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Abstract

A new approach to detect change points based on differential smoothing and multiple testing
is presented for long data sequences modeled as piecewise constant functions plus stationary er-
godic Gaussian noise. As an application of the STEM algorithm for peak detection developed in
Schwartzman et al. [23] and Cheng and Schwartzman [3], the method detects change points as
significant local maxima and minima after smoothing and differentiating the observed sequence.
The algorithm, combined with the Benjamini-Hochberg procedure for thresholding p-values, pro-
vides asymptotic strong control of the False Discovery Rate (FDR) and power consistency, as the
length of the sequence and the size of the jumps get large. Simulations show that FDR levels
are maintained in non-asymptotic conditions and guide the choice of smoothing bandwidth. The
methods are illustrated in magnetometer sensor data and genomic array-CGH data. An R package
named “dSTEM” is available in R cran.

Key Words: change points, FDR, power, Gaussian processes, kernel smoothing, local maxima, local minima,

dSTEM.

1 Introduction

Detecting change points in the mean of an observed signal is a common statistical problem with

applications in many research areas such as climatology [22], oceanography[14], finance [28] and

medical imaging [20]. It often appears in the analysis of time series but it has more recently been

found in the analysis of genomic sequences, see Erdman and Emerson [7], Lai et al. [15], Muggeo

and Adelfio [19], Olshen et al. [21], Tibshirani and Wang [26] and Wang et al. [27] and the references

therein. Given the large amounts of data present in modern applications, it is of interest to design a
∗Research partially supported by NSF grant DMS-1902432.
†Research partially supported by NSF grant DMS-1811659.
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change point detection method that can operate over long sequences where the number and location

of change points are unknown, and in such a way that the overall detection error rate is controlled.

Many different approaches have been proposed to find and estimate change points, such as kernel-

based methods [1], Bayesian methods [2, 7], segmentation techniques [21, 27, 19], nonparametric

tests [16] and L1-penalty methods [6, 10, 26], including the PELT method [12, 14]. Though there is

abundant literature on change points segmentation and detection, only a few papers address the FDR

issue which treats the detection of change points as multiple hypothesis testing problems. Tibshirani

and Wang [26] applied the fused lasso method to the hot-spot detection problem, and provided em-

pirical evidence for the FDR control. Efron and Zhang [5] introduced an iterative local FDR based

algorithm to explore copy number changes. Recently, Frick et al. [8] introduced a simultaneous multi-

scale change point estimator (SMUCE) for the change point problem in exponential family regression,

and proved the control of the probability of overestimating the true number of change points. Li et al.

[17] improved the SMUCE method and proposed a multiscale segmentation method FDRSeg, which

gives a non-asymptotic upper bound for its FDR in a Gaussian setting and is robust to the choice of

parameter α. However, our proposed approach is unique in the following two ways.

First, the noise is assumed to be a stationary Gaussian process, allowing the error terms to be

correlated. This is an important departure from the standard assumption of white noise in most

of the change-point literature. In fact, applied statisticians desiring to use change-point methods

have sometimes abandoned this option in favor of other techniques simply because the white noise

assumption does not hold [11]. This paper shows that change-point methods can be devised for

correlated noise, expanding the domain of their applicability.

Second, we use the theory of Gaussian processes to compute p-values for all candidate change

points, so that significant change points can be selected at a desired significance level. For con-

creteness, we adopt the Benjamini-Hochberg multiple testing procedure, enabling control of the false

discovery rate (FDR) of detected change points when the data sequence is long and the number and

location of change points are unknown. To our knowledge, this is the first article proposing a mul-

tiple testing method for controlling the FDR of detected change points. Moreover, the asymptotic

properties of FDR and power are provided.

In this paper, we consider a signal-plus-noise model where the true signal is a piecewise constant

function and the change points are defined as the points of discontinuity. Inspired by the method

for detecting peaks in Schwartzman et al. [23] and Cheng and Schwartzman [3], we modify the

STEM algorithm therein to detect change points. The central idea is the observation that the true

signal has zero derivative everywhere except at the change points, where the derivative is infinite.

Thus, in the presence of noise and under temporal or spatial sampling, change points can be seen

as positive or negative peaks in the derivative of the smoothed signal. Note that because of the

time sampling, derivatives cannot be observed directly and can only be estimated. The focus on the

derivative of the smoothed signal effectively transforms the change point detection problem into a

peak detection problem. As in the STEM algorithm, the resulting peak detection problem is then
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Figure 1: Following the notation in §2.1 and Example 3.4, the left panel is the ob-

served signal-plus-noise model y(t) containing ten true change points with varying

ai and noise z(t) given by (3.5) with σ = 1 and ν = 2. The right panel illustrates

the dSTEM algorithm. The blue curve is y′γ(t), obtained with a Gaussian smooth-

ing kernel with standard deviation γ = 6. Local maxima (green solid dots) and

local minima (red solid dots) are declared as significant (marked with solid trian-

gles) at FDR level α = 0.1 if their heights are beyond the dotted line thresholds.

The cyan and pink bars indicate the location tolerance intervals (vi−b, vi+b) with

b = 5 for increasing and decreasing change points respectively. At this tolerance,

there are nine true discoveries and one false discovery.

solved by identifying local maxima and minima of the derivative as candidate peaks and applying a

multiple testing procedure to the list of candidates.

The “differential Smoothing and TEsting of Maxima/Minima” (dSTEM) algorithm for change

point detection consists of the following steps:

1. Differential kernel smoothing: to transform change points to local maxima or minima, and to

increase the SNR. This principle of this step is illustrated in Figure 2.

2. Candidate peaks: find local maxima and minima of the differentiated smoothed process.

3. P-values: computed at each local maximum and minimum under the the null hypothesis of no

signal in a local neighborhood.

4. Multiple testing: apply a multiple testing procedure to the set of local maxima and minima; de-

clare as detected change points those local maxima and minima whose p-values are significant.

The algorithm is illustrated by a toy example in Figure 1.

The dSTEM algorithm above differs from the ones in Schwartzman et al. [23] and Cheng and

Schwartzman [3] in that peaks are sought in the derivative of the smoothed signal rather than the
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Figure 2: Following the notation in §2.1 and §2.2, the left panel is the change point

indicator function hj(t) with vj = 101, that is, there exists only one change point

at the location t = vj = 101. The middle panel is the differential Gaussian kernel

w
′
γ(s) on [−4γ, 4γ] with γ = 8. The right panel is h

′
j,γ(t), which is the differential

kernel smoothing (under Gaussian kernel) of hj(t) obtained by convolution, as

shown in (2.7). By such transformation, the change point becomes a local maxima

of a smooth function with compact support.

smoothed signal itself, and that both positive and negative peaks are considered. In addition, an

important consideration for the proper definition of error in change point detection is that, as opposed

to the peak detection problems considered in Schwartzman et al. [23] and Cheng and Schwartzman

[3] where signal peaks had compact support, a true single change point over a continuous domain at

t = v has Lebesgue measure zero. Thus in the presence of noise, it can hardly be detected exactly at

t = v. Therefore we introduce a location tolerance b that defines the precision within which a change

point should be detected. Specifically, given b, a detected change point is regarded as a true discovery

if it falls in the interval (v − b, v + b). Conversely, if a significant change point is found more than a

distance b from any true change point, it is considered a false discovery. The quantity b is not used in

the dSTEM algorithm itself but is needed for proper error definition.

Under this convention, it is shown here that the dSTEM algorithm exhibits asymptotic FDR con-

trol and power consistency as the length of the sequence and the size of the jumps at the change points

increase. These asymptotic conditions are similar to those considered in Schwartzman et al. [23] and

Cheng and Schwartzman [3] and, in fact, the proofs are easily extended from those in Cheng and

Schwartzman [3].

Simulations for varying levels of smoothing bandwidth γ, smoothing degree of noise ν and jump

size a are used to study the behavior of the algorithm under non-asymptotic conditions. The simula-

tion results help guide the choice of smoothing bandwidth γ with respect to ν and the desired location

tolerance. In general, power increases with bandwidth to a limit dictated by the distance between the
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change points, so admitting a higher tolerance generally allows a higher bandwidth and higher power.

The methods are illustrated in a genomic sequence of array-CGH data in a breast-cancer tissue

sample [18, 9]. The goal of the analysis is to find genomic segments with copy-number alterations.

These are found by detecting change points in the copy number genomic sequence. Another appli-

cation is magnetometer sensor readings, aiming at finding the start and end points of hand gesture

motion, which is the critical step and foundation of establishing a secret key based on hand gestures.

2 The multiple testing scheme

2.1 The model

We consider a continuous time model, although the algorithm is designed for data discretely sampled

in time. Consider the signal-plus-noise model

y(t) = µ(t) + z(t), t ∈ R, (2.1)

where the signal µ(t) is a piecewise constant function of the form

µ(t) =
∞∑
j=0

ajhj(t), aj ∈ R \ {0},

with hj(t) = 1(t ≥ vj) for vj ∈ R. We are interested in finding the change points vj . For the

asymptotic analysis, we assume

a = inf
j
|aj | > 0 and d = inf

j
|vj − vj−1| > 0, (2.2)

so that the change points do not become arbitrarily small in size nor arbitrarily close to each other.

Let wγ(t) = w(t/γ)/γ, where γ > 0 is the bandwidth parameter and w(t) ≥ 0 is a unimodal

symmetric kernel with compact connected support [−c, c] and unit action. Convolving the process

(2.1) with the kernel wγ(t) results in the smoothed random process

yγ(t) = wγ(t) ∗ y(t) =

∫
R
wγ(t− s)y(s) ds = µγ(t) + zγ(t), (2.3)

where the smoothed signal and smoothed noise are defined respectively as

µγ(t) = wγ(t) ∗ µ(t) =

∞∑
j=0

ajhj,γ(t) and zγ(t) = wγ(t) ∗ z(t), (2.4)

and where the smoothed change point takes the form

hj,γ(t) = wγ(t) ∗ hj(t). (2.5)

The smoothed noise zγ(t) defined by (2.4) is assumed to be a zero-mean four-times differentiable

stationary ergodic Gaussian process.
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2.2 Change point detection as peak detection of the derivative

Consider now the derivative of the smoothed observed process (2.3)

y′γ(t) = w′γ(t) ∗ y(t) =

∫
RN

w′γ(t− s)y(s) ds = µ′γ(t) + z′γ(t), (2.6)

where the derivatives of the smoothed signal and smoothed noise are respectively

µ′γ(t) = w′γ(t) ∗ µ(t) =
∞∑
j=0

ajh
′
j,γ(t) and z′γ(t) = w′γ(t) ∗ z(t).

A key observation from (2.5) is that

h′j,γ(t) =

∫
R
w′γ(t− s)hj(s) ds =

∫
R
w′γ(s)hj(t− s) ds

=

∫
R
w′γ(s)1(t− s ≥ vj) ds =

∫ t−vj

−∞
w′γ(s) ds = wγ(t− vj),

(2.7)

as illustrated in Figure 2. Thus (2.6) represents a signal-plus-noise model where the smoothed signal

µ′γ(t) =
∞∑
j=0

ajh
′
j,γ(t) =

∞∑
j=0

ajwγ(t− vj) (2.8)

is a sequence of unimodal peaks with the same shape as that of wγ and located at locations vj . The

problem of finding change points in yγ(t) is thus reduced to finding (positive or negative) peaks in

y′γ(t).

For simplicity, we assume that the compact supports Sj,γ of the smoothed peak shape h′j,γ(t) =

wγ(t− vj) do not overlap, although this is not crucial in practice.

2.3 The dSTEM algorithm for change point detection

Suppose we observe y(t) with J jumps defined by (2.1) in the line of length L centered at the origin,

denoted by U(L) = (−L/2, L/2). The following dSTEM (differential Smoothing and TEsting of

Maxima/Minima) is a modified version of the STEM algorithm of Schwartzman et al. [23] and Cheng

and Schwartzman [3] for detecting change points.

Algorithm 2.1 (dSTEM algorithm for change point detection)

1. Differential kernel smoothing: Obtain the process (2.6) by convolution of y(t) with the kernel

derivative w′γ(t).

2. Candidate peaks: Find the set of local maxima and minima of y′γ(t) in U(L), denoted by

T̃γ = T̃+
γ ∪ T̃−γ , where

T̃+
γ =

{
t ∈ U(L) : y′′γ(t) = 0, y(3)γ (t) < 0

}
,

T̃−γ =
{
t ∈ U(L) : y′′γ(t) = 0, y(3)γ (t) > 0

}
.
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3. P-values: For each t ∈ T̃+
γ , compute the p-value pγ(t) for testing the (conditional) hypotheses

H0(t) : {µ′(s) = 0 for all s ∈ (t− b, t+ b)} vs.

HA(t) : {µ′(s) > 0 for some s ∈ (t− b, t+ b)};

and for each t ∈ T̃−γ , compute the p-value pγ(t) for testing the (conditional) hypotheses

H0(t) : {µ′(s) = 0 for all s ∈ (t− b, t+ b)} vs.

HA(t) : {µ′(s) < 0 for some s ∈ (t− b, t+ b)},

where b > 0 is an appropriate location tolerance.

4. Multiple testing: Let m̃γ = #{t ∈ T̃γ} be the number of tested hypotheses. Apply a multiple

testing procedure on the set of m̃γ p-values {pγ(t), t ∈ T̃γ}, and declare significant all local

extrema whose p-values are smaller than the significance threshold.

2.4 P-values

Given the observed heights y′γ(t) at the local maxima or minima t ∈ T̃γ = T̃+
γ ∪ T̃−γ , p-values in step

(3) of Algorithm 2.1 are computed as

pγ(t) =

Fγ(y′γ(t)), t ∈ T̃+
γ ,

Fγ(−y′γ(t)), t ∈ T̃−γ ,
(2.9)

where Fγ(u) denotes the right tail probability of z′γ(t) at the local maximum t ∈ T̃+
γ , evaluated under

the null model µ′(s) = 0, ∀s ∈ (t− b, t+ b), that is,

Fγ(u) = P
(
z′γ(t) > u

∣∣ t is a local maximum of z′γ(t)
)
. (2.10)

The second line in (2.9) is obtained by noting that, by (2.10),

P
(
z′γ(t) < u

∣∣ t is a local minimum of z′γ(t)
)

= P
(
−z′γ(t) > −u

∣∣ t is a local maximum of −z′γ(t)
)

= Fγ(−u),

since −z′γ(t) and z′γ(t) have the same distribution.

The distribution (2.10) has a closed-form expression, which can be obtained as in Schwartzman

et al. [23] or Cramér and Leadbetter [4]. More specifically, the distribution (2.10) is given by

Fγ(u) = 1− Φ

(
u

√
λ6,γ
∆

)
+

√
2πλ24,γ

λ6,γσ′γ
2φ

(
u

σ′γ

)
Φ

(
u

√
λ24,γ

∆σ′γ
2

)
, (2.11)

where σ′γ
2 = Var(z′γ(t)), λ4,γ = Var(z

′′
γ (t)), λ6,γ = Var(z

(3)
γ (t)), ∆ = σ′γ

2λ6,γ − λ24,γ , and

φ(x), Φ(x) are the standard normal density and cumulative distribution function, respectively. The

quantities σ′γ
2, λ4,γ and λ6,γ depend on the kernel wγ(t) and the autocorrelation function of the

original noise process z(t). Explicit expressions may be obtained, for instance, for the Gaussian

autocorrelation model in Example 3.4 below, which we use later in the simulations.
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2.5 Error definitions

Assuming the model of §2.1, define the signal region Sb1 = ∪Jj=1(vj − b, vj + b) and null region

Sb0 = U(L) \ Sb1. For u > 0, let T̃γ(u) = T̃+
γ (u) ∪ T̃−γ (u), where

T̃+
γ (u) =

{
t ∈ U(L) : y′γ(t) > u, y′′γ(t) = 0, y(3)γ (t) < 0

}
,

T̃−γ (u) =
{
t ∈ U(L) : y′γ(t) < −u, y′′γ(t) = 0, y(3)γ (t) > 0

}
,

indicating that T̃+
γ (u) and T̃−γ (u) are respectively the set of local maxima of y′γ(t) above u and the

set of local minima of y′γ(t) below −u. The number of totally and falsely detected change points at

threshold u are defined respectively as

Rγ(u) = #{t ∈ T̃+
γ (u)}+ #{t ∈ T̃−γ (u)},

Vγ(u; b) = #{t ∈ T̃+
γ (u) ∩ Sb0}+ #{t ∈ T̃−γ (u) ∩ Sb0}.

(2.12)

Both are defined as zero if T̃γ(u) is empty. The FDR at threshold u is defined as the expected

proportion of falsely detected jumps

FDRγ(u; b) = E

{
Vγ(u; b)

Rγ(u) ∨ 1

}
. (2.13)

Note that when γ and u are fixed, Vγ(u; b) and hence FDRγ(u; b) are decreasing in b.

Following the notation in Cheng and Schwartzman [3], define the smoothed signal region S1,γ
to be the support of µ′γ(t) and smoothed null region S0,γ = U(L) \ S1,γ . We call the difference

between the expanded signal support due to smoothing and the true signal support the transition

region Tγ = S1,γ \ Sb1 = Sb0 \ S0,γ .

2.6 Power

Denote by I+ and I− the collections of indices j corresponding to increasing and decreasing change

points vj , respectively. We define the power of Algorithm 2.1 as the expected fraction of true discov-

ered change points

Powerγ(u; b) =
1

J

J∑
j=1

Powerj,γ(u; b) = E

[
1

J

( ∑
j∈I+

1

(
T̃+
γ (u) ∩ (vj − b, vj + b) 6= ∅

)

+
∑
j∈I−

1

(
T̃−γ (u) ∩ (vj − b, vj + b) 6= ∅

))]
,

(2.14)

where Powerj,γ(u; b) is the probability of detecting jump vj within a distance b,

Powerj,γ(u; b) =

 P
(
T̃+
γ (u) ∩ (vj − b, vj + b) 6= ∅

)
, if j ∈ I+,

P
(
T̃−γ (u) ∩ (vj − b, vj + b) 6= ∅

)
, if j ∈ I−.

(2.15)
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The indicator function in (2.14) ensures that only one significant local extremum is counted within a

distance b of a change point, so power is not inflated. Note that when γ and u are fixed, Powerγ(u; b)

and Powerj,γ(u; b) are increasing in b.

3 Asymptotic error control and power consistency

Suppose the BH procedure is applied in step 4 of Algorithm 2.1 as follows. For a fixed α ∈ (0, 1), let

k be the largest index for which the ith smallest p-value is less than iα/m̃γ . Then the null hypothesis

H0(t) at t ∈ T̃γ is rejected if

pγ(t) <
kα

m̃γ
⇐⇒

y
′
γ(t) > ũBH = F−1γ

(
kα
m̃γ

)
if t ∈ T̃+

γ ,

y′γ(t) < −ũBH = −F−1γ

(
kα
m̃γ

)
if t ∈ T̃−γ ,

(3.1)

where kα/m̃γ is defined as 1 if m̃γ = 0. Since ũBH is random, we define FDR in such BH procedure

as

FDRBH,γ(b) = E

{
Vγ(ũBH; b)

Rγ(ũBH) ∨ 1

}
,

where Rγ(·) and Vγ(·; b) are defined in (2.12) and the expectation is taken over all possible realiza-

tions of the random threshold ũBH. We will make use of the following conditions:

(C1) The assumptions of §2.1 hold.

(C2) L → ∞ and a = infj |aj | → ∞, such that (logL)/a2 → 0, J/L = A1 + O(a−2 + L−1/2)

with A1 > 0.

Let E[m̃0,γ(U(1))] and E[m̃0,γ(U(1), u)] be the expected number of local maxima and local

maxima above level u of z′γ(t) on unit interval U(1) = (−1/2, 1/2), respectively. In particular, we

have the following explicit formula [23]

E[m̃0,γ(U(1))] =
1

2π

√
λ6,γ
λ4,γ

. (3.2)

Theorem 3.1 Let conditions (C1) and (C2) hold.

(i) Suppose Algorithm 2.1 is applied with a fixed threshold u > 0. Then

FDRγ(u; b) ≤ 2E[m̃0,γ(U(1), u)](1− 2cγA1)

2E[m̃0,γ(U(1), u)](1− 2cγA1) +A1
+O(a−2 + L−1/2).

(ii) Suppose Algorithm 2.1 is applied with the random threshold ũBH (3.1). Then

FDRBH,γ(b) ≤ α 2E[m̃0,γ(U(1))](1− 2cγA1)

2E[m̃0,γ(U(1))](1− 2cγA1) +A1
+O(a−1 + L−1/4).
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Proof Since wγ(t) has compact support [−cγ, cγ], by (2.7), the support S1,γ of µ′γ(t) in (2.8) is

composed of the support segments [vj − cγ, vj + cγ] of h′j,γ(t). By condition (C2), |S1,γ |/L =

2cγA1 +O(a−2 + L−1/2), which implies |S0,γ |/L = 1− 2cγA1 +O(a−2 + L−1/2).

Notice that, on the null region S0,γ , the expected number of local extrema, including both local

maxima and minima, equals 2|S0,γ |E[m̃0,γ(U(1))]. On the other hand, similarly to the proof of

Theorem 3 in Cheng and Schwartzman [3], the expected number of local extrema on the signal region

S1,γ is asymptotically equivalent to J . This is because, for each j ∈ I+ and b > 0, as a → ∞,

asymptotically, there is no local maximum of y′γ(t) in (vj − cγ, vj − b)∪ (vj + b, vj + cγ), and there

is only one local maximum of y′γ(t) in (vj − b, vj + b).

The result then follows from similar arguments for proving Theorem 3 in Cheng and Schwartz-

man [3] with N = 1, A2,γ = 2cγA1, zγ(t) replaced by z′γ(t) and E[m̃0,γ(U(1))] replaced by

2E[m̃0,γ(U(1))]. �

Lemma 3.2 Let conditions (C1) and (C2) hold. As |aj | → ∞, the power for peak j and fixed u

(2.15) can be approximated by

Powerj,γ(u; b) = Φ

(
|aj |wγ(0)− u

σ′γ

)
(1 +O(|aj |−2)). (3.3)

Proof By (2.7), h′j,γ(vj) = wγ(0) is the maximum of h′j,γ(t) over t ∈ R. The result then follows

from similar arguments for proving Lemma 4 in Cheng and Schwartzman [3] with zγ(t) replaced by

z′γ(t). �

By similar arguments in Cheng and Schwartzman [3] (see equation (20) therein), one can show that

the random threshold ũBH converges asymptotically to the deterministic threshold

u∗BH = F−1γ

(
αA1

A1 + 2E[m̃0,γ(U(1))](1− 2cγA1)(1− α)

)
, (3.4)

where E[m̃0,γ(U(1))] is given by (3.2). Since ũBH is random, similarly to the definition of FDRBH,γ(b),

we define power in the BH procedure as

PowerBH,γ(b) = E

[
1

J

( ∑
j∈I+

1

(
T̃+
γ (ũBH) ∩ (vj − b, vj + b) 6= ∅

)

+
∑
j∈I−

1

(
T̃−γ (ũBH) ∩ (vj − b, vj + b) 6= ∅

))]
.

Theorem 3.3 Let conditions (C1) and (C2) hold.

(i) Suppose Algorithm 2.1 is applied with a fixed threshold u > 0. Then

Powerγ(u; b) = 1−O(a−2).
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(ii) Suppose Algorithm 2.1 is applied with the random threshold ũBH (3.1). Then

PowerBH,γ(b) = 1−O(a−2 + L−1/2).

Proof The desired results follow from similar arguments for showing Theorem 5 in Cheng and

Schwartzman [3]. �

Example 3.4 [Gaussian autocorrelation model] Let the noise z(t) in (2.1) be constructed as

z(t) = σ

∫
R

1

ν
φ

(
t− s
ν

)
dB(s), σ, ν > 0, (3.5)

where φ is the standard Gaussian density, dB(s) is Gaussian white noise and ν > 0 (z(t) is regarded

by convention as Gaussian white noise when ν = 0). Convolving with a Gaussian kernel wγ(t) =

(1/γ)φ(t/γ) with γ > 0 as in (2.4) produces a zero-mean infinitely differentiable stationary ergodic

Gaussian field zγ(t) such that

z′γ(t) = w′γ(t) ∗ z(t) = σ

∫
RN

−(t− s)
ξ2

φ

(
t− s
ξ

)
dB(s), ξ =

√
γ2 + ν2,

with σ′2γ = σ2/(4
√
πξ3), λ4,γ = 3σ2/(8

√
πξ5) and λ6,γ = 33σ2/(16

√
πξ7). We have

SNRj,γ =
ajwγ(0)

σ′γ
=

√
2|aj |
σπ1/4

[
(γ2 + ν2)3/4

γ

]
. (3.6)

As a function of γ, the SNR has a local minimum at γ∗ =
√

2ν and is strictly increasing for large

γ. In particular, when ν = 0, it is strictly increasing in γ. Thus we generally expect the detection

power to increase with γ for γ >
√

2ν. This will be confirmed in the simulations below. Note that

for ν > 0, the SNR is unbounded as γ → 0, however in practice γ cannot be too small: if the support

of wγ becomes smaller than the sampling interval, then the derivative µ′γ cannot be estimated.

4 Simulation studies

4.1 Performance of the dSTEM algorithm

Simulations were used to evaluate the performance and limitations of the dSTEM algorithm for sig-

nals µ(t) = abt/dc, where t = 1, . . . , L, L = 12000, and signal strength a ∈ {1, 1.5, 2}. Under

this setting, the true change points are vj = jd for j = 1, . . . , L/d − 1, and the distance between

neighboring change points is d = 100. The noise is generated as the Gaussian process constructed

in (3.5) with σ = 1 and varying ν. Notice that the random error is white noise when ν = 0, and is

autocorelated when ν > 0. The smoothing kernels are wγ(t) = (1/γ)φ(t/γ)1(t ∈ [−4γ, 4γ]) for

varying γ. The BH procedure was applied at FDR level α = 0.1 and the tolerance b = 5. Results

were averaged over 1,000 replications to simulate the expectations.
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Figure 3: The FDR (top) and power (bottom) vs. different combinations of the

smoothness parameter ν (ranging from 0 to 2), the signal strength a (taking values

1, 1.5 and 2) and the bandwidth γ (ranging from 0.2 to 15). Here, the significance

level α = 0.1, tolerance b = 5 and d = 100.

The results of FDR and power are shown in Figure 3. We see that for fixed γ and ν, as the

strength of the signal a increases, FDR will decrease while the power will increase; moreover, FDR

is eventually controlled below the nominal level and the power tends to 1, which is consistent with

Theorems 3.1 and 3.3. For each fixed a, the power is seen to first decrease quickly and then increase

again as γ increases. This phenomenon coincides with the behavior of the SNR (3.6) derived in

Example 3.4, predicting the power to decrease for γ ≤
√

2ν and increase for γ >
√

2ν. Meanwhile,

if a is moderate or large, the FDR is seen to first increase and then decrease as γ increases, with the

maximum of FDR still controlled below the nominal level.

In simulations shown in Figure 3 above, the distance of neighboring change points d = 100 is

large enough so that the kernel smoothing would not affect each other at different change points.

However, one can image that, if d becomes small, then kernel smoothing with large γ would produce

interference between neighboring change points, making the power decrease. To illustrate this, we
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Figure 4: The FDR (top) and power (bottom) vs. different combinations of the

smoothness parameter ν (ranging from 0 to 2), the width between neighboring

change points d (taking values 40, 30 and 20) and the bandwidth γ (ranging from

0.2 to 15). Here, the significance level α = 0.1, tolerance b = 5 and signal strength

a = 1.5.

take the case when the signal strength a = 1.5 and perform simulations for FDF and power with

d = 40, 30 and 20. As shown in Figure 4, we see clearly that, too large γ makes FDR increase

and power decrease, due to the overlap between kernel smoothing at neighboring change points.

This phenomena becomes more evident when d gets small (d = 20). Note that, theoretically, the

neighboring interference would happen when d is less than the support of the smoothing kernel,

which is 8γ in our Gaussian case here. In particular, we see that, the turning point of power, attaining

almost its maximum, appears at around γ = 8 for cases d = 40 and d = 30, while at around γ = 5

for the case d = 20. This suggests that γ = d/4 is a good choice of bandwidth when d is not large.
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4.2 Choice of the bandwidth γ

Figure 3 shows that the bandwidth γ will greatly affect the performance of dSTEM. We see that

larger γ tends to attain a smaller FDR and larger power. However, as shown in Figure 4, if γ is

too large, it will produce interference between neighboring change points and contamination error,

thereby decreasing the power. Thus, the choice of γ is critical for the performance of dSTEM.

The optimal γ is the one that maximize the power while controlling the FDR under the signif-

icance level. It is difficult to obtain the optimal γ theoretically. However, in our model, the signal

is a piecewise constant function, it is possible to obtain the optimal γ in practice by making more

assumptions on the noise, such as in Example 3.4 using the Gaussian autocorrelation model. As

shown in Figure 3, it is suggested that γ should be chosen to be about 8 for weak signals, while γ

can be as small as 4 for strong signals, almost regardless of the noise autocorrelation. Here, to avoid

producing interference between neighboring change points, the minimal distance of change points

d = infj |vj − vj−1| defined in (2.2) should be large. On the other hand, if d is not large, then we can

choose the bandwidth γ to be about d/c when the effective support of smoothing kernel is ±cγ. This

has been shown in simulations in Figure 4 where c = 4 and γ = d/4.

4.3 Comparison with algorithm FDRSeg

As mentioned in Section 1, FDRSeg is the newest method which can control FDR for change point

detection. In this subsection, we compare the performance of our method dSTEM with the algorithm

FDRSeg. First, it is worth mentioning that our method is mainly designed for autocorrelated random

noise, while FDRSeg requires independent and identically distributed random error, which is just

a special case of our method (ν = 0). Note that FDRSeg contains only one parameter αF, which

controls the theoretical upper bound of FDR at 2αF/(1− αF). However, they suggest that in practice

their method should give FDR ≤ αF. Thus, we let αF be 0.05 and 0.1.

Table 1 shows the realized FDR and detection power under independent noise situation. We see

that for small signal a = 1, dSTEM can almost control FDR and its power is 84.8% when γ = 12;

while FDRSeg can attain a little larger power, but it is hard to control FDR when α = 0.1. For larger

signal a, both two methods can control FDR and attain a similar large power. Table 2 shows the

results under the situation of autocorrelated noise (ν = 1). In this case, the performance of dSTEM

is nearly the same as that in independent scenario, while FDRSeg tends to estimate a large number of

change points, leading to a large FDR, which means it can hardly control FDR.
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Table 1: Performance comparison of dSTEM and FDRSeg under independent

noise.

dSTEM FDRSeg

a = 1

γ FDR Power αF
a FDR Power

9 0.113 0.723
0.05 0.119 0.840

10 0.117 0.781
11 0.124 0.820

0.1 0.155 0.865
12 0.131 0.848

a = 1.5

γ FDR Power αF FDR Power
6 0.091 0.896

0.05 0.033 0.943
7 0.089 0.943
8 0.088 0.965

0.1 0.090 0.957
9 0.083 0.974

a = 2

γ FDR Power αF FDR Power
4 0.085 0.932

0.05 0.008 0.971
5 0.088 0.978
6 0.082 0.987

0.1 0.049 0.983
7 0.085 0.989

a the only parameter in FDRSeg contralling the theoretical upper
bound of FDR to 2αF/(1− αF)

5 Data example

5.1 Magnetometer sensor readings

In the field of mobile security, two-factor authentication/verification is of great importance, which

is an extra layer of security of your mobile device, such as smartphones, wearable, and smart home

devices, designed to ensure that you are the only person who can unlock your device, even if some-

one knows your password. In recent years, gesture based key establishment is a popular topic in

communication security and computer science [25, 24, 13].

Modern mobile devices embedded with various motion sensors including accelerometer, gyro-

scope and magnetometer are used to measure and record the gesture performing process. Obtaining

accurate readings of magnetometer is the foundation of magnetometer baesd research. However,

during data collection, there are always noises which might be caused by hardware imperfection, ma-

nipulation error or sensitivity of the sensor. Particularly, finding the start point and associated end

point for each gesture is a big challenge. The goal of this analysis is to find such change points.

In this paper, the data was collected from an experiment where several simple gestures, for ex-

ample, shaking the smartphone in different directions and at different speeds, were designed. In par-

ticular, the smartphone defines a coordinate system of the embedded magnetometer, which is shown
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Table 2: Performance comparison of dSTEM and FDRSeg under autocorrelated

noise (ν = 1).

dSTEM FDRseg

a = 1

γ FDR Power αF FDR Power
9 0.112 0.733

0.05 0.808 1.000
10 0.118 0.792
11 0.127 0.827

0.1 0.815 1.000
12 0.134 0.851

a = 1.5

γ FDR Power αF FDR Power
6 0.088 0.908

0.05 0.796 1.000
7 0.086 0.949
8 0.086 0.968

0.1 0.802 1.000
9 0.084 0.976

a = 2

γ FDR Power αF FDR Power
4 0.084 0.952

0.05 0.785 1.000
5 0.083 0.980
6 0.083 0.988

0.1 0.795 1.000
7 0.081 0.990

in Figure 5. The magnetometer can record the speed of smartphone movement as the readings along

X, Y and Z axes. In our case, we will only show the results of the readings on X-axis, since readings

along other two axes could be processed similarly.

In this data analysis, the sample size is n = 6510 and we use the same procedure as in example

5.2 except γ = 18, because the interval between neighboring change points is narrow so that the

bandwidth cannot be too large to avoid interference. Figure 6 shows results of the detected change

points. Due to the measurement error and magnetic-field interference, the real underlying data will

be interfered by slight fluctuations, leading to lots of (349) local maxima and minima, as shown in

Figure 6 (top right). However, despite that, our method can still find the true change points, whose

number is actually not large, as shown in the bottom left panel. In the bottom right panel, it is obvious

that the start points and associated end points are very well detected.

Figure 7 shows the results of FDRSeg, it is obvious FDRSeg estimates too many (1609) change

points, which is nonsense and consistent with the simulation results under autocorrelated noise.

5.2 Array-CGH data

Array-based comparative genomic hybridization (array-CGH) is a high-throughput high-resolution

technique used to evaluate changes in the number of copies of alleles at thousands of genomic loci

simultaneously. The output is often called Copy Number Variation (CNV) data. Changes in copy

number are represented by segments whose mean is displaced with respect to the background. To
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Figure 5: The coordinate system of the magnetometer embedded in a smartphone.

detect these changes, it is costumary to search for change points along the genome.

In this paper, we apply our method to chromosome 1 of tumor sample #18 from the dataset of

Hsu et al. [9] and Loo et al. [18]. This sample is one of 37 formalin-fixed breast cancer tumors in

that dataset and it was chosen for its visual appeal in the illustration of our method. The data in

chromosome 1 of tumor sample #18 consists of 968 average copy number reads mapped onto 968

unequally spaced locations along the chromosome. For simplicity, the data was analyzed ignoring

the gaps in the genomic locations. Figure 8 (top left) shows the data with spacings between reads

artificially set to 1. Note that ignoring the spacings does not affect the presence or absence of change

points.

To analyze the data, the dSTEM algorithm was applied with a truncated Gaussian smoothing

kernel wγ(t) = (1/γ)φ(t/γ)1(t ∈ [−4γ, 4γ]) with γ = 10. The bandwidth was chosen not too

large in order to avoid interference between neighboring change points. Figure 8 (top right) shows

the estimated first derivative (2.6). Figure 8 (bottom left) marks 19 local maxima (green) and 19 local

minima (red).

P-values corresponding to local maxima and minima were computed according to (2.9) using

the distribution (2.11). The required parameters σ′γ
2 = Var(z′γ(t)), λ4,γ = Var(z

′′
γ (t)), λ6,γ =

Var(z
(3)
γ (t)) were estimated empirically from the estimated first, second and third derivatives over the
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Figure 6: Magnetometer example. Top left: Observed data. Top right: Estimated

first derivative of the smoothed data, and local maxima (green), local minima (red),

and significant height threshold (black dashed line). Bottom left: The first deriva-

tive , and the detected positive (green upward triangle) and negative (red downward

triangle) change points. Bottom right: The observed data and its change points.
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Figure 7: Magnetometer example. Left : Observed data. Right: Detected change

points (red) by FDRSeg.

observed data sequence. However, the empirical variances were computed using truncated averages

instead of regular averages in order to avoid bias from the extreme derivatives at the change points

without assuming their presence or location in advance. The BH algorithm was applied to the 38

p-values FDR level 0.2, yielding a p-value significance threshold of 4.42× 10−4. The corresponding
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Figure 8: Data example. Top left: Observed data. Top right: Estimated first

derivative. Bottom left: Local maxima (upward triangles), local minima (down-

ward triangles) of the estimated first derivative, and significance height threshold

(black dashed line). Bottom right: The detected positive (green) and negative (red)

change points.

absolute height threshold of 0.089 is marked as dashed lines in Figure 8 (bottom left). The significant

peaks are plotted on the original data in Figure 8 (bottom right) with a location tolerance of b = 2 for

visual reference.

6 Discussion

6.1 Increasing and decreasing change points

In this paper, we combined both local maxima and minima of the derivative as candidate peaks,

and then applied a multiple testing procedure to find a uniform threshold (in absolute value) for

detecting all change points. This approach is sensible when the distributions (number and height) of

true increasing and decreasing change points are about the same. Alternatively, different thresholds

for detecting increasing and decreasing change points could be found by applying separate multiple

testing procedures to the sets of candidate local maxima and local minima. While we applied the BH

algorithm to control FDR, in principle other multiple testing procedures may be used to control other

error rates.
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6.2 The smoothing bandwidth

A natural and important question is how to choose the smoothing bandwidth γ. We can see that

either a small γ (if the noise is highly autocorrelated) or a relatively large γ (if the noise is less

autocorrelated) is preferred in order to increase power, but only to the extent that the smoothed signal

supports h′j,γ(t) have little overlap and that detected change points are not displaced by more than

the desired tolerance b (recall that the value of b is not used in the dSTEM algorithm itself, but it

may be determined by the needs of the specific scientific application). Considering the Gaussian

kernel to have an effective support of ±cγ, a good value of γ may be about min(b, d/c), where d is

the separation between change points. Since the location of the change points is unknown, a more

precise optimization of γ may require an iterative procedure. Moreover, if some change points are

close together and others are far apart, an adpative bandwidth may be preferable. We leave these as

problems for future research.

References

[1] Akritas, M. G. and Politis, D. N. (2003). Inference for nonsmooth regression curves and sur-

faces using kernel-based methods. Recent advances and trends in nonparametric statistics,

183.

[2] Barry, D. and Hartigan, J. A. (1993). A Bayesian analysis for change point problems. Journal

of the American Statistical Association 88, 309–319.

[3] Cheng, D. and Schwartzman, A. (2017). Multiple testing of local maxima for detection of

peaks in random fields. The Annals of Statistics 45, 529–556.

[4] Cramér, H. and Leadbetter, M. R. (2013). Stationary and related stochastic processes: Sample

function properties and their applications. Courier Corporation.

[5] Efron, B. and Zhang, N. R. (2011). False discovery rates and copy number variation. Biometrika

98, 251–271.

[6] Eilers, P. H. and De Menezes, R. X. (2004). Quantile smoothing of array CGH data. Bioinfor-

matics 21, 1146–1153.

[7] Erdman, C. and Emerson, J. W. (2008). A fast Bayesian change point analysis for the segmen-

tation of microarray data. Bioinformatics 24, 2143–2148.

[8] Frick, K., Munk, A. and Sieling, H. (2014). Multiscale change point inference. Journal of the

Royal Statistical Society: Series B (Statistical Methodology) 76, 495–580.

[9] Hsu, L., Self, S. G., Grove, D., Randolph, T., Wang, K., Delrow, J. J., Loo, L. and Porter, P.

(2005). Denoising array-based comparative genomic hybridization data using wavelets. Bio-

statistics 6, 211–226.

[10] Huang, T., Wu, B., Lizardi, P. and Zhao, H. (2005). Detection of DNA copy number alterations

using penalized least squares regression. Bioinformatics 21, 3811–3817.

20



[11] Hung, Y., Wang, Y., Zarnitsyna, V., Zhu, C. and Wu, C. J. (2013). Hidden Markov models with

applications in cell adhesion experiments. Journal of the American Statistical Association 108,

1469–1479.

[12] Jackson, B., Scargle, J. D., Barnes, D., Arabhi, S., Alt, A., Gioumousis, P., Gwin, E., Sang-

trakulcharoen, P., Tan, L. and Tsai, T. T. (2005). An algorithm for optimal partitioning of data

on an interval. IEEE Signal Processing Letters 12, 105–108.
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