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We investigate, using a microwave platform consisting of a non-Hermitian Su-Schrieffer-Heeger array of
coupled dielectric resonators, the interplay of a lossy nonlinearity and CT symmetry in the formation of
defect modes. The measurements agree with the theory which predicts that, up to moderate pumping, the
defect mode is an eigenstate of the CT -symmetric operator and retains its frequency at the center of the gap.
At higher pumping values, the system undergoes a self-induced explicit CT -symmetry violation which
removes the spectral topological protection and alters the shape of the defect mode.
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Introduction.—Topological photonics (TP) [1,2] has
originally developed within the framework of Hermitian
wave physics, drawing inspirations from the discovery of
exotic topological phases appearing in traditional con-
densed matter. Its rapid blossom relies on the promise that
the developed TP methodologies, based on geometrical and
topological concepts, can lead to unprecedented control on
light-matter interactions. A prominent application is the
realization of photonic structures with transport character-
istics that are immune to fabrication imperfections [3–6].
Most of these investigations principally focus on linear
topological phenomena. Recently, however, it has been
realized that nonlinearities, when invoked, can offer a
dynamical tuning mechanism that produces various exotic
phenomena. Examples include robust discrete solitons [7],
self-localized topological edge solitons [8,9], topologically
enhanced harmonic generation [10], optical isolation [11],
topological lasers [12], and self-induced topological states
[13–15].
The topological physics agenda (set initially by the

condensed matter community) has been enlarged and
redefined by the necessities presented in the optics frame-
work. In particular, the natural presence of non-Hermitian
elements like gain and loss “demands” the redefinition or
(even) invention of new topological concepts and classi-
fications. The interplay between non-Hermiticity and
topological protection attracted recently a lot of theoretical
and experimental interest [16–33]. Questions raised are the
generalization of band edge correspondence, the emergence
of new topological states without any Hermitian counter-
part, or the necessity of a new topological phase classi-
fication [2,25,29,31]. On the technological side, the
development of novel classes of topologically protected
lasers [26–28] and reflective photonic limiters [22,32,33]
introduced a new excitement and the urge to understand
better the formation and spectral stability of topological
states in the framework of non-Hermitian physics.

Here we analyze, both experimentally and theoretically,
the intricate effects that nonlinearity together with non-
Hermiticity have in the formation of a topological defect
mode. Our platform utilizes a standard Su-Schrieffer-
Heeger (SSH) binary array consisting of identical micro-
wave resonators coupled electromagnetically with one
another. In the middle of the array we position one defect
resonator which involves both linear and nonlinear losses,
thus enforcing a charge-conjugation (CT ) symmetry to the
whole SSH structure. We find that the emerging defect
mode is an eigenmode of the CT operator. Furthermore,
under pump-probe measurements, this mode is resilient to a
large range of pumping powers, with its frequency being
pinned at the center of the band gap. For higher values of
the pump, the system experiences a self-induced explicit
CT -symmetry violation that enforces the destruction of the
defect mode. The measurements are in agreement with the
results from a theoretical analysis which utilizes a modified
non-Hermitian Green’s function’s formalism that treats the
non-Hermitian nonlinear defect perturbatively. Our results
paves the way for the design of topologically protected
isolators, circulators, or switches with self-induced
reconfigurability.
Modeling of SSH CROW array.—A simple platform to

examine the interplay of nonlinearities with non-Hermiticity
and topological protection is the SSH model [34]. It is a
one-dimensional periodic array of identical resonators with
alternating short (d1) and long (d2) distances from one
another. A defect resonator is introduced in themiddle of the
chain, by separating two consequent resonators by long
distances, and it supports linear and nonlinear losses. We
have implemented experimentally this setup by a coupled
resonator microwave waveguide (CRMW) array, see Fig. 1.
The array consists of N ¼ 17 high-index (nr ¼ 6) cylindri-
cal resonators (radius r ¼ 4 mm, height h ¼ 5 mm) made
of ceramics (ZrSnTiO) with resonant frequency around
ϵ ≈ 6.876 GHz. The distances between the resonators is
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d1 ¼ 10 mmandd2 ¼ 12 mmcorresponding to strong t1 ¼
68 MHz and weak t2 ¼ 33 MHz electromagnetic coupling,
respectively. We have incorporated the nonlinearity by
coupling the central resonator with a diode (Schottky diode
SMS7630-079LF from Skyworks) by placing it above the
defect resonator using a Teflon spacer. The diode is short
circuited and coupled via a metallic ring with a diameter of
3 mm. Thus the z-directional magnetic field at the defect
resonator is inductively coupled to the fast diode. The
system is pumped via a vector network analyzer (ZVA 24
from Rohde and Schwarz) which injects powers PVNA
ranging from -200 to 10 dBm via strongly coupled kink
antennas (see Fig. 1). Note that this is not the real applied
power on the defect resonator as there are additional
absorption in the cables, the coupling of the antenna to
the defect resonator, and other loss types, which are all of
linear type. Instead, the field intensity at the defect resonator
ID is proportional to the injected power, ID ¼ alinPVNA in
the steady state situation realized by the experiment. The
field is probedby aweakly coupled loop antenna fixedon the
top plate which is movable. For details on the antennas and
the experimental setup, see [32].
The experimental setup is described mathematically

within the framework of couple mode theory [35,36]. In
our modeling we do not consider any linear dispersion
effects which are negligible in the frequency range of our
experiment. In the following, we use the Dirac notation:

HjΨli ¼ ωljΨli; jΨli ¼
X
m

ψ ðlÞ
m jmi;

H ¼
X
m

jmiϵmhmj þ jmitm;m−1hm − 1j

þ jmitm;mþ1hmþ 1j; ð1Þ

where H is the effective Hamiltonian describing the
coupled-resonator system, ωl is the lth eigenfrequency

of the SSH chain and ψ ðlÞ
m represents the corresponding

magnetic field amplitude of the lth supermode in the
individual resonator (Wannier) basis jmi localized at the
fm ¼ ½−ðN − 1Þ=2� � � � ½ðN − 1Þ=2�gth resonator (site)
[37]. In this representation, the Wannier modes jmi

correspond to the magnetic field of the first transverse
electric mode that is perpendicular to the metallic top and
bottom plates [32]. The resonant frequency of the mth
resonator is indicated as ϵm ¼ ϵ (for m ≠ 0) and tm;mþ1 is
the coupling coefficient between mth and (mþ 1)th
resonators [37]. The defect resonator is at position m≡
mD ¼ 0 at the center of the array (see Fig. 1). Hamiltonian
(1) (in the absence of nonlinearities and N → ∞) has
a band structure with ωðkÞ¼ϵ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21þt22þ2t1t2cosðkÞ

p
(k ∈ ½−π; π� is the wave number) and one defect mode
at ωD ¼ ϵ (center of the gap). The nonlinearity due to the
presence of the PIN diode has been incorporated in Eq. (1)
by modifying the resonant frequency ϵD as

ϵD ¼ ϵþΩðIDÞ; ð2Þ

where ΩðIDÞ is a nonlinear function of the local field
intensity ID ¼ jψDj2 at mD. The pure linear chain of
coupled resonators with nearest neighbor couplings has a
chiral symmetry where the chiral symmetric operator C,
written in the Wannier basis as hm1jCjm2i ¼ ð−1Þm1δm1;m2

.
A similar experimental setup has been used to investigate
the Gaussian chiral symmetry classes [38]. If complex
eigenfrequencies are present, i.e., losses, then the time-
reversal operator T (complex conjugation) does not com-
mute with H. In case where ΩðIDÞ is purely imaginary, the
system respects a CT symmetry, defined as anticommuta-
tion of the Hamiltonian H with the CT operator. Charge
conjugation symmetry imposes restrictions to the spectrum
of the system; namely eigenstates of a CT -symmetric
Hamiltonian H come in pairs as CT -symmetric partners.
In particular, given an eigenstate HjΨi ¼ ωjΨi the CT
partner is HCT jΨi ¼ −ω�CT jΨi. Thus the spectrum of H
is mirror symmetric with respect to the resonant frequency
of the individual resonators. An eigenstate whose CT
partner is distinct from itself is referred to be in broken
CT -symmetric phase, whereas an eigenstate in the exact
CT -symmetric phase is the CT symmetric partner of
itself, CT jΨi ¼ jΨi. It follows that an exact CT -symmetric
state has purely imaginary eigenfrequency shift, i.e.,
ReðωÞ − ϵ ¼ 0. Moreover, a global complex phase in the
wave function of such a state can be chosen such that purely
real (imaginary) components occupy the even- (odd-)
numbered sublattices [39]. For more details on CT operator
in coupled mode theory refer to [40].
Theoretical analysis of defect mode.—To investigate the

symmetry-induced topological features of the defect mode
we developed a non-Hermitian nonlinear Green’s function
formalism. We decompose the total Hamiltonian H into an
unperturbed Hermitian H0 and a non-Hermitian perturba-
tion H1 which describes the lossy nonlinearity at site mD.
Specifically

H ¼ H0 þH1; H1 ¼ jDiΩðIDÞhDj; ð3Þ

FIG. 1. The experimental setup. Dielectric resonators are placed
on an alumina plate and form an SSH structure, with intradimer
distance d1 ¼ 10 mm (strong coupling t1 ¼ 68 MHz, indicated
by braces). The interdimer distance is d2 ¼ 12 mm (weak
coupling t2 ¼ 33 MHz). The central resonator (m ¼ 0) is weakly
coupled to both neighbors and on top of it the short circuited
diode is seen on a teflon spacer. The kinked excitation antenna is
positioned at the defect resonator. A top metallic plate supports
the scanning loop antenna (not shown).
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where jDi indicates the Wannier state at the defect site. The
Green’s function GðzÞ≡ðz−HÞ−1 of the total Hamiltonian
reads [41,42]

GðzÞ ¼ G0ð1 −H1G0Þ−1;
¼ G0½1þH1G0 þ ðH1G0Þ2 þ � � ��;
¼ G0 þ G0T G0; ð4Þ

where G0ðzÞ≡ ðz −H0Þ−1 is the Green’s function of H0

and T ðzÞ ¼ jDi½Ω=ð1 − hDjG0jDiΩÞ�hDj is the t matrix
[41]. From the last line of Eq. (4) we can evaluate the
simple pole z ¼ ωD of G corresponding to the eigenfre-
quency of the defect state. The latter is the solution of

hDjG0ðωDÞjDi ¼ ΩðIDÞ−1; ð5Þ

while the corresponding residue is

Res½hDjGðzÞjDi�z¼ωD
¼ ðψ ðDÞ

D Þ2
χ

¼
�
−
hDjG0jDi2
dhDjG0jDi

dz

�
z¼ωD

;

ð6Þ

where ψ ðDÞ
D is the 0th component of the defect eigenstate

(in the Wannier basis, mD ¼ 0).. As opposed to Hermitian
defect perturbation methods [41,42], the first equality in
Eq. (6) requires to use the fact that in non-Hermitian
systems the eigenmodes are biorthogonal, i.e.,P

l½ðjΨlihΦljÞ=ðhΦljΨliÞ� ¼ 1, where jΨli and hΦlj denote
the lth right and left eigenvectors ofH, respectively. In case
of non-Hermitian systems, the eigenvectors are normalized

as hΦljΨl0 i ¼
P

m ψ ðlÞ
m ψ ðl0Þ

m ¼ χδl;l0 where we have used the
fact that jΨli ¼ ðjΦliÞ� in case of symmetric non-
Hermitian Hamiltonians H ¼ HT . χ is the so-called quasi-
power whose analog in Hermitian physics is the total power
of the signal [43]. Equations (5) and (6) are solved self-

consistently for ωD and ψ ðDÞ
D using various quasipower

values χ which is a free parameter. Using Eq. (6) we

evaluate ψ ðDÞ
D as a function of χ and the injected power

ID ≡ jψ ðDÞ
D j2 which is further compared to the experimental

value PVNA. This comparison identifies the appropriate
quasipower χ associated with the experimental incident

power. All components of the defect mode ψ ðDÞ
m can be

evaluated from Eq. (4) using the same steps. We have

ðψ ðDÞ
m Þ2
χ

¼
�
−
hmjG0jDihDjG0jmi

dhDjG0jDi
dz

�
z¼ωD

: ð7Þ

Knowledge of ωD and of the corresponding field ampli-

tudes fψ ðDÞ
m g allows us to construct any other physical

observable. One is the field intensity ID ≡ jψDj2 at site

mD ¼ 0, which is associated with the pump power and it is
the controlled variable in the pump-probe experiment of
Fig. 1. In the specific case of the SSH with a lossy nonlinear
defect, Eqs. (5)–(7) have been solved numerically by
calculating the unperturbed Green’s function G0 with
system size N ¼ 17. The theoretical results have been
then compared with the experimental findings. An alter-
native derivation is provided in [44] based on an ansatz for
the form of the defect mode.
Results—An analysis of the experimental transmission

spectrum of the SSH array including a defect resonator with
a diode and a comparison with the theoretical analysis of
the spectrum allowed us to extract the nonlinear termΩðIDÞ
appearing in Eq. (2). The best fit occurs for the expression:

ΩðIDÞ ¼ ΩsatðIDÞ ¼ z0 −
z1

1þ αID
; ð8Þ

where z0 ¼ ð−40þ 18{Þ MHz, z1 ¼ ð−40þ 8{Þ MHz,
α ¼ ð1 − 2.8{Þ mW−1 have been extracted via comparison
between the measured values of the defect frequency (see
below) and the theoretical predictions (we have assumed
that αlin ¼ 1, i.e., ID ¼ PVNA). This equation describes a
saturable absorption and is applicable for all powers used in
our experiments.
For moderate values of the pump power up to

ID ≈ −10 dBm the nonlinearity can be described by

ΩðIDÞ ≈ΩtpaðIDÞ ¼ ðβ0 þ β1IDÞ: ð9Þ

Such nonlinearity has its own merit—specifically in optical
range—where it describes a two-photon absorption (TPA)
nonlinear mechanism. As we will see below it conserves
the CT symmetry of the effective Hamiltonian Eq. (1)
(i.e., the Hamiltonian anticommutes all the time with the
CT operator) and therefore deserves a separate study by
itself. In this pump power regime, one can safely assume
that β0 ≡ ðz0 − z1Þ ¼ 10i MHz and β1 ≡ z1α ¼ ð17.6þ
120iÞ MHz=mW has a negligible real part ½Re½z1α� ≈
−17.6 MHz=mW ≪ ϵ=ID ≈ 6.876 GHz=ð−10 dBmÞ ¼
68 760 MHz=mW� and therefore can be considered to be
imaginary. Therefore, the system respects the CT sym-
metry, while preserving the band gap; thus offering a
topological protection to the defect mode as discussed in
linear systems [16].
We first present the parametric evolution of the defect

frequency ωD versus the pump power PVNA, see Fig. 2.
The experimental values for ωD (filled circles) have been
extracted from the measured transmission spectra. A
resonance peak in the middle of the band gap signifies
the presence of the defect mode, and we have recorded
the trace of such peak with increasing pump power.
Additionally, we present in Fig. 2 the theoretical results
for the defect frequency, extracted from the analysis of
Eqs. (5) and (6) using the nonlinear form Eq. (8). For
PVNA ≤ −10 dBm the TPA form of ΩðIDÞ [Eq. (9)]
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captures all features of the experimental data and con-
sequently the defect frequency νD ¼ ReðωDÞ is pinned to
ν0, while its imaginary part γD ¼ ImðωDÞ significantly
grows with the pump power ID due to the corresponding
increase in the amount of nonlinear loss. Hence, the CT
symmetry enforces a spectral (topological) protection
against self-induced variations of the resonant frequency
of the defect resonator. For even higher values of the pump
power PVNA (highlighted area in Fig. 2) the TPA expression
for the nonlinearity Eq. (9) is not sufficient to describe the
experimental results. Instead Eq. (8) adequately describes
the real (nonlinear) frequency shift of the defect resonator,
thus enforcing an explicit (self-induced) violation of the
CT symmetry. Indeed, when ReðϵdÞ → ϵþ Re½ΩðIÞ�, with
Re½ΩðIÞ� ≠ 0, one can show that fH; CT g ≠ 0, i.e., the
effective Hamiltonian (1) does not respect the CT sym-
metry. Consequently, when PVNA ≥ −10 dBm the defect
frequency νD is not protected but rather shifts towards the
band [45].
Next, we investigate the field profiles of the defect mode

for various pump powers PVNA. In Fig. 3(left) we report the

theoretical calculation of the field amplitudes ψ ðDÞ
m for three

representative values of PVNA ¼ −40 dBm, −10 dBm, and
10 dBm. We find that for pump powers PVNA ≤ −10 dBm,
the defect mode respects the CT symmetry as it is evident
from the fact that all even (odd) sites are occupied by purely

real (imaginary) wave function components. This analysis
reconfirms our previous conclusion, which was based on
the νD vs PVNA analysis: as long as the nonlinearity can be
described by the TPA expression [Eq. (9)] (i.e., it is purely
imaginary), the defect mode is in the so-called exact
CT -symmetric phase (i.e., it is also an eigenmode of the
CT operator). In contrast, for higher pump powers [see
Fig. 3(c)] the ΩðIDÞ develops a considerable real part and
the system experiences a self-induced CT -symmetry vio-
lation. This is reflected in the fact that the real and

imaginary parts of ψ ðDÞ
m do not have any more a staggered

form; i.e., ψ ðDÞ
m is not an eigenstate of CT operator

(broken phase).
The validity of the theoretical analysis of the field profile

has been accessed via a direct comparison with the
experimental measurements of the defect modulus profile

FIG. 2. Spectral shift of the complex defect mode frequency
ωD ¼ νD þ iγD with varying injected power PVNA (expressed as
dBm) at the defect site. Note that shifts in the real and imaginary
parts of the eigenfrequency have each been renormalized with
respect to its low PVNA limit, ν0 and γ0, respectively. Measure-
ments (green dots) of the eigenfrequency show agreement with
the theoretical results (blue curves), with ΩðIDÞ given by the first
expression in Eq. (8). Up to moderate PVNA, the experimentally
found nonlinearity can be well described by Eq. (9) (TPA), from
which we have also calculated the complex eigenfrequency (red
dashed curves). The red dotted lines signify the upper and lower
limits of the band gap, extracted from the measured transmission
spectra.

(a) (d)

(b) (e)

(c) (f)

FIG. 3. (Left column) Theoretical calculations for the

Reðψ ðDÞ
m Þ½Imðψ ðDÞ

m Þ] using the saturable absorption, Eq. (8) (black
line [red dashed line]), and the two-photon absorption, Eq. (9)
(green [blue] squares), expression for ΩðIDÞ for three pumping
powers PVNA (a) −40 dBm, (b) −10 dBm, (c) 10 dBm. Right

column: experimental modulus profiles jψ ðDÞ
m j (yellow dashed

lines) for three pumping powers PVNA (d) −40 dBm,
(e) −10 dBm, and (f) 10 dBm. The theoretical calculations using
the saturable [Eq. (8)] or TPA [Eq. (9)] form for the nonlinearity
are also reported with black solid lines or green squares. In all
cases the presented wave functions are normalized setting
(
P

m jψmj2 ¼ 1).
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jψ ðDÞ
m j, see Fig. 3 (right). The resulting agreement between

the TPA form of ΩðIDÞ and the “actual” form is impressive
for pump powers PVNA ≤ −10 dBms. This indicates that
up to this pump power the system (effectively) respects the
CT symmetry [see Figs. 3(a) and 3(b)] and is in good
agreement with the experiment [see Figs. 3(d) and 3(e)].
Above −10 dBm, the two forms of the nonlinearity provide
different results indicating that the system has entered the
self-induced explicit CT -symmetric violation regime.
Nevertheless, our theoretical calculations using the exact
form of ΩðIDÞ still agree nicely with the experimentally
extracted wave profile [see Figs. 3(c) and 3(f)].
Conclusions.—We have analyzed and demonstrated the

topological properties of a nonlinear CT -symmetric defect
mode both theoretically and experimentally using a micro-
wave platform that realizes a SSH CRMW array with a
defect resonator coupled inductively to a PIN diode. When
the diode-induced nonlinearity is purely imaginary, the
nonlinear defect mode is spectrally protected by the non-
Hermitian CT symmetry. In particular, the defect frequency
is in the middle of the band gap while the field amplitude
of the defect mode has a characteristic shape involving
staggered imaginary and real parts. For high pump powers,
the nonlinearity acquires a sizable real part and the system
experiences a self-induced explicit symmetry violation. In
this case the defect mode is not any more protected by the
CT symmetry. The self-induced CT -symmetry violation
can be an extremely desirable feature for various techno-
logical applications of topological photonics varying from
topological protection of unidirectional defect modes at low
incident powers to photonic reflective limiters.
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