IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 12, DECEMBER 2020

7475

Gradient Coding From Cyclic MDS Codes
and Expander Graphs

Netanel Raviv

Abstract— Gradient coding is a technique for straggler
mitigation in distributed learning. In this paper we design novel
gradient codes using tools from classical coding theory, namely,
cyclic MDS codes, which compare favorably with existing
solutions, both in the applicable range of parameters and in the
complexity of the involved algorithms. Second, we introduce an
approximate variant of the gradient coding problem, in which
we settle for approximate gradient computation instead of
the exact one. This approach enables graceful degradation,
i.e.,, the £2 error of the approximate gradient is a decreasing
function of the number of stragglers. Our main result is
that normalized adjacency matrices of expander graphs yield
excellent approximate gradient codes, which enable significantly
less computation compared to exact gradient coding, and
guarantee faster convergence than trivial solutions under
standard assumptions. We experimentally test our approach
on Amazon EC2, and show that the generalization error of
approximate gradient coding is very close to the full gradient
while requiring significantly less computation from the workers.

Index Terms— Gradient descent, distributed computing, coding
theory, expander graphs.

I. INTRODUCTION

ATA intensive machine learning tasks have become
ubiquitous in many real-world applications, and with
the increasing size of training data, distributed methods have
gained increasing popularity. However, the performance of

Manuscript received September 18, 2018; revised March 16, 2020; accepted
September 9, 2020. Date of publication October 7, 2020; date of current
version November 20, 2020. The work of Netanel Raviv and Itzhak Tamo
was supported in part by ISF under Grant 1030/15 and in part by NSF-BSF
under Grant 2015814. The work of Netanel Raviv was supported in part
by the postdoctoral fellowship of the Center for the Mathematics of Infor-
mation (CMI) in the California Institute of Technology and in part by the
Lester-Deutsch Postdoctoral Fellowship. This work was supported in part
by NSF under Grant 1618689, Grant DMS 1723052, Grant CCF 1763702,
Grant AF 1901292 and research gifts by Google, Western Digital, WNCG
IAP; and in part by the Fluor Centennial Teaching Fellowship. This article was
presented in part at the 2018 International Conference on Machine Learning
(ICML). (Corresponding author: Netanel Raviv.)

Netanel Raviv is with the Department of Computer Science and Engineer-
ing, Washington University in St. Louis, St. Louis, MO 63130 USA (e-mail:
netanel.raviv@wustl.edu).

Itzhak Tamo is with the Department of Electrical Engineering—Systems,
Tel-Aviv University, Tel-Aviv 39040, Israel.

Rashish Tandon is with Apple, Seattle, WA 98105 USA.

Alexandros G. Dimakis is with the Department of Electrical and Computer
Engineering, The University of Texas at Austin, Austin, TX 78712 USA.

Communicated by M. Lentmaier, Associate Editor for Coding Theory.

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/T1T.2020.3029396

, Member, IEEE, Itzhak Tamo
and Alexandros G. Dimakis

, Member, IEEE, Rashish Tandon,
, Senior Member, IEEE

Wy Wy W3
S —gu So — g2 83— g3
S2 = g2 S3 — g3 S — g1
g1/2+ g2 g2 — g3 g1/2+ g3

any two — g1 + g2 + g3

M

Fig. 1. Gradient coding for n = 3, £k = 3, d = 2, and s =1 [24].
Each worker node W; obtains two parts S;,,S;, of the data set
S = 81 US> U S3, computes the partial gradients g, , gi,, and sends their
linear combination back to the master node M. By choosing the coefficients
judiciously, the master node M can compute the full gradient from any two
responses, providing robustness against any one straggler.

distributed methods (in synchronous settings) is strongly dic-
tated by stragglers, i.e., nodes that are slow to respond
or unavailable. In this paper, we focus on coding theoretic
(and graph theoretic) techniques for mitigating stragglers in
distributed synchronous gradient descent.

A coding theoretic framework for straggler mitigation called
gradient coding was first introduced in [24]. It consists of
a system with one master and n worker nodes (or servers),
in which the data is partitioned into k parts, and one or more
parts is assigned to each one of the workers. In turn, each
worker computes the partial gradient on each of its assigned
parts, linearly combines the results according to some predeter-
mined vector of coefficients, and sends this linear combination
back to the master node. Choosing the coefficients at each node
judiciously, one can guarantee that the master node is capable
of reconstructing the full gradient even if any s machines fail
to perform their work. The storage overhead of the system,
which is denoted by d, refers to the amount of redundant
computations, or alternatively, to the number of data parts that
are sent to each node (see example in Fig. 1).

The importance of straggler mitigation was demonstrated in
a series of recent studies (e.g., [14] and [27]). In particular,
it was demonstrated in [24] that stragglers may run up to x5
slower than the typical worker (x8 in [27]) on Amazon
EC2, especially for the cheaper virtual machines; such erratic

0018-9448 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on August 09,2021 at 16:16:49 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1686-1994
https://orcid.org/0000-0002-8000-0419
https://orcid.org/0000-0002-4244-7033

7476

behavior is unpredictable and can significantly delay training.
One can, of course, use more expensive instances but the goal
here is to use coding theoretic methods to provide reliability
out of cheap unreliable workers, overall reducing the cost of
training.

By and large, the purpose of gradient coding is to enable
the master node to compute the exact gradient out of the
responses of any n — s non-straggling nodes. The work of [24]
established the fundamental bound d > s-+1, which shows that
one needs a growing amount of redundancy as the number of
stragglers increases. In addition, [24] provided a deterministic
construction which achieves it with equality when s+ 1|n, and
a randomized one which applies to all s and n. Subsequently,
deterministic constructions were also obtained by [7] and [8].
These works have focused on the scenario where s is known
prior to the construction of the system. Furthermore, the exact
computation of the full gradient is guaranteed if the number
of stragglers is at most s, but no error bound is guaranteed if
this number exceeds s.

The contribution of this work is twofold. For the com-
putation of the exact gradient we employ tools from classic
coding theory, namely, cyclic MDS codes, in order to obtain
a deterministic construction which compares favourably with
existing solutions; both in the applicable range of parameters,
and in the complexity of the involved algorithms. Some of
these gains are a direct application of well known properties
of these codes.

Second, we introduce an approximate variant of the gradient
coding problem. In this variant, the requirement for exact
computation of the full gradient is traded by an approximate
one, where the ¢5-deviation of the given solution from the full
gradient decreases as the number of stragglers decreases. Note
that by this approach, the parameter s is not a part of the sys-
tem construction, and the system can provide an approximate
solution for any s < n, whose quality deteriorates gracefully
as s increases. In the suggested solution, the coefficients at
the worker nodes are based on an important family of graphs
called expanders. In particular, it is shown that setting these
coefficients according to a normalized adjacency matrix of
an expander graph, a strong bound on the error term of the
resulting solution is obtained. Moreover, this approach enables
to break the aforementioned barrier d > s + 1, which is a
substantial obstacle in gradient coding, and allows the master
node to decode using a very simple algorithm.

This paper is organized as follows. Related work regarding
gradient coding (and coded computation in general) is listed
in Section II. A framework which encapsulates all the results
in this paper is given in Section III. Necessary mathematical
notions from coding theory and graph theory are given in
Section IV. The former notions are used to obtain an algorithm
for exact gradient computation in Section V, and the latter ones
are used to obtain an algorithm for the approximate gradient
in Section VI. Experimental results are given in Section VII.

II. RELATED WORK

The work of Lee et al. [13] initiated the use of coding
theoretic methods for mitigating stragglers in large-scale learn-
ing. This work is focused on linear regression and therefore

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 12, DECEMBER 2020

can exploit more structure compared to the general gradient
coding problem that we study here. The work by Li et al. [17],
investigates a generalized view of the coding ideas in [13],
showing that their solution is a single operating point in a
general scheme of trading off latency of computation to the
load of communication.

Further closely related work has shown how coding can
be used for distributed MapReduce, as well as a similar
communication and computation tradeoff [16], [18]. We also
mention the work of [11] which addresses straggler mitigation
in linear regression by using a different approach, that is
not mutually exclusive with gradient coding. In their work,
the data is coded rather than replicated, and the nodes perform
their computation on coded data.

The work by [7] generalizes previous work for linear
models [13] but can also be applied to general models to yield
explicit gradient coding constructions. Our results regarding
the exact gradient are closely related to the work by [8], [9]
which was obtained independently from our work. In [8],
similar coding theoretic tools were employed in a fundamen-
tally different fashion. Both [8] and [7] are comparable in
parameters to the randomized construction of [24] and are
outperformed by us in a wide range of parameters. A detailed
comparison of the theoretical asymptotic behaviour is given in

the sequel.
Remark 1: None of the aforementioned works
studies approximate gradient computations. However,

we note that subsequent to this work, two unpublished
manuscripts [4], [15] study a similar approximation setting
and obtain related results albeit using randomized as opposed
to deterministic approaches. Furthermore, the exact setting
was also discussed subsequent to this work in [28] and [29].
In [28] it was shown that network communication can be
reduced by increasing the replication factor, and respective
bounds were given. The work of [29] discussed coded
polynomial computation with low overhead, and applies
to gradient coding whenever the gradient at hand is a
polynomial.

III. FRAMEWORK

This section provides a unified framework which accommo-
dates straggler mitigation in both the exact and approximate
gradient computations which follow. By and large, we use
lowercase letters a, b, . . . to refer to scalars and functions, bold
lowercase letter a, b, ... to refer to vectors, uppercase letters
A, B, ... to refer to workers (or nodes), uppercase bold
letters A, B to refer to matrices, and uppercase calligraphic
letters A, 3, . .. to refer to sets and codes. E.g., the rows of a
matrix B are denoted by b;, and its entries are denoted by b; ;.
Unless otherwise stated, all vectors are row vectors, and for
any field F we adopt the common notation F” to refer to F**".
We also employ the standard notation [n] = {1,2,...,n} for
an integer n.

We begin with a brief introduction to machine learning, and
the reader is referred to [23] for further reading (in particular,
to gradient descent [23, Sec. 14.1] and stochastic gradient
descent [23, Sec. 14.3]). Broadly speaking, the general purpose
of machine learning is to find a hypothesis from a given

Authorized licensed use limited to: University of Texas at Austin. Downloaded on August 09,2021 at 16:16:49 UTC from IEEE Xplore. Restrictions apply.

RAVIV et al.: GRADIENT CODING FROM CYCLIC MDS CODES AND EXPANDER GRAPHS

hypotheses class, which best approximates an unknown target
function by observing a training set S = {s;}7, that is
labeled by that target function. Assuming that the hypotheses
class is parametrized by real vector w € RP, one defines a loss
Sunction {(w, s), which penalizes a given hypothesis w for
erring on a data point s. Then, one wishes to find the w which
minimizes the empirical risk Ls(w) £ 13" f(w,s;)
by using analytic methods (in some parts of this paper,
we assume that Lg is smooth and convex). That is, one
starts from an arbitrary point wy, and iteratively computes the
gradient VLs(w) = (aiwiLS (w))?_, at the current point, and
moves away from the current point in the opposite direction
of the gradient, until convergence is achieved. In the gradient
descent algorithm the exact gradient is computed at every
iteration, and in the stochastic gradient descent algorithm it
is taken from a distribution whose expected value is the exact
gradient.

In order to distribute the execution of gradient descent
from a master node M to n worker nodes {W;}_; (Algo-
rithm 1), the training set S is partitioned to n disjoint sub-
sets {S;}1_; of size! 2 each. These subsets are distributed
among {W;} ,, at most d subsets at each worker for some
parameter d. Then, every node computes the partial gradi-
ents VLs, (w) on the S;’s which it obtained, where Ls, (w) £
7> ses, L(w, s). The algorithm operates in iterations, where
in iteration r € [t] every node evaluates its gradients in the
current model w), and sends to M some linear combination
of them. After obtaining responses from at least n — s,
workers, where s, is the number of stragglers in iteration 7,
M aggregates them to form the gradient VLs(w(")) of the
overall empirical risk at w(®*). In the exact setting the value
of s, will be some fixed s for every r, whereas in the
approximate setting this value is at the discretion of the master,
in correspondence with the required approximation error.

To support mitigation of stragglers in this setting, the fol-
lowing notions are introduced. Let B € C"*™ be a matrix
whose 7’th row b; contains the coefficients of the linear
combination Z;’:l bi;-Vis, (w®) that is sent to M by Wj.
Note that the support supp(b;) contains the indices of the
sets S; that are to be sent to W; by M. Given a set of non-
stragglers IC € P(n), where P(n) is the set of all nonempty
subsets of [n], a function a : P(n) — C" provides M
with a vector by which the results from {W;};cx are to be
linearly combined to obtain a vector v, € RP. This vector is
either the true gradient, in which case Algorithm 1 is gradient
descent, or an approximation of it (whose expectation is the
true gradient), in which case Algorithm 1 is stochastic gradient
descent. We also require that supp(a(K)) C K for all K €
P(n). In most of the subsequent constructions, the matrix B
and the function a will be defined over R rather than over C.

Different constructions of the matrix B and the function a
in Algorithm 1 enable to compute the gradient either exactly
(which requires the storage overhead d to be at least s, + 1 for

IFor simplicity, assume that m/|n. The given scheme could be easily adapted
to the case m 1 n. Further, the assumption that the number of partitions equals
to the number of nodes is a mere convenience, and all subsequent schemes
can be adapted to the case where the number of partitions is at most the
number of nodes.

7477

Algorithm 1 Gradient Coding
Input: Data $ = {2z, = (x;,y;)}!",, number of iter-
ations ¢t > 0, learning rates {n}._, > 0, straggler
tolerance parameters {s,}._;, a matrix B € C"*", and
a function a : P(n) — C™.
Initialize w™ = (0,...,0).
Partition § = U}, S; and send {S; : j € supp(b;)} to W;
for every i € [n].
for r=1to t do
M broadcasts w'") to all nodes.
Each W; sends %EiESupp(bJ) bji-VLs,(w) to M.
M waits until at least n — s,» nodes responded.
M computes v, = a(K,) - C, where the i’th row of C
is % times the response from W;, if it responded,
and 0 otherwise, and /C, is the set of non-stragglers in
the current iteration 7.
M updates w1 £ w() — v,
end for
Return 1 3! w(+D),

all » € [t]) or approximately. In what follows, the respective
requirements and guarantees from a and B are discussed. In the
following definitions, for an integer r let 1, be the vector of r
ones, where the subscript is omitted if clear from context, and
for K C [n] let K¢ = [n] \ K.

Definition 2: A matrix B € C" ™ and a function a :
P(n) — C™ satisfy the Exact Computation (EC) condition
if for all IC C [n] such that |[K| > max,.c[5., we have a(K)-
B=1.

Definition 3: For a non-decreasing function e [n —
1] — Rso such that ¢(0) = 0, a and B satisfy the
e-Approximate Computation (e-AC) condition, if for all
K € P(n), we have da(a(K)B,1) < €(|K€|) (where da is
Euclidean distance).

Notice that the error term € in Definition 3 is a function of
the number of stragglers since it is not expected to decrease
if more stragglers are present. The conditions which are given
in Definition 2 and Definition 3 guarantee the exact and
approximate computation by the following lemmas. In the
upcoming proofs, let N(w) be the matrix

vLSl(w)

L1 | Vis,(w)
Naw) 2 | M)

Vis, (w)

Lemma 4: If a and B satisfy the EC condition, then for
all r € [t] we have v, = VLs(w™).

Proof: For a given r € [t], let B’ be the matrix whose
i’th row b} equals b; if i € K., and zero otherwise. By the
definition of C in Algorithm 1 it follows that C = B’-N(w (")),
and since supp(a(K,)) C K, it follows that a(K,)B’ =
a(KC,)B. Therefore, we have

Uy

(K,)-C=a(K,) B -Nw™)

a(K,;)-B-N(w) =1-N(w™)

Authorized licensed use limited to: University of Texas at Austin. Downloaded on August 09,2021 at 16:16:49 UTC from IEEE Xplore. Restrictions apply.

7478

The next lemma bounds the deviance of wv, from the
gradient of the empirical risk at the current model w(") by
using the function € and the spectral norm ||-||spec of N(w).
Recall that for a matrix P the spectral norm is defined
as |[Plspec = maxg; ja),—1[/Pz2-

Lemma 5: For a function € as above, if a and B satisfy
the e-AC condition, then dy(v,, VLs(w(™)) < €(|K¢|) -
IN(w ™) [pec

Proof: As in the proof of Lemma 4, we have that

da (v, VLs(w™)) =
= dy(a(K,) - B -N(w™),1-N(w™))
=dy(a(K,) - B-N(w), 1 - N(w™)
= |(a(K,)B = 1) - N(w)|
< dz(a(K;)B, 1) - ||N(w(r))||8pec
< (K] - [IN(@) | gpec

]
Due to Lemma 4 and Lemma 5, in the remainder of this
paper we focus on constructing a and B that satisfy either the
EC condition (Section V) or the e-AC condition (Section VI).
Remark 6: In some settings [24], it is convenient to partition
the data set S to {S;}¥_;, where & < n. Notice that the
definitions of @ and B above extend verbatim to this case
as well. If a and B satisfy the EC condition, we have
that a(C)B = 1,, for every large enough K C [n]. Hence,
by omitting any n — k£ columns of B to form a matrix B,
we have that a(KC)B = 1, and hence a scheme for any parti-
tion of S to k parts emerges instantly. This new scheme (a,]:’»)
is resilient to an identical number of stragglers s and has lesser
or equal storage overhead than (a,B). Similarly, if a and B
satisfy the e-AC condition for some ¢, then the scheme (a, B)
has lesser or equal storage overhead, and an identical error
function e, since do(a(K)B, 1) < da(a(K)B,1,) < €(|K])
for any KL € P(n).

IV. MATHEMATICAL NOTIONS

This section provides a brief overview on the mathematical
notions that are essential for the suggested schemes. The exact
computation (Sec. V) requires notions from coding theory,
and the approximate one (Sec. VI) requires notions from
graph theory. The coding theoretic material in this section is
taken from [22], which focuses on finite fields, and yet the
given results extend verbatim to the real or complex case (see
also [20], Sec. 8.4).

For a field F € {R,C} an [n, s] (linear) code C over F is
a subspace of dimension x of F". The minimum distance §
of Cis min{dy(z,y) : ¢,y € C, x # y}, where dy denotes
the Hamming distance dg(xz,y) = |{i|z; # v:}|. Since the
code is a linear subspace, it follows that the minimum dis-
tance of a code is equal to the minimum Hamming weight

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 12, DECEMBER 2020

wg(x) 2 ||z|lo = |supp(x)| among the nonzero codewords
in C. The well-known Singleton bound states that § < n—r+1,
and codes which attain this bound with equality are called
Maximum Distance Separable (MDS) codes.

Definition 7: [22, Sec. 8] A code C is called cyclic if the
cyclic shift of every codeword is also a codeword, namely,

(c1,¢62...,¢n) €C = (cn,c1y...,0n-1) €C.

The dual code of C is the subspace C+ = {y € F"|y -
c¢' =0 for all ¢ € C}. Several well-known and easy to prove
properties of MDS codes are used throughout this paper.

Lemma 8: If C C F™ is an [n, k] MDS code, then

Al. Ctisan [n,n — k] MDS code, and hence its minimum
Hamming weight is x + 1.

A2. For any subset K C [n] of size n — k + 1 there exists a
codeword in C whose support (i.e., the set of nonzero
indices) is K.

A3. The reverse code CT* £ {(cy,, ..
is an [n, k] MDS code.

Proof: For Al see [22, Prob. 4.1]. The proof of A3 is
trivial since permuting the coordinates of a code does not
alter its minimum distance. For A2, let G € F**™ be the
generator matrix of C, i.e., a matrix whose rows are a basis
to C. By restricting G to the columns indexed by K¢ we get
a k X (k — 1) matrix, which has a nonzero vector y in its left
kernel, and hence yG is a codeword in C which is zero in the
entries that are indexed by K¢. Since the minimum distance
of C is n — k + 1, it follows that yG has nonzero values in
entries that are indexed by /C, and the claim follows. O

Two common families of codes are used in the sequel—
Reed-Solomon (RS) codes and Bose-Chaudhuri-Hocquen-
ghem (BCH) codes. An [n, k] RS code C is defined by a set
of n distinct evaluation points oy, ...,an—1 € F as

C= {(f(QO)vf(al)a cee f(anfl)) : f € F<n[‘r]}v

where F<%[z] is the set of polynomials of degree less than
and coefficients from F in the variable z. Alternatively,
RS codes can be defined as {yV|y € F~}, where V € F=*"
is a Vandermonde matrix on {a;}7=, ie., vi; = a?:ll for
every (i,7) € [k] x [n]. It is widely known that RS codes are
MDS codes, and in some cases, they are also cyclic.

In contrast with RS codes, where every codeword is a
vector of evaluations of a polynomial, a codeword in a BCH
code is a vector of coefficients of a polynomial; that is,
a codeword ¢ = (cg,c1,...,Cn_1) is identified by c(z) £
co + 1z + ... + ¢p_1z™ L. For a field K that contains F
and a set R C K, a BCH code C is defined as C = {c €
F*|c(r) = 0 for all » € R}. The set R is called the roots of C,
or alternatively, C is said to be a BCH code on R over F. For
example, a set of complex numbers R C C defines a BCH
code on R over R, which is the set of real vectors whose
corresponding polynomials vanish on R.

Lemma 9: [20], [22] If all elements of R C C are roots of
unity of order n, then the BCH code C on R over R is cyclic.

Proof: 1If ¢(x) is a codeword in C, then its cyclic shift is
given by é&(z) £ ¢(x) -z mod (2" — 1) = z - ¢(x) — ¢y -
(™ — 1). Since every r € R is a root of unity of order n,

e)l(ery ..., en) €C)

Authorized licensed use limited to: University of Texas at Austin. Downloaded on August 09,2021 at 16:16:49 UTC from IEEE Xplore. Restrictions apply.

RAVIV et al.: GRADIENT CODING FROM CYCLIC MDS CODES AND EXPANDER GRAPHS

it follows that
E(T) =r- C(T) —Cp—1- (Tn - 1) =7r-: C(’I“) =0,

and hence ¢ is a codeword in C. O

Further, the structure of R may also imply a lower bound
on the distance of C.

Theorem 10: (The BCH bound) [20], [22] If R contains
a subset of ¢ consecutive powers of a primitive root of unity
(i.e., a subset of the form w®, wbt! ... wbt*~1 where w is a
primitive n’th root of unity), then the minimum distance of C
is at least ¢ + 1.

In the remainder of this section, a brief overview on
expander graphs is given. The interested reader is referred
to [10] for further details. Let G = (V,&) be a d-regular,
undirected, and connected graph on n nodes. Let Ag € R"*™
be the adjacency matrix of G, ie., (Ag),; = 1if {i,j} €&,
and 0 otherwise. Since Ag is a real symmetric matrix, it fol-
lows that it has n real eigenvalues A\; > Ao > ... > A\,
and denote A = max{|\z|,|\,|}. It is widely known [10]
that \y = d, and that \,, > —d, where equality holds if
and only if G is bipartite. Further, it also follows from Ag
being real and symmetric that it has a basis of orthogonal
real eigenvectors v; = 1,vs,...,v,, and w.l.o.g assume that
||vi]]2 = 1 for every ¢ > 2. The parameters A and d are related
by the celebrated Alon-Boppana Theorem.

Theorem 11: [10] An infinite sequence of d regular graphs
on n vertices satisfies that A > 2v/d — 1 —o0,,(1), where 0,,(1)
is an expression which tends to zero as n tends to infinity.

Constant degree regular graphs (i.e., families of graphs
with fixed degree d that does not depend on n) for which A
is small in comparison with d are largely referred to as
expanders. In particular, graphs which attain the above bound
asymptotically (i.e., A < 2v/d—1) are called Ramanujan
graphs, and several efficient constructions are known [6], [19].
Since explicit constructions of Ramanujan graphs are often
rather intricate, one may resort to choosing a random regular
graph and verify its expansion by computing the respective
eigenvalues. This process that is known to produce a good
expander with high probability [10, Theorem 7.10], and is
used in our experiments.

V. EXACT GRADIENT CODING FROM
CycLic MDS CODES

For a given n and s, let C be a cyclic [n,n — s] MDS
code over [that contains 1 (explicit constructions of such
codes are given in the sequel). According to Lemma 8, there
exists a codeword ¢; € C whose support is {1,...,s+ 1}.
Let co,...,c, be all cyclic shifts of ¢, which lie in C
by its cyclic property. Finally, let B be the n X n matrix
whose columns are ci,...,c,, ie, B £ (¢],c5,...,¢]).
The following lemma provides some important properties of B.

Lemma 12: The matrix B satisfies the following properties.

Bl1. ||b]lo = s+ 1 for every row b of B.

B2. Every row of B is a codeword in C*%.

B3. The column span of B is the code C.

B4. Every set of n — s rows of B are linearly independent
over F.

7479

Proof: To prove Bl and B2, observe that B is of the
following form, where ¢; = (51, ..., 3s+1,0,...,0).

B 0 - 0 By Bs ... P
Bz B O - 0 Bst1 - B3
Bs Bs—1 - P 0 o 00 Bt

ﬁerl ﬁs o ﬁQ ﬁl 0 ce 0
0 Bst1 Bs B2 P - 0
0 o 0 ﬁs-‘rl ﬁs ﬁs—l to 61

To prove B3, notice that the leftmost n — s columns of B
have leading coefficients in different positions, and hence they
are linearly independent. Thus, the dimension of the column
span of B is at least n — s, and since dim C = n — s, the claim
follows.

To prove B4, assume for contradiction that there exist a
set of n — s linearly dependent rows. Hence, there exists a
vector v € " of Hamming weight n — s such that vB = 0.
According to B3, the columns of B span C, and hence
the vector v lies in the dual code C* of C. Since C*
is an [n,s] MDS code by Lemma 8, it follows that the
minimum Hamming weight of a codeword in C* is n —s+1,
a contradiction. O

Since CF is of dimension n — s, it follows from
parts B2 and B4 of Lemma 12 that every set of n — s rows
of B are a basis to Ct. Furthermore, since 1 € C it follows
that 1 € C*. Therefore, there exists a function a : P(n) — F”
such that for any set L C [n] of size n — s we have
that supp(a(K))CK and a(K) - B = 1.

Theorem 13: . The above a and B satisfy the EC condition
(Definition 2).

In the remainder of this section, two cyclic MDS codes over
the complex numbers and the real numbers are suggested, from
which the construction in Theorem 13 can be obtained. These
constructions are taken from [20] (Sec. II.B), and are given
with a few adjustments to our case. The contributions of these
codes is summarized in the following theorem.

Theorem 14: For any given n and s there exist explicit
complex valued a and B that satisfy the EC-condition with
optimal d = s + 1. The respective encoding (i.e., con-
structing B) and decoding (i.e., constructing a(KC) given K)
complexities are O(s(n — s)) and O(slog?(s) + nlogn),
respectively. In addition, for any given n and s such that
n # smod 2 there exist explicit real valued ¢ and B that
satisfy the EC-condition with optimal d = s+ 1. The encoding
and decoding complexities are O(min{slog?(s), nlogn}) and
O(gs + s(n — s)), where g5 is the complexity of inverting a
generalized Vandermonde matrix.

A. Cyclic-MDS Codes Over the Complex Numbers

For a given n and s, let i = \/—1, and let A £ {aj ;-’;01
be the set of n complex roots of unity of order n, i.e., a; £
e?™i/m Let G € C(~%)*" be a complex Vandermonde matrix
over A, ie., gy, = ozf:ll for j € [n] and any k € [n — s].

Finally, let C £ {zG|x € C"~*}. It is readily verified that C

Authorized licensed use limited to: University of Texas at Austin. Downloaded on August 09,2021 at 16:16:49 UTC from IEEE Xplore. Restrictions apply.

7480

is an [n,n — s] MDS code that contains 1, whose codewords
may be seen as the evaluations of all polynomials in C<"~*|x]
on the set A.

Lemma 15: The code C is cyclic.

Proof: Let ¢ € C be a codeword, and let f. €
C<""*[z] be the corresponding polynomial. Consider the
polynomial fo (x) £ fe(e?™/™.), and notice that deg fo =
deg fe. Further, it is readily verified that any j € {0,1,...,
n—1} satisfies that for(a;) = fe(a;—1), where the indices are
taken modulo n. Hence, the evaluation of the polynomial fe/
on the set of roots A results in the cyclic shift of the
codeword ¢, and lies in C itself. O

Corollary 16: The code C is a cyclic MDS code which
contains 1, and hence it can be used to obtain a¢ and B,
as described in Theorem 13.

Given a set K of n — s non-stragglers, an algorithm
for computing the encoding vector a(K) in O(slog?(s) +
nlogn) operations over C (after a one-time initial compu-
tation of O(s? + s(n — s))), is given in Appendix A. The
complexity of this algorithm is asymptotically smaller than
the corresponding algorithm in [7] and [8] whenever s = o(n).
Furthermore, the cyclic structure of the matrix B enables a very
simple algorithm for its construction; this algorithm compares
favorably with previous works for any s, and is given in
Appendix A as well.

Remark 17: Note that the use of complex rather than real
matrix B may potentially double the required bandwidth, since
every complex number contains two real numbers. A simple
manipulation of Algorithm 1 which resolves this issue is given
in Appendix C. This optimal bandwidth is also attained by
the scheme in the next section, which uses a smaller number
of multiplication operations. However, it is applicable only
if n # s mod 2.

B. Cyclic-MDS Codes Over the Real Numbers

If one wishes to abstain from using complex numbers,
e.g., in order to reduce bandwidth, we suggest the following
construction, which provides a cyclic MDS code over the
reals. This construction relies on [20] (Property 3), with an
additional specialized property.

Construction 18: For a given n and s such that n # s mod
2, define the following BCH codes over the reals. In both cases
denote w £ 27/,

1) If n is even and s is odd let s’ £ [£], and
let C; be a BCH code which consists of all poly-
nomials in R<"[z] that vanish over the set R; =
{wn/27s" wn/275'+1’ . wn/2+5'}.

2) If n is odd and s is even let n’ = [Z], and
let Co be a BCH code which consists of all poly-
nomials in R<"[z] that vanish over the set Ry =
{wn/—s/2+1, wn’—s/2+2, o 7wn/+s/2}’

Lemma 19: The codes C1 and Co from Construction 18 are

cyclic [n,n — s] MDS codes that contain 1.

Proof: According to Lemma 9, it is clear that C; and C5 are
cyclic. According to the BCH bound (Theorem 10), it is also
clear that the minimum distance of C; is at least |Rq|+1 = s+
1, and the minimum distance of Cs is at least |Ra|+1 = s+1.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 12, DECEMBER 2020

Hence, to prove that C; and Cy are MDS codes, it is shown
that their code dimensions are n — s.

Since the sets R and Rg are closed under conjugation
(i.e., r is in R; if and only if the conjugate of 7 is in R;)
it follows that the polynomials p;(z) = [[,cr,(z —7) and
pa(x) 2 [1,er,(x —7) have real coefficients. Hence, by the
definition of BCH codes it follows that

{p1(2) - L) |l(z) € RZ"*[a]} S Cy
{p2(@) - L(2)|l(z) € R"*[a]} C C,)

and hence, dimC; > n — s and dimCy > n — s. Let d(Cq)
and d(C2) be the minimum distances of C; and Ca, respectively,
and notice that by the Singleton bound [22] (Sec. 4.1) it
follows that

dimC <n—-dC)+1<n—(s+1)+1=n—s
dimCs <n—d(C2)+1<n—(s+2)+1=n—s,

and thus C; and Cs satisfy the Singleton bound with equality,
or equivalently, they are MDS codes. To prove that 1 is in C;
and Ca, we ought to show that 1(ry) = 1(r2) = 0 (where 1
denotes the all ones polynomial here) for every r1 € R;

and ro € Ry, which amounts to showing that E?;OI r{ =

Z;:Ol) = 0. It is well-known that the sum of the 0’th
to (n — 1)’th power of any root of unity of order n, other
than 1, equals zero. Since

n s n n
I<——|2]==—-s<=—§+1
<3 L2J 55 <3 s+
n n s
<"'<§+SI:§+L§JSH—1
if n is even and s is odd, and
n s s s
1<|=|-Z2+41=n"-Z241<n —2+2
_L2J Stl=n'—s+l<n =+
, S n s
A Z<n=-1
<se<n 4 g [2J+2_n
otherwise,

it follows that all powers of w in R; and R, are
between 1 and n — 1, and hence 1 ¢ R; and that 1 ¢ Ro.
Hence, we have that 1(r1) = 1(rg) = 0 for every 11 € Ry
and r9 € Ro, which concludes the claim. O

Algorithms for computing the matrix B and the vector a (k)
for the codes in this subsection are given in Appendix B.
The algorithm for construction B outperforms previous works
whenever s = o(n), and the algorithm for computing a(K)
outperforms previous works for a smaller yet wide range of s
values.

VI. APPROXIMATE GRADIENT CODING
FrROM EXPANDER GRAPHS

Recall that in order to retrieve that exact gradient, one must
have d > s + 1, an undesirable overhead in many cases.
To break this barrier, we relax the requirement to retrieve the
gradient exactly, and settle for an approximation of it. Note
that trading the exact gradient for an approximate one is a
necessity in many variants of gradient descent (such as the
acclaimed stochastic gradient descent [21, Sec. 14.3]), and
hence our techniques are aligned with common practices in
machine learning.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on August 09,2021 at 16:16:49 UTC from IEEE Xplore. Restrictions apply.

RAVIV et al.: GRADIENT CODING FROM CYCLIC MDS CODES AND EXPANDER GRAPHS

For a set K C [n] of non-stragglers, let 1x be its binary
characteristic vector with respect to [n]. Setting B as the
identity matrix and a as the function which maps K € P(n)
to \%I - 1x corresponds to executing gradient descent while
ignoring the stragglers [5], and averaging the partial gradients
from /C (the factor \%I corrects the factor % in (1)). In what

follows, this is referred to as the trivial scheme. The respec-
ns

tive B and « clearly satisfy the e-AC scheme for €(s) =

bl

where s = s(K) = n —
dg(a(lC)B]].) = dg(u ﬂ.;c,]].)
PR DIE
jeK igK
_ ns_ 3)
n—-s

We show that this can be outperformed by setting B to be a
normalized adjacency matrix of a connected regular graph on n
nodes, which is constructed by the master before dispersing
the data, and setting a to be some simple function.

The resulting error function €(s) depends on the parameters
of the graph, whereas the resulting storage overhead d is given
by its degree (i.e., the fixed number of neighbors of each node).
The error function is given below for a general connected
and regular graph, and particular examples with their resulting
errors are given in the sequel. In particular, it is shown that
taking the graph to be an expander graph provides an error
term e which is smaller than (3) for any s.

For a given n let G be a connected d-regular graph on n
nodes, with eigenvalues A\; > ... > \,, corresponding (row)
eigenvectors v; = 1,vs,...,v,, and A 2 max{|\a, |\.|}
as described in Subsection IV. For a given K C [n] define
u € R" as

(un)i—{ Lok @
n—s

1€k,

and let (v1,vs,...) be the span of vy, vs,... over R™.
Lemma 20: For any K C [n] we have ux € (va,...,v,).
Proof: First, observe that (ve,...,v,) is exactly the
subspace of all vectors whose sum of entries is zero. This
follows from the fact that {1, vs,...,v,} is an orthogonal
basis, hence viT -1 = 0 for every ¢ > 2, and from the fact
that {vo,...,v,} are linearly independent. Since the sum of
entries of ux is zero, the result follows. O
Corollary 21: For any K C [n] there exists aa,...,q, €
R such that ux = vy + ... + @,v,, and |ugls =
Do O0F = /755
Proof: The first part follows immediately from Lemma 20.
The second part follows by computing the ¢ norm of wux
in two ways, once by its definition (4) and again by using
the representation of wux as a linear combination of the
orthonormal set {vs, ..., v, }. O
Now, let B £ % - Ag, define a : P(n) — R" as a(K) =
ux + 1, and observe that supp(a(K)) = K for all £ € P(n).
Note that computing a(KC) given K is done by a straightfor-
ward O(n) algorithm. The error function ¢ is given by the
following lemma.

7481

Lemma 22: For every nonempty? set K C [n] of size n — s
we have that dz(a(K)B,1) < 5 - /-2 £ ¢(s).
Ai

Proof: Notice that the eigenvalues of B are y; = <, and
hence p = max{|us|, |11, |} equals 3. Further, the eigenvectors
are identical to those of Ag. Therefore, it follows from
Corollary 21 that

d2(a(K)B, 1) = da((1 4 ux)B, 1)
=do((L 4+ agva + ... + apv,)B, 1)
= dg(]]. + Qo2 + ...

= HO(QMQ’UQ 4+ ...

+ Qo inUn,]]-)

+ an/ln'Un”Q;
and since {vo,...,v,} are orthonormal, it follows that

+ A [Un ||2

n n

2,2 E: 2,2
E piay < Mg
i=2 i=2

_A
Cd\n-s
O

Corollary 23: The above a and B satisfy the e-AC condition

for e(s) = % e

HOQ;LQ’UQ + ...

n
2
Zai

=2

The storage overhead of this scheme

equals the degree d of the underlying regular graph G.

Remark 24: For the purpose of convergence analysis, that is
given in Subsection VI-C which follows, one must multiply the
added gradient by some constant ¢ very close to 1 to formally
guarantee convergence. For the sake of simplicity we omit this
constant from the following discussion, and provide the full
details in Subsection VI-C.

It is evident that in order to obtain small deviation €(s),
it is essential to have a small A and a large d. However, most
constructions of expanders have focused in the case were d is
constant (i.e., d = O(1)). On one hand, constant d serves our
purpose well in terms of storage overhead, since it implies a
constant storage overhead. On the other hand, a constant d
does not allow A\/d to tend to zero as n tends to infinity due
to Theorem 11.

It is readily verified that our scheme outperforms the trivial
one by a multiplicative factor of 2, which is less than
one for every non-bipartite graph; bipartite graphs are used
in a slightly different fashion in the sequel. We conclude
the discussion with several examples, the first of which
uses Margulis graphs ([10], Sec. 8), that are rather easy to
construct.

Example 25: For any integer n there exists an 8-regular
graph on n nodes with A < 5v/2. For example, by using these
graphs with the parameters n = 500, d = 8, we have an
improvement factor of % = % ~ (0.883.

Several additional examples for Ramanujan graphs, which
attain an improvement factor < L/F ~ % but are harder
to construct, are as follows.

’For K = @ we clearly have ux + 1 = 0, and hence dz(a(K)B, 1) =
L2 = vn.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on August 09,2021 at 16:16:49 UTC from IEEE Xplore. Restrictions apply.

7482

Example 26: [19] Let p and ¢ be distinct primes such
that p = 1 mod 4, ¢ = 1 mod 4, and such that the Legendre

symbol (% is 1 (i.e., p is a quadratic residue modulo q). Then,

there exist a non-bipartite Ramanujan graph on n = @
nodes and constant degree p + 1.
1) If p = 13 and ¢ = 17 then n = 2448, d = 14,
and 251 ~ 0.534.
2) If p = 5 and ¢ = 29 then n = 12180, d = 6,

and 21 ~ 0.816.

Restricting d to be a constant (i.e., not to grow with n) is
detrimental to the improvement factor % due to Theorem 11,
but allows lower storage overhead. If one wishes a smaller
(i.e., better) improvement factor at the price of higher over-
head, the following is useful.

Example 27: [1] There exists a polynomial algorithm
(in n) to produce a graph G with the parameters (n,d,\) =
(2™, m — 1,y/mlog® m). For this family of graphs,
the term % goes to zero as n goes to infinity.

A. Bipartite Expanders

The above approximation scheme can be used with a bipar-
tite graph G as well. However, bipartite graphs satisfy that

ns
n—s

A = d, and hence the resulting error function e(s) =
is identical to the error function of the trivial scheme (3),
which requires lower overhead, and hence no gain is attained.
However, in what follows it is shown that bipartite graphs
on 2n nodes can be employed in a slightly different fashion,
and obtain €(s) = %2, /-"% for some oy < d that is defined
shortly.

To this end, we require the notion of singular value
decomposition, which implies that any matrix P € R"*"
can be written as P = UDVT, where D € R"* ™ is a
diagonal matrix, and U and V are orthonormal matrices
(ie., UUT = VVT = I,,, where I, is the identity matrix
of order n). The elements {o;}? ; on the diagonal of D,
which are nonnegative, are called the singular values of P,
the columns {u; }? ; of U are called left-singular vectors
of P, and the columns {v,' }"_, of V are called right-singular
vectors of P. The singular values and singular vectors of P can
be arranged in triples {(uz7 vy, oz)}z 1 such that for all 7 € [n]
we have Pv,| = Uz T and PTu] = oyv/, which implies
that PTP’U =olv, and PP u -T =olu, .

Let G = (L U R E) be a d regular (in both sides) and
connected bipartite graph on 2n nodes (and hence |£| = |R| =
n), with an adjacency matrix

0 C
s (e 1)

for some n x n real matrix C, and eigenvalues \y = d > Ay >

- > Ao, = —d. Let {(u;,v;,0;)}", be the set of triples of
left-singular vectors, right-singular vectors, and singular values
of C, as explained above, where 01 > --- > o, > 0. The
next well-known lemma presents the connection between the
singular values of C and the eigenvalues of Ag. Its proof
is a combination of a few simple exercises, and is given for
completeness.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 12, DECEMBER 2020

Lemma 28: {\;}2", = {o;}, U{—0i}",
Proof: For any i € [n] we have that

0 C
(wi,v;) (CT 0) = (v;,CT,u;C) = 7(u;, v;),

and hence o; € {\;}?",. It is an easy exercise to verify that
the eigenvalues of a bipartite graph are symmetric around zero,
and hence it follows that —o; € {\;}77; as well.

Conversely, for any i € [2n] let (s;,t;) be an eigenvector
of A with a corresponding eigenvalue \;, where s;,t; € R".

Since (s;,t;)Ag = \i(s;,t;), it follows that
tiCT = /\isi tiCTC =)\2tl
, and h E
{ 5;iC =\t and hence 5,CCT = \2s;
Therefore, it follows that A\? € {02}, and thus \; €
{oitie U{—oi}iy. U

From Lemma 28, the following corollaries are easy to prove.
Corollary 29:
A. (]]-7 1, d) € {(ula Ui, Ji)}?:l'
B. 0o < d.
Proof:
A. Repeat the second part of the proof of Lemma 28 with
i = 1, namely, with (s;,t;) = (1,1) and \; = d.
B. Since o1 > > o0,, it follows from Lemma 28
that Ay = o». Further, since G is connected, it follows
that \s < d, and hence o9 < d.

|
Given Corollary 29.A, we may assume without loss of
generality that u; = v1 = 1, and that ||v;||2 = |lulle = 1

for every ¢ € {2,...,n}. Now, for a given set L C [n] of
size n — s, let ux and a(K) be as in Section VI. Notice
that since {w;}} , is an orthonormal basis, and since 1 is
orthogonal to uy, it follows that ux € (uo,...,u,). Hence,
there exist real as,...,a, such that ux = Y., u;.
Further, it follows that

lukcllz =

By setting B £ éC, we have the following lemma, which may
be seen as the equivalent of Lemma 22 to the bipartite case.
Proposition 30: For every set K C [n] of size n — s,

d2(a(K)B,1) < 2 - /2,
Proof: By Corollary 29, and since {v;}!" , is an ortho-

normal set, it follows that

|
Applying the above lemma on several constructions of
bipartite expanders provides the following examples.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on August 09,2021 at 16:16:49 UTC from IEEE Xplore. Restrictions apply.

RAVIV et al.: GRADIENT CODING FROM CYCLIC MDS CODES AND EXPANDER GRAPHS

Example 31: Let p and ¢ be distinct primes such that
p = 1lmod4, ¢ = 1mod4, and such that the Legendre

symbol (% is —1. Then, there exists a bipartite Ramanujan
graph on 2n = ¢(¢*> — 1) nodes with o < 2,/p.
1) If p=>5and ¢ = 13 then n = 2 = 1092, d = 6,
and %2 < 25 ~ (.745.
2) If p=13 and ¢ = 5 then n = 2% = 60, d = 14,
and "72 < % ~ 0.515.

B. Lower Bound

Finally, we have the following lower bound on the approx-
imation error of any Approximate Computation (AC) scheme,
that establishes asymptotic optimality of our scheme, up to
constants, when used with Ramanujan graphs. In what follows,
for any set of vertices A in a graph G, let N'(A) be the set
of vertices which has at least one neighbor in A, and for a
vertex V let d(V') denote its degree.

Lemma 32: Let G = (W U P,E) be a bipartite graph
where |W| = |P| = n for some n and d(W) < d for every
W € W and some d. Then, forevery r € {1,2,..., | %]} there
exists a set Q,. C P of size r such that [N (Q,)| < d|Q,|.

Proof: Let P = {Py,...,P,} and without loss of
generality assume that d(Py) < d(P,) < ... < d(P,). Due to
this ordering of Pi,..., P,, and due to the bounded degree
of vertices in W, it follows that d > avg, > avg, , > avg,,
where avg;, £ % _,d(P;) for every j € [n]. Therefore,
the average degree of Q, = {Py,..., P.} is at most d, which
implies that >7_, d(P;) < rd. Since the size of N'(Q,) is
at most the sum of degrees in Q,., it follows that [N (Q,)| <
Z;zl d(P;) <rd=d|Q,| O]

Lemma 33: Consider any B € R™*™ with each row having
at most d non-zeros. Then, for any s such that d < s < n
there exists a set KL C [n] of size n — s such that

s
wo sz [o
supp(a) K

Proof: Associate a bipartite graph G = (W U P, £) with
B as follows. Consider left vertices W = {Wy, Wa, ..., W, }
corresponding to workers, and right vertices P =
{P1,...,P,} corresponding to data parts. We draw an edge
{W;,P;} € & between worker W; and data part P; if
(B)i,; # 0. According to Lemma 32, for any s such that d <
5 < n there exists a set Q C P of size | 5| such that [N (Q)| <
d-13) <s.

Now, let K be any set of size n — s which is contained
in W\ (Q); this set exists since [W\N(Q)| = n—|N(Q)| >
n — s. In addition, let @ = (a;)7_;, € R™ be any vector
with supp(a) C K. Notice that (B),; = 0 whenever { ¢
N(Q) and j € Q, and a; = 0 whenever £ € N (Q). Thus,
for j € Q we have

(aB); = > as(B)e,;
=1
= Z az(B)g’j + Z a¢By; =0,

LeEN(Q) LEN(Q)

7483
since in the summation over ¢ € N(Q) we have a; = 0,
and in the summation over ¢ ¢ N(Q) we have (B, ;) = 0.
Therefore, (aB —1); = —1 for j € Q, and thus dz(aB, 1) >
V19| =4/ | %], which concludes the claim. 0

The above lemma establishes the asymptotic optimality (up
to constants) of our scheme, when used with Ramanujan
graphs. Recall that for Ramanujan graphs we have A < 2v/d.
Thus, using our proposed scheme, we get an a and B that

satisfy the e-AC condition for €(s) < -+, /—=— which

Va\/ 1=(s/n)
tends to 2/5 as s/n — 0.

C. A Few Remarks About Convergence

While our results in Section V guarantee the exact com-
putation of the gradient, and hence the convergence of the
overall gradient descent algorithm, some care is needed to
guarantee convergence when the gradient is approximated,
as done in Section VI and Section VI-A. We operate under
the standard assumption (e.g. [26]) that the arrival of a
computation result from a server, within a predefined time
frame, is modeled by a Bernoulli random variable. Then,
the convergence of our algorithms can be guaranteed as a
special case of the SGD algorithm [23, Sec. 14.3]; this applies
for Section VI and Section VI-A, but for brevity we focus on
Section VI. Furthermore, the ¢5-deviations that were discussed
above provide better convergence guarantees than the trivial
algorithm, that can also be seen as a special case of SGD
under identical assumptions.

Assume that every server in the system responds by some
given deadline with probability ¢, i.e., it is a straggler with
probability 1 — g. Under this premise, it is shown that the
expected value of v, in iteration r of Algorithm 1, when
employing the expander scheme from Section VI, is the true
gradient VLs(w(")) up to a constant factor c that is very close
to one. Since the analysis is identical for every r, we omit this
superscript from now on.

Let X; be a Bernoulli(q) random variable that equals 1 if
the ¢’th server responded, and 0 otherwise. Further, if no server
responded we let v = 0. Therefore, the averaging of the
workers’ results by the master can be described using a random
variable z such that

it X, =0

0
z =
{ﬁ()ﬁ,---,Xn) else.

That is, the added gradient is v = %zBN('w) (see Remark 24,
whether B = %AG in our algorithm or B = I in the trivial
one), for a constant ¢ which satisfies Ez = ¢1 and is given
by the following lemma.
Lemma 34: For z and ¢ defined as above, we have
that Ez = (1 — (1 —¢)") - 1.
Proof: We have that

Ez=0-(1—-¢)" +

>

FCln],F#£2

A \—% g,

Authorized licensed use limited to: University of Texas at Austin. Downloaded on August 09,2021 at 16:16:49 UTC from IEEE Xplore. Restrictions apply.

7484

where 1 £ is the characteristic vector of a set F. Therefore,
for every j € [n], the j’th entry of Ez equals

>

FCn],F#£2

(71— VT -1 € F),

where 1(j € F) is a 0-1 indicator for the truth value of
“j € F”. Re-indexing the above sum by all possible sizes
of a set F that contains j, we have

s (e
i=0

:1_(1_(])71’

n
i=1

where the last inequality follows from the Binomial Theorem.
Hence, it follows that Ez = (1—(1—¢)")-1, which concludes
the claim. O
Therefore, we have that ¢ = 1—(1—¢)™. It is widely known
that if the gradient update in gradient descent is taken from a
probability distribution whose expectation is the true gradient,
then convergence is guaranteed [23, Sec. 14.3]. Therefore,
according to Lemma 34, and since B and N(w) do not depend
on IC, it follows that
Ev = L(E2) - BN(w) = 1BN(w) = IN(w) = VLs(w),
where (k) follows since 1 is an eigenvector for eigenvalue 1,
whether B = éAG or B = I. Hence, both the trivial algorithm
and the one in Section VI converge. However, in what follows
it is shown that the improved /¢s-deviation guarantees of
our algorithm, with respect to the trivial one, provide better
convergence guarantees for an important family of functions.
For 8 € R, a continuously differentiable function f is
B-smooth in a domain X if |V f(z) —Vf(y)|2 < Bllx—yl|2
for every =,y € X. The following theorem applies when-
ever Lgs is 5-smooth and convex, and the learning algorithm
is constrained to some domain X. For the sake of citing the
following theorem, notice that the vector v in Algorithm 1
is a (stochastic) function of w, and thus we write v(w).
In addition, we let w* be the minimizer of Ls in X.
Theorem 35: ([3, Theorem 6.3]°) For R?> £
supyey gllwll3 = lw 2, if E|VLs(w) — v(w)3 < o
for every w € X and Ev(w) = VLs(w), then Algorithm 1

. . 1 A R
with step size (CESYO] and n = 2

o

1 i 2 ﬁRQ
- (s+1)) _ *) < \/i [t
EL5<t}1w) Ls(w*) < Ro t+ T

Let viriv(w) = LzN(w) be the gradient update in the
trivial scheme, and let vy, (w) = 12BN(w) be the one in our
algorithm, where B = éAg. Since the convergence guarantees
in Theorem 35 are largely determined by the parameter o,

% satisfies

3This theorem is stated in much greater generality in [3], but cited herein
as a special case for simplicity.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 12, DECEMBER 2020

we show that a smaller o can be obtained in our algorithm.
Specifically, since VLs(w) = IN(w), we have that

E||VLs(w) = verin(w)3 < [N(w)];

spec EH]]- - %ZH; and
E||VLs(w) = Vezp(w)|3 < [N(w)

2 2
Hspec ’ E”]]' - %ZB”Q

The following lemma shows that our algorithm provides better
convergence guarantees, and is proved in Appendix D.
Lemma 36: We have that

o(1)).

2 —
Ellt - 12B|3 <EJ1- 120 —n- (1- %) 520 -

VII. EXPERIMENTAL RESULTS

In this section, we present experimental results of our
proposed approximate gradient coding scheme (Sec. VI).

A. 0>-Error

We measured the performance of our approximate coding
schemes in terms of the /s-error for the recovery of 1.
We chose the normalized adjacency matrix of a random
d-regular graph on n vertices as the matrix B. We randomly
chose n — s rows of B to be the surviving workers in any
particular iteration, where s is the number of stragglers. For the
decoding vector a(K), we chose the vector in (4), (called the
linear decoder), as well as the optimal least squares solution
(called the optimal decoder):

a(K) = min [laB(K,:) — 1], (6)

where B(KC :) is the submatrix of B which consists of the
rows that are indexed by K. Note that even though we have
no additional theoretical guarantees for the optimal decoder,
it is always possible to compute it in cubic time, e.g., by the
singular value decomposition of B(KC, :).

Figure 2 presents the results using graphs on n = 30, 50
vertices, and various values of s and d. The results shown are
averaged over multiple samples of K and multiple draws of the
matrix B. Figures 2(a), 2(b), 2(d), and 2(e) show the /s-error
versus number of stragglers s. As the number of stragglers
increases, the recovery gets worse for a fixed degree d.

Figures 2(c) and 2(f) show the ¢5-error versus the degree d.
As d increases, the recovery error gets better for a fixed num-
ber of stragglers s. Also, as expected, in all cases, the optimal
decoder does better than the linear decoder in terms of the ¢5-
error. Interestingly, we can also observe that on average both
the linear decoder and the optimal decoder are better than the
theoretical upper bound in our paper. One could even think of
exploiting this empirically by randomizing the assignment of
the rows of B to the different workers in every iteration.

B. Generalization Error

In this section, our approximate gradient coding (AGC)
scheme is compared to other approaches. We compare against
gradient coding from [24] (GC), as well as the trivial
scheme (IS), where the data is divided equally among all
workers, but the master only uses the first n — s gradients.

We measured the performance of our coding schemes in
terms of the area under the curve (AUC) on a validation set

Authorized licensed use limited to: University of Texas at Austin. Downloaded on August 09,2021 at 16:16:49 UTC from IEEE Xplore. Restrictions apply.

RAVIV et al.: GRADIENT CODING FROM CYCLIC MDS CODES AND EXPANDER GRAPHS

L2-Error vs No. of Stragglers

—— Upper Bound (theoretical)
—f— Linear Decoder (avg. case)
—— Optimal Decoder (avg. case)

2 4 6 8 10 12 14
No. of Stragglers (s)

(@n=30,d=3

L2-Error vs No. of Stragglers

—+ Upper Bound (theoretical)
~+- Linear Decoder (avg. case)
3.0{ —+ Optimal Decoder (avg. case)

L2-Error vs No. of Stragglers

—— Upper Bound (theoretical)
—f— Linear Decoder (avg. case)
—— Optimal Decoder (avg. case)

(b)yn=30,d=5

L2-Error vs No. of Stragglers

—+ Upper Bound (theoretical)
~+- Linear Decoder (avg. case)
—}— Optimal Decoder (avg. case)

L2-Error vs Degree

—— Upper Bound (theoretical)
~}— Linear Decoder (avg. case)
—— Optimal Decoder (avg. case)

2 3 a4 5
Degree (d)

c)n=30,s=5

L2-Error vs Degree

— Upper Bound (theoretical)
~+- Linear Decoder (avg. case)
—}— Optimal Decoder (avg. case)

7485

L2-Error

4 6 8 10 12 14 8 9 10
No. of Stragglers (s)

dn=50,d=5

No. of Stragglers (s)

(&) n=250,d=38

12 13 14 15 2 4 6 8 10
Degree (d)

f)n=>50,s=5

Fig. 2. {a-error for recovery of 1 using normalized adjacency matrices of random d-regular graphs.

AUC vs lterations

0.85
0.80
0.75 4
o 0.701
=)
<
0.65 4
0.60 -
—— Grad. Coding
0.55 1 ~—— Ignore Stragglers
—— Approx. Grad. Coding (Linear), d=3
0.50 —— Approx. Grad. Coding, d=3
T T T T T T
0 20 40 60 80 100
Iterations

Fig. 3. Generalization error versus number of iterations using n = 30
t2.micro worker instances on EC2, with d = 3, and s = 5. Note that in
case of Gradient Coding [24], the computational overhead here is X6 times
(instead of X3 in our approach).

for a logistic regression problem, on a real dataset. The dataset
we used was the Amazon Employee dataset from Kaggle.
We used 26,200 training samples, and a model dimension
of 241,915 (after one-shot encoding with interaction terms),
and used gradient descent to train the logistic regression. For
GC we used a constant learning rate, chosen using cross-
validation. For AGC and IS we used a learning rate of
c1/(r + ¢2), which is typical for SGD, where ¢; and co were
also chosen via cross-validation.

All our methods were implemented in python using MPI4py
(similar to [24]). We ran our experiments using t2.micro
worker instance types on Amazon EC2 and a ¢3.8xlarge
master instance type. The results for n = 30,50 are given
in Fig. 3 and Fig. 4, in which AGC corresponds to our
approximation schemes with the optimal decoder, whereas

AUC vs lterations

0.85
0.80
0.75 1
o 0.70 1
=)
<
0.65 1
0.60 -
—— Grad. Coding
0.55 1 ~—— Ignore Stragglers
—— Approx. Grad. Coding (Linear), d=5
0.50 —— Approx. Grad. Coding, d=5
T T T T T T
0 20 40 60 80 100
Iterations

Fig. 4. Generalization error versus number of iterations using n = 50
t2.micro worker instances on EC2, with d = 5, and s = 10. Note that in
case of Gradient Coding [24], the computational overhead here is x 11 times
(instead of x5 in our approach).

AGC (Linear), termed AGCL is our full proposed approxi-
mation scheme.

We observe that both these approaches are only slightly
worse than GC, which utilizes the full gradient, and are quite
better than the IS approach. Compared to each other, AGC and
AGCL seem equivalent, however AGC was marginally better.
That being said, AGCL can be faster since computing the
linear decoder only requires O(n) time, in contrast to O(n?)
time for the optimal decoder.

APPENDIX A

In this section, efficient algorithms for encoding (i.e., com-
puting the matrix B) and decoding (i.e., computing the vector
a(K) given a set K of non-stragglers) are given for the scheme
in Section V-A.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on August 09,2021 at 16:16:49 UTC from IEEE Xplore. Restrictions apply.

7486

Since the matrix B is circulant, it suffices to compute only
its leftmost column. Further, the leftmost column cf of Bisa
codeword in an [n,n — s] Reed-Solomon code whose evalua-
tion points are all roots of unity of order n, denoted {a; }7=;".
Hence, to find ¢;, one can define the polynomial m(z) £
H;.:SIH (x — ;) and evaluate it over o, avy, . . ., as, Which is
possible in O(s(n — s)) operations. This compares favorably
with the respective O(n? 1og2(n)) of [7] (Sec. 5.1.1) for any s.

As for decoding, for a given set IC of n — s non-stragglers
we present an algorithm which computes a(K) in O(s log? s+
nlogn) operations over C. This outperforms the respec-
tive O((n — s)log®(n — s)) in [7] (Sec. 5.2.1) whenever s =
o(n), and the respective O((n — s)?) of [8] for any s < dn
with § < 1. The central tool in this section is the well-known
Generalized Reed-Solomon (GRS) codes. A code C C C" is
called an [n, s] GRS code if

C={(tif(on), laf (@2), ..., lnf(ow)) : f€Clz]<"},

where {a;}7 , are pairwise distinct evaluation points,
and {¢;}7_,; C C are nonzero column multipliers. It is readily
verified that any RS code (Section IV) is a GRS code.

Lemma 37 ([22], Prop. 5.2): If C C F™ is a GRS code then
its dual C is a GRS code with identical evaluation points.

Let C be the code from Subsection V-A, and notice that it
is a GRS code whose column multipliers are all equal to 1.
By Lemma 37, it follows that the generator matrix of C*
is V- D, where

1 1 1
aq Q2 Qp
2 2 2
V — a1 a2 Ozn
s—1 s—1 s—1
aq Qp an,

and D = diag(¢1,...,¥,) is a diagonal matrix which contains
the nonzero column multipliers of C*. In Algorithm 2, for a
subset K C [n] let Vi be the matrix of columns of V that
are indexed by /C, and let D = diag(¢;);ex. In addition, for
a vector € € C", let xx be the vector which results from
deleting the entries of a that are not in /.

Algorithm 2 Computing the Decoding Vector a(K) for the
Scheme in Subsection V-A

Data: Any vector ' € C™ such that 'B = 1.

Input: A set £ C [n] of n — s non-stragglers.

Output: A vector a(K) such that supp(a(K)) C K
and a(K)B = 1.

Find f € C* such that fVi. = —a). - Dl

Lety £ f-VD.

return a(K) =y + '’

Correctness of Algorithm 2: Since y € C*, it follows
that yB = 0, and hence a(K)B = (y + «’)B = 1. In addition,
since y = f - VD, it follows that yxe = (f - VD)xe = f -

ViceDie = —@)., and thus y; = —x} for every i ¢ K.
Therefore, it follows that a(KC); = y;+a} = 0 forevery i ¢ K,
which implies that supp(a(K)) C K. O

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 12, DECEMBER 2020

Complexity of Algorithm 2: Notice that —

1) Since Di- is diagonal, computing its inverse requires s
inverse operations in C.

2) Solving the equation fVie = —x}.. - Dz} amounts to
an interpolation problem, i.e., finding a degree (at most)
s — 1 polynomial which passes through s given points.
This is possible in O(slog? s) operations by [12].

3) Given f, computing the product fV reduces to evalua-
tion of a degree (at most) n polynomial on all roots of
unity of order n. This is possible in O(nlogn) oper-
ations by utilizing the famous Fast Fourier Transform
(FFT) [2].

Hence, the total complexity of Algorithm 2 is O(slog2 5+
nlogn). O
The pre-computation of @’ may be done by finding " €
C"~* such that B’ = 1, where B’ is the upper-left
(n—s) x (n—s) submatrix of B, and padding " with s zeros.
Since B’ is a lower-triangular matrix in which the support of
every column is of size at most s + 1, the equation /B’ = 1
can be solved by a simple O(s? + s(n — s)) back-substitution
algorithm. The computation of x’ can be done at the encoding
phase (described above), and at a comparable complexity.

APPENDIX B

As in the complex number case (Subsection V-A and
Appendix A), an algorithm for computing the matrix B and
the vector a(K) for the scheme in Subsection V-B is given.
In either of the cases of Construction 18, the resulting code C
consists of all codewords (seen as coefficients of polynomials
in R[z]<™) with s mutual roots. That is, the code can be
described as the right kernel of

2 n—1
1 o af ... of
2 n—1
1 ay a5 ... oy
Vv A
-)
n—1

2
1 as a7 ... of

where {a;}7_, are the roots of the code.

As in Appendix A, to compute the matrix B it suffices to
find the codeword c;, which in this case is a lowest weight
codeword in a BCH code. It is readily verified that ¢; may be
given by the coefficients of the generator polynomial g(x) =
[T}, (z—) (denoted by p; and ps in Eq. (2)). Finding these
coefficients is possible by evaluating g(x) in s + 1 arbitrary
and pairwise distinct roots of unity of order n, and solving
an interpolation problem in O(s log® s) by [12]. However,
evaluating ¢g(x) at s+ 1 points requires O(n logn) operations
using the FFT algorithm. Hence, the overall complexity of
computing B is O(min{slog®s,nlogn}), an improvement
over [7] whenever s = o(n).

In Algorithm 3, for a given K C [n], let Vi be the matrix
of columns of V that are indexed by K. The complexity of
this algorithm outperforms [7] whenever s = o(log? n), and
outperforms [8] whenever s = o(n?/3).

Correctness of Algorithm 3: First, note that Ve is an
invertible matrix, since Ct is an MDS code by Lemma 8 and
Lemma 19. Second, since v is in the left image of V it follows

Authorized licensed use limited to: University of Texas at Austin. Downloaded on August 09,2021 at 16:16:49 UTC from IEEE Xplore. Restrictions apply.

RAVIV et al.: GRADIENT CODING FROM CYCLIC MDS CODES AND EXPANDER GRAPHS

Algorithm 3 Computing the Decoding Vector a(K) for the
Scheme in Subsection V-B

Data: Any vector ' € R™ such that ’'B = 1.

Input: A set £ C [n] of n — s non-stragglers.

Output: A vector a(K) such that supp(a(K)) C K
and a(K)B = 1.

Compute V...

Let f £ —zj. - Vil

Lety 2 f-V.

return a(K) =y + ',

that y € Ct, and further, y; = —x} for every i € K¢. Hence,
supp(a(K)) € K and o(K)B = 1. O

Complexity of Algorithm 3: As in the complexity analy-
sis of Algorithm 2, the complexity is clearly O(ys + s
(n—s)), where ~; is the complexity of inverting a generalized
Vandermonde matrix. While explicit formulas for inverting a
generalized Vandermonde matrix were discussed in [25], for
simplicity, one may employ the trivial O(s%) algorithm. [

APPENDIX C
BANDWIDTH REDUCTION IN SUBSECTION V-A

In step r € [t| of Algorithm 1, each node W; trans-
mits %ZieSupp(b” bji- VLs,(w™) = b; - N(w'")) back
to the master node. In the scheme which is suggested in
Subsection V-A, this step requires transmitting a vector in C?,
where p is the number of entries of w(™). Since the gradient
vectors V Ls, (w(")) are real, the resulting bandwidth is larger
than the actual amount of information by a factor of 2. In this
section it is shown that the optimal bandwidth can be attained
by a simple manipulation of the gradient vectors.

For p’ £ [2] and any r € [t], denote the columns of
the matrix N(w(")) € R"*P by N,.1,...,N,,, and let N.. €
C"*P' be the matrix whose columns are* N,1 +iN;2,N;. 3+
iNy 4, To obtain optimal bandwidth, replace the transmis-
sion b; - N(w(™) € CP of W; at iteration r of Algorithm 1
by b, -N! € C*". In addition, replace the definition of w (1)
by w(™) — ne(v,), for e : C*" — RP that is defined as

e(v) 2 R(v1), S(v1), R(va), S(v2), .. .),
where R(y) and (y) are the real and imaginary parts of a
given y € C, respectively.
Since a and B of Subsection V-A satisfy the EC condition,

it follows that a(K)BN, = 1 - N/ for every set K of n — s
non-stragglers and every r € [t]. Further, we have that

6(]].N;,) =e (]].(an + Z.Nng),]].(Nng + Z'N,n74)7 ..)
=e (]].an + Z.]].NT’Q),]].Nr’3 + i]]-Nr,4); ..)
= (IN,.1,IN,.2,1N, 3...) = IN(w™),
and hence the correctness of Algorithm 1 under the scheme
from Subsection V-A is preserved. Under this framework,

the transmission from ¥¥; to the master node contains p’
complex numbers (i.e., 2p’ real numbers) rather than p

4The rightmost column of N’ is Ny ,—1 + iN if p is even and N, ,,
otherwise.

7487

complex numbers (i.e., 2p real numbers), and it is clearly
optimal.

Note that this improvement does not diminish the contribu-
tion of the scheme in Subsection V-B. In the current section,
to compute the transmission b;N., any worker node W;
performs dp’ multiplication operations over C, i.e., 4dp’ ~ 2dp
multiplication operations over R. In contrast, the scheme in
Subsection V-B requires any W; to perform only dp multipli-
cations over R.

APPENDIX D

We operate under the convention that if all servers are
stragglers (i.e., X = @), then the algorithm outputs the
vector O as the approximation of the gradient. To analyze the
trivial algorithm under this convention, notice that the random
variable z receives the value

Ve — %-]l;c if C#9
K
0 else,

whenever the set of non-stragglers is . Further, notice that
if K = @ then [|1 — 1Y ||3 = n, and otherwise
11— £ Ykll3
=(1-Ye+(1-3)Ye)@-Ye+(1-2)¥e)"
— (- Y@ - Yo) +2(1- 1@ - Yo)vd
+ (1=) [Viell3

(@) ns

= n—s + 2(1 - %)]]-YIJ + (CLZ - 1)HY’CH§

(b) ns n2

=I5 4 op(l— 1)+ (5 1), (7
where (a) follows from Corollary 21 since 1 — Y = —u,

and (b) follows from the definition of Yx. To conduct similar
analysis on our algorithm, we prove the following technical
lemma.

Lemma 38: The following statements hold.

1) For vectors a, b and a constant r > 0, if [[a — b[|3 < «
then |la — 7|2 < a+2(1—r)ab’” + (r2 — 1)||b]2.
2) 1((1+ux)B)" = n.
3) [|(@+uc)B| < =
Proof:
1) We have
(@ —rb)(a —1b)"
=(a—b+(1—r)b)a—b+(1—7)b)"
— (a=b)(a—b)"+2(1-r)(a—b)b" +(1-r)|b]3
<a+2(1—r)ab" + (1 —1)|b|3.

2) Since d1 is an eigenvector of A, and since luy- = 0,
we have

1((1+uc)B) =1BT (L +ux)" = 21451 +ux)"
=1(1+ux)" =n.
3) We have
(14 u)B-(1 +uc)B)" = (1 +uxc)BB' (14 ux)"
= L (1+u)AG(L+ux)"

Authorized licensed use limited to: University of Texas at Austin. Downloaded on August 09,2021 at 16:16:49 UTC from IEEE Xplore. Restrictions apply.

7488

= L (1AZL" + 21AZug + ucAguyg)
= &(d°n + [luxAcl3). (8)

recall that the spectral norm of an adjacency matrix is
bounded from above by the maximum degree. Therefore,
it follows from Corollary 21 that

Now, notice that ||uxAg||? < [Jux|? - |\Ag||qpec, and

2 ns n
d _n+nfs n—s’

®)<n+ g2
0

Corollary 39: 1If K = @ then ||1— 1(1+ux)B|3 = n, and
otherwise

2 2
11— £(1+wc)Blf < %= - ;25 1=+ (z -1

c2 n—s

Proof: The first part is trivial since ux = —1 for £ = @.
If K #9o,

12 (2 + uic)B|3

(a) .
< (1= 1)1((1 + ux)B)"
+ (& = D@ +wc)B3
(b)
<% (1— 1)+ (& = D@ + ux)B|3
(C) 2 2
< %o pon(l- 1)+ (5 - 1),

where (a) follows from Lemma 22 and Lemma 38.1,
(b) follows from Lemma 38.2, and (c) follows from
Lemma 38.3. O

Proof: (of Lemma 36) According to (7) and Corollary 39,
we have

Ef1 - 123 —Enﬂ — L2B||3 =
> Pr(K))n - Lvil3-
KCln)
> Pr(0)ljt - L1+ uc)B|3
KC[n]
> 3 Pr(k) (25 + 2001 - 1) + (5 - 1))
K#@

~ " Pr(K) (3— 1-H+(&- 1),{’_28)

K42
e (1-8) X P05, o
K#o

and since || is distributed as a sum of independent
Bernoulli(q) variables, we have

3—5) fqiu - (7)o

©)=n-

vV
3
/ / /N /N
—
I
|>/
N
v N———— v
=
<[z
=)
' Mf
—
i
.
+
—
—
—
»Q
S~—
-
+
—
ot
N
-~
+ 3
—_
~

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 12, DECEMBER 2020

—%ﬁ)% iqi(l—q)"_i(?)
(J(l) 'n)
-(1-9"

I
3
—

—q(1—q)" 'n)

ACKNOWLEDGMENT

The work of R. Tandon was done while he was at UT
Austin, prior to joining Apple. The authors express their
gratitude to Prof. R. Livni for his valuable input. Most of
N. Raviv’s work was done while he was a postdoctoral
researcher at the Department of Electrical Engineering, Cali-
fornia Institute of Technology.

REFERENCES

[1] Y. Bilu and N. Linial, “Lifts, discrepancy and nearly optimal spectral
gap*,” Combinatorica, vol. 26, no. 5, pp. 495-519, Oct. 2006.

[2] E. O. Brigham and E. Brigham, The Fast Fourier Transform and Its
Applications, vol. 1. Englewood Cliffs, NJ, USA: Prentice-Hall, 1988.

[3] S. Bubeck, “Convex optimization: Algorithms and complexity,” Found.
Trends Mach. Learn., vol. 8, nos. 3—4, pp. 231-357, 2015.

[4] Z. Charles, D. Papailiopoulos, and J. Ellenberg, “Approximate gradient
coding via sparse random graphs,” 2017, arXiv:1711.06771. [Online].
Available: http://arxiv.org/abs/1711.06771

[5] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisit-
ing distributed synchronous SGD,” 2016, arXiv:1604.00981. [Online].
Available: http://arxiv.org/abs/1604.00981

[6] M. B. Cohen, “Ramanujan graphs in polynomial time,” in Proc. [EEE
57th Annu. Symp. Found. Comput. Sci. (FOCS), Oct. 2016, pp. 276-281.

[7] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 2100-2108.

[8] W. Halbawi, “Error-correcting codes for networks, storage and compu-
tation,” Ph.D. dissertation, Dept. Elect. Eng., California Inst. Technol.,
Pasadena, CA, USA, 2017.

[91 W. Halbawi, N. Azizan, F. Salehi, and B. Hassibi, “Improving distributed

gradient descent using Reed—Solomon codes,” in Proc. IEEE Int. Symp.

Inf. Theory (ISIT), Jun. 2018, pp. 2027-2031.

S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their

applications,” Bull. Amer. Math. Soc., vol. 43, pp. 439-561, Aug. 2006.

C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in

distributed optimization through data encoding,” in Proc. Adv. Neural

Inf. Process. Syst., 2017, pp. 5440-5448.

H.-T. Kung, “Fast evaluation and interpolation,” Dept. Comput. Sci.,

Carnegie-Mellon Univ., Pittsburgh, PA, USA, Tech. Rep., 1973.

K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,

“Speeding up distributed machine learning using codes,” IEEE Trans.

Inf. Theory, vol. 64, no. 3, pp. 1514-1529, Mar. 2018.

M. Li, D. G. Andersen, A. Smola, and K. Yu, “Com-

munication efficient distributed machine learning with the

parameter server,” in Proc. 27th Int. Conf. Neural Inf.

Process. Syst. (NIPS), vol. 1. Cambridge, MA, USA: MIT

Press, 2014, pp. 19-27. [Online]. Available: http://dl.acm.org/

citation.cfm?id=2968826.2968829

S. Li, S. M. Mousavi Kalan, A. S. Avestimehr, and M. Soltanolkotabi,

“Near-optimal straggler mitigation for distributed gradient methods,” in

Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops (IPDPSW),

May 2018, pp. 857-866.

S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded MapReduce,” in

Proc. 53rd Annu. Allerton Conf. Commun., Control, Comput. (Allerton),

Sep. 2015, pp. 964-971.

S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding

framework for distributed computing with straggling servers,” in Proc.

IEEE Globecom Workshops (GC Wkshps), Dec. 2016, pp. 1-6.

S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental

tradeoff between computation and communication in distributed comput-

ing,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109-128, Jan. 2018.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Authorized licensed use limited to: University of Texas at Austin. Downloaded on August 09,2021 at 16:16:49 UTC from IEEE Xplore. Restrictions apply.

RAVIV et al.: GRADIENT CODING FROM CYCLIC MDS CODES AND EXPANDER GRAPHS

[19] A. Lubotzky, R. Phillips, and P. Sarnak, “Ramanujan graphs,” Combi-
natorica, vol. 8, no. 3, pp. 261-277, 1988.

[20] T. Marshall, “Coding of real-number sequences for error correction: A
digital signal processing problem,” IEEE J. Sel. Areas Commun., vol. 2,
no. 2, pp. 381-392, Mar. 1984.

[21] R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, Eds., Machine
Learning: An Artificial Intelligence Approach, vol. 1. Palo Alto, CA,
USA: Tioga, 1983.

[22] R. Roth, Introduction to Coding Theory. Cambridge, U.K.: Cambridge
Univ. Press, 2006.

[23] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning:
From Theory to Algorithms. Cambridge, U.K.: Cambridge Univ. Press,
2014.

[24] R. Tandon, Q. Lei, A. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proc. 34th Int.
Conf. Mach. Learn., Aug. 2017, pp. 3368-3376. [Online]. Available:
http://proceedings.mlr.press/v70/tandon17a.html

[25] L. Verde-Star, “Inverses of generalized Vandermonde matrices,” J. Math.
Anal. Appl., vol. 131, no. 2, pp. 341-353, May 1988.

[26] H. Wang, Z. Charles, and D. Papailiopoulos, “ErasureHead: Distrib-
uted gradient descent without delays using approximate gradient cod-
ing,” 2019, arXiv:1901.09671. [Online]. Available: http://arxiv.org/abs/
1901.09671

[27] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, and R. Katz, “Multi-
task learning for straggler avoiding predictive job scheduling,” J. Mach.
Learn. Res., vol. 17, no. 106, pp. 1-37, 2016. [Online]. Available: http://
jmlr.org/papers/v17/15-149.html

[28] M. Ye and E. Abbe, “Communication-computation efficient gradient
coding,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 5610-5619.

[29] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi,
and S. Avestimehr, “Lagrange coded computing: Optimal design for
resiliency, security and privacy,” 2018, arXiv:1806.00939. [Online].
Available: http://arxiv.org/abs/1806.00939

Netanel Raviv (Member, IEEE) received the B.Sc. degree in mathematics
and computer science and the M.Sc. and Ph.D. degrees in computer sci-
ence from Technion, Israel, in 2010, 2013, and 2017, respectively. He is
currently an Assistant Professor with the Department of Computer Science
and Engineering, Washington University in St. Louis, St. Louis, MO. He was
an awardee of the IBM Ph.D. Fellowship for the academic year 2015-2016,
the First Prize in the Feder family competition for best student work in
communication technology, and the Lester-Deutsche Postdoctoral Fellowship.
His research interests include applications of coding theory to privacy,
distributed computations, and machine learning.

7489

Itzhak Tamo (Member, IEEE) received the B.A. degree in mathematics
and the B.Sc. and Ph.D. degrees in electrical engineering from Ben-Gurion
University, Israel, in 2008 and 2012, respectively. From 2012 to 2014, he was
a Post-Doctoral Researcher with the Institute for Systems Research, University
of Maryland, College Park. Since 2015, he has been a Senior Lecturer
with the Electrical Engineering Department, Tel-Aviv University, Israel. His
research interests include storage systems and devices, coding, information
theory, and combinatorics. He was a co-recipient (with Zhiying Wang and
Jehoshua Bruck) of the IEEE Communication Society Data Storage Technical
Committee 2013 Best Paper Award. He received the 2015 IEEE Information
Theory Society Paper Award along with A. Barg. In 2018, he received the
Kirill Prize.

Rashish Tandon received the B.Tech and M.Tech degrees in computer science
from the Indian Institute of Technology (IIT), Kanpur, in 2011, and the
Ph.D. degree in computer science from the University of Texas at Austin,
in 2017. He is currently a Senior Machine Learning Engineer with Apple.
His research interests include algorithms for machine learning in distributed
and high-dimensional settings.

Alexandros G. Dimakis (Senior Member, IEEE) received the Diploma degree
from the National Technical University of Athens in 2003 and the Ph.D. degree
in electrical engineering and computer sciences from UC Berkeley in 2008.
He is currently a Professor with the Electrical and Computer Engineering
Department, University of Texas at Austin. He received an ARO Young
Investigator Award, the NSF Career, a Google Faculty Award, and the Eli Jury
Dissertation Award. He was a co-recipient of several best paper awards
including the joint Information Theory and Communications Society Best
Paper Award and the James Massey Award in 2018. His research interests
include information theory, coding theory, and machine learning.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on August 09,2021 at 16:16:49 UTC from IEEE Xplore. Restrictions apply.

