRT1
1306 accumulation in wild type roots. Plants were grown hydroponically with 125 nM CuSO₄ and 10
1307 μM Fe-HBED for 3 weeks and then transferred to a fresh medium without iron. Roots were
1308 collected after one week of growth under iron deficiency. The *fit-2* mutant was incorporated as a
1309 negative control for the IRT1 protein accumulation. In (A) and (B), the IRT1 signals are
1310 recognized by the antibody at 35 kD while actin (protein loading control) at 45 kD. For the
1311 immunodetection of actin epitope, the nitrocellulose blots were probed with the primary mouse-
1312 monoclonal anti-actin antibody (1:5,000 dilution, Sigma-Adrich) and secondary, an HRP-
1313 conjugated goat-antimouse IgG antibody (1:10,000 Rockland Immunochemicals). In both cases,
1314 immunoreactive bands were visualized with Clarity Max ECL blotting substrates (BIORAD).
1315
1316

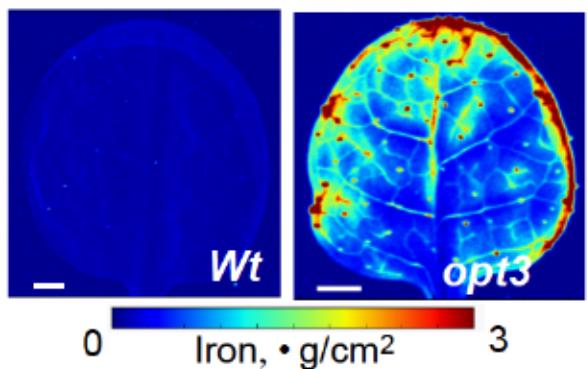
1317 **Table 1.** Average day from the date of sawing to flowering in wild type and the *opt3-3* mutant grown
1318 hydroponically with 0 or 125 nM CuSO₄. A subset of plants was shifted to 500 nM copper¹.

Genotype	Cu concentrations, nM			
	0	0 to 500	125	125 to 500
Wild type (Col-0)	46.83 ± 2.86	40.17 ± 0.79	42.33 ± 0.76	41.80 ± 1.24
<i>opt3-3</i> (Col-0)	N.A. ²	48 ± 1.78	N.A. ²	48.4 ± 1.80

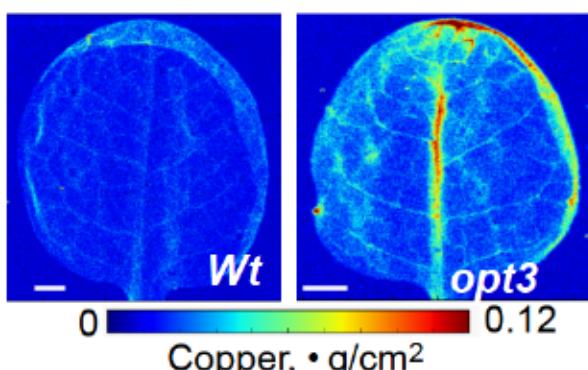
1319 ¹ data showing average ± standard errors (n = 3 to 6)

1320 ² NA; not applicable. The mutant did not flower during the course of measurements which ranged from
1321 week 5 to week 8.

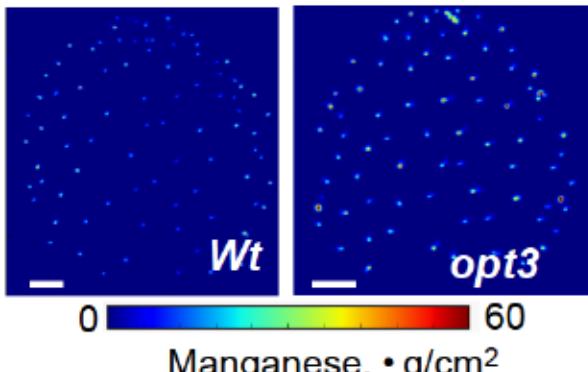
1322

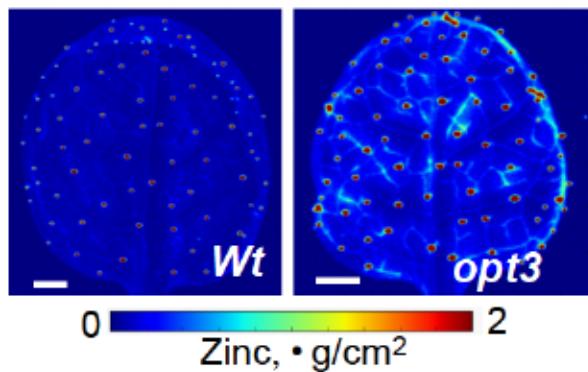

1323 **Table 2. Expression of copper deficiency-responsive genes in roots, mature leaves and young leaves**
 1324 **of the *opt3-3* mutant.** Upregulated or downregulated genes are shown in red or blue bold font,
 1325 respectively, and marked with asterisks (ratio ≥ 1.5 or ≤ 0.67 , [FDR] < 0.05).
 1326

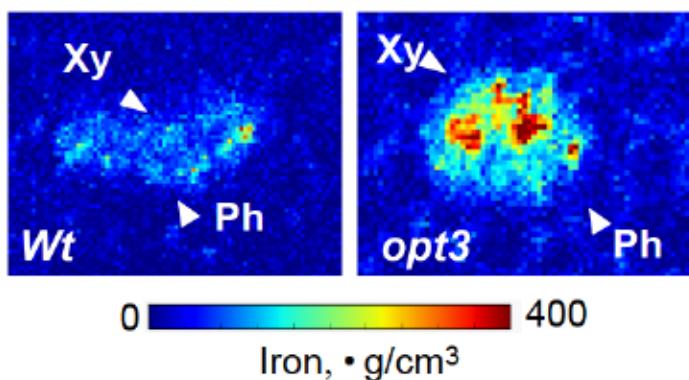
AGI ID	Gene	Short description	RPKM [*]						Ratio (<i>opt3-3</i> /wt)			Ratio (YL vs ML [†])	
			<i>opt3</i> R [†]	wt R [†]	<i>opt3</i> ML [†]	wt ML [†]	<i>opt3</i> YL [†]	wt YL [†]	R [†]	ML [†]	YL [†]	Wt	opt3
AT5G59030	<i>COPT1</i>	Cu transporter 1	7.28	3.46	164.42	98.92	68.26	60.38	2.1	1.7[*]	1.1	0.6[*]	0.4[*]
AT3G46900	<i>COPT2</i>	Cu transporter 2	183.29	46.13	1.57	1.96	0.36	0.11	4.0[*]	0.8	3.3	0.1[*]	0.2[*]
AT2G26975	<i>COPT6</i>	Cu transporter 6	0.3	0.28	38.02	26.09	16.48	17.73	1.1	1.5	0.9	0.7*	0.4[*]
AT4G24120	<i>YSL1</i>	YELLOW STRIPE like 1	0.15	0.35	10.39	3.32	4.33	2.54	0.4	3.1[*]	1.7[*]	0.8	0.4[*]
AT5G24380	<i>YSL2</i>	YELLOW STRIPE like 2	19.19	10.3	1.47	0.97	1.31	0.47	1.9[*]	0.7	2.8[*]	0.5[*]	0.9
AT5G53550	<i>YSL3</i>	YELLOW STRIPE like 3	19.26	20.51	20.96	11.63	8.17	8.56	0.9	1.8[*]	1.0	0.7*	0.4[*]
AT5G23980	<i>FRO4</i>	Ferric reduction oxidase 4	221.4	103.4	5.6	8.7	0.6	0.8	2.1[*]	0.7	0.7	0.1[*]	0.1[*]
AT5G23990	<i>FRO5</i>	Ferric reduction oxidase 5	326.7	39.5	0.5	0.7	0.1	0.0	8.3[*]	0.8	NA	0.2[*]	0.1[*]
AT1G71200	<i>CITFI</i>	Cu-inducible transcription factor 1	9.6	1.5	0.0	0.0	0.0	0.0	6.6[*]	NA	NA	1.0	0.3
AT1G08830	<i>CSD1</i>	Cu/Zn superoxide dismutase 1	100.0	243.4	69.3	102.0	28.2	181.1	0.4[*]	0.7	0.2[*]	1.8	0.4[*]
AT2G28190	<i>CSD2</i>	Cu/Zn superoxide dismutase 2	72.7	123.3	68.8	151.0	138.6	452.8	0.6[*]	0.5	0.3[*]	3.0[*]	2.0
AT2G02850	<i>ARP1</i>	Plantacyanin; copper ion binding protein	17.9	19.6	0.7	0.7	2.2	6.5	0.9	1.0	0.3[*]	9.8[*]	3.3[*]
AT5G20230	<i>BCB</i>	Blue copper binding protein	1.4	3.6	258.6	325.8	41.3	110.8	0.4[*]	0.8	0.4	0.3[*]	0.2[*]
AT1G12520	<i>CCS1</i>	Cu chaperone for superoxide dismutase 1	32.7	55.8	18.6	20.9	12.5	39.4	0.6[*]	0.9	0.3[*]	1.9	0.7[*]
AT2G44790	<i>UCC2</i>	UCLACYANIN 2; Cu ion binding protein	1068.8	1418.9	4.5	1.9	1.3	4.4	0.8*	2.4[*]	0.3[*]	2.3	0.3[*]
AT4G25100	<i>FSD1</i>	Fe superoxide dismutase 1	331.9	120.9	807.2	584.7	681.3	264.0	2.7[*]	1.4	2.6[*]	0.5[*]	0.8*
AT3G56240	<i>CCH</i>	CCH (Cu chaperone)	242.96	171.84	103.78	96.9	42.55	39.82	1.4*	1.1	1.1	0.4[*]	0.4[*]
AT1G71040	<i>LPR2</i>	LPR2 (Low Phosphate Root2); Cu ion binding	30.11	30.98	102.9	83.53	35.62	43.25	1.0	1.2	0.8	0.5[*]	0.4[*]
AT2G07687		Cytochrome c oxidase subunit 3	1.14	2.26	1.03	1.29	0.26	0.7	0.5	0.8	0.4	0.5	0.3[*]
AT1G18140	<i>LAC1</i>	LAC1 (Laccase 1); copper ion binding /oxidoreductase	2.44	2.92	0.03	0.01	0.39	0.98	0.8	NA	0.4	98[*]	14.6[*]
AT2G29130	<i>LAC2</i>	LAC2 (Laccase 2); Cu ion binding /oxidoreductase	22.42	28.28	0.06	0.3	0.44	0.95	0.8	0.2	0.5	3.2	7.4[*]
AT2G46570	<i>LAC6</i>	LAC6 (Laccase 6); Cu ion binding /oxidoreductase	2.57	2.55	0.7	0.38	3.23	3.15	1.0	1.8	1.0	8.2[*]	4.6[*]

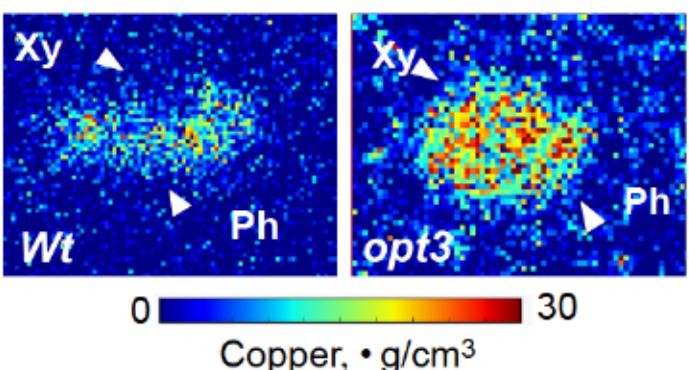

1327 *RPKM stands for Reads Per Kilobase of transcript per Million mapped reads. Asterisks (*, $P < 0.05$)
 1328 indicate transcript levels which are significantly different between wild type and *opt3-3* mutant.
 1329 [†]R, roots; ML, mature leaves, YL, young leaves.

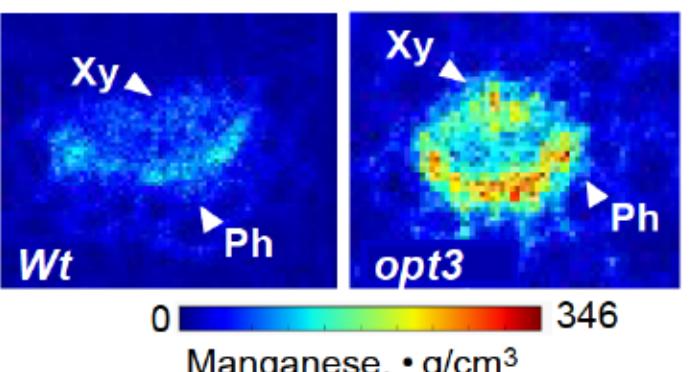
1330

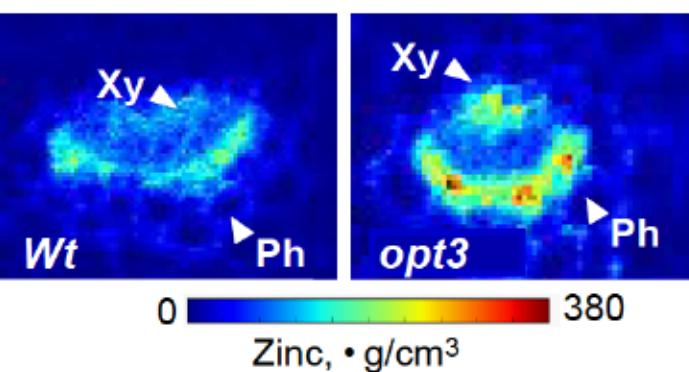

A


B

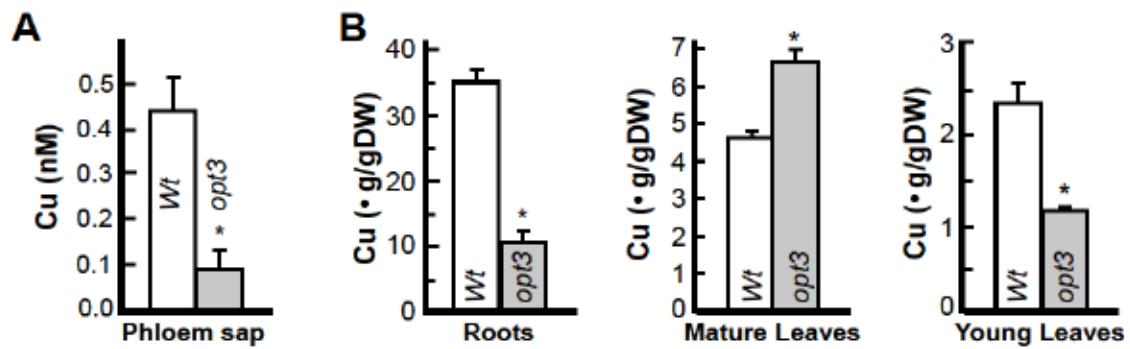

C


D


E

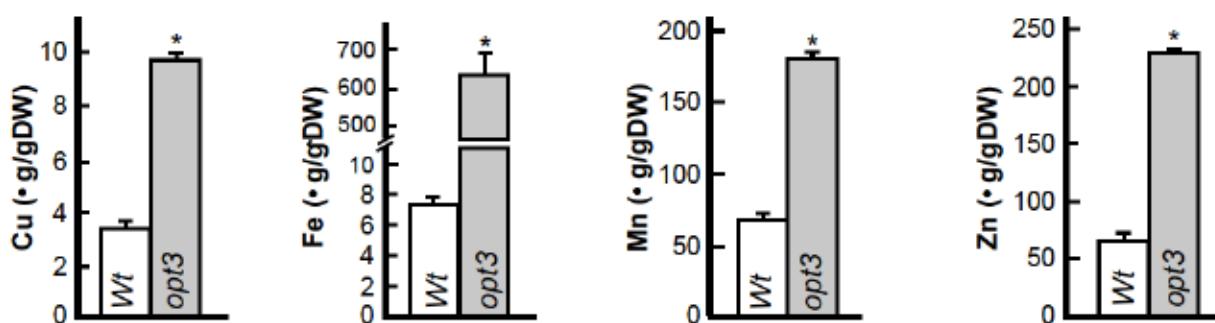

F

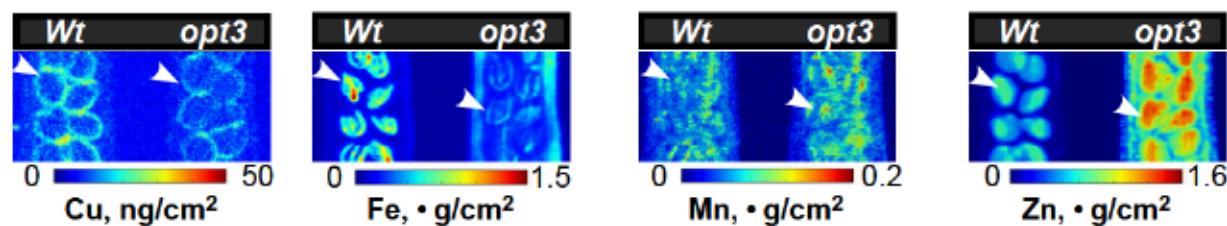
G



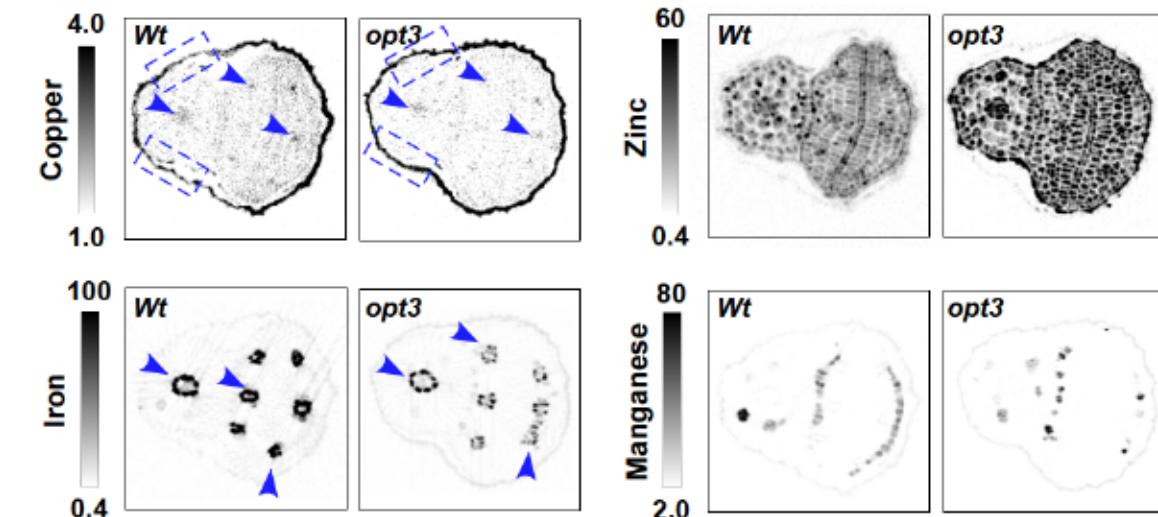
H

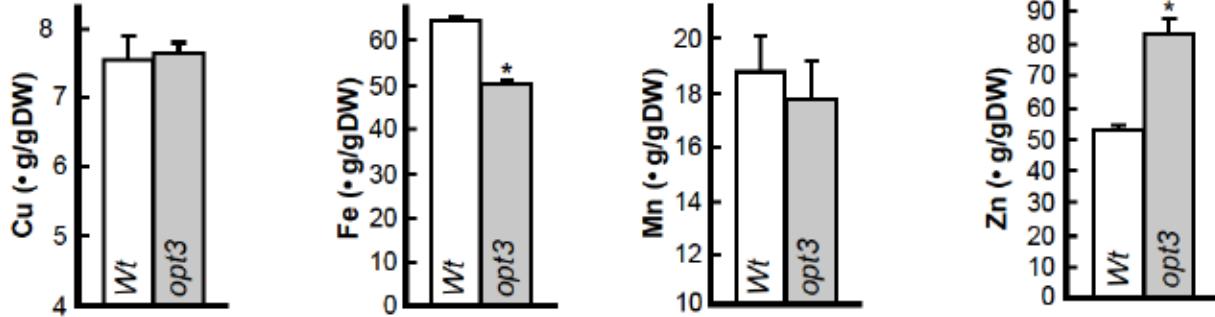
Figure 1. Iron and copper distribution is altered in the vasculature of the *opt3* mutant.


Plants were grown hydroponically with 250 nM CuSO_4 for 26 days (in **A** to **D**) or for 5 weeks (in **E** to **H**) before tissues were collected. **A** to **D** show 2D XRF maps of the indicated minerals in mature leaves; **E** to **H** show 2D-CXRF maps of indicated elements in the vasculature of mature leaf petioles. Bars = 1 mm; Xy and Ph indicate the location of the xylem and the phloem, respectively.

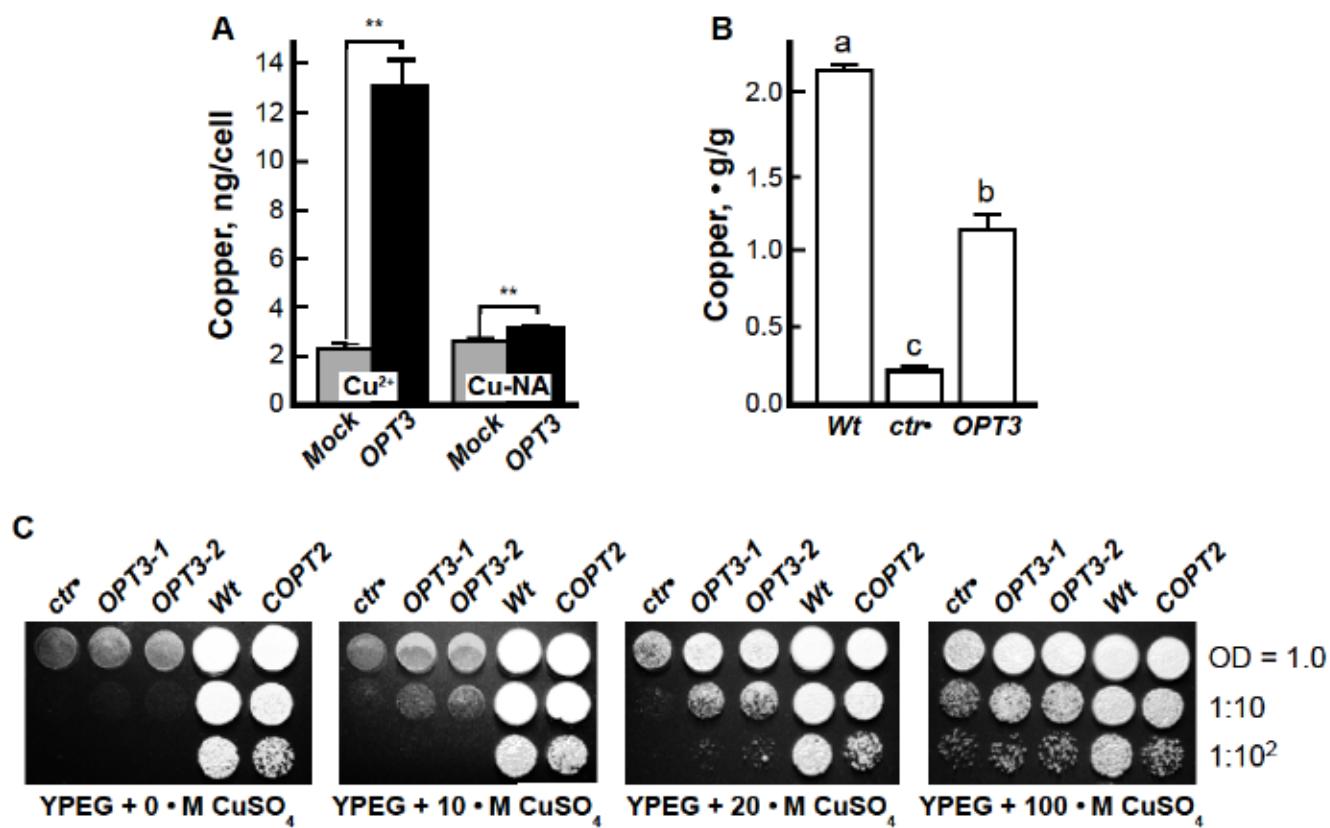

Figure 2. AtOPT3 mediates copper loading to the phloem and redistribution from mature leaves to young leaves and roots.

The concentration of copper in the phloem sap (A) and the indicated plant tissues (B) of wild type and the *opt3* mutant. Plants were grown hydroponically under iron and copper sufficient conditions. Shown values are arithmetic means \pm S.E. Asterisks indicate statistically significant differences from wild type ($p < 0.05$, Student's *t* test, $n = 3$ to 4 experiments).

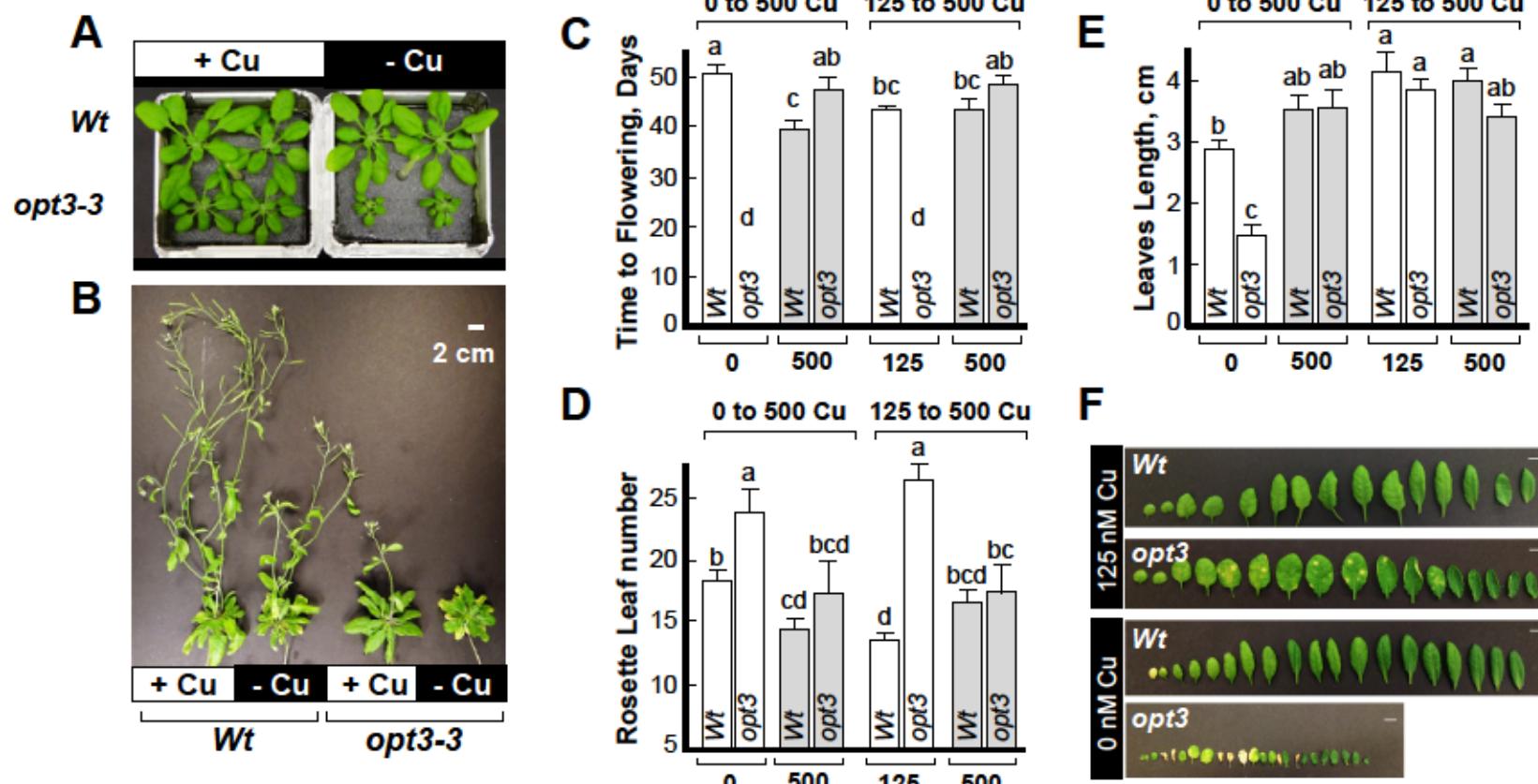

A


B

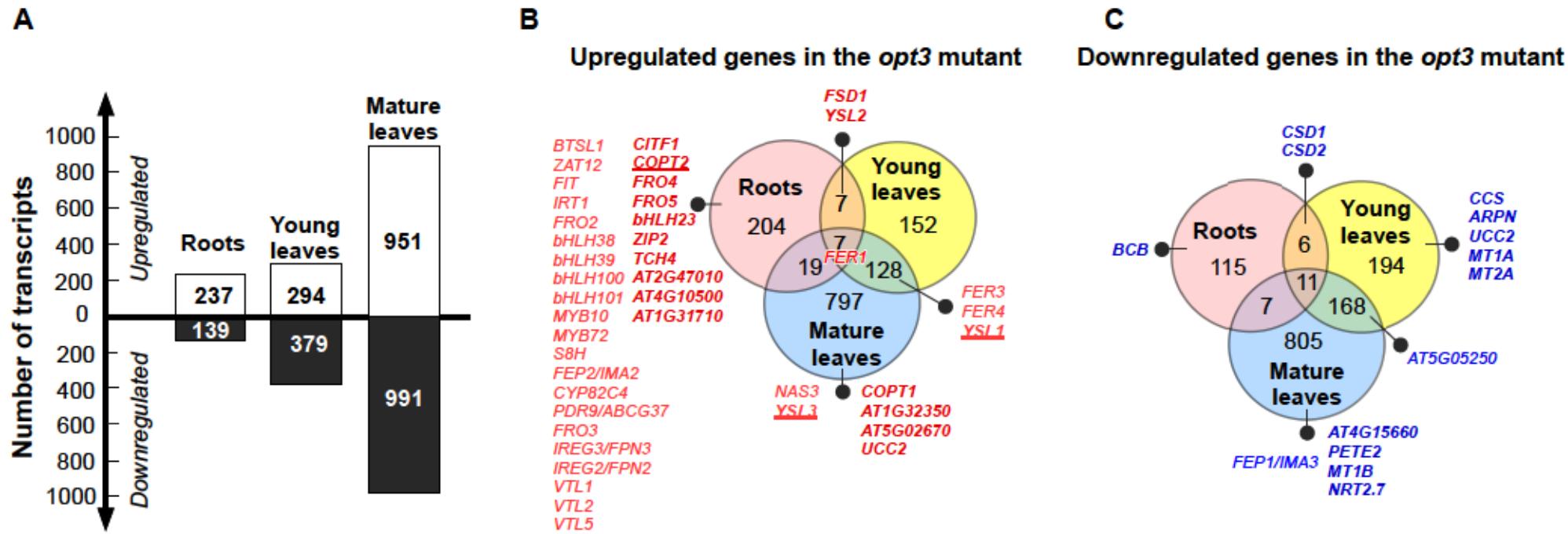
C



D


Figure 3. The *opt3* mutant accumulates less copper and iron in developing embryos and seeds.

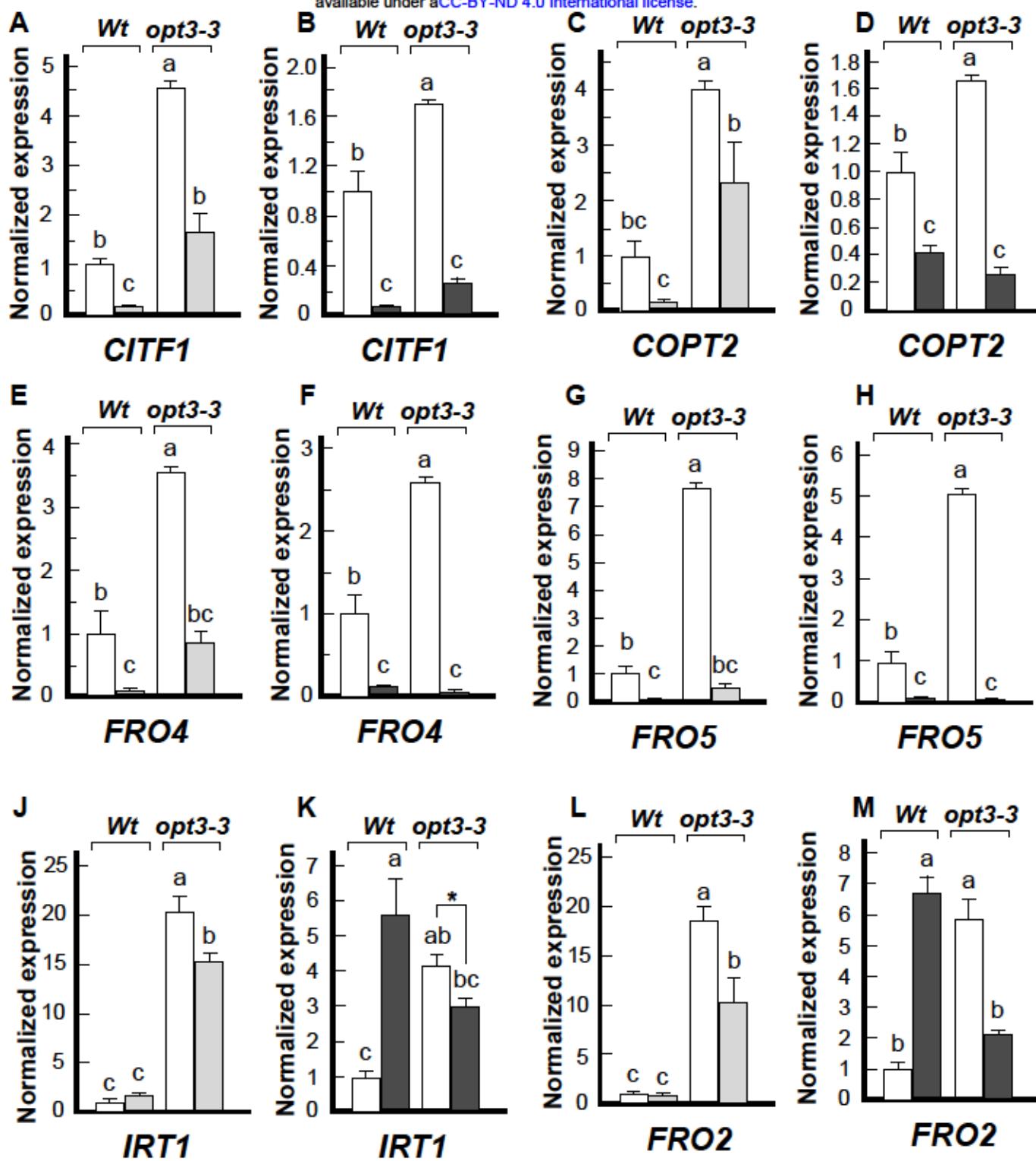
ICP-MS analysis of mineral accumulation in dry siliques (A) and seeds (D) collected from soil-grown plants. Shown values are arithmetic means \pm S.E. Asterisks indicate statistically significant differences from wild-type ($p < 0.05$, Student's *t* test, $n = 3$ independent experiments with tissues pooled from four to five plants per experiment). B. Fifteen-mm-long developing siliques were collected from soil-grown plants and subjected to 2D-SXRF analysis. White arrows point to embryos in C. Dry seeds were collected as described for A and D and subjected to 2D CT-XRF. Blue arrows point to the vasculature, blue boxes to regions in the seed coat with contrasting copper accumulation. B and C show representative images of at least three scanned specimens.


Figure 4. OPT3 transports copper in *X. laevis* oocytes and *S. cerevisiae*.

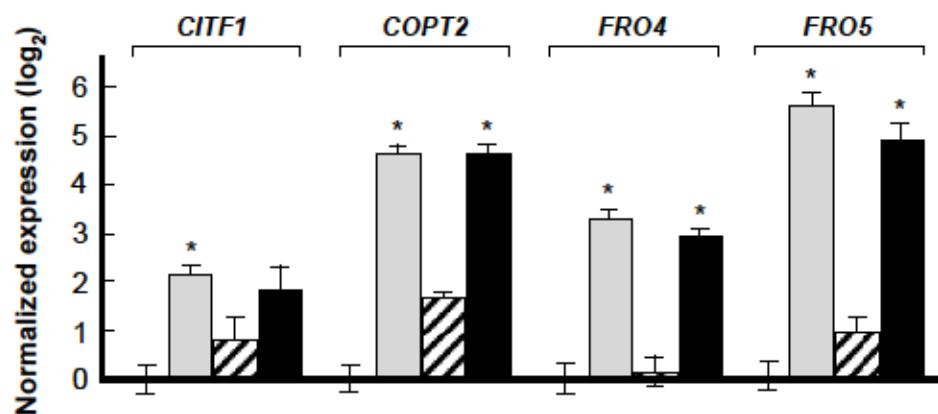
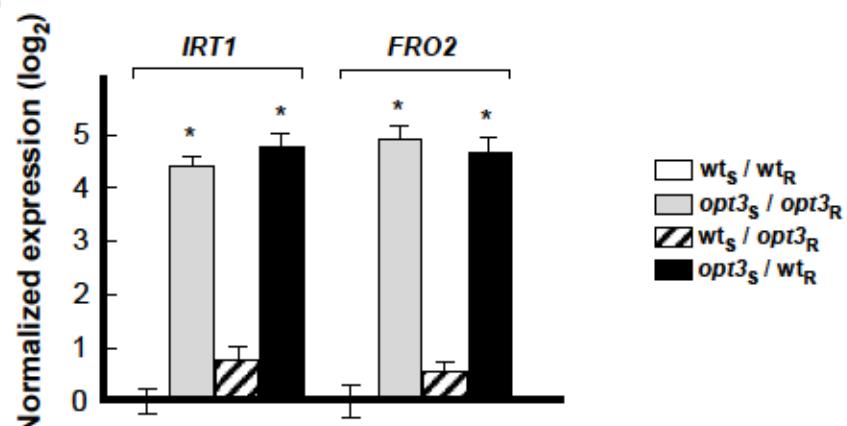
(A) Copper uptake into *Xenopus* oocytes injected with either *OPT3* cRNA (*OPT3*) or water (**Mock**). Copper uptake was measured at 3 h. The basal uptake solution was supplemented with 100 μ M CuSO₄ (**Cu²⁺**) or 100 μ M Cu-NA (**Cu-NA**). Presented values are arithmetic means \pm S.E. (n = 5). Asterisks indicate statistically significant differences (**, p < 0.01, using Student's t-test). (B) Copper concentration in *S. cerevisiae* wild type, SEY6210 and its isogenic *ctr1*¹ 2¹ 3¹ mutant both expressing the empty YES3-Gate vector (**Wt** and **ctr¹**, respectively) or the *ctr1*¹ 2¹ 3¹ mutant expressing YES3-Gate-*OPT3* (**OPT3**). Levels not connected with the same letter are statistically different (n = 4 to 5, Tukey HSD test). (C) The wild type and the *ctr1*¹ 2¹ 3¹ *S. cerevisiae* mutant transformed with the empty YES3-Gate vector or the *ctr1*¹ 2¹ 3¹ transformed with the vector containing the *OPT3* cDNA or the *A. thaliana* copper transporter, *COPT2*, were serially 10-fold diluted and spotted onto solid YPEG medium supplemented with different concentrations of CuSO₄. Colonies were visualized after incubating plates for 3 days at 30°C. Dilution series are indicated on the right. *S. cerevisiae* lines were designated as in (B) except that **OPT3-1** and **OPT3-2** designate two distinct *OPT3* expressing clones that were selected and propagated after yeast transformation).

Figure 5. The *opt3* mutant is sensitive to copper deficiency.

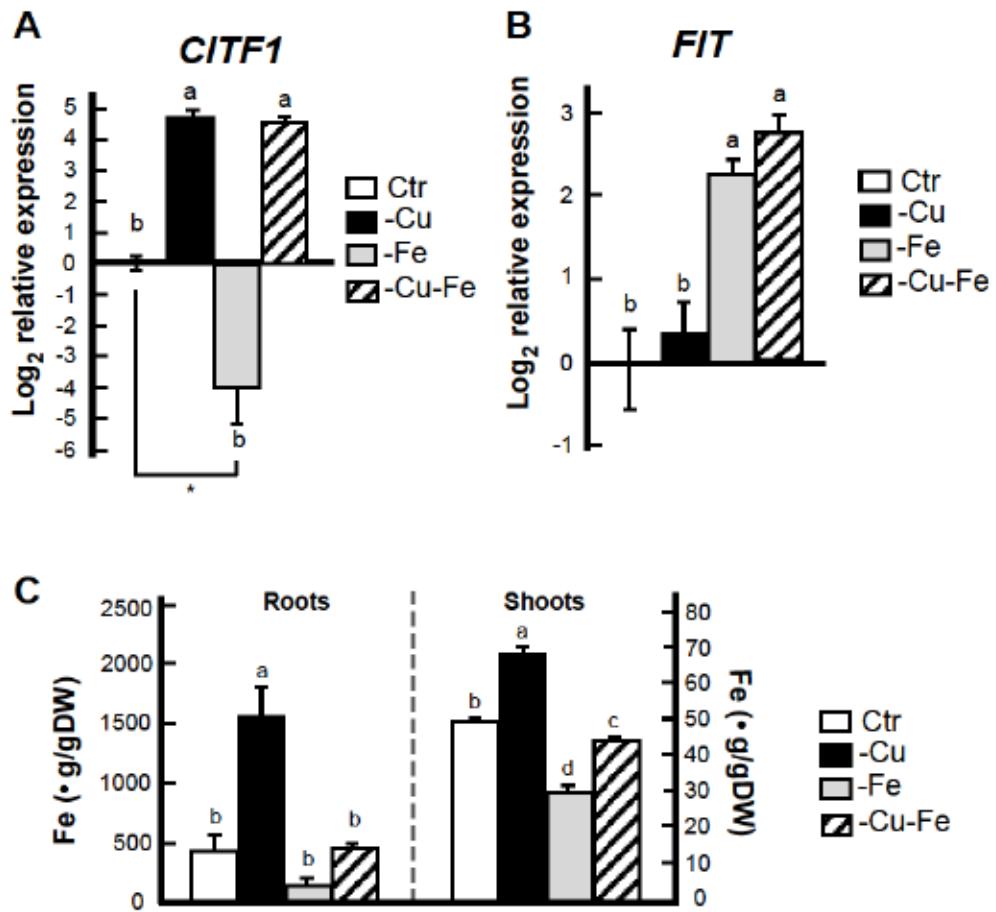
In (A) and (B), wild type and the *opt3* mutant were grown hydroponically with or without 125 nM CuSO_4 (+ Cu or – Cu, respectively). Images were taken after 4 weeks (A) or 9 weeks (B) from the seed sowing. (C), (D) and (E) show time to flowering, primary rosette leaf number and leaf length, respectively. Plants were germinated and growth hydroponically without or with copper (0 or 125, respectively and **white bars**). After four weeks of growth, a subset of plants grown with or without copper was transferred to 500 nM CuSO_4 (500 and **grey bars**). Measurements were taken after one week of growth and when plants were eight-week-old. Data show mean values \pm S.E. Levels not connected by the same letter are statistically different (Tukey HSD, JMP Pro 14 software package, $n = 3$ independent experiments with data collected from 3 to 6 plants per each experiment). (F) shows a representative image of leaves (from young to old in the direction from left to right) of wild type and the *opt3* mutant both grown hydroponically for 4 weeks with or without copper (**125 nM Cu** or **0 nM Cu**, respectively).


Figure 6. The *opt3* mutant mounts copper deficiency response in roots and young leaves.

A. Total number of differentially expressed genes in roots, mature leaves and young leaves of the *opt3* mutant vs. wild type, according to RNA-seq data (ratio ≥ 1.5 or ≤ 0.67 , false-discovery rate [FDR] < 0.05). Venn diagrams show the number of upregulated (**B**) or downregulated (**C**) genes in roots, mature and young leaves. Overlaps indicate the number of genes co-regulated in indicated tissues. Genes associated with iron and copper homeostasis are shown in (**B**) and (**C**). Genes involved in copper homeostasis are marked in bold; genes associated with both iron and copper deficiency responses are marked in bold and underlined.

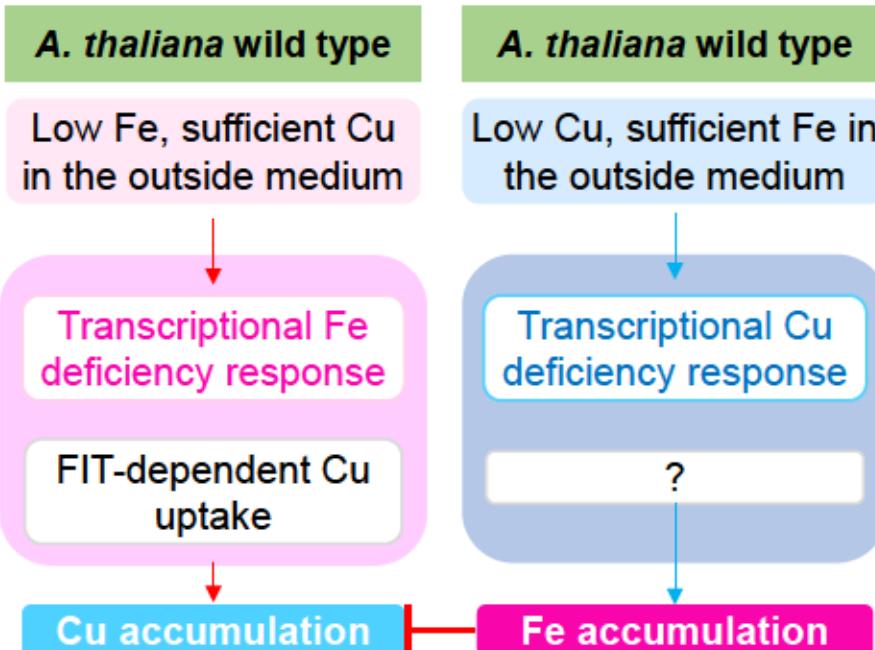
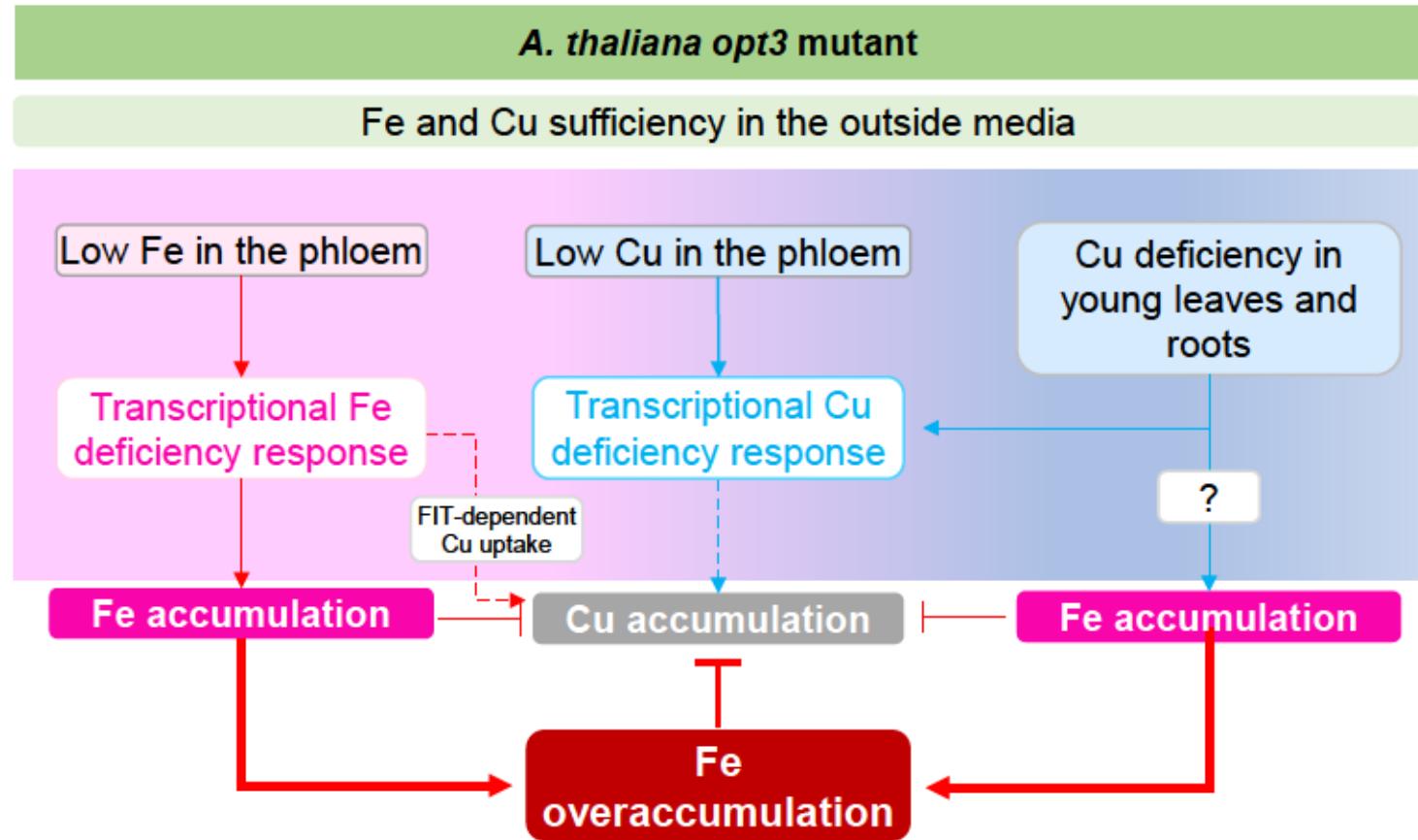


Figure 7. The expression of *OPT3* is upregulated by copper deficiency.

Four-week-old plants grown hydroponically with 250 nM CuSO_4 and a subset of plants was transferred to a fresh medium without copper. Roots were collected after 1 or 4 days of treatments for RT-qPCR analysis. *CITF1* was used as a marker of copper deficiency to validate the efficiency of treatment. Shown are mean values \pm S.E. Asterisks indicate statistically significant differences from the expression of genes under control condition, set to one ($p < 0.05$, Student's *t* test, $n = 3$ independent experiments).


Figure 8. Copper supplementation partially rescues the molecular symptoms of copper deficiency in the *opt3* mutant.

Plants were grown hydroponically under control conditions (white bars) until the late-vegetative stage before a subset of plants was transferred to a fresh medium with higher copper concentrations (250 nM CuSO₄, light grey bars in A, B, E, F, J, K or 500 nM CuSO₄, dark grey bars in C, D, G, H, L, M). Plants were grown for another week prior to tissue collection and RT-qPCR analysis. The transcript abundance of indicated genes was normalized to the wild type grown under control conditions. Data show mean values \pm S.E. Levels not connected by the same letter are statistically different (Tukey HSD, JMP Pro 14 software package, n = 3 independent experiments with roots pooled from 3 plants per each experiment).

A**B**



Figure 9. The expression of copper deficiency markers is controlled by the OPT3 function in the shoot.

The transcript abundance of copper- (A) and iron-deficiency (B) markers in roots of grafted plants. Wild type and the *opt3* mutant were used for reciprocal grafting. **Wt_S/Wt_R**, wild type scion grafted to wild type rootstock (control); ***opt3S/opt3R***, *opt3* scion grafted to *opt3* rootstock; **Wt_S/opt3_R**, wild type scion grafted to *opt3* rootstock; ***opt3S/WtR***, *opt3* scion grafted to wild type rootstock. Shown values represent means \pm S.E. Asterisks (*) indicate statistically significant values of the expression level is > 2 or < 0.5 compared to control grafts ($p < 0.05$, based on CFX Manager 3.1 (BIO-RAD). Shown data are representative of three independent experiments.

Figure 10. Copper and iron deficiency applied simultaneously increase the expression of *CITF1* and *FIT*, iron uptake and delivery to shoots.

The transcript abundance of *CITF1* (A), *FIT* (B) and iron concentration in roots (C) were analyzed in plants grown under control conditions (Ctr) or without cooper but with iron (-Cu) for four weeks prior to tissue collection. To achieve iron deficiency, plants were grown under control conditions for three weeks, transferred to a solution without iron and grown for one additional week (-Fe). For the simultaneous iron and copper deficiency treatment, plants were grown without copper but with iron for three weeks and then transferred to a fresh hydroponic medium lacking both copper and iron. Tissues were collected and analysed after an additional week of growth (-Cu -Fe). Mean values \pm S.E are shown. Levels not connected by the same letter are statistically different (Tukey HSD, JMP Pro 14 software package, n = 3 independent experiments with roots pooled from 3 plants per each experiment).

A**B**

Figure 11. Altered Fe-Cu crosstalk in the *opt3* mutant contributes to iron over-accumulation. As illustrated in (A), iron deficiency in the outside medium causes copper accumulation in roots and leaves of *A. thaliana* wild type while copper deficiency in the outside medium results in iron accumulation (Bernal et al., 2012; Waters et al., 2012; Waters and Armbrust, 2013; Waters et al., 2014). By contrast, high iron status can repress copper accumulation in *A. thaliana* (Waters and Armbrust, 2013). This has been also documented in animal species (Klevay, 2001; Ha et al., 2016). In the *opt3* mutant (B) the scenario is different in that, although both iron and copper are available in the outside medium, the *opt3* mutant experiences simultaneous iron and copper deficiency in the phloem (**Low Fe in the phloem**; **Low Cu in the Phloem**, respectively). Low iron accumulation in the phloem stimulates transcriptional iron deficiency response and iron accumulation since iron is available in the outside medium. Copper deficiency in the phloem, roots and leaves also lead to iron accumulation and transcriptional copper deficiency response. Increased iron accumulation from both pathways, in turn, decreases copper uptake further altering Fe-Cu crosstalk.

Parsed Citations

Agyeman-Budu DN, Choudhury S, Coulthard I, Gordon R, Hallin E, Woll AR (2016) Germanium Collimating micro-Channel Arrays For High Resolution, High Energy Confocal X-ray Fluorescence Microscopy. *Icxom23: International Conference on X-Ray Optics and Microanalysis* 1764

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Alexander SPH, Kelly E, Mathie A, Peters JA, Veale EL, Armstrong JF, Faccenda E, Harding SD, Pawson AJ, Sharman JL, et al. (2019) THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters. *British Journal of Pharmacology* 176: S397-S493

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Araki R, Mermod M, Yamasaki H, Kamiya T, Fujiwara T, Shikanai T (2018) SPL7 locally regulates copper-homeostasis-related genes in *Arabidopsis*. *J Plant Physiol* 224-225: 137-143

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bashir K, Ishimaru Y, Itai RN, Senoura T, Takahashi M, An G, Oikawa T, Ueda M, Sato A, Uozumi N, et al. (2015) Iron deficiency regulated OsOPT7 is essential for iron homeostasis in rice. *Plant Molecular Biology* 88: 165-176

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Baxter IR, Vitek O, Lahner B, Muthukumar B, Borghi M, Morrissey J, Guerinot ML, Salt DE (2008) The leaf ionome as a multivariable system to detect a plant's physiological status. *Proceedings of the National Academy of Sciences* 105: 12081-12086

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society. Series B (Methodological)* 57: 289-300

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bernal M, Casero D, Singh V, Wilson GT, Grande A, Yang H, Dodani SC, Pellegrini M, Huijser P, Connolly EL, et al. (2012) Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in *Arabidopsis*. *Plant Cell* 24: 738-761

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bernal M, Casero D, Singh V, Wilson GT, Grande A, Yang H, Dodani SC, Pellegrini M, Huijser P, Connolly EL, et al. (2012) Transcriptome Sequencing Identifies SPL7-Regulated Copper Acquisition Genes FRO4/FRO5 and the Copper Dependence of Iron Homeostasis in *Arabidopsis*. *The Plant Cell Online* 24: 738-761

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bernal M, Casero D, Singh V, Wilson GT, Grande A, Yang H, Dodani SC, Pellegrini M, Huijser P, Connolly EL, et al. (2012) Transcriptome Sequencing Identifies SPL7 -Regulated Copper Acquisition Genes FRO4 FRO5 and the Copper Dependence of Iron Homeostasis in *Arabidopsis* The *Plant Cell* 24: 738-761

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

BOGS J, BOURBOULOUX A, CAGNAC O, WACHTER A, RAUSCH T, DELROT S (2003) Functional characterization and expression analysis of a glutathione transporter, BjGT1, from *Brassica juncea*: evidence for regulation by heavy metal exposure. *Plant, Cell & Environment* 26: 1703-1711

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Broadley M, Brown P, Cakmak I, Rengel Z, Zhao F (2012) Chapter 7 - Function of Nutrients: Micronutrients A2 - Marschner, Petra. In Marschner's Mineral Nutrition of Higher Plants (Third Edition). Academic Press, San Diego, pp 191-248

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Burkhead JL, Gogolin Reynolds KA, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper homeostasis. *New Phytologist* 182: 799-816

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cagnac O, Bourbouloux A, Chakrabarty D, Zhang MY, Delrot S (2004) AtOPT6 transports glutathione derivatives and is induced by primisulfuron. *Plant Physiology* 135: 1378-1387

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chang CJ (2015) Searching for harmony in transition-metal signaling. *Nat Chem Biol* 11: 744-747

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chen C, Galon Y, Rahmati Ishka M, Malihi S, Shimanovsky V, Twito S, Rath A, Vatamaniuk OK, Miller G (2020) ASCORBATE PEROXIDASE6 delays the onset of age-dependent leaf senescence. *Plant Physiology*

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Colangelo EP, Guerinot ML (2004) The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. *Plant Cell* 16: 3400-3412

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cui Y, Chen CL, Cui M, Zhou WJ, Wu HL, Ling HQ (2018) Four IVa bHLH Transcription Factors Are Novel Interactors of FIT and Mediate JA Inhibition of Iron Uptake in *Arabidopsis*. *Mol Plant* 11: 1166-1183

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dancis A, Haile D, Yuan DS, Klausner RD (1994) The *Saccharomyces cerevisiae* copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake. *J Biol Chem* 269: 25660-25667
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Epstein E, Bloom A (2005) Mineral nutrition of plants: principles and perspectives, 2nd eds. Sunderland, Mass Sinaur: 292-305
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gao F, Robe K, Bettembourg M, Navarro N, Rofidal V, Santoni V, Gaynard F, Vignols F, Roschzttardtz H, Izquierdo E, et al. (2020) The Transcription Factor bHLH121 Interacts with bHLH105 (ILR3) and Its Closest Homologs to Regulate Iron Homeostasis in *Arabidopsis*. *Plant Cell* 32: 508-524
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Garcia MJ, Romera FJ, Stacey MG, Stacey G, Villar E, Alcantara E, Perez-Vicente R (2013) Shoot to root communication is necessary to control the expression of iron-acquisition genes in Strategy I plants. *Planta* 237: 65-75
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gayomba SR, Jung H-I, Yan J, Danku J, Rutzke MA, Bernal M, Kramer U, Kochian LV, Salt DE, Vatamaniuk OK (2013) The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in *A. thaliana*. *Metalomics* 5: 1262-1275
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gayomba SR, Jung H-I, Yan J, Danku J, Rutzke MA, Bernal M, Kramer U, Kochian LV, Salt DE, Vatamaniuk OK (2013) The CTR/COPT-dependent copper uptake and SPL7-dependent copper deficiency responses are required for basal cadmium tolerance in *A. thaliana*. *Metalomics* 5: 1262-1275
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gayomba SR, Zhai Z, Jung H-I, Vatamaniuk OK (2015) Local and systemic signaling of iron status and its interactions with homeostasis of other essential elements. *Front Plant Sci* 6: 716
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Grillet L, Lan P, Li W, Mokkapati G, Schmidt W (2018) IRON MAN is a ubiquitous family of peptides that control iron transport in plants. *Nat Plants* 4: 953-963
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ha JH, Doguer C, Wang X, Flores SR, Collins JF (2016) High-Iron Consumption Impairs Growth and Causes Copper-Deficiency Anemia in Weanling Sprague-Dawley Rats. *PLoS One* 11: e0161033
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hirayama T, Lei GJ, Yamaji N, Nakagawa N, Ma JF (2018) The Putative Peptide Gene FEP1 Regulates Iron Deficiency Response in *Arabidopsis*. *Plant Cell Physiol* 59: 1739-1752
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jain A, Wilson G, Connolly E (2014) The diverse roles of FRO family metalloreductases in iron and copper homeostasis. *Frontiers in Plant Science* 5
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jeong J, Merkovich A, Clyne M, Connolly EL (2017) Directing iron transport in dicots: regulation of iron acquisition and translocation. *Curr Opin Plant Biol* 39: 106-113
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jiang A, Guo Z, Pan J, Zhuang Y, Zuo D, Hao C, Gao Z, Xin P, Chu J, Zhong S, et al. (2020) The PIF1-MIR408-Plantacyanin Cascade Regulates Light Dependent Seed Germination. *bioRxiv*: 2020.2007.2020.212340
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Joung J-G, Corbett AM, Fellman SM, Tieman DM, Klee HJ, Giovannoni JJ, Fei Z (2009) Plant MetGenMAP: An Integrative Analysis System for Plant Systems Biology. *Plant Physiology* 151: 1758-1768
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jung H-I, Gayomba SR, Rutzke MA, Craft E, Kochian LV, Vatamaniuk OK (2012) COPT6 is a plasma membrane transporter that functions in copper homeostasis in *Arabidopsis* and is a novel target of SQUAMOSA promoter-binding protein-like 7. *The Journal of biological chemistry* 287: 33252-33267
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Jung H-I, Gayomba SR, Rutzke MA, Craft E, Kochian LV, Vatamaniuk OK (2012) COPT6 is a plasma membrane transporter that functions in copper homeostasis in *Arabidopsis* and is a novel target of SQUAMOSA promoter-binding protein-like 7. *J Biol Chem* 287: 33252-33267
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kastoori Ramamurthy R, Xiang Q, Hsieh EJ, Liu K, Zhang C, Waters BM (2018) New aspects of iron-copper crosstalk uncovered by transcriptomic characterization of Col-0 and the copper uptake mutant *spl7* in *Arabidopsis thaliana*. *Metalomics* 10: 1824-1840
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Khan MA, Castro-Guerrero NA, McInturf SA, Nguyen NT, Dame AN, Wang J, Bindbeutel RK, Joshi T, Jurisson SS, Nusinow DA, et al.

(2018) Changes in iron availability in *Arabidopsis* are rapidly sensed in the leaf vasculature and impaired sensing leads to opposite transcriptional programs in leaves and roots. *Plant, Cell & Environment* 41: 2263-2276

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Khan MA, Castro-Guerrero NA, McInturf SA, Nguyen NT, Dame AN, Wang J, Bindbeutel RK, Joshi T, Jurissoo SS, Nusinow DA, et al. (2018) Changes in iron availability in *Arabidopsis* are rapidly sensed in the leaf vasculature and impaired sensing leads to opposite transcriptional programs in leaves and roots. *Plant Cell Environ* 41: 2263-2276

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kim SA, LaCroix IS, Gerber SA, Guerinot ML (2019) The iron deficiency response in *Arabidopsis thaliana* requires the phosphorylated transcription factor URI. *Proceedings of the National Academy of Sciences* 116: 24933-24942

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kim SA, Punshon T, Lanzirotti A, Li L, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006) Localization of Iron in *Arabidopsis* Seed Requires the Vacuolar Membrane Transporter VT1. *Science* 314: 1295-1298

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Klevay LM (2001) Iron overload can induce mild copper deficiency. *J Trace Elem Med Biol* 14: 237-240

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kobayashi T (2019) Understanding the Complexity of Iron Sensing and Signaling Cascades in Plants. *Plant Cell Physiol* 60: 1440-1446

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kroh GE, Pilon M (2020) Micronutrient homeostasis and chloroplast iron protein expression is largely maintained in a chloroplast copper transporter mutant. *Funct Plant Biol* 47: 1041-1052

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kumar RK, Chu H-H, Abundis C, Vasques K, Rodriguez DC, Chia J-C, Huang R, Vatamaniuk OK, Walker EL (2017) Iron-Nicotianamine Transporters Are Required for Proper Long Distance Iron Signaling *Plant Physiology* 175: 1254-1268

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kumar RK, Chu HH, Abundis C, Vasques K, Rodriguez DC, Chia JC, Huang R, Vatamaniuk OK, Walker EL (2017) Iron-Nicotianamine Transporters Are Required for Proper Long Distance Iron Signalling. *Plant Physiol* 175: 1254-1268

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kurt F (2021) An Insight into Oligopeptide Transporter 3 (OPT3) Family Proteins. *Protein and Peptide Letters* 28: 43-54

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. *Genome Biology* 10: R25

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Li WF, Lan P (2017) The Understanding of the Plant Iron Deficiency Responses in Strategy I Plants and the Role of Ethylene in This Process by Omic Approaches. *Frontiers in Plant Science* 8

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biology* 15: 550

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lubkowitz M (2011) The Oligopeptide Transporters: A Small Gene Family with a Diverse Group of Substrates and Functions? *Mol Plant* 4: 407-415

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Maas FM, van de Wetering DA, van Beusichem ML, Bielik HF (1988) Characterization of phloem iron and its possible role in the regulation of Fe-efficiency reactions. *Plant Physiol* 87: 167-171

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mai HJ, Lindermayr C, von Toerne C, Fink-Straube C, Durner J, Bauer P (2015) Iron and FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR-dependent regulation of proteins and genes in *Arabidopsis thaliana* roots. *Proteomics* 15: 3030-3047

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Malzer W, Kanngießer B (2005) A Model for the Confocal Volume of 3D Micro X-ray Fluorescence Spectrometer. *Spectrochimica Acta Part B: Atomic Spectroscopy* 60: 1334-1341

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mantouvalou I, Malzer W, Kanngießer B (2012) Quantification for 3D micro X-ray fluorescence. *Spectrochimica Acta Part B: Atomic Spectroscopy* 77: 9-18

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mantouvalou I, Malzer W, Kanngießer B (2012) Quantification for 3D micro X-ray fluorescence. *Spectrochimica Acta Part B-Atomic Spectroscopy* 77: 9-18

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mendoza-Cózatl DG, Xie Q, Akmakjian GZ, Jobe TO, Patel A, Stacey MG, Song L, Demoin DW, Jurisson SS, Stacey G, et al. (2014) OPT3 is a component of the iron-signaling network between leaves and roots and misregulation of OPT3 leads to an over-accumulation of cadmium in seeds. *Mol Plant* 7: 1455-1469

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mukherjee I, Campbell NH, Ash JS, Connolly EL (2006) Expression profiling of the *Arabidopsis* ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. *Planta* 223: 1178-1190

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Newville M (2013) Larch: An Analysis Package for XAFS and Related Spectroscopies. *J. Phys.: Conf. Ser.* 430

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Osawa H, Stacey G, Gassmann W (2006) ScOPT1 and AtOPT4 function as proton-coupled oligopeptide transporters with broad but distinct substrate specificities. *Biochemical Journal* 393: 267-275

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pottier M, Dumont J, Masclaux-Daubresse C, Thomine S (2019) Autophagy is essential for optimal translocation of iron to seeds in *Arabidopsis*. *Journal of experimental botany* 70: 859-869

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. *Nucleic Acids Research* 41: 7

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rahmati Ishka M, Vatamaniuk OK (2020) Copper deficiency alters shoot architecture and reduces fertility of both gynoecium and androecium in *Arabidopsis thaliana*. *BioRxiv*

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rahmati Ishka M, Vatamaniuk OK (2020) Copper deficiency alters shoot architecture and reduces fertility of both gynoecium and androecium in *Arabidopsis thaliana*. *Plant Direct* 4: e00288

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rai S, Singh PK, Mankotia S, Swain J, Satbhai SB (2021) Iron homeostasis in plants and its crosstalk with copper, zinc, and manganese. *Plant Stress* 1: 100008

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ravet K, Danford FL, Dihle A, Pittarello M, Pilon M (2011) Spatiotemporal Analysis of Copper Homeostasis in *Populus trichocarpa* Reveals an Integrated Molecular Remodeling for a Preferential Allocation of Copper to Plastocyanin in the Chloroplasts of Developing Leaves. *Plant Physiology* 157: 1300-1312

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ravet K, Pilon M (2013) Copper and Iron Homeostasis in Plants: The Challenges of Oxidative Stress. *Antioxidants & Redox Signaling* 19: 23

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rees EM, Lee J, Thiele DJ (2004) Mobilization of Intracellular Copper Stores by the Ctr2 Vacuolar Copper Transporter. *Journal of Biological Chemistry* 279: 54221-54229

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rodríguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB (1999) A Copper Cofactor for the Ethylene Receptor ETR1 from *Arabidopsis*. *Science* 283: 996-998

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Schott-Verdugo S, Müller L, Classen E, Gohlik H, Groth G (2019) Structural Model of the ETR1 Ethylene Receptor Transmembrane Sensor Domain. *Scientific Reports* 9: 8869

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Schwarz B, Bauer P (2020) FIT, a regulatory hub for iron deficiency and stress signaling in roots, and FIT-dependent and -independent gene signatures. *J Exp Bot* 71: 1694-1705

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shahbaz M, Ravet K, Peers G, Pilon M (2015) Prioritization of copper for the use in photosynthetic electron transport in developing leaves of hybrid poplar. *Frontiers in Plant Science* 6

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sheng H, Jiang Y, Ishka MR, Chia J-C, Dokuchayeva T, Kavulich Y, Zavodna T-O, Mendoza PN, Huang R, Smieshka LM, et al. (2021) YSL3-mediated copper distribution is required for fertility, grain yield, and size in *Brachypodium*. *Plant Physiology*: 2019.2012.2012.874396

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sheng H, Jiang Y, Ishka MR, Chia JC, Dokuchayeva T, Kavulich Y, Zavodna TO, Mendoza PN, Huang R, Smieshka LM, et al. (2021) YSL3-mediated copper distribution is required for fertility, seed size and protein accumulation in *Brachypodium*. *Plant Physiol* 186: 655-676

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Solé VA, Papillon E, Cotte M, Walter P, Susini J (2007) A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. *Spectrochimica Acta Part B: Atomic Spectroscopy* 62: 63-68

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Spielmann J, Vert G (2020) The many facets of protein ubiquitination and degradation in plant root iron-deficiency responses. *Journal of Experimental Botany* 72: 2071-2082

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Stacey MG, Koh S, Becker J, Stacey G (2002) AtOPT3, a Member of the Oligopeptide Transporter Family, Is Essential for Embryo Development in *Arabidopsis*. *The Plant Cell* 14: 2799-2811

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Stacey MG, Patel A, McClain WE, Mathieu M, Remley M, Rogers EE, Gassmann W, Blevins DG, Stacey G (2008) The *Arabidopsis* AtOPT3 Protein Functions in Metal Homeostasis and Movement of Iron to Developing Seeds. *Plant Physiology* 146: 589-601

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. *Bioinformatics* 25: 7

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tsang T, Posimo JM, Gudiel AA, Cicchini M, Feldser DM, Brady DC (2020) Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma. *Nature cell biology* 22: 412-424

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Turski ML, Brady DC, Kim HJ, Kim BE, Nose Y, Counter CM, Winge DR, Thiele DJ (2012) A novel role for copper in Ras/mitogen-activated protein kinase signaling. *Mol Cell Biol* 32: 1284-1295

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Turski ML, Thiele DJ (2009) New roles for copper metabolism in cell proliferation, signaling, and disease. *J Biol Chem* 284: 717-721

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Waters BM, Armbrust LC (2013) Optimal copper supply is required for normal plant iron deficiency responses. *Plant Signal Behav* 8: e26611

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Waters BM, McInturf SA, Amundsen K (2014) Transcriptomic and physiological characterization of the fefe mutant of melon (*Cucumis melo*) reveals new aspects of iron-copper crosstalk. *New Phytol* 203: 1128-1145

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Waters BM, McInturf SA, Stein RJ (2012) Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in *Arabidopsis thaliana*. *J Exp Bot* 63: 5903-5918

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wongkaew A, Asayama K, Kitaiwa T, Nakamura SI, Kojima K, Stacey G, Sekimoto H, Yokoyama T, Ohkama-Ohtsu N (2018) AtOPT6 Protein Functions in Long-Distance Transport of Glutathione in *Arabidopsis thaliana*. *Plant and Cell Physiology* 59: 1443-1451

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wu Y, Zhang D, Chu Jee Y, Boyle P, Wang Y, Brindle Ian D, De Luca V, Després C (2012) The *Arabidopsis* NPR1 Protein Is a Receptor for the Plant Defense Hormone Salicylic Acid. *Cell Reports* 1: 639-647

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009) SQUAMOSA Promoter Binding Protein-Like7 Is a Central Regulator for Copper Homeostasis in *Arabidopsis*. *Plant Cell* 21: 347-361

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yan J, Chia J-C, Sheng H, Jung H-i, Zavodna T-O, Zhang L, Huang R, Jiao C, Craft EJ, Fei Z, et al. (2017) *Arabidopsis* Pollen Fertility Requires the Transcription Factors CTF1 and SPL7 That Regulate Copper Delivery to Anthers and Jasmonic Acid Synthesis. *The Plant Cell* 29: 3012-3029

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhai Z, Gayomba SR, Jung H-i, Vimalakumari NK, Piñeros M, Craft E, Rutzke MA, Danku J, Lahner B, Punshon T, et al. (2014) OPT3 Is a Phloem-Specific Iron Transporter That Is Essential for Systemic Iron Signaling and Redistribution of Iron and Cadmium in *Arabidopsis*. *The Plant cell* 26: 2249-2264

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhai Z, Gayomba SR, Jung H-i, Vimalakumari NK, Piñeros M, Craft E, Rutzke MA, Danku J, Lahner B, Punshon T, et al. (2014) OPT3 Is a phloem-specific iron transporter that is essential for systemic iron signalling and redistribution of iron and cadmium in *Arabidopsis*. *Plant Cell* 26: 2249-2264

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang Z, Xie Q, Jobe TO, Kau AR, Wang C, Li Y, Qiu B, Wang Q, Mendoza-Cózatl DG, Schroeder JI (2016) Identification of AtOPT4 as a Plant Glutathione Transporter. *Mol Plant* 9: 481-484

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhong S, Joung J-G, Zheng Y, Chen Y-r, Liu B, Shao Y, Xiang JZ, Fei Z, Giovannoni JJ (2011) High-Throughput Illumina Strand-Specific RNA Sequencing Library Preparation. Cold Spring Harbor Protocols 2011: pdb.prot5652

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)