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Abstract 

We have analyzed the link between gene regulation and growth during the early stages of flower 

development in Arabidopsis. Starting from time-lapse images, we generated a 4-D atlas of early flower 

development including cell lineage, cellular growth rates and the expression patterns of regulatory genes. 

This information was introduced in MorphoNet, a web-based platform.  

Using computational models, we found that the literature based molecular network only explained a 

minority of the gene expression patterns. This was substantially improved by adding regulatory hypotheses 

for individual genes. Correlating growth with the combinatorial expression of multiple regulators led to a 

set of hypotheses for the action of individual genes in morphogenesis. This identified the central factor 

LEAFY as a potential regulator of heterogeneous growth, which was supported by quantifying growth 

patterns in a leafy mutant. By providing an integrated view, this atlas should represent a fundamental step 

towards mechanistic models of flower development.        

Introduction  

The loss of function of many regulatory genes causes important perturbations in the growth patterns of 

multicellular organisms, which means that they directly or indirectly affect local growth parameters via 

the expression of other genes or physical cell properties. The regulatory networks and their dynamics have 

been extensively studied in a range of model species (e.g. Briggs et al., 2018; Chen et al., 2018; Wagner 

et al., 2018).  This has been an active field of research, in particular with the advent of single cell 

sequencing methods, which can now be combined with molecular cell lineage tracking approaches (e.g. 

Cotterell et al., 2020; Frieda et al., 2017). However, there is often only a partial view of how growth is 

coordinated and as a result gene function is usually expressed in general terms such as organ identity or 

polarity, referring to their main mutant phenotype in a relatively abstract and qualitative manner. In 

addition, there are still many open questions regarding the regulatory network structures, and it is often 

impossible to test their coherence. An important first step towards addressing these problems is to integrate 

the existing information on gene expression, and to quantitatively correlate regulatory inputs, for example 

in the form of gene expression patterns, with the final output, i.e. shape changes during development (Coen 

et al., 2004; Whitewoods and Coen, 2017). This should then provide a solid basis for more mechanistic 

studies, involving also the regulation of biochemical interactions and biophysical aspects (Abad et al., 

2017; Diaz de la Loza and Thompson, 2017; Pasakarnis et al., 2016; Thompson, 1917; Zhu and Roeder, 

2020).  

We address this question in the floral meristem (FM) of the model plant Arabidopsis, which generates four 

whorls of floral organs and is one of the best-characterized morphogenetic systems available (Blázquez et 

al., 2006; Bowman et al., 2012; Chen et al., 2018). The function of a range of key genes together with their 
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http://sciwheel.com/work/citation?ids=1357259,5335774,6028677&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
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domains of expression has mainly been studied on a one-by-one basis and their individual function, spatial 

expression and dynamics have been characterized (Fig. 1, supplemental table 1). Like the vegetative and 

inflorescence meristems, the floral meristem contains a population of stem cells, which are kept in an 

undifferentiated state by regulatory genes like SHOOTMERISTEMLESS (STM), WUSCHEL (WUS) and 

CLAVATA (CLV) 1-3 ( Long and Barton, 2000; Lenhard and Laux, 2003; Mayer et al., 1998). Other genes, 

like AINTEGUMENTA and MONOPTEROS, have been more specifically associated with organ outgrowth 

(Krizek, 2009; Nole-Wilson and Krizek, 2006; Yamaguchi et al., 2013). During flower formation, yet 

another set of regulators, including PHAVOLUTA, PHABULOSA, ASYMMETRIC LEAVES1 and 2, 

FILAMENTOUS FLOWER and ETTIN, determines the abaxial/adaxial (dorso-ventral) polarity of the 

organs, i.e. the identity of the cells next to and further away from the shoot meristem (Emery et al., 2003; 

Iwakawa et al., 2007; Machida et al., 2015; Sawa et al., 1999a; McConnell et al., 2001; Sawa et al., 1999b; 

Sessions et al., 1997). The floral organs are separated by boundary domains characterized by the 

expression of notably the CUP SHAPED COTYLEDON (CUC) 1-3 genes (Aida et al., 1997; Hibara et al., 

2006)). The spatial and temporal regulation also involves several hormones, including cytokinin and auxin 

(Besnard et al., 2014a; Reinhardt et al., 2003)). Cytokinin has been mainly associated with meristematic 

activity, whereas auxin is required for organ positioning and outgrowth. While the previous regulators can 

also be found in vegetative meristems, a major subnetwork, including the transcription factors LEAFY 

(LFY), APETALA (AP) 1-3, PISTILLATA (PI), AGAMOUS (AG) and SEPALLATA (SEP) 1-4, is involved 

in defining the type of organs to be produced (Blázquez et al., 2006; Krizek and Fletcher, 2005; Goto and 

Meyerowitz, 1994; Kaufmann et al., 2009; Ó’Maoiléidigh et al., 2014; Parcy et al., 1998; Pelaz et al., 

2000; Wuest et al., 2012; Thomson and Wellmer, 2019).    

  The general architecture of this network and parts thereof have been studied and models for 

molecular regulation have been proposed (e.g.: Sánchez-Corrales et al., 2010; La Rota et al., 2011; Chen 

et al., 2018). However, in spite of this extensive body of knowledge, our understanding of how the network 

orchestrates flower morphogenesis remains fragmentary. The coherence of the existing data needs to be 

tested, while a more integrated, multiscale view at the level of the whole system is missing. This not only 

implies a need for a better knowledge of how the network is behaving in time and space at cellular 

resolution. In addition, the network dynamics need to be correlated with growth patterns. 

We used high-resolution time-lapse images to generate a comprehensive 4-D atlas of early flower 

development, including the expression patterns of 28 regulatory genes. This integrated view allowed us to 

test the coherence of the published data on molecular regulation. A quantitative correlation analysis 

between gene expression patterns and growth patterns then led us to propose a set of hypotheses for the 

combinatorial action of regulatory genes in patterning and morphogenesis. Hypotheses concerning the 

central regulator LEAFY were tested experimentally, which supported a role in growth control both during 

sepal initiation and organ boundary formation.  
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The results were made available in the form of an interactive web-based atlas using a dedicated online tool 

called ‘Morphonet’ (http://morphonet.org, Leggio et al., 2019) that can be accessed and further developed 

by the entire scientific community.  

 
Results 
 
High-resolution live imaging of flower development reveals consistency in shape and size 

 

We used confocal microscopy to live image flower primordia from initiation to stage 4 when the sepals 

start to overlie the flower meristem and all four whorls have been specified (Smyth et al., 1990). This was 

done using a yellow fluorescent protein (YFP) targeted to the plasma membrane or using the membrane 

specific dye FM 4-64 (see Methods, (Fernandez et al., 2010; Willis et al., 2016)). 

The development of six meristems (FM1-6) was recorded in a total of 50 3-D image-stacks, followed by 

cell segmentation and lineage tracking (Methods, Fig 2A, Fig S1). In flower meristems, cell division 

patterns are not fixed, in contrast to e.g., roots or hypocotyls (Montenegro-Johnson et al., 2015). It is, 

therefore, not straightforward to compute an average time course, including cell lineage information which 

is essential to study the correlation between cellular dynamics and gene expression. For this reason, we 

aimed to select a representative series for further analysis. To this end, we compared the shape of all 6 

meristems during development. There is no obvious way to synchronise flower development and the 

geometrical shape of individual time points of one series does not exactly correspond to the time points of 

other series.  To circumvent these problems, we applied a registration method to align and compare 

different acquisition sets using the surface of flower primordia, represented by a point cloud, as the overall 

shape measure (Methods, (Michelin et al., 2016)  The quantitative assessment of the variability in shape 

and size of the flower primordia captured in sequences FM1-4 and FM6 illustrated that they go through 

similar developmental stages with consistent shapes and sizes (Fig. S3), while it was not possible to 

compare the shape of FM5 reliably with that of the other meristems (not shown). This motivated the choice 

of FM1, which had the highest temporal resolution and spanned floral development from initiation to stage 

4, as a representative reference. To facilitate further analysis, this time series was added to the web-based 

browser MorphoNet (http://morphonet.org/, Methods, (Leggio et al., 2019)). 

 

An integrated view of gene expression patterns provides a high-resolution spatiotemporal 

differentiation map of flower development  

  

We next included the expression patterns of 28 important genes involved in floral meristem function, organ 

identity, organ outgrowth and organ polarity in the 4-D template (Fig. 1). For 21 genes, the often partial 

published information was complemented by our own results coming from RNA in situ hybridization or 

https://morphonet.org/
http://sciwheel.com/work/citation?ids=7217184&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=1027452&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=403080,2822694&pre=&pre=&suf=&suf=&sa=0,0
http://sciwheel.com/work/citation?ids=173045&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=7168557&pre=&suf=&sa=0
http://morphonet.org/
http://sciwheel.com/work/citation?ids=7217184&pre=&suf=&sa=0
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confocal live-imaging (Methods, for original data: https://doi.org/10.17863/CAM.61991 ). The collected 

patterns were integrated into the FM1 time course by manually annotating individual cells using the tools 

available via MorphoNet (Fig 2B, Methods, for justification of individual genes expression patterns see: 

https://doi.org/10.17863/CAM.61991). For this purpose, 5 distinct stages of development were chosen (as 

defined by (Smyth et al., 1990)): the initium stage (called here stage 0) and stage 1 to stage 4 (Fig 2B). 

We chose to perform a binary labelling, i.e., to indicate only the presence or absence of gene expression, 

given the predominant qualitative nature of the available expression data. The single gene expression 

patterns (‘gene patterns’) were then combined. We could thus identify cell groups that expressed unique 

gene combinations and corresponded to specific differentiation states, termed ‘cell states’.  28 cell states 

were present in both L1 and L2 (not taking into account the L1 marker ATML1) while states 6, 21 and 28 

were L2-specific (Fig. 2B, 3A). We next conducted an exploratory data analysis using unsupervised 

hierarchical clustering, (Methods), to generate a cell state similarity map using Hamming distances, i.e., 

the number of gene expressions which differ between cell states, as the measure of similarity (Fig. 3B, C).  

The dendrogram revealed clusters of states, which formed different functional groups of cells through 

flower development (Fig. 3C, Supplemental Table 2). These included, for example, meristematic cells, 

boundary cells, as well as cells expressing genes defining polarity or organ primordia. Similarities in 

expression between alternative cell fates were identified at high resolution, e.g., connecting the boundary 

domain with the expression domains where petals and anthers are initiated (Fig 3C: boundary cluster, 

containing states 4, 20, 30, 19, 25 and 29). To investigate the temporal evolution or cell-differentiation 

paths of the cell states in the outer cell layer, we used the computed cell lineages and built a weighted 

directed cell state ‘transition graph’ where the nodes are the cell states (Fig. 3D, Methods).  The graph 

reveals a core of ‘stem cells’ at the adaxial domain of the bud at stage 1 (State 7), providing all cell types 

of the flower at stage 4. This is similar to typical tree-like differentiation paths often described for 

mammalian development (Enver et al., 2009). Similarly, at stage 2, State 7 has split up in sepal ‘precursors’ 

and the central meristematic domain (State 10), which will give rise to all other states.  However, the 

plasticity of plant cells is clearly represented where several cell types contribute to future stages. For 

example, sepal tip cells come from all cell states present at stages 0 and 1. Descendants of both bract (State 

5) and SAM boundary cells (State 4) contribute to the same cell state at later stages, although being quite 

different in terms of their original expression patterns. It is important to note that both examples seem to 

reflect slightly fluctuating boundaries between the different domains causing cells to switch fate, showing 

that cell lineage alone cannot account for the observed patterns. 

 
Adding single regulatory hypotheses for individual genes substantially improves gene pattern 
predictions 
 

https://doi.org/10.17863/CAM.61991
https://doi.org/10.17863/CAM.61991
http://sciwheel.com/work/citation?ids=1027452&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=631603&pre=&suf=&sa=0
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We next examined alternative hypotheses to quantitatively explain these gene expression patterns (Fig. 4). 

We first analyzed the possibility of the patterns being driven mainly by the lineage, i.e. whether the gene 

expression at an earlier time point can be used to predict the expression at a later time point. This led to 

relatively good predictions at early and late stages but was less successful for transitions between 

intermediate stages (Fig. 4B-C), as measured by a Balanced Accuracy score (BAcc), combining the 

normalised false positive and false negative rates (Methods). This indicates that most regulatory 

interactions have an effect during the end of stage 2 and stage 3. For example, for over 75% of the genes 

we found a BAcc score larger than 0.75 (closer to a perfect pattern than to a random pattern) when 

following lineages from stage 0 to 1 or from 3 to 4, while this was only true for less than 20% of the genes 

when cells were followed from stage 2 to 3 (Fig. 4B-C). The result was highly variable between genes and 

also between individual time points for single genes (Fig. 4B).  

We next tested whether the literature-derived network (Fig. 1) could account for the expression patterns 

of single genes. To do this, we modelled the gene regulatory network using a set of boolean rules 

combining activating and repressing inputs suggested by the literature and combined them in all possible 

ways using logical ‘AND’ and ‘OR’ rules (Methods). This produced a ranked list of alternative logical 

combinations for each gene regulation and the combination(s) with the best similarity with the gene 

expression pattern at hand were selected (Methods, Supplemental Table S3). For comparison, we also used 

the input regulatory arrows from the literature network but selected random genes as inputs (Fig. 4B-C, 

Methods). The literature-based regulatory network improved the ability to explain a number of gene 

expression patterns, in particular during the last two stages (BAcc increase of 0.22 on average for stage 3 

and 4) compared to the randomized networks (Fig. 4B-C). Several genes, such as LFY and AG at all time 

points, AS1 at stages 1, 3-4, and FIL at stage 3 all map perfectly or almost perfectly on the expression 

patterns extracted from the literature, indicating that the regulation presented in the literature matches the 

patterns well for a subset of genes at certain time points (Fig. 4A-B). However, this is only true for a 

minority of genes in the network. While the literature network was, in average, always performing better 

than the randomized networks, it was only significant at the later stages 3 and 4 (p-values of 0.09, 0.19, 

0.23 for stages 0, 1, 2, respectively compared to 0.04 and 0.008 at stages 3 and 4, respectively). 

When comparing the literature-based regulatory predictions with lineage predictions, the literature-based 

regulation did not lead to significant improvements on average at any time point, and lineage even 

performed better at stage 4 (Fig. 4D, p-values 0.11, 0.44, 0.46, 0.02 at stages 1, 2, 3, 4, respectively). At 

stage 4 for example, the literature-based network only improved the predictions for a small number of 

genes such as LFY, AG, and SUP, while the patterns of ANT, the CUC genes, and SEP3 were better 

explained by lineage (Fig. 4A-D).   

For a large subset of the genes the expression could not be reproduced using the regulatory interactions 

provided in the literature nor using lineages, indicating that the regulatory network is not complete. We 
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therefore investigated how the addition or removal of single regulatory inputs changed the ability to predict 

the spatial pattern of each individual gene. This approach identifies the most plausible extra inputs required 

to generate the pattern. After testing all additional genes as activators or repressors and all possible logical 

combinations with the literature-suggested regulation, we identified the regulations leading to the best 

BAcc score for each gene (Methods, Table S4). This increased the predictability of the gene patterns 

significantly as compared to using the literature-proposed regulation (p-values 0.012, 0.003, 0.004, <10-3, 

<10-3 for timepoints at stages 0, 1, 2, 3 and 4 respectively; Fig. 4A-C, E), and improved the pattern for all 

but two genes (Fig. 4E).   

In summary, our results show that the gene regulatory network provided by the scientific community only 

significantly improved the predictability of gene expression patterns compared to random interactions at 

late time points. Compared to cell lineage, the published network improved predictability for a small subset 

of the genes at specific stages of development only. Significant improvements in predictability were 

achieved for gene patterns by adding novel single interactions. When combined, the added hypotheses 

represent a plausible coherent mechanistic description of a gene regulatory network that can explain the 

gene patterns for early flower development.    

 

Analyzing growth patterns reveals a transition to heterogeneous growth at stage 2. 

 

We next investigated the control of growth during development. We therefore first computed the cellular 

properties. The distribution of cell sizes in this meristem was comparable to what was published in 

previous studies on Arabidopsis meristems (Fernandez et al., 2010; Gibson et al., 2006, 2011; Jackson et 

al., 2019; Willis et al., 2016) (not shown, but see http://morphonet.org/ for precise values) and the number 

of cell neighbors within the L1 (epidermal) and L2 (subepidermal) layers was in line with previous studies 

on plants and animals, (Lewis, 1926; Gibson et al., 2006, 2011; Jackson et al., 2019; Willis et al., 2016) 

(Not shown). 

Using cell lineage information, we computed growth rates and growth anisotropy at cellular resolution 

(Fig. 5A, Fig S3A, Methods). Since absolute expansion rates can fluctuate considerably between 

individual flowers and throughout development (Figs. S1), we focused on relative growth rates and 

directions between consecutive time points. Relative differences in growth rate were particularly striking 

at stage 3 and 4, when the sepals start to grow out (Fig. 5A). The analysis of growth directions showed 

that cells start to grow anisotropically when the sepals are initiated. This was particularly evident on the 

abaxial side at stage 4, when these organs begin to cover the flower meristem (Fig S3).  

To know when this switch to heterogeneous growth can be first identified, we investigated growth over 

longer time scales. Considering the growth of cells from early stages (stages 0 and 1) onwards, no obvious 

spatial pattern of heterogeneity in the contribution to the final flower was found (Fig. 5B-C, Fig S4A). 

http://sciwheel.com/work/citation?ids=403080,6281869,260667,1187068,2822694&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
http://sciwheel.com/work/citation?ids=403080,6281869,260667,1187068,2822694&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
http://morphonet.org/
http://sciwheel.com/work/citation?ids=9135653&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=260667,1187068,2822694,6281869&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
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This shows that at these early stages, the cells will produce a population of descendants of similar size at 

stage 4 or at least with no clear spatial correlation (Fig. 5C). However, at stage 2, although the flower bud 

is still close to a symmetric hemisphere (Figs. 2-3), cells have been committed to become fast or slow-

growing at later stages (Fig. 5B, D), even if the growth rate at this time is quite homogeneous (Fig. 5A). 

The same observation was made for two other meristems with longer time series, FM2 and FM6 (Fig. S4 

B,C). 

We next examined the switch to heterogeneous growth using the state transition tree. The switch correlates 

with the division of the state transition tree at stage 2, where the central state 10 is defining the central 

parts of the flower and are highly disconnected from the sepal differentiation lineages (Fig. 3). To 

quantitatively compare the growth rates of different cell populations we introduced a ‘relative growth 

difference’ (RGD) defined as (g1-g2)/(g1+g2), where g1 and g2 are the median growth rates within the two 

populations (Methods). 

At stage 2 cell states 8, 9, 11 and 12 grow at approximately the same rates as the neighboring domain (cell 

state 10) (RGD <0.13, p-values > 0.753, Fig. 5E and G).  Still, when comparing the growth up until stage 

4, the descendants of these four cell states grow much faster (RGD>0.19, p-value <0.001) and hence 

identify growth precursor states (Fig 5E-G).  In particular, cell states 26 and 27 (RGD > 0.22, p-values 

<0.001 when compared with all other states) and their precursor states 16 and 17 (RGD > 0.1, p-

values<0.003 when compared to states except 26 and 27) are fast-growing, identifying the central and 

abaxial side of the sepal (Figs. 3A and 5). By contrast, cell state 10 has descendant states that are all 

relatively slow-growing.  

In conclusion, we identified a transition from a patterning phase with homogeneous growth at stage 2 to a 

growth phase, where in particular the sepal lineages increase their growth rates and anisotropy. 

 

Exploring the genetic control of growth patterns 

 

 Whereas growth regulation is captured when using the cell state information, it is not trivial to determine 

the precise genes or gene combinations that provide the regulatory motif. Although all of the genes 

considered here are involved in growth regulation at some level, it is unknown where, when and to what 

extent they regulate growth rates and directions. To obtain further information on their roles, we next 

correlated the growth patterns with gene expression. A limited number of individual genes can be 

consistently connected to low or high relative growth rates (Fig. 6A). The gene expressed in cells with the 

highest median growth rate is AHP6 (RGD >0.07 and p-value < 0.001 when compared with all other 

genes). This gene has been linked to organ initiation (Besnard et al., 2014b), and is never connected to 

slowly growing cells. Conversely, CUC1-3 expressing cells are correlated with slow growth (RGD < 0.4, 

p-value < 0.003). By contrast, most expression domains show very broad distributions of growth rates 

http://sciwheel.com/work/citation?ids=1253166&pre=&suf=&sa=0
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indicating no instructive information and several genes have a double-peak distribution. Since the analysis 

of individual gene expression domains did not reveal any strong correlation, we therefore investigated 

growth correlations starting from pairwise comparisons of genes that had partial overlapping expression 

patterns (Fig. 6B, C). For a pair of genes, A and B, the idea was to see if the cells in the states expressing 

gene A were growing more slowly or more rapidly in the sub-set of states where they were co-expressed 

with gene B. This would identify gene B as having potentially a growth-promoting or inhibiting activity 

within the states where A is expressed. At floral stage 4, for example, STM identifies the slow-growing 

states 14, 22-24 within the ETTIN domain from the fast-growing states 16 and 27 (RGD = 0.36, Fig. 6B). 

Similarly, LFY identifies fast growing states within the AP1 domain (RGD = 0.36, Fig. 6B). This analysis 

was carried out for every gene combination and for every time point, which relates each individual gene 

expression pattern to all cell states where it has a differential expression (Fig. 6C, Figs. S5-6). The genes 

fell into three broad classes: those that were potentially growth-stimulating, those that were potentially 

growth-inhibiting and a set that apparently had mixed effects (Fig. 6C). This confirmed AHP6 and CUC1-

3 as potentially growth-promoting and inhibiting, respectively (cf. Fig. 6A). In addition, genes with very 

wide growth rate distributions, such as ANT and LFY came up as potential growth-promoting regulators 

(Fig. 6C).  

In summary, apart from AHP6 and CUC1-3, individual genes could not consistently be connected to 

relative growth rates and do not seem to act as dominant growth regulators by themselves. However, 

correlating the pairwise expression patterns of all 28 genes with growth patterns, we were able to propose 

growth promoting and/or inhibiting activities for a majority of them. Given that we also identify the 

combination of genes active in these regions (Figs. S5-6), gene motifs for growth regulation are identified 

that can be included in mechanistic models. 

 

With regard to the control of growth directions, the correlations with the individual gene expression 

patterns were not particularly informative. CLV3, PUCHI, SUP, SEP3 and SVP which showed low degrees 

of anisotropic growth (Fig. S3), but many other genes were expressed in domains with relatively wide 

distributions. Like for growth rates, the cell states defined much more distinct behaviors. The cell states 

of the forming sepal are growing most anisotropically as identified in the transition graph (Figs. S3D), 

where the abaxial cells of the developing sepal (cell state 27) were also growing slightly more 

anisotropically than the adaxial side (cell state 16). This puts the polarity genes, in particular FIL, forward 

as potential regulators of anisotropic growth. Early time points have relatively low anisotropies, and there 

is a transition at stage 2, where the whole lineage coming from cell state 10 has relatively more isotropic 

growth compared to the sepal structures (Fig. S3D).   
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Quantitative growth analysis confirms a role of LFY in the coordination of growth between specific 

domains. 

 

Cells expressing LFY had one of the broadest growth distributions among all genes (Fig. 7A). Still, the 

more detailed analysis of the growth patterns described above, pointed at a prominent role in stimulating 

growth during early flower development. Whereas it is well known that LFY is required for the 

specification of floral organ identity, its precise role in organ outgrowth remains to be established and 

mainly a general role in auxin signalling and patterning has been proposed (Li et al., 2013; Parcy et al., 

1998; Yamaguchi et al., 2014). To test whether LFY has a role in growth during early flower development, 

we live-imaged a number of flowers of the strong lfy-12 loss of function line (Fig 7A, Maizel and Weigel, 

2004, original data available on: https://doi.org/10.17863/CAM.61991) during the formation of the four sepal-

like organs, i.e. comparable to the stage 2 to 4 transitions in the wild type. In all three acquisitions, the 

organs in the medio-lateral position grew out first, while the adaxial and abaxial primordia followed later 

and the boundary regions between sepals were less pronounced. The last sepal-like organ to grow out was 

slightly misplaced in one of the series, suggesting the beginning of a spiralled phyllotaxis. To analyse how 

these morphological phenotypes relate to growth in cells where LFY is normally expressed, the relative 

growth rates in the different domains where LFY was identified as a potential growth promoter were 

subsequently compared in one of the time-series for stage 3 and 4 (Fig 7B, C; cf. Fig. 6). In the mutant, 

these were defined based on morphology (e.g., negative curvature for the boundary) and lineage. The 

differences in growth rates between these zones were reduced in the mutant compared to wild type at the 

equivalent of stage 4 (Fig 7B, C) supporting that LFY is positively contributing to local growth in early 

flower development. This was true for all zones identified (Fig 7C), and the cells in regions normally 

expressing LFY had consistently a higher reduction in growth rate compared to the regions where LFY is 

not expressed in wild type (Fig 7D). This was partially due to the delay in outgrowth of sepal-like organs 

in the adaxial and abaxial positions in lfy. Whereas the difference between the boundary zone and sepals 

was most clearly reduced (30% reduction in median RGD), the difference between the meristem center 

and the sepals was less affected (14% reduction in median RGD). 

 

Discussion 

We present here a detailed descriptive and quantitative model of early flower development. Integrating 

information at multiple scales, we have established a number of correlations which led us to propose an 

important set of testable hypotheses regarding the molecular regulatory network and its link to growth 

control. These hypotheses could not have been generated easily using other approaches. 

 

http://sciwheel.com/work/citation?ids=1355354,1631011,9597703&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
http://sciwheel.com/work/citation?ids=1355354,1631011,9597703&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
http://sciwheel.com/work/citation?ids=1169035&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=1169035&pre=&suf=&sa=0
https://doi.org/10.17863/CAM.61991
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Molecular network dynamics 

Based on an extensive analysis of the expression patterns of 28 genes, we propose the existence of at least 

31 cell states in the L1 and L2 layers, which mounts up to 60 by taking into account ATML1, expressed 

in the epidermal layer.  

Even considering a simple, binary on/off regulation of gene expression, the patterns are so complex that 

the analysis of spatial gene regulation becomes impossible based on visual inspection only. We therefore 

developed a set of tools to analyze the structural dynamics of the molecular network in space and its 

capacity to predict the observed expression patterns. This indicated that the published interaction network 

is not complete. Importantly, the addition of a limited set of single regulatory hypotheses not identified 

during our literature search significantly improved the predictive power of the network. With these extra 

hypotheses, the coarse network structure and composition are in principle sufficient to explain the 

observed expression patterns. As a result, the proposed network can be a starting point for mechanistic 

gene regulatory models describing the developing patterns during early flower development. A complete 

set of testable hypotheses ranked by their effect on the predictive power of the model is given in tables S3 

and S4. A set of 27 hypotheses that significantly improves the expression patterns is represented in Fig 

S7.  

As a striking example, the predictions concerning AHP6 illustrate well the incomplete nature of the 

available data. AHP6 has been described as a direct target of MP (Besnard et al., 2014b). Whereas the data 

summarized in the atlas are compatible with the hypothesis that MP is required, the latter has a much 

broader expression pattern than AHP6, suggesting further regulation. The simple hypothesis that STM 

could act as an inhibitor of expression would substantially improve the predicted pattern. This is in contrast 

to the conclusion by Besnard et al (Besnard et al., 2014a) who observed a temporary co-expression of both 

genes and concluded that AHP6 was probably not repressed by STM. However, their observations are also 

compatible with the hypothesis that STM inhibits AHP6 above a certain threshold. In that case, the 

temporary overlap would correspond to the transition of cell state 7 to 8 or 9 to 16, when STM expression 

diminishes.     

Novel hypotheses also resolve potential contradictions in the regulatory network model. The evidence so 

far suggests that the maximum levels of LFY and CUC, respectively involved in organ formation and the 

establishment of organ boundaries do not overlap (supplemental information). There are indications, 

however, that LFY directly activates CUC2 (Yamaguchi et al., 2014).  Although this seems contradictory, 

several experiments indicate that during early stage 3, LFY is expressed in the future boundary region, but 

at a lower level than elsewhere in the developing flower (see justification of gene expression file at: 

https://doi.org/10.17863/CAM.61991). Likewise, CUC2 shows a broader expression pattern than just the 

http://sciwheel.com/work/citation?ids=1253166&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=1253187&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=1631011&pre=&suf=&sa=0
https://doi.org/10.17863/CAM.61991
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boundary region, again at a weaker level. In parallel, the expression pattern of ANT, an upstream regulator 

of LFY, is much more complementary to CUC, and our hypothesis that ANT is a negative regulator of 

CUC would substantially enhance the coherence between the predicted and observed patterns (Fig. 6A). 

This then would lead us to propose the existence of an incoherent feedforward motif between ANT, LFY, 

CUC, where ANT positively regulates CUC via LFY together with the proposed negative direct regulation. 

This type of motif is common in biological regulation and can tune the level and timing of expression of 

the individual genes (Goentoro et al., 2009; Gruel et al., 2016).  

Although our data suggest that lineage is a relatively good predictor for gene expression patterns during 

early stages of development (similar or better on average to the prediction capability of the literature 

network regulation), this is not the case later on. The cell state transition graph also illustrates that a 

particular cell state can have different origins This seems to reflect fluctuating boundaries between the 

different domains during the differentiation process, causing cells to switch fate. This is for example the 

case when sole of the boundary cells between the floral and inflorescence meristem are incorporated in 

the founder cells for the adaxial sepal. In contrast to what one could expect from a system where no cell 

movement occurs, plant lineage is not considered to be a major determinant of cell fate, i.e., gene 

expression patterns seem to depend largely on cell-cell communication systems such as hormone- and 

peptide-based signaling. This is well illustrated by the tonneau or trm mutants in Arabidopsis,  where cell 

division patterns are severely perturbed, without major alterations in differentiation patterns (Schaefer et 

al., 2017; Traas et al., 1995). In the template used to construct the atlas, we also observed that several cells 

stopped growing, without any evident perturbation in the final shape, indicating that neighboring cells can 

take over, further illustrating the flexibility of the system.  

Gene activity and growth control 

A number of genes have been explicitly associated with growth control, in particular during organ 

outgrowth (Nole-Wilson et al., 2005; Yamaguchi et al., 2016; Besnard et al., 2014a) or in the slowly 

growing central zone (Schoof et al., 2000). When looking at the distribution of growth rates for each gene, 

this correlation was confirmed only for some cases: AHP6 is always expressed in rapidly growing cells 

during early organ formation, whereas the CUC, PUCHI and CLV3 genes (Chandler and Werr, 2017; 

Hibara et al., 2006; Lenhard and Laux, 2003) are active in the slowly growing domains of the flower. 

However, it was not possible to make such direct correlations for other genes supposed to control 

morphogenesis (Fig. 7A).  

This is well illustrated by the auxin-regulated transcription factor MP and its downstream targets ANT and 

LFY which have been implicated together with AIL6 in flower morphogenesis (Elliott et al., 1996; Krizek, 

2009; Nole-Wilson and Krizek, 2006; Nole-Wilson et al., 2005; Yamaguchi et al., 2013). There is 

http://sciwheel.com/work/citation?ids=1309740&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=1195816&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=1643332,1357096,1354603,6970919,51794&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
http://sciwheel.com/work/citation?ids=1643332,1357096,1354603,6970919,51794&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
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convincing evidence that ANT is involved in the control of cell proliferation (Mizukami and Fischer, 2000; 

Nole-Wilson et al., 2005). It was therefore surprising that ANT expression patterns did not at first sight 

correlate with particular growth rates: they are expressed in both slowly and rapidly growing cells 

throughout development. We therefore carried out a more detailed analysis taking into account co-

expression in the different cell states, which finally clearly indicated that ANT should indeed be considered 

as potentially growth-promoting (Fig. 6B). The precise function of LFY and MP in growth control is less 

well established. MP loss of function leads to reduced flower outgrowth suggesting it promotes growth, 

but we found that it was mainly expressed in more slowly growing subpopulations. This points at a broader 

role of MP and is in line with some observations that over-expression of MP can also lead to reduced organ 

growth (Hardtke and Berleth, 1998). LFY is one of the main regulators of floral organ initiation and 

identity. It has been mainly associated with patterning events, and might also be involved in promoting 

auxin signalling (Li et al., 2013; Parcy et al., 1998; Yamaguchi et al., 2014). Although the distribution of 

growth rates in the LFY domains was again very broad (Fig. 6A), the combinatorial analysis indicated one 

of the strongest correlations with rapid growth of all genes tested (Fig. 6C). We therefore quantitatively 

analysed the growth patterns in the strong lfy-12 loss of function mutant at a developmental stage 

equivalent to stage 3 and 4 in wild type plants. At the equivalent of stage 3 in the mutant, all four sepal-

like organ primordia are marked by a local increase in auxin signalling, as revealed by the auxin inducible 

promoter DR5 (Yamaguchi et al., 2014), but we found that in particular organs in the abaxial and adaxial 

positions grow out later than the medio-lateral primordia, in contrast to the wild type. In addition, the 

differences in growth rates between the boundary and the adjacent zones is reduced, mainly when 

comparing stage 4 wild type flowers with an equivalent stage in lfy-12. The quantitative analysis, therefore, 

further supports the hypothesis that LFY is involved in coordinating cell expansion rates within specific 

subdomains, in particular to maintain sufficient growth rate differences between the sepals and sepal 

boundaries. The relative weak modifications in growth patterns might at first sight not seem significant. 

However, In terms of volume doubling times, the sepals in the wild type would achieve volume doubling 

two times faster than the boundary cells. In lfy-12 this would be reduced to 1,6 times faster.  Since growth 

is exponential and doubling times are in the order of 24h, these changes have the potential to induce 

substantial changes in organ shape over a few days. We here only consider the effect of the lfy mutation 

on changes in geometry. While this is an essential first step, at lower scales the mutation affects a whole 

range of expression patterns of other genes (e.g.  Parcy et al 1998; Li et al 2013). At this stage it is, 

therefore, not trivial to determine the direct or indirect effects of lfy-12 via downstream targets on changes 

in geometry. Further work should therefore focus on the precise role of LFY in the molecular network, 

including the analysis of spatial changes in gene expression caused by its mutation. This should be 

combined with the quantitative analysis of plant lines where downstream targets are mutated as well.    

 

http://sciwheel.com/work/citation?ids=6970919,384869&pre=&pre=&suf=&suf=&sa=0,0
http://sciwheel.com/work/citation?ids=6970919,384869&pre=&pre=&suf=&suf=&sa=0,0
http://sciwheel.com/work/citation?ids=1357297&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=1355354,1631011,9597703&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
http://sciwheel.com/work/citation?ids=1631011&pre=&suf=&sa=0
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Conclusion 

The integrated analysis of early flower development presented here suggests a number of further steps 

forward. The dataset can be easily extended by adding new expression patterns or expression gradients. 

By providing a dynamic template, it should be very useful in interpreting single cell sequencing efforts, 

which are precisely missing this type of detailed spatial information. The online atlas can also be enriched 

by information of different nature, including for instance cell polarity or mechanical properties. Other 

templates, coming from different time-series of wild type and mutants, can be added for further 

quantitative comparison as we show here for lfy. The ultimate aim would be to produce an artificial flower 

template using average behavior, or a collection of templates providing information on the variability 

existing in flower development. The atlas also provides an essential step towards the development of 

complex mechanistic models. Using the multiscale data of the atlas as input, it now becomes possible to 

compare quantitatively the results obtained in vivo with those coming from simulation where a large range 

of hypotheses can be tested in parallel, as we showed with boolean models here. Importantly, the 

interactive atlas is available online and provides a tool that can be used and further developed by the entire 

scientific community. 
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Figure Titles and Legends  

 
Figure 1. Gene regulatory network proposed for flower patterning and morphogenesis. Red and blue 
connections represent negative and positive regulations respectively. Color code indicates function in 
floral meristem development, floral organ identity (sepals, petals, stamens and carpels) and abaxial/adaxial 
organ polarity as described in the literature. The regulators in light blue characters are not recorded in the 
current version of the Atlas because there is not sufficient information on their expression patterns. For 
justification of interactions see table S1. 
 
Figure 2. Cell lineage and gene expression patterns in reference series. 8 out of 18 timepoints of FM1 
are shown. Times after first acquisition are indicated between brackets. 
(A) Surface rendering of segmented images of time course 1 showing L1 layer cells. 
(B) Rendering of gene expression patterns in the L1 layer of the initium, stage 1, stage 2, stage 3, and stage 
4 time points. Each of the patterns are colored by a unique color and their corresponding codes are also 
given. Grey cells have not been annotated (no expression). Scale bars in A 20 μm  
 
Figure 3 Identification and analysis of cell states.  
(A) Matrix representing 32 combinatorial, binary expression patterns (referred to as ‘cell states’) of 28 
genes. WUS, which is only expressed in internal tissues, is not represented. Each row corresponds to a 
particular state (state numbers are given on the left) and contains black (gene active) and white (gene 
inactive) squares. Names of the genes are given on top of each column. All states can also be found in the 
L2 (by excluding ATML1 expression). Note that the states 6, 21 and 28 are L2-specific.   
(B) Hierarchical clustering of cell states using Hamming distances as the measure of similarity. The heat 
map (similarity matrix) corresponds to the Hamming distances and the columns and rows are the patterns. 
(C) Individual clusters or combinations of clusters correspond to specific differentiation domains (organ 
identity for example) in the growing flower (color coded). Alternatively, the clusters can be assigned to 
more general ‘functional’ domains not specific for the flower (meristem, boundary domains).  
(D) Temporal evolution of clusters and cell states. Color codes as in (C). Cell states with several colors 
have several identities. The graph combines ‘forward’ and ‘backward’ links. Forward links connect 
specific states at one time point to their descendant patterns in the next time with weights corresponding 
to the fractions of the daughter cells in each of the descendant patterns. Similarly, ‘backward’ links identify 
states at a previous time point from a current one. Arcs with blue arrows indicate the presence of 
corresponding arcs both in forward and reverse pattern transition graphs, dashed arrows indicate the 
presence of corresponding arcs in reverse pattern transition graph only, red arrows indicate the presence 
of corresponding arc forward patterns transition graph only (see also supplementary figures). The links 
whose weights were below a threshold of 20% were pruned. 
  
Figure 4: Expected patterns vs predicted patterns from various models. 
(A) Example of gene expression patterns at stage 4 (132h). Data from the template (top row) is compared 
with predicted patterns coming from: Following cell lineages from stage 3 (second row), Boolean 
regulatory model from literature network (Fig. 1, third row), and Boolean regulatory model where an 
additional regulatory arrow has been added as hypothesis (Table S4, fourth row). Numbers above the 
illustrations indicate the BAcc score. Below the illustrations either the selected combination of inputs (in 
the case of the literature based Boolean model) or the selected best hypothesis (in the case of the augmented 
literature Boolean model) is shown. 



 
 

17 

(B) BAcc score for all genes using the methods of lineage, literature network with randomised input (see 
Methods), literature network regulatory model (Fig. 1), and model with added hypotheses. Result of best 
hypothesis given for each Stage of flower development  
(C) Average (and standard deviation) of BAcc score over all time points and genes for the same conditions 
as described in (B). 
(D) Gene by gene comparison of BAcc scores between literature network (ref) and lineage (lin) at stage 4.  
(E) Gene by gene comparison of BAcc scores between literature derived network (Fig 1) and after adding 
regulatory hypothesis (hyp) at stage 4.  
 
Figure 5. Growth rate patterns identify a transition to heterogeneous growth at stage 2. 
(A) Relative volumetric growth rates per hour of L1 cells, indicating how much the cells have grown. 
Color scale bar from nongrowing (black) to more rapidly growing cells (yellow/white) in relative growth 
rate per hour (h). L1 cells with positive, relative growth rates are displayed. Light grey cells are not taken 
into account. 
(B) Distribution of growth rates (h-1 vs number of cells) between different time points. Note that the number 
of cells followed between timepoints can differ, depending on the available, tracked lineage. 
(C) and (D). Relative volumetric growth rates per hour of L1 cells between initium stage and stage 4 (C) 
and stage 2 and 4 (D). Color code on initium and stage 2 indicates how much the cells will grow. Color 
code on stage 4 how much the cells have grown. At 96h the cell lineage and increased growth rates of the 
sepals are already largely fixed. Two cells have not grown between stage 2 and 4, so their contribution 
must have been taken over by neighboring cells. 
(E) Growth rates of combinatorial patterns or cell states, numbered as in Fig 2. Note that the growth rates 
were calculated from one point to the next point (forward), only the values of the last time point are 
calculated backwards (marked with *). 
(F) Growth on the pattern transition graph calculated as the average of the backward and forward rates, 
except initium stage, only forward and stage 4 only backward (arrows colored as in Fig. 3). 
(G) Current and future growth rates of different domains at stage 2 of flower development. Current growth 
rates are relatively homogeneous in state 10 (orange zone) vs the other states (8, 9, 11, 12, blue zone). 
However, the states in the blue zone will grow much more quickly afterwards, resulting in the outgrowth 
of the sepals.  
Note: growth rates are taking into account both forward and backward rates (i.e. how much the cells have 
grown and how much they will grow). This is not the case for the first and last point, where resp only 
forward and backward growth is presented.  
 
Figure 6 Correlating growth rates with gene function. 
(A) Relative growth rates per hour in expression domains of individual genes. 
(B) and (C): Correlating growth with gene function. The growth of cells expressing gene A and B is 
compared with the growth of those only expressing A. Two examples are given in (B) Within the ETTIN 
(gene A) expressing domain, the cells expressing STM (gene B) as well are growing more slowly; within 
the AP1 domain, the LFY cells are growing more quickly. (C). The results for all gene combinations. 
Values correspond to the RGD calculated using the median values of the growth distributions. Certain 
genes are mostly expressed in the more rapidly growing subdomains (e.g. LFY, AHP6, ANT) , others 
mostly in the slowly growing subdomains (e.g. SEP3, AG, CUC1-3). The darker blue the spots correspond 
to later time points.  
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Fig 7. Comparison growth patterns in wildtype (wt) and lfy mutant (lfy). 
(A) part of the time series of the lfy-12 mutant, equivalent to stage 2, 3 and 4 in WT. (B) Comparisons of 
growth rates between different equivalent regions in WT and lfy mutant at stage 4 (cf Fig 6). Blue and red 
histograms correspond to red and blue zones indicated in images. Combinations of regions are numbered 
1-6. 
(C) Plot integrating relative growth differences RGD: (median blue graph - median red graph)/(median 
blue graph + median red graph) in WT and lfy mutant combinations 1-6 at stage 4. The relative difference 
is consistently higher in WT indicating more heterogeneous growth. 
(D) Plot showing medians lfy/ wt (blue median/blue median, red median/red median). In lfy, the medians 
of the blue and red histograms are systematically closer to each other than in wild type, hence the growth 
differential is reduced. Scale bars in A: 20 m.  
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STAR Methods 
 
RESOURCE AVAILABILITY 
 
Lead Contact 

Further information and requests for resources and reagents should be directed to and will be fulfilled by 

the Lead Contact, Jan.Traas@ens-lyon.fr 

Materials Availability 

This study did not generate new unique reagents or biological materials. 

Data and Code Availability 

Confocal z-stacks, segmentation files, cell lineage information and in situ hybridisation images are 

available online (https://doi.org/10.17863/CAM.61991). A simplified manual for the use of MorphoNet can 

also be found there. Software scripts for reproducing the analyses performed here are available via the 

Sainsbury Laboratory gitlab repository(https://gitlab.com/slcu/teamhj/publications/refahi_etal_2019). All 

data is interactively minable via the MorphoNet ATLAS (http://www.morphonet.org).  

 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 
For this study and the reported results we either used Arabidopsis thaliana (Col-0) plants containing a 

modified Yellow Fluorescent Protein (YFP) that is acylated and localised to the cell membrane (Willis et 

al., 2016) or staining with FM4-64.  lfy-12 (Columbia background, (Maizel and Weigel, 2004)) mutants 

were imaged after staining with FM4-64. Plants, grown in short days under standard conditions, were 

removed from soil soon after the transition to reproductive growth when the length of the inflorescence 

stem was less than 1 cm. These small plantlets, including roots, were carefully transferred into a plastic 

box containing molten, cooled 1% w/v agar supplemented with 2.2 grams l−1 MS salts and Gamborg B5 

vitamins.  
 
METHOD DETAILS 
 
Live imaging 

Plants to be imaged were grown as described elsewhere in the Methods and then meristems were dissected 

to remove obstructing flowers, the box filled with water and then imaged using either a Zeiss LSM780 or 

LSM700 upright confocal microscope with a 20x or 40x water dipping objective. Confocal Z-stacks were 

taken of primordia and detector pixel format, slice interval and zoom were set so that each resulting voxel 

https://doi.org/10.17863/CAM.61991
https://gitlab.com/slcu/teamhj/publications/refahi2019
http://www.morphonet.org/
http://sciwheel.com/work/citation?ids=2822694&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=2822694&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=1169035&pre=&suf=&sa=0
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is less than 300 nm3, as specified in the data set provided online (https://doi.org/10.17863/CAM.61991). FM6 

was imaged under different angles and merged. Time point 104h for FM1, was obtained merging two 

consecutive acquisitions to improve the image quality. Plants were transferred to the growth chamber 

between successive acquisitions. 

 

Segmentation and lineage tracking 
 
Z-stacks of 2D (x-y) optical sections of five primordia expressing YFP were collected (numbered as FM1-

5). A sixth meristem (FM6) was imaged after staining with FM4-64.  

The ImageJ registration plugin StackReg ( (Willis et al., 2016; Thévenaz et al., 1998) was first applied to 

each Z-stack correcting misalignments between consecutive slices. During confocal imaging of primordia, 

the flowers moved upwards due to meristem growth and stem elongation which led to oversampling of 

confocal optical sections in z-direction and an artificially stretched primordium after 3D reconstruction. 

To correct this artefact, we first manually selected cells on the epidermal layer whose thickness were least 

affected by the movement in z-direction (whose anticlinal wall normal were pointing close to the x-y plane 

direction). We then computed the average cell thickness of the selected cells (𝐿1𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠). We then 

selected the epidermal cells whose thickness were the most affected by the movement (whose anticlinal 

wall normal were pointing close to the z-axis) and computed their thickness (𝐿1𝑠𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠). To correct the 

artefact, we divided the voxel thickness by (𝐿1𝑠𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)/ 𝐿1𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠. On a few time points, we also 

performed a rapid scan, where only two sections were made, to determine the height (in the Z-direction) 

of the flower bud as growth was negligible then (see also: (Willis et al., 2016)). These new estimations 

were close to the values calculated previously (<5%). 

To quantify growth, we used the high throughput 4D (space + time) image segmentation and tracking 

pipeline that we previously developed (Willis et al., 2016). This 4D imaging pipeline allows precise 

quantification of cellular growth over multiple cellular generations using MARS-ALT (Fernandez et al., 

2010). Using the collection of image stacks, we used a three-dimensional auto-seeded watershed algorithm 

(Fernandez et al., 2010) to segment the cells. The segmented images were manually checked for 

segmentation errors (over-segmentation, under-segmentation, missing cell, or shape error). For this 

purpose, we conducted a visual inspection of segmentation quality of two dimensional (x-y) optical 

sections by comparing the optical section obtained using a confocal microscope and corresponding 

segmentation. In case of segmentation error, the contours of the cells were corrected on 2D sections. Cell 

volumes were calculated by voxel counting and multiplying this count by the voxel volume.  

To track mother-daughter cell lineages, we first performed an affine transformation followed by a 

nonlinear registration using a block-matching framework (Commowick et al., 2008; Malandain and 

Michelin, 2017; Michelin et al., 2016) between two successive confocal acquisitions which computed the 

deformation field between them. Using this deformation field, we used ALT (Automatic Lineage 

https://doi.org/10.17863/CAM.61991
http://sciwheel.com/work/citation?ids=2822694&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=2285528&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=2822694&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=2822694&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=403080&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=403080&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=403080&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=7563207,7168556,7168557,7761424&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
http://sciwheel.com/work/citation?ids=7563207,7168556,7168557,7761424&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
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Tracking) (Fernandez et al., 2010) to compute cell lineages, between consecutive segmented time points. 

The mother-daughter pairings were further inspected for errors and manually corrected and validated for 

L1 and L2 layers, see Figs. 2 and S1.  

 

Comparison of Floral Meristems 

 

We used the surface of flower primordia, represented by a point cloud, as the overall shape to compare the 

six sets of acquisitions. Although they go through similar developmental stages, each primordium has 

different cell arrangements. Also, there is no obvious way to synchronise flower development and hence 

the geometrical shape of individual time points of one series do not exactly correspond to the time points 

of other series. Therefore, we first computed the spatial and temporal correspondence between the six time 

series by quantifying shape differences (Michelin et al., 2016). The method uses a rigid transformation 

based on the hypothesis that two primordia at the same developmental stage have similar size and global 

shape. Since the shape of the flower primordium does not change sufficiently during stage 1 and 2 for such 

a comparison, we examined the overall shape changes during stage 3 and 4, when the sepals grow out and 

more dramatic changes in geometry are observed. To facilitate comparison, the temporal resolution of 

each time course was first refined to one hour using a dedicated 3D image interpolation method (Malandain 

and Michelin, 2017).   

 
Integration of the gene atlas into Morphonet and AtlasViewer 
 
For online display and the introduction of expression patterns, Morphonet was used 

(http://www.morphonet.org). For access see supplemental information. Morphonet is a web-based 

interactive platform for visualization and sharing of complex morphological data and metadata (Leggio et 

al., 2019). Exploiting its Unity (https://unity.com) 3D visual engine, it offers a vast assortment of possible 

interactions with 2, 3 and 4D datasets. Through a flexible hierarchical representation of biological 

structures and dedicated formats for associated metadata, users can follow the dynamics of biological 

shapes, onto which associated quantitative and qualitative properties can be projected.  

Cells are represented with meshes in Morphonet, and the meshes generated from the cell segmentation 

were converted to obj format and uploaded to Morphonet together with lineage information.  

For the introduction of gene expression patterns, five time points were chosen (Fig. 3, (Smyth et al., 1990) 

corresponding to:  

- the initium stage,  

- stage 1 (the flower starts to bulge out),  

- stage 2 (a globular bud is formed, separated from the inflorescence meristem),  

- stage 3 (the ab- and adaxial sepals start to grow out) 

http://sciwheel.com/work/citation?ids=403080&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=7168557&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=7217053,7761424&pre=&pre=&suf=&suf=&sa=0,0
http://sciwheel.com/work/citation?ids=7217053,7761424&pre=&pre=&suf=&suf=&sa=0,0
http://www.morphonet.org/
http://sciwheel.com/work/citation?ids=7217184&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=7217184&pre=&suf=&sa=0
https://unity.com/
http://sciwheel.com/work/citation?ids=1027452&pre=&suf=&sa=0
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- stage 4 (all sepals are clearly growing out and the four whorls have been specified).  

The expression patterns of 28 genes were subsequently introduced. This was in short done as follows (see 

also Supplementary Information): 

  

1.  Collection of data from the literature. As many available image sets as possible were collected 

from the literature. This included GFP expression patterns and RNA in situ hybridizations. 

2.  Complete existing data with new data. We completed these data by our own RNA in situ 

hybridizations (for method see: (Ferrandiz and Sessions, 2008b, 2008a). For this purpose, we 

generated a further 60 sets of serial sections with the expression patterns of 20 genes (Original 

data available online (doi: provided upon acceptance), Supplementary Information).  

3.  Manual annotation of timepoints.  To facilitate interpretation, we used a binary notation (i.e., 

genes are either on or off). Since often only 2D data in the form of sections were available and 

published 3D GFP data were usually partial, it was not possible to project directly the patterns 

automatically on the atlas. Instead, we used a manual protocol using the annotation tool in 

Morphonet by clicking on the individual cells. Cells potentially expressing a particular gene 

were identified by manually projecting sections of in situ hybridizations or confocal sections 

on the different time points of the atlas. Whenever possible, cell numbers were counted to 

estimate the size of the expression pattern. For each gene 2-4 datasets available in the literature 

were identified.  We encountered three different cases: 

 i. The patterns of the in situ hybridization and/or GFP were simple to interpret, and zones of 

expression could be unambiguously identified. In the absence of GFP patterns, the use of serial 

sections was crucial. 

ii. There was a conflict between results obtained using GFP expression and in situ 

hybridizations. In that case, the in situ hybridization results were used. 

iii. If information on both protein levels and RNA levels were available, the RNA pattern or 

promoter activity (in case of GFP construct) was retained. 

4.  The obtained patterns were subsequently refined using information of co-expression or based 

on information on mutual regulation (e.g., AG and AP1 mutually inhibit each other). 

 The references and images for each gene are summarized in: https://doi.org/10.17863/CAM.61991. 

 

In addition, we integrated the four-dimensional gene expression data together with all segmented and 

tracked time courses in an open-source standalone software platform, called AtlasViewer (available at 

https://gitlab.com/slcu/teamHJ/publications/refahi_etal_2020/-/tree/master/atlasviewer/atlasviewer). The 

patterns were imported directly from Morphonet into AtlasViewer. Visualization of combination of gene 

expressions using AtlasViewer facilitated the identification and correction of annotation errors. 

http://sciwheel.com/work/citation?ids=7936701,10134225&pre=&pre=&suf=&suf=&sa=0,0
https://doi.org/10.17863/CAM.61991
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Cell states, clustering and transition graphs 

After assigning expression values for the 27 genes to individual cells, this boolean element vector is used 

to define a cell state for each cell (Fig. 2B, Fig. 3). Similarities between cell states were calculated using 

the Hamming distance, i.e., the sum of the absolute differences between the vector elements (Fig. 4C). The 

states were clustered using hierarchical agglomerative clustering from SciPy package using Ward’s 

method, which uses Ward variance minimization algorithm, leading to a dendrogram. Manual flipping at 

the dendrogram nodes and identification of tissue structures were applied to generate the final graph (Fig. 

3C).  

To illustrate the evolution of cell states over time, cell lineages were used to generate a pattern transition 

graph whose vertices were cell states. An arrow connected two vertices if and only if any of the descendant 

cells of the source cell state acquired the target cell state at the next developmental stage. We then assigned 

weights to arrows as the number of descendant cells in a specific state divided by the total number of 

descendant cells. More precisely, let x → y be an arc of the transition graph, where x and y are cell states. 

The assigned weight, w, is defined as w = (#descendant cells of cells in pattern x in pattern y) / (#descendant 

cells of cells in pattern x), where # denotes number of cells. To extract the main structure of the pattern 

transition graph, we then pruned by keeping the arrows whose weight were equal or greater than a 

manually defined threshold of 0.2. However, in this representation the descendent patterns with a small 

number of cells are penalized. We therefore also computed a reverse pattern transition graph where arcs 

pointed from descendent patterns to their ancestors. For each arrow, x ← y, in the reverse transition graph, 

where x and y were cells states, we assigned a weight w’, defined as, w’= (#cells in pattern y whose 

ancestors are in pattern x) / (#cells of cells in pattern y). The weights were then used to prune the reverse 

transition graph by removing the arrows whose weight were below 0.2. The pruned transition graphs were 

then merged into a single transition graph, Figure 3D. 

 

 

Cell growth and anisotropy rates and correlation analysis with gene expression and states 

 

Assuming exponential growth of a cell of volume V, 𝑑 𝑉

𝑑𝑡
= 𝑘𝑉, with a constant relative growth rate we 

compute 𝑘 from cell volumes and lineage information for a cell 𝑐at time point 𝑡𝑖, 0 ≤ 𝑖 ≤ 4 ( index 

corresponding to the 5 developmental stages considered), as: 

𝑘𝑐,𝑡𝑖 → 𝑡𝑖+1
= (𝑙𝑛 (∑ 𝑉𝑑𝑑∈𝐷𝑐

)  − 𝑙𝑛 (𝑉𝑐)) / (𝑡𝑖+1 − 𝑡𝑖), 

where 𝑉𝑐 is the volume of the mother cell 𝑐, 𝑉𝑑 is the volume of a daughter cell d, and 𝐷𝑐 is the set of 

daughter cells of 𝑐at time point 𝑡𝑖+1.  
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Projection of computed values on time courses can be done either on the mother cell or on the daughter 

cells (e.g., Fig. 5C). Correlation analysis between the computed values and gene expression was done for 

cells expressing a specific gene in both forward (following all cells expressing a gene at one time point to 

the next) and backward (tracking all cells expressing a gene at a specific time backward in time). Similar 

correlation analysis is done for averaging cells within a specific cell state. When both forward and 

backward growth are available, the growth rate of a cell 𝑐at time point 𝑡𝑖was computed as the average of 

the two to quantify growth at a specific time:  

𝑔𝑟(𝑐, 𝑡𝑖) = (𝑘𝑚,𝑡𝑖−1→ 𝑡𝑖
+ 𝑘𝑐,𝑡𝑖→ 𝑡𝑖+1

) / 2, 

where 𝑚is the mother cell of 𝑐. In the cases where only one was available, the reported values are for the 

first time point the forward growth calculation and for the last time point the backward growth calculation. 

 

3D growth anisotropy was computed using cell and lineage information by identifying and matching key 

points on the cell and set of daughter cells’ surface. We define key points as the smallest set of points on 

the cell surface enveloping the cell (Convex Hull, calculated using Python bindings to QHull library, 

http://www.qhull.org/). The Convex Hulls of each cell and its daughter cells were centred and then mapped 

according to a nearest neighbour criterion. We then calculated the best (least-squares estimation) linear 

transformation 𝐴 between the two hulls: 

𝑌̄  =  𝐴 𝑋̄  +  𝑏, 

where  𝑋̄ is the collection of the selected points for a cell and 𝑌̄ the collection of corresponding points on 

the daughter cells’ surface. 

The transformation was decomposed into three transformations, two rotations and an expansion using the 

Singular Value Decomposition (SVD): 

𝐴 =  𝐷𝑆𝐷𝑇, 

where 𝐷and 𝐷𝑇are the rotations and 𝑆is the expansion. The singular values of 𝑆(𝑠1, 𝑠2, 𝑠3) represent the 

length of the expansion along the axes. The anisotropy is then computed using these expansion lengths as 

the fractional anisotropy 𝑎: 

𝑎 = √
3

2
 
√(𝑠1 − 𝑠̂)2  +  (𝑠2  − 𝑠̂)2 + (𝑠3  − 𝑠̂)2

√𝑠1
2 + 𝑠2

2 + 𝑠3
2

 

where 𝑠̂ = (𝑠1 + 𝑠2 + 𝑠3)/3. The fractional anisotropy is a scalar value ranging from 0 (expansion was 

equal in all directions) to 1 (expansion was in only one direction). The anisotropy rate is the fractional 

anisotropy per hour. 

Correlation analysis between growth anisotropy and gene expression and states, like in the case of growth 

rates, can be done in both forward and backward directions. When both are available the anisotropy rate 

http://www.qhull.org/
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at time point 𝑡𝑖 , was calculated as the average of the forward anisotropy rate calculation from 𝑡𝑖to 𝑡𝑖+1and 

the backward growth anisotropy rate calculation from 𝑡𝑖−1to 𝑡𝑖.  

 
Regulatory network analysis 
 
We extracted the gene regulatory interactions, inhibition and activation, from the published literature based 
on the available data on direct binding on promoter regions and mutant analyses (Fig. 1). 
   
Boolean regulatory terms 
 
To analyse the regulatory network, we defined a subset of boolean rules combining the input arrows in the 
regulation network (i.e., repression and activation), and examined whether they could reproduce the spatial 
gene expression patterns of the Atlas. Since the input arrows indicate either positive (activation) or 
negative (repression) regulation, the corresponding boolean regulatory terms that we define have two sub-
terms for activation and repression. We next define the types of terms used for the full regulatory term and 
the repression and activation sub-terms (for further details on network construction see (Moignard et al., 
2015). 
Regarding notation we assume we have a set of names where 𝑔1, 𝑔2, . . . ∈ 𝑆𝑦𝑚𝑏 range over symbols 
representing gene names, 𝜖, 𝑡, 𝑡 ′ ∈ 𝑇𝐸𝑥𝑝 range over (possibly empty) activation/repression terms, and 
𝑟, 𝑟′ ∈ 𝑅𝐸𝑥𝑝𝑟 over full regulatory terms. We will give the following definitions using the ‘is defined as’ 
symbol (: : =) to separate the class being defined (e.g., regulatory expressions) with its definitions and the 
‘alternative’ symbol (|) to separate definitions in cases where there is more than one.  
 
The class of regulatory interactions for each gene is defined as 
 
𝑟 ∶≔  𝑡 ∧ ¬ 𝑡′ , 
 
where 𝑟 ∈ 𝑅𝐸𝑥𝑝𝑟 is   a full regulatory term for a gene including an activation term (𝑡 ∈ 𝑇𝐸𝑥𝑝) and a 
repression term (𝑡′ ∈ 𝑇𝐸𝑥𝑝) combined by a logical and (∧) and logical not (¬).   
 
Each term can be empty (𝜖), a gene name (𝑔 ∈ 𝑆𝑦𝑚𝑏 syntactic case), or a combination of gene names 
with conjunction or disjunction, as described by 
  
𝑡 ∶≔  𝜀 

       |    𝑔 
       |    𝑡′ ∧  𝑔 
       |    𝑡′ ∨ 𝑔, 
 
where ∨ represents a logical or.   
 
We next define an evaluation function to evaluate the activation and repression terms to values in the set 
𝐵 =  {𝑇, 𝐹} (𝑇 for true, and 𝐹for false). Evaluation happens in a value environment providing values (True 
or False) for the gene names in the terms. To represent this context we use a sequence of gene name value 
bindings 𝜎 =  𝑔1: 𝑏1, ⋯ , 𝑔𝑛: 𝑏𝑛where 𝑔1 , ⋯ , 𝑔𝑛  ∈ 𝑆𝑦𝑚𝑏(gene names) and 𝑏1, ⋯ , 𝑏𝑛 ∈ 𝐵 (True or False 
representing expression or non-expression of the corresponding gene), where the gene names are required 

http://sciwheel.com/work/citation?ids=349183&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=349183&pre=&suf=&sa=0
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to be distinct. We will sometimes treat this context as a function with finite domain; for example, to obtain 
the value of 𝑔1in 𝜎 we wrote 𝜎(𝑔1). The evaluation function [| |] ∶  𝑇𝐸𝑥𝑝 → 𝐵 in a value environment 𝜎 
is then (per syntactic case): 
 
[| 𝜖 |]  =  𝐹 
[| 𝑔 |](𝜎)  =  𝜎(𝑔) 
[| 𝑡 ∧  𝑔 |](𝜎)  =  [| 𝑡 |](𝜎) ∧ [| 𝑔 |](𝜎) 
[| 𝑡 ∨  𝑔 |](𝜎)  = [| 𝑡 |] (𝜎) ∨ [| 𝑔 |](𝜎) , 
 
where 𝑡 ∈ 𝑇𝐸𝑥𝑝, 𝑔 ∈ 𝑆𝑦𝑚𝑏. For both 𝑇𝐸𝑥𝑝’s and 𝑅𝐸𝑥𝑝𝑟’s evaluation functions, we assume that the 
given environments are well-formed, i.e., they contain mappings for all the gene names that appear in the 
expression being evaluated. Note that the above evaluation implies left association of expressions so, for 
example, the expression 𝑎 ∧ 𝑏 ∨ 𝑐 is evaluated as (𝑎 ∧ 𝑏)  ∨ 𝑐.  
 
The evaluation function for the full regulatory term [| |] ∶  𝑅𝐸𝑥𝑝𝑟 → 𝐵 is: 
 

[| 𝑡 ∧ ¬ 𝑡′ |](𝜎)  =  [| 𝑡 |](𝜎)  ∧ ¬[| 𝑡′ |](𝜎) 
 
Two 𝑅𝐸𝑥𝑝𝑟’s are semantically-equivalent if they contain the same gene names and given the same 
environment they evaluate to the same value. 
 
Translating the gene regulatory network into boolean regulatory terms 
 
Given a gene regulatory network, as in Fig. 1, for each gene we have a set of activators (positive regulation) 
and a set of repressors (negative regulation), but there is no information on how their inputs combine to 
control expression of their target gene. In order to see the most likely boolean regulatory term between the 
regulations, we enumerated all the possible 𝑇𝐸𝑥𝑝𝑟’s for the activators, all the possible 𝑇𝐸𝑥𝑝𝑟’s for the 
repressors, combined them into regulatory terms (𝑅𝐸𝑥𝑝𝑟’s) and scored them based on how well they agree 
with the expression data (Supplemental Table 2). 
Given a set of input activators/repressors, {𝑔1, ⋯ , 𝑔𝑛 } for a gene there are 𝑛!  ⋅ 2𝑛−1possible 𝑇𝐸𝑥𝑝’s. For 
each permutation of the input genes (out of n! possible), we have a choice of disjunction or conjunction 
between them. For example, for 2 activator genes {𝑔1, 𝑔2}we can generate the following terms: {𝑔1 ∧

𝑔2, 𝑔1  ∨ 𝑔2, 𝑔2 ∧ 𝑔1, 𝑔2 ∨ 𝑔1 }.  If we also had 2 repressors, then the number of terms becomes 16. While 
the number grows very quickly with 𝑛, we found that is not prohibitive for the number of genes we have 
here (𝑛 < 5). 
Each cell in a tissue dataset implies a value environment; for example, if in a cell gene 𝑔1 is on, gene 𝑔2 
is off, gene 𝑔3 is off, and 𝑔4is off we get a value environment 𝑔1: 𝑇, 𝑔2: 𝐹, 𝑔3: 𝐹, 𝑔4 : 𝐹.  We can then 
evaluate the generated boolean regulatory terms in this environment so for example for an expression for 
𝑔4=(𝑔1 ∧ 𝑔2)  ∧ ¬𝑔1we can evaluate for that cell [| (𝑔1 ∧ 𝑔2)  ∧ ¬𝑔1|](𝑔1: 𝑇, 𝑔2: 𝐹, 𝑔3: 𝐹, 𝑔4 : 𝐹)  = 𝐹, 
which (for this example cell) agrees with the actual value of 𝑔4. 
 
Hypothesis generation 
 
In order to generate new hypotheses for each gene, we enumerated all possible changes in the form of 
single regulatory interactions between genes of the published gene regulatory network. Therefore, either 
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existing single interactions were removed, or new ones were added. For each modified interaction, we 
generated all possible 𝑇𝐸𝑥𝑝’s and full regulatory terms as before.  
 
Suppose we have a universe of genes 𝐺 = {𝑔1, 𝑔2, 𝑔3,  𝑔4}. Then, for a gene A with two activators 
(𝑔1, 𝑔2)and one repressor 𝑔4, the following set of regulatory interactions for that gene would be generated: 
{(acts=(𝑔1, 𝑔2, 𝑔3), reprs=(𝑔4))), (acts=(𝑔1, 𝑔2), reprs=(𝑔4, 𝑔3)), (acts=(𝑔1), reprs=(𝑔4)), (acts=(𝑔2), 
reprs=(𝑔4)), (acts=(𝑔1, 𝑔2), reprs=())}. Note that we only added inputs from genes that were not in the 
original network, whereas the gene 𝑔3, could represent any other gene in the network not yet connected to 
gene A. For each set of inputs (activators and repressors) we then generated and scored regulatory terms 
as before. 
 
Growth regulation 
 
To examine the gene regulation of growth by the action of single genes, we examined the differences 
between the population of cells expressing a gene versus the population of cells not expressing the gene. 
Spatially this defines two regions, which can be described as boolean expressions for a gene, 𝑔, as 𝑔 and 
¬𝑔. The RGD of a gene 𝑔 was calculated as: 
 
(𝑚(𝑔, 𝑇)  −  𝑚(¬𝑔, 𝑇)) / (𝑚(𝑔, 𝑇)  +  𝑚(¬𝑔, 𝑇))  
 
where 𝑚(𝑒, 𝑇) is the median growth rate of the cells in the regions defined by the expression, 𝑒, over a set 
of time points, 𝑇. The evaluation of an expression in a cell follows the procedure described in the ‘Boolean 
regulatory expressions’ section. The growth rate of a cell is, when possible, the average of backward and 
forward growth rates as described above. 
 
In order to get a more fine-tuned understanding of growth gene regulation we extended our single-gene 
analysis to pairs of genes that are co-expressed. Each combination of co-expressed genes implicitly defines 
two regions (populations of cells) on the flower tissue at any time point. These two regions can be defined 
using boolean expressions as, g1 ∧ 𝑔2 (region where they are co-expressed) and 𝑔1 ∧ ¬ 𝑔2 (region where 
only one of them is expressed). For each pair of co-expressed genes, the RGD at time point 𝑡𝑖 (color maps 
in the heatmaps in Supp. Figs 11, 12, 13) was calculated as: 
 
( 𝑚(𝑔1 ∧  𝑔2, {𝑡𝑖})  −  𝑚(𝑔1 ∧  ¬ 𝑔2, {𝑡𝑖}) ) / ( 𝑚(𝑔1 ∧ 𝑔2, {𝑡𝑖})  +  𝑚(𝑔1 ∧  ¬ 𝑔2, {𝑡𝑖}) ) 
 
In order to get the most common regional separation implied by gene pairs at a time point we grouped the 
pairs into categories (numbered annotations in the heatmaps in Supplemental Figures S5 and S6) defining 
the same regions. Two pairs of genes 𝑔1, 𝑔2 and 𝑔′1, 𝑔′2define the same regions at 𝑡if the two boolean 
expressions they imply select the same set of cells: 
 
[𝑔1 ∧  𝑔2]𝑡  =  [𝑔′1 ∧ 𝑔′2]𝑡 and [𝑔1 ∧ ¬ 𝑔2]𝑡  =  [𝑔′1 ∧ ¬ 𝑔′2]𝑡 
 
In Supp. Figs 11, 12 and 13 we only display the groupings in the top 50% (by RGD) of the pairs at that 
time point up to a maximum of 6 groupings. Groupings are also sorted by RGD so the group with index 1 
has the highest RGD and so on. 
 



 
 

28 

QUANTIFICATION AND STATISTICAL ANALYSIS 
 
Pattern Evaluation 
 
To score an expression pattern generated from cell lineage, the regulatory network of a particular gene 
(Fig. 1), or a boolean model including hypothesis for an entire tissue, we evaluate it for all the cells and 
calculate the Balanced Accuracy (BAcc) for its predictions. BAcc is defined as 1

2
(𝑇𝑁/𝑁 + 𝑇𝑃/𝑃) where 

𝑇𝑁is the number of true negatives (# of cells where the expression evaluates to false and the actual value 
of that gene is false --- like the example above), 𝑇𝑃 is the number of true positives (#of cells where the 
expression evaluates to true and the actual value of the gene is true), 𝑃is the number of positives (#of cells 
where the value of the gene is true), and 𝑁is the number of negatives (# of cells where the value of the 
gene is false). We chose BAcc as measure since it also penalizes errors where only few cells have an 
expression (or opposite). We also tried alternative similarity measures, such as Mutual Information and % 
correct.  This led to the same conclusions.  
The scores and therefore the best expressions are not necessarily the same for the tissues at different 
timepoints (Supplemental Table S3). For each gene and each time point we merged and ranked the 
generated regulatory expressions for all the proposed interactions keeping only the ones that are within 
10% of the best expression for that time point. Starting from the last time point going backwards we then 
identify expressions that appear near the top in more than one time point for a single coherent hypothesis. 
 
Model comparison and random models 
 
In order to establish a baseline for the comparison of 𝑅𝐸𝑥𝑝𝑟’s generated by the hypotheses, the 𝑅𝐸𝑥𝑝𝑟’s 
based on the reference network, and lineage prediction, we also constructed a random network with the 
same structure as the gene regulatory network in Fig. 1, where all the inputs are replaced with random 
inputs. For the results reported in the main text we generated 100 random 𝑅𝐸𝑥𝑝𝑟’s per gene based on 
random inputs with the same numbers as they appear in the gene regulatory network (Fig. 1). These were 
then scored (using BAcc) per time point and averaged. 
All the p-values reported in the main text are the result of a paired t-test between the scores of all the genes 
under the different models, e.g., lineage scores vs best hypothesis scores.  
 
Quantification of growth differences 
 
In order to examine growth regulation by gene expression we used Relative Growth Difference (RGD) to 
compare growth differences between populations of cells (defining regions on a tissue), defined as: 
 
(𝑟1 −  𝑟2) / (𝑟1 + 𝑟2), 
 
where 𝑟1 is the median growth rate of the first population of cells and 𝑟2 is the median growth rates of the 
second population of cells. The RGD ranges from 0 to 1 except in some cases early on in development 
where it can be > 1 when one of the regions considered has a negative median growth rate. 
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Supplemental information 
 

Figure S1 – Surface rendering of segmented images of time courses of FM2 - 6 (Related to Fig 1A)  

Figure S2 - Approach for comparison of meristems (Related to Fig 2). 

Figure S3 - Anisotropy rates (related to Fig 5)  

Figure S4 - Growth rates between time points reveal predetermined patterns at stage 2 (related to Fig 5). 

Figure S5 - Relative Growth Differences (RGDs) (related to Fig 6)  

Figure S6 - Relative Growth Differences (RGD) (related to Fig 6). 

Figure S7 - Hypotheses resulting from network analysis (related to figures 1 and 4).  

 

Supplemental Table S1- Justification gene interactions (related to Fig 1) 
 
Supplemental Table S2 - List of cell states and clusters with the description of their identity (related to 
Figures 2 and 3). 
 
Supplemental Table S3 - hypotheses from the literature (linked to Fig1 and table S1). 
 
Supplemental Table S4 - Summary of novel inputs and their effect for every gene at different time points 
(linked to Figure 1, 4 and S7): 
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KEY RESOURCES TABLE 

 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Chemicals, Peptides, and Recombinant Proteins 

 FM 4-64 (membrane stain)  ThermoFisher Scientific  T3166 

Propidium Iodide  Sigma-Aldrich  P4170 

Deposited data 

Confocal raw data (FM1-
FM6 and lfy-12) and 
segmented data 

University of Cambridge open 
data repository 

 DOI:https://doi.org/10.17863/CAM.61991 

Experimental Models: Organisms/Strains 

Arabidopsis Thaliana Col-0 
with modified, acetylated 
Yellow Fluorescent Protein 
(YFP)  

 Willis et al (2016) N/A 

Arabidopsis Thaliana 
mutant lfy-12 

Maizel and Weigel (2004) Nottingham Arabidopsis Stock Centre 
(NASC) 

Oligonucleotides 

AG S acggcgtaccaatcggagct   

AG T7 AS tgtaatacgactcactatagggcttacactaa
ctggagagcgg 

  

ANT S atgaagtctttttgtgataa   

ANT T7 AS tgtaatacgactcactatagggctcaagaatc
agcccaagcag 

  

AP1 T7 AS tgtaatacgactcactatagggctcatgcggc
gaagcagccaa 

  

AP1 S atgggaaggggtagggttca  

CUC1 S atcgatgttgatgtgtttaa  

CUC1 T7 AS tgtaatacgactcactatagggctcagagagt
aaacggccaca 

 

CUC2 S tgtaatacgactcactatagggctcagtagttc
caaatacagt 

 

CUC2 T7 AS atggacattccgtattacca  

Key Resource Table

https://doi.org/10.17863/CAM.61991


 

FIL S atgtctatgtcgtctatgtc  

FIL T7 AS tgtaatacgactcactatagggcttaataagg
agtcacaccaa 

 

REV S atggagatggcggtggctaa  

REV T7 AS tgtaatacgactcactatagggctcacacaa
aagaccagttta 

 

AS2 S atggcatcttcttcaacaaa  

AS2 T7 AS tgtaatacgactcactatagggctcaagacg
gatcaacagtac 

 

ETT S atgggtggtttaatcgatct  

ETT T7 AS tgtaatacgactcactatagggcctagagag
caatgtctagca 

 

ANT S ccagcatggaaggtggcaagcacgg  

FIL S gctccagctccagctcggtcctc  

CUC2 S cgaccatggcggagacagcc  

ANT S atgaagtctttttgtgataatgatgataat  

CUC2 S atggacattccgtattaccactacgaccat  

FIL S atgtctatgtcgtctatgtcctccccttcc  

AP2 S atgtgggatctaaacgacgcaccacaccaa  

AP2 T7 AS tgtaatacgactcactatagggctcaagaag
gtctcatgagag 

 

AP3 S atggcgagagggaagatccagatcaagag
g 

 

AP3 T7 AS tgtaatacgactcactatagggcttattcaaga
agatggaagg 

 

MP S atgatggcttcattgtcttgtgttgaagac  



 

MP T7 AS tgtaatacgactcactatagggcttatgaaac
agaagtcttaa 

 

AS1 S atgaaagagagacaacgttggagtggtgaa  

AS1 T7 AS tgtaatacgactcactatagggctcaggggc
ggtctaatctgc 

 

LFY S atggatcctgaaggtttcacgagtggctta  

LFY T7 AS tgtaatacgactcactatagggcctagaaac
gcaagtcgtcgc 

 

AHP6 S atgttggggttgggtgtggaccggcttcaa  

AHP6 T7 AS tgtaatacgactcactatagggcttacattgga
tatctgactc 

 

PHB S atgatgatggtccattcgatgagcagagat  

PHB T7 AS tgtaatacgactcactatagggctcaaacga
acgaccaattca 

 

PHV S atgatggctcatcactccatggacgataga  

PHV T7 AS tgtaatacgactcactatagggctcaaacaa
acgaccaactaa 

 

PI S atgggtagaggaaagatcgagataaagac
g 

 

PI T7 AS tgtaatacgactcactatagggctcaatcgat
gaccaaagaca 

 

SEP3 S atgggaagagggagagtagaattgaagag
g 

 

SEP3 T7 AS tgtaatacgactcactatagggctcaaataga
gttggtgtcat 

 

STM S atggagagtggttccaacagcacttcttgt  

STM T7 AS tgtaatacgactcactatagggctcaaagcat
ggtggaggaga 

 

ARF4 S atggaatttgacttgaatactgagattgcg  

ARF4 T7 AS tgtaatacgactcactatagggcctaaaccct
agtgattgtag 

 



 

WUS S atggagccgccacagcatcagcatcatcat  

WUS T7 AS tgtaatacgactcactatagggcctagttcag
acgtagctcaa 

 

Software and Algorithms 

MARS-ALT (cell 
segmentation–automated 
lineage tracking) 

 (Fernandez et al., 2010) https://www.quantitative-
plant.org/software/mars-alt 

StackReg ImageJ plugin (Willis et al., 2016)  
(Thévenaz et al., 1998) 

https://github.com/fiji-
BIG/StackReg/blob/master/src/main/jav
a/StackReg_.java 

Spatio-temporal 
registration and 
interpolation of microscopy 
images 

(Michelin et al., 2016)  
(Malandain and Michelin, 2017)  

N/A 

MorphoNet (Leggio et al., 2019)  https://morphonet.org/ 

AtlasViewer  N/A https://gitlab.com/slcu/teamHJ/publicatio
ns/refahi_etal_2020/-
/tree/master/atlasviewer/atlasviewer 

Scipy   (Virtanen et al., 2020a, 2020b)  RRID:SCR_008058 

IPython (Perez and Granger, 2007)  RRID:SCR_001658 

QHull Convex hull 
algorithm 

(Barber et al., 1996)  http://qhull.org/ 

Mypy (optional type 
checking for Python) 

http://mypy-lang.org/  N/A 

 

 

 

 

 

 

 

 

http://sciwheel.com/work/citation?ids=403080&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=2822694&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=2822694&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=2285528&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=7168557&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=7217053,7761424&pre=&pre=&suf=&suf=&sa=0,0
http://sciwheel.com/work/citation?ids=7217184&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=9090651,8189935&pre=&pre=&suf=&suf=&sa=0,0
http://sciwheel.com/work/citation?ids=488294&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=3053209&pre=&suf=&sa=0
http://mypy-lang.org/
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Figure S1​ – ​Surface rendering of segmented images of FM 2-6 time courses (Related to Fig 1A)​. 
The cells are colored according to computed lineages. The number of hours after first acquisition is 
indicated below each image.  

Supplemental Text and Figures



 
 

 

 
Figure S2 - Approach for comparison of meristems (Related to Fig 2).  
(A) Comparison of reference series with 18 time points, from initium until late stage 3 with another series                  
‘A’ with 7 time points. Since the changes in shape are most striking during stage 3, this developmental                  
window was chosen for the comparison (dark red zone in the reference series, dark blue in series A.                  
First, a 3D image interpolation is performed to improve temporal resolution to1h intervals. The 5               
timepoints of stage 3 of the reference series are then compared to this interpolated series. The two                 
series are then ‘anchored’ via shapes that are closest to each other. Note that there is a difference in                   
time scale, as some meristems grow more quickly than others. 
B) ​Result of temporal alignments of confocal time series of floral meristems. The 3D images of the                 
sample 1 (reference sequence) are paired to their best match in shape and size in the samples 2, 3, 4                    
and 6. This was not possible for series 5 (see text for details). 
  



 
 

 

  
Figure S3 - Anisotropy rates (related to Fig 5). (A) ​Growth anisotropy of L1 cells. Color scale                 
indicates degree of anisotropy per hour (see methods). Light grey cells are not taken into account. (B)                 
3D growth anisotropy rate of expression domains of individual genes. ​(C) Growth anisotropy/hour in              
combinatorial patterns or cell states (numbering as in fig 2 and 3). Note that the values were calculated                  
from one point to the next point (forward), only the values of the cell states of the last time point are                     
calculated backwards. ​(D) Growth anisotropy on the pattern transition graph calculated as the average of               
the backward and forward anisotropy rate (except initium stage, only forward and stage 4 only backward) 
 
 



 
 

 

 
Figure S4 - Growth rates between time points reveal predetermined patterns at stage 2 (related to                
Fig 5).  
(​A ​) Backward (how much cells have grown, below diagonal) and forward (how much cells will grow,                
above diagonal) growth rates as um3 per hour between time points (Flower Meristem 1), illustrating that                
the increased growth rate in the sepal is determined from 96h (stage 2) onwards, when the bud has still                   
a globular shape. Bar indicates color code for growth rates (um3 per hour). The untracked cells (not                 
generating the cells at 132h) are marked as having now growth (dark blue).  
(​B ​) Forward (23h to55h) and backward growth rate (55h - 23h) of cells in flower meristem 2 (FM2), also                   
showing predetermined growth rates from stage 2 onward.  
(​C) Forward and backward growth rates in flower meristem 6 (FM6) also showing predetermined growth               
from stage 2 stage onwards. Color codes in (B) and (C) as in (A).  
The color bar is truncated at 0. 



 
 

 

 
Figure S5 - Relative Growth Differences (RGDs) (related to Fig 6). ​RGDs between gene pairs (left)                
and the regions they define (right) for stages 0 and 1​. ​For each pair of genes the colour on the heatmap                     
refers to the RGD between the mean growth rate of the population of cells co-expressing gene A ​and ​B                   
versus the mean growth rate of the population of cells expressing ​only gene A. The color bars are                  
truncated to the range -0.4 to 0.4. The RGD for pairs of genes where either population is empty (i.e                   
completely overlapping or not overlapping at all) is not reported (blank cells).  
The numbered annotations refer to the regions (A +B or -B) implied by the gene pairs as shown at the                    
right. The regions are shown along with their real (untruncated) RGD in parentheses on the tissue                
geometry sorted by RGD where the region with the higher mean growth rate of the two is shown in red                    
and the region with the lower growth rate is shown in blue. 



 
 

 
 

 

 
Figure S6 - Relative Growth Differences (RGD) ​(related to Fig 6). ​RGDs between gene pairs (left)                
and the regions they define (right) for stages 2, 3 and  4. Colours and annotations as for Fig. S5  



 
 

 
 

 
 
 
Figure S7 - Hypotheses resulting from network analysis (related to Fig 1; tables S1, S3 and S4).                 
Selection of 32 (single) hypotheses for gene interactions not retrieved from the literature search , that                
improve the predicted expression patterns at more than one floral stage (see table S4). Red and blue                 
connections represent negative and positive regulations respectively. Color code indicates function in            
floral meristem development, floral organ identity (sepals, petals, stamens and carpels) and            
abaxial/adaxial organ polarity as described in the litterature. 
 
 
 
 
  
 
 
 
 
 
 
 
  



 
 

 
Supplemental Table S2 (related to figure 2B and 3) ​: List of cell states and clusters with the description of their                     
identity.  
 

Domain Detailed description General description Organ identity 

  2 Abaxial floral meristem Floral meristem Undifferentiated 

  3 Floral meristem initium stage 

  6 Floral meristem stage  1(L2) 

  7 Floral meristem stage 1 (L1) 

10 Floral meristem stage 2 

18 Sepal, adaxial domain Adaxial domain organ Sepal 

26 Sepal tip, adaxial  domain 

21 Basal boundary between sepals stage 3 (L2) Boundary Boundary 

12 Adaxial domain flower primordium Primordium Flower 

  8 Centre future lateral sepal Lateral initium Sepal 

11 Periphery future lateral sepal 

28 Sepal abaxial domain stage 3 (L2) Abaxial domain organ 

27 Sepal abaxial domain stage 4 (L1) 

16 Sepal tip, abaxial domain 

17 Sepal, abaxial domain stage 3 

  9 Abaxial domain flower primordium Flower primordium Primordium 

  1 Bract initium stage bract Bract 

31 Lateral domain bract initium stage 

  5 Bract stage 1 

  4 Boundary young flower primordium Boundary Boundary 

20 Boundary between sepals stage 3 

30 Boundary between sepals 4 

29 Petal precursors, sepal boundary Organ precursors,  
boundary 

Petal/ 

19 Petal and Stamen precursors, boundary Organ precursors and  
 
boundaries 

Petal/stamen 

25 Stamen precursor stage 4, sepal boundary Stamen 



 
 

  
 
 

13 Stamen precursor stage 1, sepal boundary 

22 Stamen precursor stage 4, meristem Organ 
precursors/meristem 

24 Boundary between stamen and carpel, meristem Boundary Boundary 

15 Carpel precursor stage 3, periphery meristem Organ precursors and 
 
 meristem 

Carpel 

23 Carpel precursor stage 4, meristem 

14 Carpel precursor stage 4, central meristem, 
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