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Abstract

A new approach to detect change points based on differential smoothing and multiple testing
is presented for long data sequences modeled as piecewise constant functions plus stationary er-
godic Gaussian noise. As an application of the STEM algorithm for peak detection developed in
Schwartzman et al. [23] and Cheng and Schwartzman [3], the method detects change points as
significant local maxima and minima after smoothing and differentiating the observed sequence.
The algorithm, combined with the Benjamini-Hochberg procedure for thresholding p-values, pro-
vides asymptotic strong control of the False Discovery Rate (FDR) and power consistency, as the
length of the sequence and the size of the jumps get large. Simulations show that FDR levels
are maintained in non-asymptotic conditions and guide the choice of smoothing bandwidth. The
methods are illustrated in magnetometer sensor data and genomic array-CGH data. An R package
named “dSTEM” is available in R cran.

Key Words: change points, FDR, power, Gaussian processes, kernel smoothing, local maxima, local minima,
dSTEM.

1 Introduction

Detecting change points in the mean of an observed signal is a common statistical problem with
applications in many research areas such as climatology [22], oceanography[14], finance [28] and
medical imaging [20]. It often appears in the analysis of time series but it has more recently been
found in the analysis of genomic sequences, see Erdman and Emerson [7], Lai et al. [15], Muggeo
and Adelfio [19], Olshen et al. [21], Tibshirani and Wang [26] and Wang et al. [27] and the references

therein. Given the large amounts of data present in modern applications, it is of interest to design a
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change point detection method that can operate over long sequences where the number and location
of change points are unknown, and in such a way that the overall detection error rate is controlled.

Many different approaches have been proposed to find and estimate change points, such as kernel-
based methods [1], Bayesian methods [2, 7], segmentation techniques [21, 27, 19], nonparametric
tests [16] and Lq-penalty methods [6, 10, 26], including the PELT method [12, 14]. Though there is
abundant literature on change points segmentation and detection, only a few papers address the FDR
issue which treats the detection of change points as multiple hypothesis testing problems. Tibshirani
and Wang [26] applied the fused lasso method to the hot-spot detection problem, and provided em-
pirical evidence for the FDR control. Efron and Zhang [5] introduced an iterative local FDR based
algorithm to explore copy number changes. Recently, Frick et al. [8] introduced a simultaneous multi-
scale change point estimator (SMUCE) for the change point problem in exponential family regression,
and proved the control of the probability of overestimating the true number of change points. Li et al.
[17] improved the SMUCE method and proposed a multiscale segmentation method FDRSeg, which
gives a non-asymptotic upper bound for its FDR in a Gaussian setting and is robust to the choice of
parameter .. However, our proposed approach is unique in the following two ways.

First, the noise is assumed to be a stationary Gaussian process, allowing the error terms to be
correlated. This is an important departure from the standard assumption of white noise in most
of the change-point literature. In fact, applied statisticians desiring to use change-point methods
have sometimes abandoned this option in favor of other techniques simply because the white noise
assumption does not hold [11]. This paper shows that change-point methods can be devised for
correlated noise, expanding the domain of their applicability.

Second, we use the theory of Gaussian processes to compute p-values for all candidate change
points, so that significant change points can be selected at a desired significance level. For con-
creteness, we adopt the Benjamini-Hochberg multiple testing procedure, enabling control of the false
discovery rate (FDR) of detected change points when the data sequence is long and the number and
location of change points are unknown. To our knowledge, this is the first article proposing a mul-
tiple testing method for controlling the FDR of detected change points. Moreover, the asymptotic
properties of FDR and power are provided.

In this paper, we consider a signal-plus-noise model where the true signal is a piecewise constant
function and the change points are defined as the points of discontinuity. Inspired by the method
for detecting peaks in Schwartzman et al. [23] and Cheng and Schwartzman [3], we modify the
STEM algorithm therein to detect change points. The central idea is the observation that the true
signal has zero derivative everywhere except at the change points, where the derivative is infinite.
Thus, in the presence of noise and under temporal or spatial sampling, change points can be seen
as positive or negative peaks in the derivative of the smoothed signal. Note that because of the
time sampling, derivatives cannot be observed directly and can only be estimated. The focus on the
derivative of the smoothed signal effectively transforms the change point detection problem into a

peak detection problem. As in the STEM algorithm, the resulting peak detection problem is then
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Figure 1: Following the notation in §2.1 and Example 3.4, the left panel is the ob-
served signal-plus-noise model y(¢) containing ten true change points with varying
a; and noise z(t) given by (3.5) with o0 = 1 and v = 2. The right panel illustrates
the dSTEM algorithm. The blue curve is y;(t), obtained with a Gaussian smooth-
ing kernel with standard deviation v = 6. Local maxima (green solid dots) and
local minima (red solid dots) are declared as significant (marked with solid trian-
gles) at FDR level o = 0.1 if their heights are beyond the dotted line thresholds.
The cyan and pink bars indicate the location tolerance intervals (v; — b, v; +b) with
b = 5 for increasing and decreasing change points respectively. At this tolerance,

there are nine true discoveries and one false discovery.

solved by identifying local maxima and minima of the derivative as candidate peaks and applying a
multiple testing procedure to the list of candidates.
The “differential Smoothing and TEsting of Maxima/Minima” (dSTEM) algorithm for change

point detection consists of the following steps:

1. Differential kernel smoothing: to transform change points to local maxima or minima, and to

increase the SNR. This principle of this step is illustrated in Figure 2.
2. Candidate peaks: find local maxima and minima of the differentiated smoothed process.

3. P-values: computed at each local maximum and minimum under the the null hypothesis of no

signal in a local neighborhood.

4. Multiple testing: apply a multiple testing procedure to the set of local maxima and minima; de-

clare as detected change points those local maxima and minima whose p-values are significant.

The algorithm is illustrated by a toy example in Figure 1.
The dSTEM algorithm above differs from the ones in Schwartzman et al. [23] and Cheng and

Schwartzman [3] in that peaks are sought in the derivative of the smoothed signal rather than the
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Figure 2: Following the notation in §2.1 and §2.2, the left panel is the change point
indicator function h;(t) with v; = 101, that is, there exists only one change point
at the location ¢ = v; = 101. The middle panel is the differential Gaussian kernel
w;(s) on [—4+, 4v] with v = 8. The right panel is h;-ﬁ(t), which is the differential
kernel smoothing (under Gaussian kernel) of h;(¢) obtained by convolution, as
shown in (2.7). By such transformation, the change point becomes a local maxima

of a smooth function with compact support.

smoothed signal itself, and that both positive and negative peaks are considered. In addition, an
important consideration for the proper definition of error in change point detection is that, as opposed
to the peak detection problems considered in Schwartzman et al. [23] and Cheng and Schwartzman
[3] where signal peaks had compact support, a true single change point over a continuous domain at
t = v has Lebesgue measure zero. Thus in the presence of noise, it can hardly be detected exactly at
t = v. Therefore we introduce a location tolerance b that defines the precision within which a change
point should be detected. Specifically, given b, a detected change point is regarded as a true discovery
if it falls in the interval (v — b, v + b). Conversely, if a significant change point is found more than a
distance b from any true change point, it is considered a false discovery. The quantity b is not used in
the dSTEM algorithm itself but is needed for proper error definition.

Under this convention, it is shown here that the dSTEM algorithm exhibits asymptotic FDR con-
trol and power consistency as the length of the sequence and the size of the jumps at the change points
increase. These asymptotic conditions are similar to those considered in Schwartzman et al. [23] and
Cheng and Schwartzman [3] and, in fact, the proofs are easily extended from those in Cheng and
Schwartzman [3].

Simulations for varying levels of smoothing bandwidth -, smoothing degree of noise v and jump
size a are used to study the behavior of the algorithm under non-asymptotic conditions. The simula-
tion results help guide the choice of smoothing bandwidth v with respect to v and the desired location

tolerance. In general, power increases with bandwidth to a limit dictated by the distance between the



change points, so admitting a higher tolerance generally allows a higher bandwidth and higher power.

The methods are illustrated in a genomic sequence of array-CGH data in a breast-cancer tissue
sample [18, 9]. The goal of the analysis is to find genomic segments with copy-number alterations.
These are found by detecting change points in the copy number genomic sequence. Another appli-
cation is magnetometer sensor readings, aiming at finding the start and end points of hand gesture

motion, which is the critical step and foundation of establishing a secret key based on hand gestures.

2 The multiple testing scheme

2.1 The model

We consider a continuous time model, although the algorithm is designed for data discretely sampled

in time. Consider the signal-plus-noise model
y(t) = u(t) +2(t), tER, 2.1)

where the signal () is a piecewise constant function of the form
o
u(t) = ajhi(t),  a; € R\ {0},
§=0

with h;(t) = 1(t > v;) for v; € R. We are interested in finding the change points vj. For the
asymptotic analysis, we assume

a=infla;| >0 and d=inf|v; —v;_1| >0, (2.2)
J J

so that the change points do not become arbitrarily small in size nor arbitrarily close to each other.
Let w,(t) = w(t/v)/~, where v > 0 is the bandwidth parameter and w(t) > 0 is a unimodal
symmetric kernel with compact connected support [—c, ¢] and unit action. Convolving the process

(2.1) with the kernel w- () results in the smoothed random process

(0) = w05 30) = [ (= 5)yl5)ds = iy 1)+ 5,(0), @3

where the smoothed signal and smoothed noise are defined respectively as
o0
po(8) = wy () % () = D ajhyn(t) and 2, () = wy (1)  2(0), (2.4)
§=0
and where the smoothed change point takes the form

hjn(t) = wo(t) % hy(t). 2.5)

The smoothed noise z.,(t) defined by (2.4) is assumed to be a zero-mean four-times differentiable

stationary ergodic Gaussian process.



2.2 Change point detection as peak detection of the derivative

Consider now the derivative of the smoothed observed process (2.3)
Y () = i (t) = y(t) = /RN Wl (t = s)y(s) ds = pl,(t) + 25,(2), (2.6)

where the derivatives of the smoothed signal and smoothed noise are respectively
[oe)
ph (8) = wh () « p(t) = > _ajh (1) and  2(t) = wl(t) * 2(t).
=0

A key observation from (2.5) is that

b, () = /Rw,y(t —s)hj(s)ds = /wa(s)hj(t —s)ds .

t—v;

:/Rw;(s)n(t—szvj)dp/ wh(s) ds = wy(t —vy),

— 00

as illustrated in Figure 2. Thus (2.6) represents a signal-plus-noise model where the smoothed signal
oo o0

ph(t) = agh (1) =Y ajws(t—v)) (2.8)
j=0 j=0

is a sequence of unimodal peaks with the same shape as that of w., and located at locations v;. The
problem of finding change points in y, (¢) is thus reduced to finding (positive or negative) peaks in
Y4 ().

For simplicity, we assume that the compact supports .S; , of the smoothed peak shape hgﬂ(t) =

w~(t — vj) do not overlap, although this is not crucial in practice.

2.3 The dSTEM algorithm for change point detection

Suppose we observe y(t) with J jumps defined by (2.1) in the line of length L centered at the origin,
denoted by U(L) = (—L/2,L/2). The following dSTEM (differential Smoothing and TEsting of
Maxima/Minima) is a modified version of the STEM algorithm of Schwartzman et al. [23] and Cheng

and Schwartzman [3] for detecting change points.

Algorithm 2.1 (dSTEM algorithm for change point detection)

1. Differential kernel smoothing: Obtain the process (2.6) by convolution of y(t) with the kernel

derivative w’,(t).

2. Candidate peaks: Find the set of local maxima and minima of y.(t) in U(L), denoted by
Tw = Tj U Tw_’ where

T

T {t e UL): ¢/(t) =0, yP(t) < o} ,
{

teU(L):yy(t) =0, yg?’)(t) > 0}.

6



3. P-values: For eacht € Tj , compute the p-value p~(t) for testing the (conditional) hypotheses

Ho(t) : {/(s) =0 forall se(t—bt+b)} vs.
Ha(t): {u'(s) >0 forsome se(t—0bt+0b)};

and for eacht € T, compute the p-value p~(t) for testing the (conditional) hypotheses

Ho(t) : {1/ (s) =0 forall se(t—bt+b)} vs.
Ha(t): {1/ (s) <0 forsome s¢€(t—0bt+b)},

where b > 0 is an appropriate location tolerance.

4. Multiple testing: Let m~ = #{t € TV} be the number of tested hypotheses. Apply a multiple
testing procedure on the set of m., p-values {p,(t), t € T,Y}, and declare significant all local

extrema whose p-values are smaller than the significance threshold.

2.4 P-values

Given the observed heights yfy (t) at the local maxima or minima ¢ € T = ~,;r U T,Y_ , p-values in step

(3) of Algorithm 2.1 are computed as

Fy(y4(t), teTy,

- 2.9)
F (= (t), teT,

pv(t) =

where F, (u) denotes the right tail probability of zﬁy(t) at the local maximum ¢ € 7, ,j’ , evaluated under
the null model p/(s) = 0,Vs € (t — b, t + b), that is,
Fy(u)=P (zﬁy (t) > u| t is a local maximum of 2, (t)) . (2.10)
The second line in (2.9) is obtained by noting that, by (2.10),
P (2,(t) < u| tis alocal minimum of 2/ ())
=P (—zfy(t) > —u/ t is a local maximum of —z;(t)) = F,(—u),

since —2/,(t) and 2/ (t) have the same distribution.
The distribution (2.10) has a closed-form expression, which can be obtained as in Schwartzman

et al. [23] or Cramér and Leadbetter [4]. More specifically, the distribution (2.10) is given by

>\6, 27’[')\1217 u )\1217
Fu)=1— (u AV) n )\670/72(,5 = @ (w75 ) @2.11)
; Y Y

where 0’72 = Var(z(t)), Ay = Var(z;(t)), N6y = Var(zgs)(t)), A = cr’f)\(;,7 - )\?m, and

¢(x), ®(x) are the standard normal density and cumulative distribution function, respectively. The

quantities 0’72, A4~ and Ag - depend on the kernel w(t) and the autocorrelation function of the
original noise process z(t). Explicit expressions may be obtained, for instance, for the Gaussian

autocorrelation model in Example 3.4 below, which we use later in the simulations.
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2.5 Error definitions

Assuming the model of §2.1, define the signal region S = U‘jjzl (vj — b,v; + b) and null region
St =U(L)\ 4. Foru > 0, let T (u) = T (u) UT; (u), where

T (w) = {t € U(L) (1) > u, (1) = 0, yi?(t) < 0},

T (u) = {t e UL): ¢, (t) < —u, //(t) = 0, 4P () > o} ,

indicating that Tj (u) and T; (u) are respectively the set of local maxima of y’ () above u and the
set of local minima of yfy(t) below —u. The number of totally and falsely detected change points at

threshold u are defined respectively as

Ry (u) = #{t € T (u)} + #{t € T; (u)},

~ 2.12)
Vy(usb) = #{t € T (u) NS} + #{t € T (u) NS}

Both are defined as zero if T,Y(u) is empty. The FDR at threshold « is defined as the expected
proportion of falsely detected jumps
Vo (u; b)
FDR,(u;0) = Eq 1"+ 2.13
o =B{ 51505 .
Note that when 7 and u are fixed, V., (u; b) and hence FDR~ (u; b) are decreasing in b.
Following the notation in Cheng and Schwartzman [3], define the smoothed signal region S
to be the support of 1’ (t) and smoothed null region S, = U(L) \ S1,. We call the difference

between the expanded signal support due to smoothing and the true signal support the transition
region T, = S1., \ S} =S4\ So,5.

2.6 Power

Denote by 11 and I~ the collections of indices j corresponding to increasing and decreasing change
points v;, respectively. We define the power of Algorithm 2.1 as the expected fraction of true discov-

ered change points

J
1 et
Power., (u; b) = Z Power; (u; b) = E[J(;]l(Tv(u) (vj bv]—i—b);é@)
- I€ (2.14)
+ Z ( —b,v; +b) @ )]
jel—
where Power; - (u; b) is the probability of detecting jump v; within a distance b,
P(TF(uw)n(v;—buj+b)#0), ifjelT,
Power; . (u; b) = j ()N (v i) (2.15)
P (T (uw) N (vj —buj+b) #0), ifjel”.



The indicator function in (2.14) ensures that only one significant local extremum is counted within a
distance b of a change point, so power is not inflated. Note that when  and v are fixed, Power., (u; b)

and Power; - (u; b) are increasing in b.

3 Asymptotic error control and power consistency

Suppose the BH procedure is applied in step 4 of Algorithm 2.1 as follows. For a fixed a € (0, 1), let
k be the largest index for which the ith smallest p-value is less than ic/77.,. Then the null hypothesis
Ho(t) att € T, is rejected if

k y’(t)>ﬂBH:F—1(lfO‘) ift€T+,
pyt) < —— = 7 N 3.1)
My y;(t) < —tpp = —F (m";) ifteT,

where kat/ m. is defined as 1 if ., = 0. Since ugy is random, we define FDR in such BH procedure

V; (tign; b) }
RV(QBH) v1/[’

where R (-) and V,(-;b) are defined in (2.12) and the expectation is taken over all possible realiza-

as
FDRgy (b) = E {

tions of the random threshold ugy. We will make use of the following conditions:

(C1) The assumptions of §2.1 hold.

(C2) L — oo and a = inf;|aj| — oo, such that (log L)/a® — 0, J/L = A; + O(a™2 + L™1/?)
with A1 > 0.

Let E[mo(U(1))] and E[mg~(U(1),u)] be the expected number of local maxima and local
maxima above level u of 27 (t) on unit interval U(1) = (—1/2,1/2), respectively. In particular, we

have the following explicit formula [23]

1 /X6
Emmwmnzﬂng (3.2)

Theorem 3.1 Let conditions (C1) and (C2) hold.
(i) Suppose Algorithm 2.1 is applied with a fixed threshold u > 0. Then

B, (U1, w)](1 - 2e74))
FDR: (40) < SR (U (1, )] — 209A1) 1 A,

+0(a 2+ L2,

(ii) Suppose Algorithm 2.1 is applied with the random threshold ugy (3.1). Then

2E[mo (U (1))](1 — 2cyA4y)
FDRpp,,(b) < QQE[mo,w(U(l))](l —2cvA1) + Ay

+O0(a LY.



Proof  Since w-(t) has compact support [—cv, ¢y], by (2.7), the support Sy - of p7 () in (2.8) is
Sinl/L =

composed of the support segments [v; — ¢v,v; + ¢v] of A} (f). By condition (C2),
2¢yA1 + O(a™2 + L™1/2), which implies |So |/L = 1 — 2cyA; + O(a™2 + L71/2).

Notice that, on the null region Sy ,, the expected number of local extrema, including both local
maxima and minima, equals 2|Sg ,|E[129 (U (1))]. On the other hand, similarly to the proof of
Theorem 3 in Cheng and Schwartzman [3], the expected number of local extrema on the signal region
S1 4 is asymptotically equivalent to .J. This is because, for each j € I* and b > 0, as a — oo,
asymptotically, there is no local maximum of ¢/ (¢) in (v; — ¢y, v; — b) U (v; + b, v; + ¢7), and there
is only one local maximum of ¥/ (t) in (v; — b, v; +b).

The result then follows from similar arguments for proving Theorem 3 in Cheng and Schwartz-
man [3] with N = 1, Ay, = 2cyA1, 2,(t) replaced by 27 (t) and E[mqg,(U(1))] replaced by
2o, (U(1))). O

Lemma 3.2 Let conditions (C1) and (C2) hold. As |a;| — oo, the power for peak j and fixed u
(2.15) can be approximated by

a;lw,(0) —u

Power; . (u;b) = ® <|J|70(/)> (14 O(la;|72)). (3.3)
2t

Proof By (2.7), I, (vj) = w4(0) is the maximum of A’ _(¢) over ¢ € R. The result then follows

from similar arguments for proving Lemma 4 in Cheng and Schwartzman [3] with z,(t) replaced by

22 (t). O

By similar arguments in Cheng and Schwartzman [3] (see equation (20) therein), one can show that

the random threshold @ipyy converges asymptotically to the deterministic threshold

(3.4)

upy = F; ! < o >
BHT 5\ A + 2E[imo(U()](1 — 2e7A)) (1 —a) )
where E[mg (U (1))] is given by (3.2). Since @pp is random, similarly to the definition of FDRph +(b),

we define power in the BH procedure as

;(Z ]I(Tj(&BH)ﬂ(vj—b,Uj+b)7£®)

jer+

Powergp (b)) = E

+ Z ]l(T,Y_(ﬂBH)ﬁ(Uj—b,Uj—Fb)#@))].

jer-

Theorem 3.3 Let conditions (C1) and (C2) hold.
(i) Suppose Algorithm 2.1 is applied with a fixed threshold u > 0. Then

Power, (u;b) = 1 — O(a™?).

10



(ii) Suppose Algorithm 2.1 is applied with the random threshold upy (3.1). Then

Powerp~(b) =1 — O(a™2 + L™1/2).

Proof The desired results follow from similar arguments for showing Theorem 5 in Cheng and
Schwartzman [3]. ]

Example 3.4 [Gaussian autocorrelation model] Let the noise z(¢) in (2.1) be constructed as

2(t) = U/quﬁ (t - S) dB(s),  o,v>0, (3.5)

14 v

where ¢ is the standard Gaussian density, dB(s) is Gaussian white noise and v > 0 (z(t) is regarded
by convention as Gaussian white noise when v = 0). Convolving with a Gaussian kernel w- (t) =
(1/7)¢(t/~v) with v > 0 as in (2.4) produces a zero-mean infinitely differentiable stationary ergodic
Gaussian field z, () such that

S0 =0 a0 =0 [ 6 (1) ap), e vATER

with 02 = 02 /(4y/7€%), iy = 302 /(8y/7E%) and X, = 3302 /(164/7ET). We have
(72 + V2)3/4

5 :

P al  oml/4

(3.6)

As a function of +y, the SNR has a local minimum at v* = /2 and is strictly increasing for large
v. In particular, when v = 0, it is strictly increasing in y. Thus we generally expect the detection
power to increase with  for 4 > /2v. This will be confirmed in the simulations below. Note that
for v > 0, the SNR is unbounded as v — 0, however in practice v cannot be too small: if the support

of w., becomes smaller than the sampling interval, then the derivative ,ufy cannot be estimated.

4 Simulation studies

4.1 Performance of the dSTEM algorithm

Simulations were used to evaluate the performance and limitations of the dSTEM algorithm for sig-
nals p(t) = alt/d|, where t = 1,...,L, L = 12000, and signal strength a € {1,1.5,2}. Under
this setting, the true change points are v; = jd for j = 1,...,L/d — 1, and the distance between
neighboring change points is d = 100. The noise is generated as the Gaussian process constructed
in (3.5) with 0 = 1 and varying v. Notice that the random error is white noise when v = 0, and is
autocorelated when v > 0. The smoothing kernels are w- (t) = (1/v)¢(t/v)1(t € [—4~,47]) for
varying . The BH procedure was applied at FDR level & = 0.1 and the tolerance b = 5. Results

were averaged over 1,000 replications to simulate the expectations.

11
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Figure 3: The FDR (top) and power (bottom) vs. different combinations of the
smoothness parameter v (ranging from O to 2), the signal strength a (taking values
1, 1.5 and 2) and the bandwidth ~y (ranging from 0.2 to 15). Here, the significance
level « = 0.1, tolerance b = 5 and d = 100.

The results of FDR and power are shown in Figure 3. We see that for fixed v and v, as the
strength of the signal a increases, FDR will decrease while the power will increase; moreover, FDR
is eventually controlled below the nominal level and the power tends to 1, which is consistent with
Theorems 3.1 and 3.3. For each fixed a, the power is seen to first decrease quickly and then increase
again as -y increases. This phenomenon coincides with the behavior of the SNR (3.6) derived in
Example 3.4, predicting the power to decrease for v < y/2v and increase for v > 1/2v. Meanwhile,
if @ is moderate or large, the FDR is seen to first increase and then decrease as y increases, with the
maximum of FDR still controlled below the nominal level.

In simulations shown in Figure 3 above, the distance of neighboring change points d = 100 is
large enough so that the kernel smoothing would not affect each other at different change points.
However, one can image that, if d becomes small, then kernel smoothing with large v would produce

interference between neighboring change points, making the power decrease. To illustrate this, we
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Figure 4: The FDR (top) and power (bottom) vs. different combinations of the
smoothness parameter v (ranging from O to 2), the width between neighboring
change points d (taking values 40, 30 and 20) and the bandwidth v (ranging from
0.2 to 15). Here, the significance level o = 0.1, tolerance b = 5 and signal strength
a=1.5.

take the case when the signal strength a = 1.5 and perform simulations for FDF and power with
d = 40, 30 and 20. As shown in Figure 4, we see clearly that, too large v makes FDR increase
and power decrease, due to the overlap between kernel smoothing at neighboring change points.
This phenomena becomes more evident when d gets small (d = 20). Note that, theoretically, the
neighboring interference would happen when d is less than the support of the smoothing kernel,
which is 87 in our Gaussian case here. In particular, we see that, the turning point of power, attaining
almost its maximum, appears at around v = 8 for cases d = 40 and d = 30, while at around v = 5

for the case d = 20. This suggests that v = d/4 is a good choice of bandwidth when d is not large.
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4.2 Choice of the bandwidth ~

Figure 3 shows that the bandwidth v will greatly affect the performance of dSTEM. We see that
larger ~y tends to attain a smaller FDR and larger power. However, as shown in Figure 4, if v is
too large, it will produce interference between neighboring change points and contamination error,
thereby decreasing the power. Thus, the choice of + is critical for the performance of dASTEM.

The optimal -y is the one that maximize the power while controlling the FDR under the signif-
icance level. It is difficult to obtain the optimal ~ theoretically. However, in our model, the signal
is a piecewise constant function, it is possible to obtain the optimal ~y in practice by making more
assumptions on the noise, such as in Example 3.4 using the Gaussian autocorrelation model. As
shown in Figure 3, it is suggested that v should be chosen to be about 8 for weak signals, while
can be as small as 4 for strong signals, almost regardless of the noise autocorrelation. Here, to avoid
producing interference between neighboring change points, the minimal distance of change points
d = inf; ]'uj - vj_l\ defined in (2.2) should be large. On the other hand, if d is not large, then we can
choose the bandwidth ~y to be about d/c when the effective support of smoothing kernel is +¢~. This

has been shown in simulations in Figure 4 where ¢ = 4 and v = d/4.

4.3 Comparison with algorithm FDRSeg

As mentioned in Section 1, FDRSeg is the newest method which can control FDR for change point
detection. In this subsection, we compare the performance of our method dSTEM with the algorithm
FDRSeg. First, it is worth mentioning that our method is mainly designed for autocorrelated random
noise, while FDRSeg requires independent and identically distributed random error, which is just
a special case of our method (v = 0). Note that FDRSeg contains only one parameter ap, which
controls the theoretical upper bound of FDR at 2ag/(1 — ap). However, they suggest that in practice
their method should give FDR < ag. Thus, we let ag be 0.05 and 0.1.

Table 1 shows the realized FDR and detection power under independent noise situation. We see
that for small signal « = 1, dSTEM can almost control FDR and its power is 84.8% when v = 12;
while FDRSeg can attain a little larger power, but it is hard to control FDR when o = 0.1. For larger
signal a, both two methods can control FDR and attain a similar large power. Table 2 shows the
results under the situation of autocorrelated noise (v = 1). In this case, the performance of dSSTEM
is nearly the same as that in independent scenario, while FDRSeg tends to estimate a large number of

change points, leading to a large FDR, which means it can hardly control FDR.
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Table 1: Performance comparison of dSTEM and FDRSeg under independent

noise.

dSTEM FDRSeg

v FDR Power | ap® FDR Power
9 0113 0.723

0.05 0.119 0.840
a=1 |10 0.117 0.781
11 0.124  0.820

0.1 0.155 0.865
12 0.131 0.848

v FDR Power | ap  FDR Power
6 0.091 0.896

0.05 0.033 0.943
a=15 |7 0.089 0.943
8 0.088 0.965

0.1 0.090 0.957
9 0.083 0974

v FDR Power | ap  FDR Power
4 0085 0.932

0.05 0.008 0.971
a=2 5 0.088 0.978
6 0.082 0.987

0.1 0.049 0.983
7 0.085 0.989

 the only parameter in FDRSeg contralling the theoretical upper
bound of FDR to 2ag/(1 — ar)

5 Data example

5.1 Magnetometer sensor readings

In the field of mobile security, two-factor authentication/verification is of great importance, which
is an extra layer of security of your mobile device, such as smartphones, wearable, and smart home
devices, designed to ensure that you are the only person who can unlock your device, even if some-
one knows your password. In recent years, gesture based key establishment is a popular topic in
communication security and computer science [25, 24, 13].

Modern mobile devices embedded with various motion sensors including accelerometer, gyro-
scope and magnetometer are used to measure and record the gesture performing process. Obtaining
accurate readings of magnetometer is the foundation of magnetometer baesd research. However,
during data collection, there are always noises which might be caused by hardware imperfection, ma-
nipulation error or sensitivity of the sensor. Particularly, finding the start point and associated end
point for each gesture is a big challenge. The goal of this analysis is to find such change points.

In this paper, the data was collected from an experiment where several simple gestures, for ex-
ample, shaking the smartphone in different directions and at different speeds, were designed. In par-

ticular, the smartphone defines a coordinate system of the embedded magnetometer, which is shown
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Table 2: Performance comparison of dSTEM and FDRSeg under autocorrelated

noise (v = 1).

dSTEM FDRseg

v FDR Power | ap  FDR Power
9 0112 0.733

0.05 0.808 1.000
a=1 |10 0.118 0.792
11 0.127 0.827

0.1 0.815 1.000
12 0.134 0.851

v FDR Power | ap  FDR Power
6 0.088 0.908

0.05 0.796 1.000
a=15 |7 0.086 0.949
& 0.086 0.968

0.1 0.802 1.000
9 0.084 0976

v FDR Power | ap  FDR Power
4 0084 0.952

0.05 0.785 1.000
a=2 5 0.083 0.980
6 0.083 0.988

0.1 0.795 1.000
7 0.081 0.990

in Figure 5. The magnetometer can record the speed of smartphone movement as the readings along
X, Y and Z axes. In our case, we will only show the results of the readings on X-axis, since readings
along other two axes could be processed similarly.

In this data analysis, the sample size is n = 6510 and we use the same procedure as in example
5.2 except v = 18, because the interval between neighboring change points is narrow so that the
bandwidth cannot be too large to avoid interference. Figure 6 shows results of the detected change
points. Due to the measurement error and magnetic-field interference, the real underlying data will
be interfered by slight fluctuations, leading to lots of (349) local maxima and minima, as shown in
Figure 6 (top right). However, despite that, our method can still find the true change points, whose
number is actually not large, as shown in the bottom left panel. In the bottom right panel, it is obvious
that the start points and associated end points are very well detected.

Figure 7 shows the results of FDRSeg, it is obvious FDRSeg estimates too many (1609) change

points, which is nonsense and consistent with the simulation results under autocorrelated noise.

5.2 Array-CGH data

Array-based comparative genomic hybridization (array-CGH) is a high-throughput high-resolution
technique used to evaluate changes in the number of copies of alleles at thousands of genomic loci
simultaneously. The output is often called Copy Number Variation (CNV) data. Changes in copy

number are represented by segments whose mean is displaced with respect to the background. To
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Figure 5: The coordinate system of the magnetometer embedded in a smartphone.

detect these changes, it is costumary to search for change points along the genome.

In this paper, we apply our method to chromosome 1 of tumor sample #18 from the dataset of
Hsu et al. [9] and Loo et al. [18]. This sample is one of 37 formalin-fixed breast cancer tumors in
that dataset and it was chosen for its visual appeal in the illustration of our method. The data in
chromosome 1 of tumor sample #18 consists of 968 average copy number reads mapped onto 968
unequally spaced locations along the chromosome. For simplicity, the data was analyzed ignoring
the gaps in the genomic locations. Figure 8 (top left) shows the data with spacings between reads
artificially set to 1. Note that ignoring the spacings does not affect the presence or absence of change
points.

To analyze the data, the dSTEM algorithm was applied with a truncated Gaussian smoothing
kernel w(t) = (1/7)¢(t/v)1(t € [—4v,4y]) with v = 10. The bandwidth was chosen not too
large in order to avoid interference between neighboring change points. Figure 8 (top right) shows
the estimated first derivative (2.6). Figure 8 (bottom left) marks 19 local maxima (green) and 19 local
minima (red).

P-values corresponding to local maxima and minima were computed according to (2.9) using
the distribution (2.11). The required parameters 032 = Var(2,(t)), My = Var(z;/ (1), X6y =
Var(z?) (t)) were estimated empirically from the estimated first, second and third derivatives over the
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Figure 6: Magnetometer example. Top left: Observed data. Top right: Estimated

first derivative of the smoothed data, and local maxima (green), local minima (red),
and significant height threshold (black dashed line). Bottom left: The first deriva-

tive , and the detected positive (green upward triangle) and negative (red downward

triangle) change points. Bottom right: The observed data and its change points.
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Figure 7: Magnetometer example. Left : Observed data. Right: Detected change
points (red) by FDRSeg.

observed data sequence. However, the empirical variances were computed using truncated averages
instead of regular averages in order to avoid bias from the extreme derivatives at the change points
without assuming their presence or location in advance. The BH algorithm was applied to the 38
p-values FDR level 0.2, yielding a p-value significance threshold of 4.42 x 10~*. The corresponding
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Figure 8: Data example. Top left: Observed data. Top right: Estimated first
derivative. Bottom left: Local maxima (upward triangles), local minima (down-
ward triangles) of the estimated first derivative, and significance height threshold
(black dashed line). Bottom right: The detected positive (green) and negative (red)

change points.

absolute height threshold of 0.089 is marked as dashed lines in Figure 8 (bottom left). The significant
peaks are plotted on the original data in Figure 8 (bottom right) with a location tolerance of b = 2 for

visual reference.

6 Discussion

6.1 Increasing and decreasing change points

In this paper, we combined both local maxima and minima of the derivative as candidate peaks,
and then applied a multiple testing procedure to find a uniform threshold (in absolute value) for
detecting all change points. This approach is sensible when the distributions (number and height) of
true increasing and decreasing change points are about the same. Alternatively, different thresholds
for detecting increasing and decreasing change points could be found by applying separate multiple
testing procedures to the sets of candidate local maxima and local minima. While we applied the BH
algorithm to control FDR, in principle other multiple testing procedures may be used to control other

€rror rates.
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6.2 The smoothing bandwidth

A natural and important question is how to choose the smoothing bandwidth . We can see that
either a small v (if the noise is highly autocorrelated) or a relatively large ~ (if the noise is less
autocorrelated) is preferred in order to increase power, but only to the extent that the smoothed signal
supports h;w(t) have little overlap and that detected change points are not displaced by more than
the desired tolerance b (recall that the value of b is not used in the dSTEM algorithm itself, but it
may be determined by the needs of the specific scientific application). Considering the Gaussian
kernel to have an effective support of +¢, a good value of v may be about min(b, d/c), where d is
the separation between change points. Since the location of the change points is unknown, a more
precise optimization of v may require an iterative procedure. Moreover, if some change points are
close together and others are far apart, an adpative bandwidth may be preferable. We leave these as

problems for future research.
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