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Non-Hermitian C7 -Symmetric Spectral Protection of Nonlinear Defect Modes
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We investigate, using a microwave platform consisting of a non-Hermitian Su-Schrieffer-Heeger array of
coupled dielectric resonators, the interplay of a lossy nonlinearity and C7 symmetry in the formation of
defect modes. The measurements agree with the theory which predicts that, up to moderate pumping, the
defect mode is an eigenstate of the C7 -symmetric operator and retains its frequency at the center of the gap.
At higher pumping values, the system undergoes a self-induced explicit C7 -symmetry violation which
removes the spectral topological protection and alters the shape of the defect mode.
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Introduction.—Topological photonics (TP) [1,2] has
originally developed within the framework of Hermitian
wave physics, drawing inspirations from the discovery of
exotic topological phases appearing in traditional con-
densed matter. Its rapid blossom relies on the promise that
the developed TP methodologies, based on geometrical and
topological concepts, can lead to unprecedented control on
light-matter interactions. A prominent application is the
realization of photonic structures with transport character-
istics that are immune to fabrication imperfections [3—6].
Most of these investigations principally focus on linear
topological phenomena. Recently, however, it has been
realized that nonlinearities, when invoked, can offer a
dynamical tuning mechanism that produces various exotic
phenomena. Examples include robust discrete solitons [7],
self-localized topological edge solitons [8,9], topologically
enhanced harmonic generation [10], optical isolation [11],
topological lasers [12], and self-induced topological states
[13-15].

The topological physics agenda (set initially by the
condensed matter community) has been enlarged and
redefined by the necessities presented in the optics frame-
work. In particular, the natural presence of non-Hermitian
elements like gain and loss “demands” the redefinition or
(even) invention of new topological concepts and classi-
fications. The interplay between non-Hermiticity and
topological protection attracted recently a lot of theoretical
and experimental interest [16—33]. Questions raised are the
generalization of band edge correspondence, the emergence
of new topological states without any Hermitian counter-
part, or the necessity of a new topological phase classi-
fication [2,25,29,31]. On the technological side, the
development of novel classes of topologically protected
lasers [26-28] and reflective photonic limiters [22,32,33]
introduced a new excitement and the urge to understand
better the formation and spectral stability of topological
states in the framework of non-Hermitian physics.
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Here we analyze, both experimentally and theoretically,
the intricate effects that nonlinearity together with non-
Hermiticity have in the formation of a topological defect
mode. Our platform utilizes a standard Su-Schrieffer-
Heeger (SSH) binary array consisting of identical micro-
wave resonators coupled electromagnetically with one
another. In the middle of the array we position one defect
resonator which involves both linear and nonlinear losses,
thus enforcing a charge-conjugation (C7') symmetry to the
whole SSH structure. We find that the emerging defect
mode is an eigenmode of the C7 operator. Furthermore,
under pump-probe measurements, this mode is resilient to a
large range of pumping powers, with its frequency being
pinned at the center of the band gap. For higher values of
the pump, the system experiences a self-induced explicit
CT -symmetry violation that enforces the destruction of the
defect mode. The measurements are in agreement with the
results from a theoretical analysis which utilizes a modified
non-Hermitian Green’s function’s formalism that treats the
non-Hermitian nonlinear defect perturbatively. Our results
paves the way for the design of topologically protected
isolators, circulators, or switches with self-induced
reconfigurability.

Modeling of SSH CROW array.—A simple platform to
examine the interplay of nonlinearities with non-Hermiticity
and topological protection is the SSH model [34]. It is a
one-dimensional periodic array of identical resonators with
alternating short (d;) and long (d,) distances from one
another. A defect resonator is introduced in the middle of the
chain, by separating two consequent resonators by long
distances, and it supports linear and nonlinear losses. We
have implemented experimentally this setup by a coupled
resonator microwave waveguide (CRMW) array, see Fig. 1.
The array consists of N = 17 high-index (n,, = 6) cylindri-
cal resonators (radius » = 4 mm, height 2 = 5 mm) made
of ceramics (ZrSnTiO) with resonant frequency around
€~ 6.876 GHz. The distances between the resonators is
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FIG. 1. The experimental setup. Dielectric resonators are placed
on an alumina plate and form an SSH structure, with intradimer
distance d; = 10 mm (strong coupling t; = 68 MHz, indicated
by braces). The interdimer distance is d, = 12 mm (weak
coupling #, = 33 MHz). The central resonator (m = 0) is weakly
coupled to both neighbors and on top of it the short circuited
diode is seen on a teflon spacer. The kinked excitation antenna is
positioned at the defect resonator. A top metallic plate supports
the scanning loop antenna (not shown).

d; = 10 mmand d, = 12 mm corresponding to strong ¢; =
68 MHz and weak #, = 33 MHz electromagnetic coupling,
respectively. We have incorporated the nonlinearity by
coupling the central resonator with a diode (Schottky diode
SMS7630-079LF from Skyworks) by placing it above the
defect resonator using a Teflon spacer. The diode is short
circuited and coupled via a metallic ring with a diameter of
3 mm. Thus the z-directional magnetic field at the defect
resonator is inductively coupled to the fast diode. The
system is pumped via a vector network analyzer (ZVA 24
from Rohde and Schwarz) which injects powers Pyna
ranging from -200 to 10 dBm via strongly coupled kink
antennas (see Fig. 1). Note that this is not the real applied
power on the defect resonator as there are additional
absorption in the cables, the coupling of the antenna to
the defect resonator, and other loss types, which are all of
linear type. Instead, the field intensity at the defect resonator
I is proportional to the injected power, Ip = aj;, Pyna I
the steady state situation realized by the experiment. The
field is probed by a weakly coupled loop antenna fixed on the
top plate which is movable. For details on the antennas and
the experimental setup, see [32].

The experimental setup is described mathematically
within the framework of couple mode theory [35,36]. In
our modeling we do not consider any linear dispersion
effects which are negligible in the frequency range of our
experiment. In the following, we use the Dirac notation:

HIW)) = o)), W) = waj,)|m>,
H= |m)e, (ml + m)ty 1 (m ~1]

: (1)

=+ |m>tm,m+l<m + 1

where H is the effective Hamiltonian describing the
coupled-resonator system, ; is the /th eigenfrequency

of the SSH chain and z,//,(,? represents the corresponding
magnetic field amplitude of the Ith supermode in the
individual resonator (Wannier) basis |m) localized at the
{m=[-(N-1)/2]---[(N—1)/2]}th resonator (site)
[37]. In this representation, the Wannier modes |m)

correspond to the magnetic field of the first transverse
electric mode that is perpendicular to the metallic top and
bottom plates [32]. The resonant frequency of the mth
resonator is indicated as ¢€,, = ¢ (for m # 0) and 1, ,,, is
the coupling coefficient between mth and (m + 1)th
resonators [37]. The defect resonator is at position m =
mp = 0 at the center of the array (see Fig. 1). Hamiltonian
(1) (in the absence of nonlinearities and N — oo) has
a band structure with w(k)=ed+\/f1+13+2t t,cos(k)
(k € [-m; 7] is the wave number) and one defect mode
at wp = € (center of the gap). The nonlinearity due to the
presence of the PIN diode has been incorporated in Eq. (1)
by modifying the resonant frequency e, as

ep =€+ Q(Ip), (2)

where Q(Ip) is a nonlinear function of the local field
intensity I, = |wp|> at mp. The pure linear chain of
coupled resonators with nearest neighbor couplings has a
chiral symmetry where the chiral symmetric operator C,
written in the Wannier basis as (m;|C|m,) = (=1)"18,,, ,-
A similar experimental setup has been used to investigate
the Gaussian chiral symmetry classes [38]. If complex
eigenfrequencies are present, i.e., losses, then the time-
reversal operator 7 (complex conjugation) does not com-
mute with H. In case where Q(Ip) is purely imaginary, the
system respects a C7 symmetry, defined as anticommuta-
tion of the Hamiltonian H with the C7 operator. Charge
conjugation symmetry imposes restrictions to the spectrum
of the system; namely eigenstates of a C7 -symmetric
Hamiltonian H come in pairs as C7 -symmetric partners.
In particular, given an eigenstate H|¥) = w|¥) the CT
partner is HC7 |¥) = —*CT |¥). Thus the spectrum of H
is mirror symmetric with respect to the resonant frequency
of the individual resonators. An eigenstate whose C7
partner is distinct from itself is referred to be in broken
CT -symmetric phase, whereas an eigenstate in the exact
CT-symmetric phase is the C7 symmetric partner of
itself, CT |¥) = |¥). It follows that an exact C7 -symmetric
state has purely imaginary eigenfrequency shift, i.e.,
Re(w) — € = 0. Moreover, a global complex phase in the
wave function of such a state can be chosen such that purely
real (imaginary) components occupy the even- (odd-)
numbered sublattices [39]. For more details on C7 operator
in coupled mode theory refer to [40].

Theoretical analysis of defect mode.—To investigate the
symmetry-induced topological features of the defect mode
we developed a non-Hermitian nonlinear Green’s function
formalism. We decompose the total Hamiltonian H into an
unperturbed Hermitian H,, and a non-Hermitian perturba-
tion H; which describes the lossy nonlinearity at site mp,.
Specifically

H="Hy+H;; H,=|D)Qp)(D],

(3)
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where | D) indicates the Wannier state at the defect site. The
Green’s function G(z)=(z—H)~! of the total Hamiltonian
reads [41,42]

g(Z) = go(] — ngo)_l,
= Go[l +H,Go + (H1Go)* + -]
= Go + Go7 Gy, (4)
where Gy(z) = (z = Hy)™" is the Green’s function of H,
and 7 (z) = |D)[Q/(1 — (D|Gy|D)Q)](D| is the t matrix
[41]. From the last line of Eq. (4) we can evaluate the

simple pole z = wp of G corresponding to the eigenfre-
quency of the defect state. The latter is the solution of

(D|Go(wp)|D) = Q(Ip)~", (5)

while the corresponding residue is

(D)\2 )
Res(DIG(E) D)., = ¥2)- = |- GER

d(D|G,|D) ’
dz =wp
(6)
where WE)D) is the Oth component of the defect eigenstate

(in the Wannier basis, mp = 0).. As opposed to Hermitian
defect perturbation methods [41,42], the first equality in
Eq. (6) requires to use the fact that in non-Hermitian
systems the eigenmodes are biorthogonal, i.e.,
2l (@y])/ ((@|¥))] = 1, where [¥)) and (®,] denote
the /th right and left eigenvectors of H, respectively. In case
of non-Hermitian systems, the eigenvectors are normalized

as (Q)|¥)) =>,, ll/%)ll/%l> = 6,y where we have used the
fact that |¥,) = (|®;))* in case of symmetric non-
Hermitian Hamiltonians H = H’. y is the so-called quasi-
power whose analog in Hermitian physics is the total power

of the signal [43]. Equations (5) and (6) are solved self-

. (D) . . .
consistently for wp and w "~ using various quasipower

values y which is a free parameter. Using Eq. (6) we

evaluate z//g))

Ip= |1//E)D) | which is further compared to the experimental
value Pyna. This comparison identifies the appropriate
quasipower y associated with the experimental incident

power. All components of the defect mode z/jﬁ,l,) ) can be
evaluated from Eq. (4) using the same steps. We have

as a function of y and the injected power

f,ﬁ” 2 m|Gy|DY{D|G,|m
iy L )

dz z=wp

Knowledge of wp and of the corresponding field ampli-

tudes {l//,(nD)} allows us to construct any other physical
observable. One is the field intensity I, = |wp|* at site

mp = 0, which is associated with the pump power and it is
the controlled variable in the pump-probe experiment of
Fig. 1. In the specific case of the SSH with a lossy nonlinear
defect, Eqs. (5)-(7) have been solved numerically by
calculating the unperturbed Green’s function G, with
system size N = 17. The theoretical results have been
then compared with the experimental findings. An alter-
native derivation is provided in [44] based on an ansatz for
the form of the defect mode.

Results—An analysis of the experimental transmission
spectrum of the SSH array including a defect resonator with
a diode and a comparison with the theoretical analysis of
the spectrum allowed us to extract the nonlinear term Q(7)
appearing in Eq. (2). The best fit occurs for the expression:

|

QUD) = Qsat(ID) =20~ m,

(8)
where zg = (40 + 18:) MHz, z; = (—40 + 8:) MHz,
a = (1 —2.8/) mW~! have been extracted via comparison
between the measured values of the defect frequency (see
below) and the theoretical predictions (we have assumed
that oy, = 1, i.e., Ip = Pyna). This equation describes a
saturable absorption and is applicable for all powers used in
our experiments.

For moderate values of the pump power up to
Ip =~ —10 dBm the nonlinearity can be described by

Q(Ip) = QupaIp) = (Bo + Pilp)- )

Such nonlinearity has its own merit—specifically in optical
range—where it describes a two-photon absorption (TPA)
nonlinear mechanism. As we will see below it conserves
the C7 symmetry of the effective Hamiltonian Eq. (1)
(i.e., the Hamiltonian anticommutes all the time with the
CT operator) and therefore deserves a separate study by
itself. In this pump power regime, one can safely assume
that fy = (z0 —z1) = 10i MHz and f, =z,a = (17.6 +
120i) MHz/mW has a negligible real part [Re[z;a] ~
—17.6 MHz/mW < ¢/Ip ~ 6.876 GHz/(—10 dBm) =
68 760 MHz/mW]| and therefore can be considered to be
imaginary. Therefore, the system respects the C7 sym-
metry, while preserving the band gap; thus offering a
topological protection to the defect mode as discussed in
linear systems [16].

We first present the parametric evolution of the defect
frequency wp versus the pump power Pyya, see Fig. 2.
The experimental values for wj, (filled circles) have been
extracted from the measured transmission spectra. A
resonance peak in the middle of the band gap signifies
the presence of the defect mode, and we have recorded
the trace of such peak with increasing pump power.
Additionally, we present in Fig. 2 the theoretical results
for the defect frequency, extracted from the analysis of
Egs. (5) and (6) using the nonlinear form Eq. (8). For
Pyna £ —10dBm the TPA form of Q(Ip) [Eq. (9)]
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50 —40 —30 —20 —10 0 10
Pyna, Ip [dBm]

FIG. 2. Spectral shift of the complex defect mode frequency
wp = vp + iyp with varying injected power Pyya (expressed as
dBm) at the defect site. Note that shifts in the real and imaginary
parts of the eigenfrequency have each been renormalized with
respect to its low Pyy, limit, v and y, respectively. Measure-
ments (green dots) of the eigenfrequency show agreement with
the theoretical results (blue curves), with Q(Ip) given by the first
expression in Eq. (8). Up to moderate Pyyy, the experimentally
found nonlinearity can be well described by Eq. (9) (TPA), from
which we have also calculated the complex eigenfrequency (red
dashed curves). The red dotted lines signify the upper and lower
limits of the band gap, extracted from the measured transmission
spectra.

captures all features of the experimental data and con-
sequently the defect frequency vp = Re(wp) is pinned to
vy, while its imaginary part yp = Zm(wp) significantly
grows with the pump power I, due to the corresponding
increase in the amount of nonlinear loss. Hence, the CT
symmetry enforces a spectral (topological) protection
against self-induced variations of the resonant frequency
of the defect resonator. For even higher values of the pump
power Pyn, (highlighted area in Fig. 2) the TPA expression
for the nonlinearity Eq. (9) is not sufficient to describe the
experimental results. Instead Eq. (8) adequately describes
the real (nonlinear) frequency shift of the defect resonator,
thus enforcing an explicit (self-induced) violation of the
CT symmetry. Indeed, when Re(e,;) — € + Re[Q(])], with
Re[Q(I)] # 0, one can show that {H,CT} #0, i.e., the
effective Hamiltonian (1) does not respect the C7 sym-
metry. Consequently, when Pyya > —10 dBm the defect
frequency v, is not protected but rather shifts towards the
band [45].

Next, we investigate the field profiles of the defect mode
for various pump powers Pyya. In Fig. 3(left) we report the

theoretical calculation of the field amplitudes l//%) ) for three
representative values of Pyyy = —40 dBm, —10 dBm, and
10 dBm. We find that for pump powers Pyys < —10 dBm,
the defect mode respects the C7 symmetry as it is evident
from the fact that all even (odd) sites are occupied by purely

109 5 =
1@ o]« (d)
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FIG. 3. (Left column) Theoretical calculations for the

Re(y/f,? ))[Im(q/,(,?))] using the saturable absorption, Eq. (8) (black
line [red dashed line]), and the two-photon absorption, Eq. (9)
(green [blue] squares), expression for Q(I)) for three pumping
powers Pyna (2) =40 dBm, (b) —10 dBm, (c¢) 10 dBm. Right
column: experimental modulus profiles |l//f,? >| (yellow dashed
lines) for three pumping powers Pyya (d) —40 dBm,
(e) =10 dBm, and (f) 10 dBm. The theoretical calculations using
the saturable [Eq. (8)] or TPA [Eq. (9)] form for the nonlinearity
are also reported with black solid lines or green squares. In all
cases the presented wave functions are normalized setting

(Zm |l//m|2 = 1.

real (imaginary) wave function components. This analysis
reconfirms our previous conclusion, which was based on
the vp vs Pyna analysis: as long as the nonlinearity can be
described by the TPA expression [Eq. (9)] (i.e., it is purely
imaginary), the defect mode is in the so-called exact
C7T -symmetric phase (i.e., it is also an eigenmode of the
CT operator). In contrast, for higher pump powers [see
Fig. 3(c)] the Q(I}) develops a considerable real part and
the system experiences a self-induced C7 -symmetry vio-
lation. This is reflected in the fact that the real and

imaginary parts of wﬁ,ﬁ”

form; i.e., u/,(nD)
(broken phase).
The validity of the theoretical analysis of the field profile
has been accessed via a direct comparison with the
experimental measurements of the defect modulus profile

do not have any more a staggered

is not an eigenstate of C7 operator
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|y/£,,D)|, see Fig. 3 (right). The resulting agreement between
the TPA form of Q(/p) and the “actual” form is impressive
for pump powers Pyna < —10 dB ms. This indicates that
up to this pump power the system (effectively) respects the
CT symmetry [see Figs. 3(a) and 3(b)] and is in good
agreement with the experiment [see Figs. 3(d) and 3(e)].
Above —10 dBm, the two forms of the nonlinearity provide
different results indicating that the system has entered the
self-induced explicit C7-symmetric violation regime.
Nevertheless, our theoretical calculations using the exact
form of Q(Ip) still agree nicely with the experimentally
extracted wave profile [see Figs. 3(c) and 3(f)].

Conclusions.—We have analyzed and demonstrated the
topological properties of a nonlinear C7 -symmetric defect
mode both theoretically and experimentally using a micro-
wave platform that realizes a SSH CRMW array with a
defect resonator coupled inductively to a PIN diode. When
the diode-induced nonlinearity is purely imaginary, the
nonlinear defect mode is spectrally protected by the non-
Hermitian C7 symmetry. In particular, the defect frequency
is in the middle of the band gap while the field amplitude
of the defect mode has a characteristic shape involving
staggered imaginary and real parts. For high pump powers,
the nonlinearity acquires a sizable real part and the system
experiences a self-induced explicit symmetry violation. In
this case the defect mode is not any more protected by the
CT symmetry. The self-induced C7 -symmetry violation
can be an extremely desirable feature for various techno-
logical applications of topological photonics varying from
topological protection of unidirectional defect modes at low
incident powers to photonic reflective limiters.
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