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 Abstract 

 In this paper we network five frameworks (cognitive  demand, lesson cohesion, cognitive 

 engagement, collective argumentation, and student  contribution) for an analytic approach that 

 allows us to present a more holistic picture of classrooms  which engages students in justifying. 

 We network these frameworks around the edges of the  instructional triangle as a means to 

 coordinate them to illustrate the observable relationships  between teacher, students(s) and 

 content. We illustrate the potential of integrating  these frameworks via analysis of two lessons 

 that, while sharing surface level similarities, are  profoundly different when considering the 

 complexities of a classroom focused on justifying.  We found that this integrated comparison 

 across all dimensions (rather than focusing on just  one or two) was a useful way to compare 

 lessons with respect to a classroom culture that is  characterized by students engaging in 

 justifying. 
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 Introduction 

 Justifying is highlighted as a beneficial student  activity in mathematics policy documents 

 in many countries (for example, Common Core State  Standards Initiative, 2010 (USA); National 

 Council for Teachers of Mathematics, 2000 (USA); Department  for Employment and Education 

 (DfEE), 2014 (UK); Australian Curriculum, Assessment  and Reporting Authority [ACARA], 

 2017 (Australia);  Bildungspläne Baden-Württemberg  (Germany)).  Broadly speaking, justifying 

 can be conceived as providing a mathematical “why”  for procedures and properties that relies on 

 leveraging mathematical meaning and structure rather  than appealing to a rule, an authority, or 

 examples (Brodie, 2010; De Villiers, 1990; Mata-Pereira  & da Ponte, 2017; Reid, 2002; Staples 

 et al., 2012; Stylianides, 2007)  .  For younger students,  justifying why a line of reasoning makes 

 sense mathematically helps students move from reasoning  empirically or procedurally to 

 reasoning about mathematical structure and generalized  quantities. Further, justifying supports 

 students in learning to construct deductive arguments  (Brodie, 2010; Ellis, 2007; Jeannotte & 

 Kieran, 2017; Reid, 2002). Classrooms where students  regularly engage in such activity have 

 been linked with learning gains and more equitable  outcomes (Boaler & Staples, 2008). 

 The mathematics education literature points to several  important characteristics of 

 mathematics classrooms focused on engaging students  in justifying. In these classrooms, student 

 voices are heard and student thinking is leveraged  as the means to move instruction forward (e. 

 g. Anthony et al., 2013; Ball, 1993; Jacobs & Spangler,  2017; Jeannotte & Kieran, 2017; 

 Mata-Pereira & da Ponte, 2017; Munter, 2014; Nasir  & Cobb, 2006; Reid, 2002; Schoenfeld, 

 2011; Turner et al., 2013; Walshaw & Anthony, 2008).  In support of this aim, standards set by 

 national and state organizations call for student-centered  and collaborative classrooms (i.e. 

 Australian Curriculum, 2017; Baden-Württemberg, 2016;  National Council of Teachers of 
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 Mathematics, 2018; National Governors Association Center for Best Practices and Council of 

 Chief State School Officers, 2010) that provide opportunities  for students to reason about 

 mathematics and (co-) construct an understanding of  mathematics as a part of a learning 

 community (Boaler & Staples, 2008; Lampert, 2001;  National Research Council, 2001; Staples, 

 2007). To this end, researchers have sought to document  evidence of the types of rich 

 mathematical engagement that is valued in K-16 classrooms.  In such classrooms, students are 

 positioned as capable mathematics learners through  the teachers’ support of equitable and 

 meaningful participation in classroom discourse (Turner et al., 2013). 

 Two aspects of instruction have been identified as  essential to engage students in 

 justifying, namely, the task posed and the way the  teacher leads the discussion (da Ponte & 

 Quaresma, 2016). The tasks posed in the classroom  need to allow for multiple entry points for all 

 students as well as the opportunity to justify and/or  generalize (Brodie, 2010; da Ponte & 

 Quaresma, 2016; Stein & Smith, 1998), thus, be of  high cognitive demand (Stein & Smith, 

 1998). In addition to the selection of tasks, teacher  support for developing students’ justifying 

 reasoning and communication skills is essential (Ball  & Bass, 2003; Mata-Pereira & da Ponte, 

 2017). Whole class discussions have been identified  as having a strong potential to foster student 

 learning (Mata-Pereira & da Ponte, 2017). The teacher’s  role in the whole class discussion 

 enables students to articulate their contributions  (Mata-Pereira & da Ponte, 2017), engage in 

 discussions as a means to understand, evaluate each  other’s complete and partial ideas (Brodie, 

 2010; Sowder & Harel, 1998), and explore disagreements  (Wood, 1999), thus creating space for 

 students to assess the validity of each other’s’ contributions  (Ball & Bass, 2003; Stein et al., 

 2008). Importantly, classrooms characterized by high  cognitive demand tasks, exploration of 

 multiple solutions, and teachers that create a supportive  and equitable community saw increases 
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 in student achievement and a reduction in achievement gaps between students of different ethnic 

 and cultural groups (Boaler & Staples, 2008). 

 Yet, learning to enact classroom practices that engender  students in justifying  is 

 complex, and requires the learning of intentional  and specific teacher moves and persistence in 

 practicing these moves over time (Boaler & Staples,  2008; Franke et al., 2007; Staples, 2007). 

 This kind of teaching requires teachers to possess  extensive knowledge of students’ learning 

 progressions, an understanding of how to make productive  problem solving visible, and how to 

 teach students to reason mathematically while simultaneously  teaching students the classroom 

 norms of sharing thinking, error analysis, and making  sense of other students’ ideas (Boaler & 

 Staples, 2008; Lampert et al., 2013; Staples, 2007).  In order to create opportunity for justifying, 

 and students’ active engagement in justifying , a  teacher’s work includes identifying and 

 uncovering students’ mathematical thinking, making  the students’ sensemaking process visible 

 to other students, and promoting a norm where such  processes are both valued and critiqued by 

 students. 

 Researchers have made sense of this complex work through  various theoretical framings 

 and observation tools. Some of these theoretical frames  focus on eliciting student thinking, 

 supporting understanding, and extending student thinking  (e.g., Cengiz et al., 2011; Conner et al., 

 2014) with some frameworks distinguishing between  a focus on mathematics versus a focus on 

 managing learning (da Ponte & Quaresma, 2016). Observation  tools focused on high-quality 

 mathematics classrooms often attend mainly to the  teacher (Praetorius & Charalambous, 2018). 

 Of the 12 observation tools included in ZDM’s special  issue  Studying instructional quality in 

 mathematics through different lenses: in search of  common ground  (2018)  , Praetorius & 

 Charalambous (2018) found that 11 had the teacher  as their main focus, while only one 
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 (Schoenfeld, 2018) had the student as its main focus. Of the 11 tools attending to teachers and 

 teaching practices, only 4 also considered students  as a secondary focus, while none of the tools 

 considered the teacher, the students, and the tasks. 

 In our work, we use our observations and analyses  of two lessons to network 

 (Bikner-Ahsbahs & Prediger, 2010; Tabach et al., 2020)  several existing frameworks to make 

 sense of the complex phenomenon of high quality mathematics  classrooms focused on engaging 

 students in justifying.  Bikner-Ahsbahs and Prediger  defined networking as “research  practices 

 that aim at creating a dialogue and establishing relationships  between parts of theoretical 

 approaches while respecting the identity of the different  approaches” (2014, p. 118).  We 

 coordinate and combine (Bikner-Ahsbahs & Prediger,  2010) existing frameworks to “better 

 capturing instructional complexity” (Charalambous  & Praetorius, 2018, p. 359; Tabach et al., 

 2020), characteristic of high-quality mathematics  classrooms, with the instructional goal of 

 engaging students in justifying. Coordinating and  combining have as their goal a “networked 

 understanding of an empirical phenomenon or a piece  of data.” (Bikner-Ahsbahs & Prediger, 

 2010, p. 495).  In addition,  such coordination of existing  frameworks or theories can lead to the 

 development of a theory that goes beyond understanding  particular data to contributing a new 

 integrated theory  (Prediger et al., 2008) 

 We draw on pertinent theoretical frameworks “since  mathematics learning and teaching is 

 a multi-faceted phenomenon which cannot be described,  understood or explained by one 

 monolithic theory alone, a variety of theories is  necessary to do justice to the complexity of the 

 field” (Bikner-Ahsbahs & Prediger, 2006, p. 484).  In selecting theoretical frameworks, we focus 

 on the two aspects named above (1) the task and (2)  the teacher’s role in leading the discussion. 
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 We expand those to include a third consideration, (3) students’ engagement, since ultimately the 

 goal is to engage students in justifying. 

 In this article, our goal is to coordinate existing  frameworks to allow us to see a picture of 

 the mathematics classroom characterized by teaching  and learning practices intended to engage 

 students in justifying that might not be visible with  just one of the frameworks (Bikner-Ahsbahs 

 & Prediger, 2006; Charalambous & Praetorius, 2018).  Thus, we consider the variety of 

 frameworks used as a “resource for grasping complexity  that is scientifically necessary” 

 (Bikner-Ahsbahs & Prediger, 2010, p. 489) to understand  the features and relationships among 

 features within high quality instruction. In particular,  we investigated: How can we 

 operationalize and coordinate various frameworks in  order to identify and document elements of 

 rich mathematics teaching that engage K-5 students  in mathematical reasoning, including 

 justifying? 

 Motivation for Our Theoretical Exploration 

 The motivation for this work stems from the observation  of two fourth grade math 

 lessons in the United States. The lessons shared many  components: the nature of the content, 

 students contributed frequently, and students had  time to work on the mathematics. Yet, as 

 researchers, we observed clear differences between  the two lesson. There was a notable 

 difference between classrooms in the quality and depth  of the interactions in the classroom and 

 the level of engagement with the content. This was  particularly evident in terms of student 

 contributions where justification appeared to be a  strong aspect in one but not in the other lesson. 

 We sought to make sense of various differences with  regard to  classroom culture characterized 
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 by students engaging in justifying  in order to operationalize components of ambitious 

 mathematics instruction. 

 We examined the classroom discussion by focusing on  (1) the task, and (2) the teacher’s 

 role in leading the mathematical discussions, and  (3) students’ engagement. We reviewed the 

 literature for frameworks that would help us analyze  the two lessons with respect to  classroom 

 culture characterized by students engaging in justifying  . 

 The National Research Council (National Research Council,  2001) defines justification 

 as the act of providing sufficient reason for mathematical  ideas or strategies. An important 

 distinction between mathematical proof and mathematical  justification is that justifications do 

 not have to be logically complete (Jaffe, 1997). We  defined justifying  as follows: 

 Justifying: Reason[ing] with meaning of ideas, definitions,  math properties, established 
 generalizations to (a) show why an idea/solution is  true; (b) refute the validity of an idea; 
 and (c) give mathematical defense of an idea that  was challenged (Teachers Development 
 Group, 2013, p. 41). [Note that justifying does not  need to be correct or complete to be 
 counted as such]  . 

 Justifying  provides essential tools in classrooms  where students can come to make sense 

 of important mathematical structures, ideas, and strategies.  As such, we were looking for 

 frameworks that emphasized a focus on deeply engaging  with mathematical content and 

 supporting students in justifying as a means for students  to be positioned as contributors to 

 mathematics. We describe each of the frameworks below  and then illustrate how we see the 

 frameworks connecting to one another. When viewed  simultaneously and as interconnected, 

 these frameworks helped us identify and operationalize  how the classroom cultures of students 

 engaging in justifying varied across the two lessons. 

 We add to the literature by sharing a way to analyze  elementary classrooms focused on 

 students engaging in justifying  by coordinating five  frameworks as a whole (rather than focusing 
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 on any particular framework’s various parts). These frameworks are  lesson cohesion  (Smith & 

 Stein, 1998; Stein & Smith, 2011)  ,  c  ognitive demand  (Smith & Stein, 1998),  collective 

 argumentation  (Conner et al., 2014),  student contributions  (Melhuish et al., 2019), and c  ognitive 

 engagement activity  (Chi & Wylie, 2014).  In this  paper, we did not set out to examine why these 

 differences occurred. Rather, we focused on how to  examine and explain the differences. 

 Theoretical Assumptions 

 Our work leverages a social cultural approach to make  sense of the mathematics 

 classroom.  That is, we focus not on individual students’  cognition, but rather on the social 

 interactions between people in the classroom, a social  setting (Smith, 1998). Further, we assume 

 that within these interactions, knowledge is co-constructed  by students with the support of the 

 teacher (Cengiz et al., 2011). We also acknowledge  that individual cognition and social 

 interactions are closely related in that students  communicate their personal understandings and 

 students develop individual understanding during social  interaction (cf. Cobb & Yackel, 1996; 

 Sfard, 2012). By recognizing the reflexivity of the  social and cognitive, we argue that 

 frameworks which have been developed from a cognitive  standpoint, but have been used to 

 address outward activity (e.g., Chi & Wylie, 2014;  Smith & Stein, 1998) can be leveraged to 

 consider classroom structures. Such an argument echoes  Sfard’s (2012) argument for 

 commognition- internal and interpersonal communication  reflects the same mathematical 

 discourse. However, unlike Sfard, we are not focusing  on the nuances of mathematical discourse, 

 but rather focusing on the culture of the classroom  from a more global view that addresses the 

 ways that students, teacher, and mathematical tasks  interact. 
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 While a social cultural lens provides the general underpinnings of this approach, we focus 

 specifically on components of a classroom culture  in relation to the promotion of justifying. 

 Broadly, a classroom culture reflects a pattern of  interactions where “students and teachers, 

 together with tasks and different elements in the  classroom give rise to the particular recurrent 

 interactions that comprise classroom cultures” (Lozano,  2017, p. 897). Thus, a classroom culture 

 of justifying would include recurrent actions that  reflect promotion of and student engagement in 

 justifying.  Justifying, and more broadly mathematical  argumentation can play an essential role 

 in the process of co-constructing mathematical meaning  (Brown & Renshaw, 2000; Simon & 

 Blume, 1996) and promoting conceptual understanding  (Staples et al., 2012) as students work to 

 negotiate and make sense of mathematical structure. 

 Methodology 

 In this article, our goal was to analyze and understand  what is happening within a lesson 

 and across lessons with respect to the classroom culture  that is characterized by students 

 engaging in justifying. To do this, we analyze two  lessons to illustrate the utility of using the 

 coordination of five dimensions/frameworks, namely,  (1) lesson cohesion, (2) cognitive demand 

 of tasks, (3) collective argumentation, (4) student  contribution types, and (5) students’ cognitive 

 engagement activity. 

 Data Sources 

 For this study, data includes two videotaped mathematics  lessons. For both lessons we 

 had video of the lessons, detailed field notes, and  transcripts. For this analysis, we primarily 
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 focused on video and transcripts of two lessons. The lessons occurred toward the end of the 

 school year. 

 The setting for the lessons is an elementary school  in a mid-sized school district in the 

 United States. At the time of this study, the school  had an enrollment of approximately 580 

 students with a 73% minority enrollment. Furthermore,  79% of children qualified for free or 

 reduced lunch. At this school, 53% of 5  th  graders  were meeting the math standards as assessed by 

 yearly locally mandated standardized tests. For this  study, we focused on two lessons at this 

 school, both in fourth-grade. In both classrooms,  students sit at tables in groups of four to six 

 students (2 students at a table, two to three tables  pushed together) all facing the front of the 

 room. The walls are full of posters. Several of the  authors (Thanheiser, Melhuish) spent several 

 days in these teachers’ classrooms. 

 Both lessons had active engagement of students in  the classroom, but one class lesson 

 was primarily focused on increasing students’ procedural  knowledge while the other lesson was 

 focused on students using justification to increase  their mathematical understandings. Thus, we 

 were interested in exploring and analyzing the differences  in math teaching and learning in two 

 classrooms. A brief description of the lessons and  sample exchanges are provided in Table 1. 
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 Table 1:  Lesson descriptions including sample exchanges 

 Lesson 1  Lesson 2 
 Setup  Students sit at tables in groups of four to six students  (2 

 students at a table, two to three tables pushed together),  all 
 facing the front of the room. Students each have an  opened 
 notebook on the table in front of them. The walls  are full of 
 posters and notes. There is a projector at the front  of the 
 room projecting on a screen (in front of a white board). 

 Students sit at tables in groups of fo
 students at a table, two to three table
 facing the front of the room. Studen
 notebook on the table in front of the
 posters and notes. There is a project
 room projecting on the white board.

 Summary 
 of Tasks 

 Lesson 1 involved three separate tasks in which students 
 ordered, rounded, converted and compared decimals. 

 Lesson 2 involved three tasks all foc
 and ordering fractions. 

 Task 1  During the first 23 minutes, the teacher posed an  ordering 
 decimal numbers task that read, “  Order the following 
 decimal numbers from smallest to largest on the number 
 line: 1.5, 1.1, 1.96, 1.65, 1.37.”  Once she read the 
 directions, students were given four minutes to work 
 independently while the teacher monitored the class, 
 redirected off-task behavior, and complemented correct 
 solutions. During the next 17 minutes, the teacher  selected 
 three students to share their solution to the task.  Each time a 
 student shared their solution, the class asked questions  about 
 the student’s solution. The first student shared an  incorrect 
 solution (noted 1.5 as less than 1.37) while the second  and 
 third students shared correct solutions. 

 During the first 11 minutes, the teac
 She spent three minutes discussing t
 compare and order fractions  .  Next, s
 on reviewing fraction comparison st
 comparisons using drawings, bench
 comparing numerator and denomina
 number line) that the class had com
 two lessons. Each of the strategies w
 student(s) who shared them. Then, t
 minutes reviewing exit tickets [i.e., 
 students fill out at the end of class w
 the teacher to check-in on students’ 
 ticket contained the problems that a
 day] with students from the prior da
 their responses and shared the result
 illustrate that a large portion of the c
 work on fraction comparison strateg

 Task 2  During the next 19 minutes, the teacher had students 
 complete a task where they competed based on their  speed to 
 round decimals and convert decimal fractions to decimal 
 numbers. During the first five minutes, the teacher  directed 
 students to remember how to write decimals in a place  value 
 chart by relating decimals to money. The chart directed 
 students to “multiply by 10” on the whole number side  and 
 “divide by 10” on the decimal side. 
 Sample Exchange Characteristic  1  of Lesson 1  : 
 Student  (in reference to the chart): Why does it have  the 
 multiply by ten and divide by ten? 
 Teacher:  Good question. Because, guess what? Ten times 
 what equals one hundred? 
 Students:  Ten 
 Teacher:  Times ten - a hundred times what equals one 
 thousand? 

 The next 21 minutes were spent in s
 the first four minutes, students indiv
 strategies they had used to compare 
 problems on the prior two days’ exi
 worked in pairs for 14 minutes to ei
 comparisons for which they have di
 compare strategies they used for fra
 determine where they used different
 teacher reviewed and reflected with
 way that students had engaged with 
 minutes on their various strategies f
 comparing fractions. 

 1  This exchange captures the type of interaction of  the teacher and students focusing on procedures. 
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 Teacher:  So each time - each of these place values  - you're 
 increasing by - times ten. You are multiplying by  ten. OK? 
 And then this way - one divided by ten - would be one tenth. 
 It will be less than one. OK, does that make sense? 

 The game was played in front of the whole class, and  two 
 students were given either a decimal fraction or a  decimal 
 number with a requested place value to round to (e.g.,  Write 
 1 1/100  th  as a decimal. Round 32 5/100ths to the nearest 
 tenth. Write 4 7/10ths as a decimal. Round 5.55 to  the 
 nearest whole. Write 1001 1/4  th  as a decimal  .  )  To  win the 
 competition, a student had to be the first to write  the 
 equivalent decimal on the place value chart or round  the 
 decimal number to the requested place value. Five  pairs of 
 students competed in the decimal task. The teacher 
 explained correct answers and reminded the class about  the 
 rounding rule:  “five or more, raise the score.” 

 Task 3  During the last 19 minutes, students worked in small  groups 
 to create posters explaining their solution strategies  for 
 different story problems. In the first five of those  19 
 minutes, the teacher distributed posters with different  story 
 problems to each group (e.g.,  Today the grade 4 runners  ran 
 seventy-one hundredths km. The grade 6 runners ran  six 
 hundred seventy-five thousandths km. Which grade ran 
 more?)  . Story problems involved rounding or comparing 
 decimals, and students were instructed to represent  the word 
 problem and provide an explanation using a visual,  words, 
 and numbers.  During the next 10 minutes, students  worked 
 on their assigned task and asked some questions. The  teacher 
 monitored the class, redirected off-task students,  and 
 assisted groups when needed. In the last four minutes,  the 
 teacher checked in with each group to determine progress 
 and whether they had a solution. Some groups finished 
 while others needed five more minutes. 

 During the last 30 minutes, individu
 the teacher) shared how they compa
 each strategy shared, the class was a
 class-generated strategies the presen
 This prompt engaged students in dis
 mathematical thinking. 
 Sample Exchange Characteristic  2 

 Student A  shared their strategy for 
 greater than 1/2 because 24 is more 
 of 42. After the initial presentation, 
 the strategy. 

 Teacher:  So how did you know that
 forty-twos is more than one half? 
 Student A:  Because, if 21 is one ha
 completely different number. There'
 And if you have 24 plus 24 equals 4
 Teacher:  Student B, what makes se
 Student B  : When you asked her- if 
 is greater than one-half, just because
 higher than the half of 42. 
 Teacher:  Student C, what makes se
 Student C:  21 is half of 42. 

 2  This exchange was characteristic as the teacher pushed  students to explain their sense making rather than  providing 
 them with an explanation. 
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 Summary  In summary, Lesson 1 contained three sets of activities.  In 
 the first activity, students ordered decimals on a  number line. 
 In the second activity, students worked on rounding 
 decimals. In the third activity, students worked in  groups on 
 a word problem involving decimal comparison. 

 In summary, Lesson 2 also containe
 activities, however these three activ
 related (i.e., set-up of the activity, w
 sharing out with everyone) and all th
 the same content goal. 
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 Analysis of the Lessons 

 In selecting existing frameworks, we began with our  sociocultural perspective, focusing 

 on the essential aspects for students to engage in  justifying. As noted above, this includes the 

 task, teacher support in the whole class discussion  (eliciting, supporting, extending), and student 

 engagement. 

 While several frameworks exist that look at classrooms  (i.e. Askew, 1997; Rowland et al., 

 2005) none of the existing frameworks consider all  three elements (task, teacher’s role, student 

 engagement) in relation to justifying. Askew (1997),  for example, examined numeracy and 

 looked at teacher beliefs and student knowledge but  not necessarily the interactions between 

 them. Rowland’s knowledge quartet (2005) foregrounds  teacher knowledge. Thus, we looked at 

 individual frameworks that would allow us to examine  each of the three elements. 

 To examine (1) the tasks or task sequence we integrated  c  ognitive demand  (Smith & 

 Stein, 1998) and  lesson cohesion  (Smith & Stein, 1998;  Stein & Smith, 2011). While lesson 

 cohesion existed as a concept we developed levels  for the purpose of this framework. To 

 examine (2) the teacher’s role in leading the mathematical  discussions, we looked at both teacher 

 support for  collective argumentation  (Conner et al.,  2014) and  student contributions  related to 

 argumentation (Melhuish et al., 2019) in those discussions.  To examine (3) students or students’ 

 engagement, we examined c  ognitive engagement activity  (Chi & Wylie, 2014) which reflects 

 observable behavior related to engagement with the  content. 

 We describe each of these below and then coordinate  them (Bikner-Ahsbahs & Prediger, 

 2010). In tandem, these frameworks helped us identify  and operationalize how the classroom 

 cultures of students engaging in justifying varied  across the two lessons. For each of the 
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 analyses, we adjusted our unit-of-analysis to appropriately align with selected analytic 

 frameworks adapting methods directly from framework  authors when available. For example, 

 when coding the coherence of the lesson, cognitive  demand and cognitive engagement activity, 

 we segmented the lesson into chunks based on the focus  of the segment/task (Smith & Stein, 

 1998), and then coded those segments. For collective  argumentation and student contributions, 

 we used the transcripts of the lesson to identify  talk turns and then coded each talk turn (Conner 

 et al., 2014). See Appendix for a full explication  of these analytic methods. 

 Examining Classroom Culture of Students Engaging in  Justifying Lessons 1 and 2 

 In the following, we use each of the frameworks  to analyze each of the two lessons, and 

 then turn to networking the frameworks to make sense  of the observable differences in the 

 justifications and generalizations in the lessons. 

 Student Contribution Types 

 The first component of our analysis focuses on student  contribution type. We analyzed 

 student contributions from the view of the relationship  between the student and content to 

 classify student contributions by type of reasoning  (justifying, generalizing, or using 

 procedures/facts.) Establishing a difference in this  component was essential to evidence that 

 there was a difference in classroom culture in terms  of students’ justifying. 

 Background and Operationalization of Student Contribution  Types.  We focused on 

 classifying types of student reasoning related to  argumentation (Melhuish et al., 2019) in terms 

 of contributions that rely on procedures and facts  versus contributions that leverage mathematical 

 structure and meaning to justify. This was an essential  component of our analysis as it provided 

 the evidence that there was a difference in classroom  culture in terms of students’ discourse 
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 reflecting justification.  Justifying serves as  learning practices  where students not only engage in 

 important mathematical activity, but also deepen their  understanding of mathematical concepts 

 (Melhuish et al., 2018; Staples et al., 2012). 

 Existing frameworks emphasize types of justifications  (Sowder & Harel, 1998) and how 

 justification develops in the classroom (Williams,  1993). In our analysis, we were interested in 

 the distribution of student contributions and wanted  a framework to describe the extent to which 

 students engaged in the activities of justifying.  Therefore, we used the Student Discourse 

 Observation protocol (Melhuish et al., 2019) which  parses student mathematical contributions 

 into three categories:  using procedures and facts,  justification,  or  generalizations  (see Figure 1). 

 Figure 1 

 The Student Discourse Observation Tool 

 Student Contributions in Lesson 1 and Lesson 2.  If  we consider our sample lesson, we 

 can compare the nature of the student contributions.  In the first lesson, almost all the student 

 contributions were using procedures/facts including  a clarification question and single word 

 answers. In the second lesson, a student’s justification  was a central focus of discourse: Student 

 A  justifying why  24/42 was greater than ½. Other students  then engaged with this justification 

 reflecting an increased number of justifying contributions.  In the first lesson, 6% of the student 

 contributions were classified as justifying, while  in the second lesson 19% of the contributions 
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 were classified as justifying. As such, we see justifying as a substantial part of the classroom in 

 the second lesson. 

 Now that we have attended to a difference in the  student-content relationship: more 

 justifying contributions, we consider other components  of the lesson that may account for 

 classroom culture. 

 Coherence of the Lesson 

 Coherence of the lesson focusses on a lesson’s alignment  with an overarching learning 

 (Stein & Smith, 2011) and the degree to which the  instruction is steered toward a mathematical 

 point (Stein & Smith, 2011). We see this component  as primarily a result of the relationship 

 between the teacher and the mathematical content because  the teacher initially plans and then 

 enacts the lesson sequence based on mathematical content  goals, ideally with an aim of justifying 

 and/or generalizing. 

 Background and Operationalization of Lesson Coherence.  This component focuses on 

 the overall coherence of the lesson. Identifying a  learning target can be supportive in developing 

 a mathematically productive classroom (Remillard,  1996). Mathematically rich lessons center 

 around a specific learning target or set of mathematics  goal (Sleep, 2012). Two essential aspects 

 of teaching towards a specific learning target or  mathematics goal are: identifying the goal and 

 focusing instruction on the goal which leads to lesson  coherence (Cai et al., 2009; Stigler & 

 Hiebert, 1999). By identifying a mathematical idea  to understand, the measure of success of a 

 lesson can shift away from the accurate implementation  of procedures or finding answers to a 

 deepened understanding of the mathematics underlying  procedures and tasks. Lesson coherence 

 is an important feature of implementing mathematics  lessons. To orchestrate a productive 

 discussion, “teachers need to have clear learning  goals for what they are trying to accomplish in 
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 the lesson,” (Stein & Smith, 2011, p. 13), and adjust them as needed during the lesson to support 

 the holding of high expectations for each and every  student in the classroom. 

 With an established goal, the lesson as a whole as  well as all of its parts can be examined 

 for coherence around that goal. Some researchers have  considered lesson coherence with respect 

 to a focus on a single mathematical topic (Fernandez  et al., 1992; Stigler & Perry, 1988), while 

 others have looked at the interrelatedness of topics  within a lesson (Herbel-Eisenmann & Otten, 

 2011). Still others have, more generally, treated  a coherent lesson trajectory as an important 

 measurable aspect of mathematical quality of instruction  (Charalambous & Hill, 2012). In 

 general, lesson coherence can provide opportunity  for students to engage with mathematical 

 ideas at the level needed for justification including  being able to attend to connections and 

 abstract “key points” (Fernandez et al., 1992, p.  123) 

 Lesson Coherence in Lesson 1 and Lesson 2  .  In our  analysis, we developed a framework 

 synthesizing the above research. To analyze  lesson  cohesion we identify three distinct levels: (1) 

 lesson incohesive, there are at least two distinct  topics without a clear goal or connection; (2) 

 lesson cohesive (focused on a single topic) but without  a clear goal or connection; (3) lesson 

 cohesive (focused on a single topic) with a clear  goal or connection. Reflecting back to our two 

 lessons and the transcript excerpts, we found that  Lesson 1 was an incohesive lesson because it 

 included three different topics (ordering decimals,  rounding decimals and converting decimal 

 fractions into decimal notation, and word problems  with various operations on decimals) without 

 an explicit mathematical goal or connection between  those topics, other than the fact that they all 

 involved decimals. While all three topics were related  to decimals, the teacher and/or the 

 students did not make any clear connection across  the segments. In contrast, Lesson 2 was a 

 cohesive lesson with an identifiable and explicitly  stated content goal,  compare and order 
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 fractions  . The three distinct segments in Lesson 2 all explicitly related to supporting students in 

 making sense of the overall content goal, and formed  one large unit with three components, 

 including, first, launching the exploration, second,  exploring, and third, discussing and 

 summarizing. 

 Cognitive Demand of the Task 

 Cognitive demand is a reflection of how a teacher  mediates the relationship between 

 content and students. That is, the cognitive demand  reflects students’ opportunity to reason based 

 on teacher-enacted tasks. Student justifying may result  from high cognitive demand tasks. 

 Students are given opportunities to justify and generalize  when provided with tasks that allow 

 them to engage with the mathematics (Stein & Smith,  1998) in conceptual ways and support 

 discussion and justification of their thinking (Chapin  et al., 2013; Staples & Newton, 2016; Stein 

 et al., 2008). 

 Background and Operationalization of Cognitive Demand.  Cognitive demand describes 

 the kind of thinking that is asked of students (Smith  & Stein, 1998). During math instruction, 

 teacher actions can serve to diminish or maintain  or increase the cognitive demand of tasks 

 (Henningsen & Stein, 1997). Research indicates that  classrooms that support student engagement 

 in higher-demand tasks promote greater success on  measures of students’ reasoning and problem 

 solving (Boaler & Staples, 2008; Stein et al., 2016).  Furthermore, cognitively demanding tasks 

 provide opportunities for students to engage in justifying  (Stein et al. 2016) whereas lower 

 cognitive demand tasks provide opportunities to reveal  students’ understandings of facts and 

 procedures. 

 We adopt Smith and Stein’s (1998) classification of  low and high demand tasks. Low 

 demand tasks consist of those (1) focused on memorization  or (2) focused on procedures without 
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 connections. High demand tasks consist of those focused on (3) procedures with connections and 

 (4) doing mathematics. Doing mathematics might include  “explor[ing] and understand[ing] the 

 nature of mathematical concepts” (Smith & Stein, 1998,  p. 348). A lesson can be parsed into 

 “tasks” via identification of activity moving towards  a single pedagogical goal. These tasks, as 

 implemented, can then fall into the high or low cognitive  demand categories. 

 Cognitive Demand in Lesson 1 and Lesson 2.  Returning  to our lesson exchanges (see 

 Table 1), the sample exchange in Lesson 1, Task 1  reflects a task that involved memorization and 

 procedures without connections. The teacher prompted  students to respond with memorized 

 facts. This exchange was representative of her interaction  with students in the lesson where the 

 overall focus was on rules and procedures. In contrast,  the sample exchange in Lesson 2, Task 3 

 came from a task we labeled as “doing mathematics”  because the students were actively engaged 

 in meaning making as well as connecting the shared  solutions to strategies shared the day before. 

 Everyone was expected to engage in sense making, which  can be seen when the teacher asked 

 students to explain their sense making. The focus  was on non-algorithmic thinking or 

 understanding the nature of concepts. Throughout this  segment, the teacher, prompted the 

 students with “So whisper to your neighbor what strategy  you think she's using out of all of 

 these, who's strategy?” 

 Teacher Support for Collective Argumentation 

 Teacher support for collective argumentation focuses  on the relationship between teacher 

 and students where a teacher provides particular prompts  and actions directed toward students’ 

 engagement in argumentation. 

 Background and Operationalization of Teacher Support  for Collective Argumentation. 

 Given that our focus was on justification and generalization,  we adapted a collective 
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 argumentation framework (Conner et al., 2014). Collective argumentation involves discussions 

 that “involve multiple people arriving at a conclusion,  often by consensus” (Conner et al., 2014, 

 p. 401). Supporting argumentation in the classroom  can be quite productive for students. For 

 example, Ing and colleagues (2015) found evidence  that teacher support for student 

 argumentation may increase student participation and  achievement. Additionally, there is 

 evidence that teacher support for student argumentation  increases student reasoning and sense 

 making (Hufferd-Ackles et al., 2004; Leinhardt & Steele,  2005). For example, Hufferd-Ackles et 

 al. (2004) showed that a  teacher’s growth in questioning  from obtaining correct answers to 

 questioning to uncover students’ mathematical thinking  supported the development of a 

 classroom community characterized by students engaged  in reasoning, defending, and proving. 

 Leinhardt and Steele (2005) found that  a teacher whose  instruction set and supported an 

 expectation of explanation, challenge, revision, and  dialogue to explore mathematical concepts 

 promoted students’ mathematical reasoning with increased  frequency. 

 Multiple frameworks classifying teacher and student  actions exist in research literature. 

 Some focus on questioning strategies (e.g. Driscoll,  1999; Franke et al., 2009; Frey & Fisher, 

 2010; Sahin & Kulm, 2008), while others describe teacher  moves that support student reasoning 

 (e.g. Ozgur et al., 2015) or characterize the extent  to which teacher and students are viewed as 

 co-learners and co-teachers in a math talk community  (e.g. Hufferd-Ackles et al., 2004). We 

 selected Conner et al.’s (2014) framework because  of its specific focus on questioning and other 

 teacher actions that support collective argumentation.  Their identification and descriptions of 

 types of teacher questions, together with other actions  that support collective argumentation, 

 were useful in explicating the observed differences  in the two lessons. 
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 The collective argumentation framework provides a fine-grained analysis that first 

 identifies  contributions to collective argumentation and then  characterizes  the contributions, 

 along with actions that support this argumentation.  As noted by Conner et al. (2014), analyzing 

 these teacher actions can provide insight into how  to support students in argumentation. In 

 general, this framework parses teacher contributions  into question types and supportive action 

 types. For example, a question might be  requesting  a factual answer,  that is  “Asks students to 

 provide a mathematical fact” (p. 418) or  requesting  an idea  , that is “Asks students to compare, 

 coordinate, or generate mathematical ideas” (p. 418). 

 Teacher Support for Collective Argumentation in Lesson  1 and Lesson  2  . In our two 

 focal lessons, we found that the teacher questions  in Lesson 1 were mostly focused on requesting 

 a fact, such as  “Times ten - a hundred times what  equals one thousand?” In total, 63% of teacher 

 requests during this lesson were requesting facts.  In contrast, this number dropped to 10% for 

 Lesson 2. During the second lesson, the teacher questions  were focused on  requesting 

 elaboration  “So how did you know that 21- sorry- how  did you know that twenty-four 

 forty-two's is more than one half?” and  requesting  an idea  “What makes sense to you?” In this 

 second lesson, 38% of teacher requests were requests  for an idea as opposed to only 5% in the 

 first lesson. 

 Cognitive Engagement Activity 

 The last relationship we consider is that of cognitive  engagement. Cognitive engagement 

 captures the nature of student interactions with the  content and with each other. We chose this 

 framework to analyze the differences in students’  engagement in the lesson, independent of the 

 quality or nature of their activity. This allowed  us to focus on how the lessons were different and 

 to later reason about which activities seem to support  or limit students’ engagement in justifying. 
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 Background and Operationalization of Cognitive Engagement Activity  . Cognitive 

 engagement refers to the cognitive level of student  activity as identified through observable 

 behaviors. As addressed in our underlying theoretical  assumptions, we focus on social analogs of 

 cognitive engagement that can be observed in how students  engage in classroom activity. 

 Student participation interaction with lesson/content  and with each other’s ideas about content 

 can range from passively listening to instruction  to rich mathematical interactions between peers 

 and/or the teacher in which students are actively  constructing knowledge and reasoning about 

 mathematics. Chi and Wylie (2014) describe four levels  of cognitive engagement activity: 

 Interactive, Constructive, Active, and Passive  . Passive  engagement describes students who 

 receive instruction but are not overtly cognitively  engaged in any activity. At this level, students 

 may be listening or reading without taking notes,  summarizing or interacting with manipulatives. 

 Active engagement describes students who engage, for  example, by repeating, copying solution 

 steps. Constructive engagement describes students  who engage with the material beyond the 

 teacher prompted steps, illustrated by students asking  their own questions, posing their problems, 

 comparing and contrasting cases themselves, and integrating  ideas from various solutions. 

 Interactive  engagement describes students who are  engaged with the material by dialoguing with 

 peers where the students engaged are engaging constructively  such as  discussing the validity of 

 a justification within a small or large group. In  Chi and Wylie’s (2014) work, they hypothesize 

 that different engagements link to different knowledge-change  processes and document that each 

 level corresponds to increase gains in knowledge for  students. From our perspective, the most 

 pertinent parts of this framework are the role that  constructive and ultimately interactive 

 engagement can play in students co-constructing knowledge  with “  [d]ebating with a peer about 

 the justifications  ” (Table 1), being one of the observable  indicators of interactive engagement. 
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 Students would need to engage constructively and interactively in order to produce mathematical 

 justifications. 

 Cognitive Engagement in Lesson 1 and Lesson 2.  If  we return to our sample exchanges, 

 Lesson 1 reflects students with passive or active  cognitive engagement. For example, they 

 engaged by providing anticipated short answers. In  the first lesson, students engaged at the 

 passive or active level for 92% of the time. Lesson  2 reflects a  constructive mode of engagement, 

 where students were engaged with making sense of and  applying one of many solution strategies 

 suggested in the class. In the second lesson, students  engaged at the constructive/interactive level 

 82% of the time. 

 Gaining Insight From Networking The Five Frameworks 

 Researchers have argued that “combinations of different  frameworks can help in better 

 capturing instructional complexity” (Charalambous  & Praetorius, 2018, p. 359) and that “since 

 mathematics learning and teaching is a multi-faceted  phenomenon which cannot be described, 

 understood or explained by one monolithic theory alone,  a variety of theories is necessary to do 

 justice to the complexity of the field” (Bikner-Ahsbahs  & Prediger, 2006, p. 484). By 

 networking, we used the five frameworks described  above to analyze the same classrooms in 

 order to understand high quality mathematics classrooms  focused on engaging students in 

 justifying. Each of the frameworks provided a lens  to examine one aspect of a mathematics 

 classroom (connected to a core relationship between  teachers, students, and content) which may 

 account for a culture of justifying. Taken together,  the coordination of frameworks allowed us to 

 see a picture of the mathematics classroom focused  on engaging students in justifying that we 

 might not have been able to see with analyzing our  data using just one of the frameworks 
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 (Bikner-Ahsbahs & Prediger, 2006; Charalambous & Praetorius, 2018; Tabach et al., 2020). 

 Thus we consider the variety of frameworks providing  us with a “resource for grasping 

 complexity that is scientifically necessary” (Bikner-Ahsbahs  & Prediger, 2010, p. 489) to explain 

 differences we noticed in the two lessons. From a  research perspective, there was value in 

 considering the various individual frameworks. By  focusing on the individual frameworks, we 

 were able to code the data in a meaningful way, from  multiple perspectives. However, it is 

 through networking these frameworks, we can better  see and understand the complex nature and 

 consequences of the teaching and learning happening  in each classroom. 

 Through existing framings, such as the instructional  triangle, researchers have argued that 

 classroom instruction reflects complex and interdependent  relationships between teacher, 

 student(s), and content (e.g. Cohen et al., 2003;  Hawkins, 2002; Lampert, 2001). The 

 instructional triangle has been posited as a means  to theorize high quality instruction via 

 attention to the complex relationships between teacher/teaching,  students/learning and content. 

 Yet, when studying the effectiveness of mathematics  classrooms, most analyses focused on a 

 subset of the vertices or edges within the instructional  triangle (Charalambous & Praetorius, 

 2018). Similarly, most observation tools have their  key focus on the teacher (Praetorius & 

 Charalambous, 2018). 

 We utilize the structure of the instructional triangle  as a means to coordinate varying 

 frameworks that illustrate the observable relationships  between teacher, students(s) and content 

 networking the frameworks along its edges. Our analysis  focused (1) on the relationship between 

 student and content via student contribution types,  (2) teacher and content via lesson cohesion, 

 (3) teachers’ shaping student content engagement via  cognitive demand; (3) students and 

 students and teacher via collective argumentation;  and (4) student-student and content via student 

 25 



 cognitive engagement activity (see Figure 2). As such the five individual frameworks form a 

 coherent whole to examine high quality mathematics  classrooms focused on engaging students in 

 justifying . 

 Figure 2 

 Networking the five frameworks into one framework  to examine high quality mathematics 

 classrooms focused on engaging students in justifying 

 Juxtaposing a network of frameworks on the instructional  triangle also addresses calls to 

 incorporate the social aspect of teaching and learning  into the instructional triangle (Rezat & 

 Sträßer, 2012; Schoenfeld, 2012) as Schoenfeld inquired,  “What cultural properties must the 

 mathematics  classroom have in order for students to  develop mathematically  productive 

 understandings of the discipline?  ” (p. 594) Schoenfeld  called for “  the development of  analytic 

 tools and techniques that would enable us to  elaborate  the cultural phenomena identified here, 

 and the  use of such understandings to design richer  mathematical  classroom experiences for our 

 children.”  (p. 598)  In addressing this call, we intentionally  focused on the relationships between 
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 the nodes rather than on just the nodes (Askew, 1997) or on one of the nodes and the adjacent 

 relationships (Rowland et al., 2005).  In the next  section, we instantiate how the networked 

 theories provided insight into the justifying classroom  culture. 

 Overall Lesson Analysis: Applying the Network of Frameworks 

 In the Lesson 1 sample exchange, the teacher’s support  for collective argumentation 

 positioned students to engage with the mathematical  content in a relatively superficial way. Their 

 contributions were factual and situated in the lower  mode of active engagement. As a result, the 

 cognitive demand of the task also reflected low demand.  The surface level treatment of ideas 

 may also tie into lesson cohesion, where a lack of  a cohesive goal impacted instructional 

 decisions and may have prevented students from having  opportunity to abstract and make 

 meaningful mathematical connections. 

 In contrast, the Lesson 2 sample excerpt contained  very different types of teacher 

 questions and supportive actions that were more open  and prompted students to engage with 

 ideas and justify their thinking. Such thinking reflects  the high cognitive demand of the task, and 

 deep attention to the learning goal. In both lessons,  the teacher asked questions related to 

 mathematical content, and the students provided contributions;  however, the nature of the 

 relationship between the teacher, student, and content  was noticeably different (see Figure 3 for a 

 comparison of the lessons on the triangle). 

 Figure 3 

 Instructional Triangles for Each of the Two Lessons 
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 Comparing Lessons 

 The sample exchanges situated within the lesson descriptions  were reflective of the 

 lessons as a whole. By zooming out, we can look at  the overall trends in the instructional triangle 

 (see Table 2). With respect to the  Teacher-Content  Relationship  , in Lesson 1, the lesson 

 contained three distinct mathematical topics with  no discernable learning goal. In Lesson 2, the 

 lesson was coherent, tasks organized around a single  topic and aligned with an explicitly stated 

 learning goal. Lesson 2 also had a clear introduction/launch  to the task, included collaborative 

 problem solving, and the lesson concluded with a discussion  during which students were 

 encouraged to justify and generalize. 

 With respect to the Teacher mediating the Content-Student  Relationship, the 

 Student-Content Relationship, and the Student-Student-Content  Relationship  in Lesson 1, the 

 student contributions were nearly all using procedures  and facts, with cognitive demand 

 reflecting procedures without connections, and the  cognitive engagement was either passive or 

 active. In contrast, Lesson 2 had a statistically  significant higher number of justifications from 

 students, higher levels of cognitive demand, and constructive  or interactive levels of cognitive 

 engagement. 
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 With respect to the Teacher-Student Relationship  ,  the teachers question types were also 

 noticeably different with requesting a fact dominating the first lesson and requesting an idea as 

 the most frequent teacher question type in the second  lesson. This shift in collective 

 argumentation questioning appeared to support students  in more meaningful engagement with 

 the mathematical content. In the second lesson, students  engaged in a rich exploration of one 

 mathematical topic via engaging with each other’s  ideas and building mathematical 

 justifications. While in the first lesson, students  jumped from topic to topic and task to task,  and 

 primarily contributed procedures and facts in their  interactions. Further, they were not 

 interactively engaging with each other. 

 Table 2 

 Comparing the Lessons using the triangle components 

 Triangle Component  Category  Lesson 1  Lesson 2 

 Teacher-Content 
 Relationship 

 Coherence and 
 Alignment with 
 Learning Target 

 No Learning Target 
 Mixed Mathematical 
 Goals 

 Learning Target 
 Aligned with 
 Mathematical Goal 

 Teacher mediating 
 Content-Student 
 Relationship 

 Cognitive Demand  Low: Procedures 
 without Connections 

 High: Procedures 
 with Connections; 
 Doing Mathematics 

 Teacher-Student 
 Relationship 

 Teacher Supports for 
 Collective 
 Argumentation  1 

 Primary Question 
 Types: 
 Requesting a Fact 
 (63%)* 
 Requesting an 
 Elaboration (25%) 

 Primary Question 
 Types: 
 Requesting an Idea 
 (38%) 
 Requesting an 
 Elaboration (25%) 

 Student-Content 
 Relationship 

 Student 
 Contributions  1 

 Justifying (6%)*  Justifying (19%) 

 Student-Student-Cont 
 ent Relationship 

 Student Cognitive 
 Engagement with the 
 Lesson 

 Passive/Active  Constructive/Interacti 
 ve 

 *Statistically significant difference using a  z  -proportion  test 
 1 All turn-in-talks were double-coded by two researchers  with agreements of 88% for the first 
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 lesson and 87% for the second lesson, all disagreements  were resolved through discussion. 

 Discussion 

 By networking the five frameworks of  lesson cohesion  (Smith & Stein, 1998; Stein & 

 Smith, 2011)  ,  c  ognitive demand  (Smith & Stein, 1998),  collective argumentation  (Conner et al., 

 2014),  student contributions  related to argumentation  (Melhuish et al., 2019), and c  ognitive 

 engagement  (Chi & Wylie, 2014) along the instructional  triangle, we were able to explore the, at 

 times, interdependent relationships between and among  the teacher, student(s), and content in 

 these two math lessons, thereby, enabling us to explore  the relationships along the edges of the 

 instructional triangle. Thus, we were able to meaningfully  operationalize the relational arrows of 

 the instructional triangle with an overarching lens  for justification classroom culture through the 

 use of multiple frameworks. 

 We contend that one of the most powerful insights  from this coordination of frameworks 

 into the reconceived instructional triangle with measurable  components is that it allowed us to 

 parse apart the complexity of classroom cultures focusing  on students engaging in justifying. 

 Each framework individually told us something about  the lessons. For example, when comparing 

 the two lessons, (Figure 5) we see that each of the  component frameworks along the arrows of 

 the triangle differ across the two lessons. Notably,  given our focus on eliciting student reasoning, 

 the difference in the level of student justification  from Lesson 1 to Lesson 2 was a statistically 

 significant increase. 

 Yet, these frameworks do not work disjointedly, rather  they work in relationship with 

 each other. All frameworks capture a component of  the classroom that may reflect or contribute 

 to a culture of justification and thus a change in  one part of the framework has the potential to 
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 affect changes in the others. For example, the difference in teacher questioning toward requests 

 for ideas and elaborations appeared to support students  in Lesson 2 in deeper engagement with 

 the content and each other which may account for the  increase in justification contributions.  It 

 was by examining both the individual components and  then the whole of the lessons that we 

 gained a more complete picture of the actions and  interactions that supported more high-quality 

 mathematics instruction in the second lesson than  the first. 

 It must be noted that we intentionally selected the  component frameworks for this 

 analysis based on extant literature documenting elements  of high quality mathematics instruction 

 with a focus on a classroom culture that is characterized  by students engaging in justifying (e. g. 

 Ball, 1993; Jacobs & Spangler, 2017; Nasir & Cobb,  2006; Schoenfeld, 2011; Turner et al., 

 2013). We found these frameworks to be fruitful in  carefully analyzing these two case study 

 lessons. However, analyzing different classrooms with  different characteristics could provide 

 more insight into the complexities of the teacher-student(s)-content  instructional relationships 

 and, particularly, how these varying frameworks may  work in concert with one another and in 

 tandem with the instructional triangle. Moreover,  we recognize that these five frameworks are 

 not the only elements of high-quality mathematics  instruction, and that there may be other 

 frameworks that could be networked using the instructional  triangle to explore other 

 relationships in the teacher, student(s), and content  connections. 

 We also note that the lessons we compared were implemented  by the same teacher, before 

 and after participation in a 3-year Professional Development  (PD). The PD focused on the 

 Mathematical Habits of Mind and Interaction  (Melhuish  & Thanheiser, 2017; Teachers 

 Development Group, 2013), in conjunction with the  Mathematically Productive Teaching 

 Routines  (Melhuish & Thanheiser, 2017; Teachers Development  Group, 2013) which support 
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 student engagement in the  justifying.  We share this information here to share the authentic 

 context, but also note that the goal of this paper  was to focus on a method to compare the quality 

 of math instruction rather than the change in one  teacher’s practice. 

 Conclusion 

 Enacting high quality mathematics instruction where  students’ voices and reasoning are 

 elicited, valued, and used to move instruction and  learning forward is a complex endeavor. This 

 complexity cannot be fully explained by a single framework;  therefore, our goal was to explore 

 how a networking of frameworks could be used to analyze  instruction in two separate lessons 

 where the engagement of student voices, thinking,  and mathematical reasoning varied. In 

 particular, we wanted to account for our observation  of different culture in regard to justifying. 

 By analyzing and comparing and contrasting this pair  of lessons, we did not seek to disparage 

 one lesson over the other. Rather, we sought to untangle  the complex relationships between 

 teacher, student(s), and content that reflect classroom  culture in an effort to better understand 

 how and why the student reasoning varied in the two  lessons. 

 Moving forward, we hope that this networking of frameworks  as a tool for analysis and, 

 potentially, reflection, could be used to support  teachers in learning about, enacting, and refining 

 the multiple practices needed for high quality mathematics  instruction leading to students’ 

 engagement in justification and generalization. The  act of teaching is highly complex, and we 

 argue that it is through the concrete operationalization  of frameworks, that mathematics 

 educators can provide teachers with traction and opportunity  to learn and reflect on practice. 

 Furthermore, such operationalization can be powerful  for researchers who are looking to 

 describe, compare, and analyze variations among mathematics  classrooms. We advocate for 
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 approaches that do not just look at students, teachers, or content in isolation, but rather consider 

 the interconnectedness of these various relationships. 
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 Appendix 

 Coding Category  Coding Process  Code Definitions 
 Lesson Cohesion  After coding the entirety of the lessons, 

 we analyzed lesson cohesion by 
 identifying three distinct levels: lesson 
 incohesive, lesson cohesive without a 
 clear goal, or lesson cohesive with a 
 clear goal. 

 1.  Lesson incohesive:  There are at least tw
 goal for the topics is not clear 
 2.  Lesson cohesive without a clear goal:  f
 topic but without a clear goal 
 3.  Lesson cohesive with a clear goal:  focu
 topic with a clear goal. 

 Cognitive Demand 

 Henningsen and Stein, 
 1997; Stein and Smith, 
 1998 

 Each lesson transcript was separated into 
 segments  represented by a shift in the 
 focus of the lesson (e.g., discussing the 
 learning target or reviewing strategies) or 
 a shift from group discussion to private 
 reasoning time to partner sharing. For 
 each segment, we then identified the 
 extent to which students were applying 
 rules they memorized (low 1), performed 
 procedural tasks without engaging in the 
 conceptual ideas of the procedures they 
 were using (low 2), used procedures with 
 engagement in conceptual ideas (high 3), 
 or engaged in tasks in which they 
 explore mathematical ideas and make 
 connections within and between 
 mathematical ideas (high 4) (see Tables 
 A1 and A2 for examples of segments 
 with coding). After coding each 
 segment, we assigned an overall code for 
 the whole lesson, reflecting the primary 
 nature of the mathematics the student 
 engaged in.  

 1. Low 1 Memorization:  Involves either r
 previously learned facts, rules, formulas, or
 committing facts, rules, formulas or definit
 Cannot be solved using procedures because
 not exist or because the time frame in whic
 completed is too short to use a procedure. S
 ambiguous, and involve the exact reproduc
 seen material. Have no connection to the co
 that underlie the facts, rules, formulas, or d
 learned or reproduced. 

 2. Low 2 Procedures Without Connectio
 algorithmic. Use of the procedure is specifi
 is evident from prior instruction, experienc
 the task. Require limited cognitive demand
 completion. Little ambiguity exists about w
 done and how to do it. Have no connection
 meaning that underlie the procedure being 
 on producing correct answers instead of on
 mathematical understanding. Requires no e
 explanations that focus solely on describing
 was used. 
 Example: (Lesson 1 task 1)  Students were 
 number line to compare decimals. When th
 solutions, the teacher instructed them to co
 the same place value to compare decimals,
 now we still need to convert to the same pla
 do more work with decimals - it will be eas
 them even without converting them - cause
 familiar.” 

 3. High 3 Procedures with Connections: 
 attention on the use of procedures for the p
 developing deeper levels of understanding 
 concepts and ideas. Suggests explicitly or i
 to follow that are broad general procedures
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 connections to underlying conceptual ideas
 represented in multiple ways (e.g., visual d
 manipulatives, symbols, and problem situa
 connections among multiple representation
 meaning.  Requires some degree of cognitiv
 general procedures may be followed, they c
 mindlessly. Students need to engage with c
 underlie the procedures to complete the tas
 that develop understanding. 

 4. High 4 Doing Mathematics:  Requires c
 non-algorithmic thinking - a predictable, w
 approach or pathway is not explicitly sugge
 task instructions, or a worked-out example
 to explore and understand the nature of ma
 concepts, processes, or relationships. Dema
 self-monitoring or self-regulation of one's o
 processes. Requires students to access relev
 experiences and make appropriate use of th
 through the task. Requires students to analy
 actively examine task constraints that may 
 solution strategies and solutions. 
 Example: (Lesson 2, segment 3.1)  Student
 compare fraction comparison strategies. St
 expected to explain their thinking, explore 
 and make sense of multiple strategies. In m
 discussions, the teacher repeatedly asks,  “
 mathematically? Kind of going deeper and
 justifying. [Discuss] Why this strategy wor

 Cognitive 
 Engagement 

 Chi & Wylie’s (2014) 
 framework with  four 
 levels of engagement: 
 Passive, Active, 
 Constructive, and 
 Interactive 

 Coders used the same lesson segmenting 
 procedure as was used for cognitive 
 demand coding  (see Tables A1 and A2 
 for examples of segments with coding). 
 Each segment was coded by two coders 
 and any discrepancies were resolved 
 through discussion. 

 1. Passive Engagement  :  Students’ attentio
 focused on specific mathematical content, b
 exhibit any physical gestures, e.g., record n
 thinking, asking or answering questions. 
 Example: (Lesson 2 Segment 1.2)  The stud
 listened while Hannah reviewed the class’ p
 generated fraction comparison strategies. 

 2. Active Engagement:  Students provided
 responses to prompts or questions from the
 did not ask questions or explain their soluti
 Example: (Lesson 1 Segment 2.2)  Student
 to given prompts and provided verbal answ
 questions. 
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 3. Constructive Engagement  : If there wer
 instances of students asking questions and 
 explanations to each other in peer dialogue
 not characteristic of the entire class nor of t
 Note, in a few cases this was coded as  inter
 Example: (Lesson 1 Segment 1.3) 

 J: And then I went one and one fifth, one
 and then - one and thirty-seven hundred
 sixty-five hundredths - one and ninety-si
 Teacher: OK, thank you. Alright, questio
 J? 
 C: Since one and five tenths is equivalen
 hundredths - why does one and thirty-se
 why did you write one and thirty-seven h
 greater than one and fifty-hundredths? 

 4.  Interactive Engagement:  When there w
 between partners, comparing solutions and
 justifying their explanation. 
 Example:  (Lesson 2 Segment 2.2)  S  tudent
 to discuss their use of fraction comparison 
 Throughout this segment students make sta
 disagree with you. You can’t always... what
 does that?” These statements together with
 to “compare your work… then find one pro
 different… figure out who is right and who
 that strategy worked… Why does it work m
 provide sufficient evidence that students ar
 their partners about their solutions, strateg
 why their solutions make sense mathematic

 Collective 
 Argumentation 

 Conner et al’s (2014) 
 framework for 
 teacher support of 
 collective 
 argumentation 

 First, we identified talk turns as the unit 
 of analysis. One author read through the 
 transcripts multiple times, identifying 
 each talk turn and reviewing the 
 divisions for accuracy and consistency. 
 Talk turns were separated by a switch in 
 speaker or when a speaker talked to a 
 new individual(s). Utterances that served 
 to move the conversation along (i.e. 
 “speak up” or “face the class”) were not 
 considered as a switch in speaker. A 
 second researcher then confirmed the 
 designation of talk turns. Next, each 
 teacher talk turn was double coded as a 
 question or action supporting collective 

 1. Question Types & Description: 
 Requesting a factual answer:  Asks student
 mathematical fact. 
 Requesting an idea:  Asks students to comp
 generate mathematical ideas. 
 Requesting a method:  Asks students to dem
 describe how they did something. 
 Requesting elaboration:  Asks students to e
 idea, statement, or diagram. 
 Requesting evaluation:  Asks students to ev
 mathematical idea. 
 Requesting clarification:  Asks students if t
 stated accurately. 
 Requesting revoicing:  Asks students to rev
 that has been shared by another student. 
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 argumentation using Conner et al.’s 
 (2014) framework (see Table A3-A6 for 
 a summary of question types and 
 supportive actions). All disagreements 
 were resolved through discussion 

 2. Other Supportive Action Types & Des
 Directing:  Actions that serve to focus the s
 and/or the argument. 
 Promoting:  Actions that serve to support m
 exploration. 
 Evaluating:  Actions that center on the corr
 mathematics. 
 Informing  : Actions that provide informatio
 Repeating:  Actions that repeat what has be
 stated. 

 Student Contributions 

 Melhuish et al.’s 
 (2019) Student 
 Discourse 
 Observation protocol 

 Coders used the established talk turns 
 from the collective argumentation 
 analysis to begin the student 
 contributions analysis. Each student talk 
 turn was coded as not a contribution to 
 the mathematical argument (NC) or as a 
 direct contribution (DC) to the 
 mathematical argument. Each direct 
 contribution was then double coded 
 using the Student Discourse Observation 
 protocol (see Table A7 for a summary of 
 student contributions across segments). 

 1. Using Procedures and Facts  : No eviden
 (e.g., short answers to a direct question, res
 facts/statements/rules, or showing or asking
 Uses meanings, definitions, properties, kno
 describe reasoning (explaining ideas and m
 to clarify, and/or noticing relationships/con
 doesn’t show why the ideas/methods work
 Example: (Lesson 2)  A student working on
 24/42 > ½ stated, “  So when I drew the num
 one-half I looked at the 2 on the bottom of 

 2. Justifying:  Reasons with meanings of id
 math properties, established generalization
 idea/solution is true, refute the validity of a
 mathematical defense for an idea that was c
 Example: (Lesson 2)  The student working 
 24/42 > ½ stated,  “And I knew that since th
 different pieces, I divided each of them by t
 And since the numerator was 24, I knew th
 numerator was 24 I knew that … it's greate
 above the half of 42.” 

 3. Generalizing:  Reasons with math prope
 meanings of ideas, established generalizati
 mathematical relationships as the basis for 
 about what might happen in the general or 
 justifying a conjecture about what will hap
 or special cases. 

 Table A1 

 Timeline of Lesson 1 with coding 
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 Content  Segment  Time  Content of Segments  Cognitive 
 Demand 

 Order 
 Decimal 
 Numbers on a 
 Number Line 
   

 1.1  2 min  Task setup. Task:  Order the following decimal 
 numbers from smallest to largest on the number line: 
 1.5, 1.1, 1.96, 1.65, 1.37.    
 Teacher in front has student read out directions. 

 Passive 

 1.2  4 min  Students work independently while Hannah  monitors 
 class, redirects off-task students, and compliments 
 correct work. 
 Students work on their own. 

 Active 

 1.3  17 min  Hannah selects 3 students share their solution to  the 
 task. Each time the student shares their solution  and 
 then the class questions the student about their 
 solution. The first student shares an incorrect solution 
 (lists 1.5 as greater than 1.37) while the second  and 
 third students share correct solutions.  
 Whole class. 

 Constructi

 Round/Write 
 Decimal 
 Numbers 
 Game 
   

 2.1  5 min  Task setup:  decimal competition. Hannah directs 
 students to remember how to write decimals in a place 
 value chart. For the competition, two students are 
 given either a mixed number or a decimal number 
 with a requested place value. The first student to  write 
 the equivalent decimal on the place value chart, or  to 
 round the decimal number to the requested place 
 value, wins the competition.  
 Whole class. 

 Passive 

 2.2  14 min  5 pairs of students compete in the decimal 
 competition. Hannah explains correct answers and 
 reminds the class about the rounding rule:  “five or 
 more, raise the score”.  Tasks:  Write 1 1/100  th  as  a 
 decimal, round 32 5/100ths to the nearest tenth, write 
 4 7/10ths as a decimal, round 5.55 to the nearest 
 whole, Write 1001 1/4  th  as a decimal. 
 Whole class. 

 Active 

 Decimal 
 Number 
 Story 
 Problems 
   

 3.1  5 min  Task Setup. Hannah distributes posters with different 
 story problems to each group. Story problems involve 
 rounding or comparing decimals and students are 
 instructed to represent the word problem and provide 
 an explanation using a visual, words, and numbers. 
 Sample task:  Today the grade 4 runners ran 
 seventy-one hundredths km. The grade 6 runners ran 
 six hundred seventy-five thousandths km. Which grade 
 ran more? 
 Whole class. 

 Passive 
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 3.2  10 min  Group work. Students work on task and some ask 
 questions. Hannah monitors class, redirecting off-task 
 students and assisting groups when needed. 
 Small groups. 

 Active 

 3.3  4 min  Lesson Wrap Up. Hannah checks in with each group 
 to determine progress and if they have a solution. 
 Some groups have finished, some need five more 
 minutes. 
 Small groups. 

 Passive 

 Table A2 

 Timeline of Lesson 2 with coding 

    Segment  Time  Content of Segments 
 Cognitive 
 Demand 

 Setup of the 
 lesson 

   

 1.1  3 min  Discussion of Learning Target  compare and order 
 fractions 

 Whole class. 

 N/A 

 1.2  4 min  Hannah reviews class-generated fraction 
 comparison strategies (visual comparisons using 
 drawings, benchmark comparisons, comparing 
 numerator and denominators, placement on number 
 line) the class has come up with in the prior 2 
 lessons. Each strategy is named after the students 
 who shared it. 

 Whole class. 

 N/A 

 1.3  4 min  Hannah reviews with the students how they did on 
 exit  tickets on the prior two days (the exit tickets 
 contained fraction comparison task) 

 Whole class. 

 N/A 

 Small group 
 engagement 

 2.1  4 min  Private Think Time – Students review the strategies 
 they used to compare fraction comparison problems 
 on the prior two days (exit tickets) 

 Individual work. 

 High-3 
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 2.2  14 min  Students work in pairs to either a) discuss fraction 
 comparisons for which they have different results  or 
 b) compare strategies they used for fraction 
 comparisons to determine where they used different 
 strategies 

 Small group work. 

 High-4 

 2.3  3 min  Students review the Habits of Mind and Habits of 
 Interaction they were engaged in 

 Whole class. 

 N/A 

 Whole class 
 engagement 

 3.1  30 min  Individual students (selected by Hannah) share how 
 they compared fractions. For each strategy, the class 
 is asked which of the strategies reviewed at the 
 beginning the student used. Students discuss 
 mathematical thinking. 

 Whole class. 

 High-4 

 Table A3 
 Questioning Types across segments in instances. 

 Questioning Type INSTANCES 

 Lesson 1  Lesson

 Segment 
 1  Segment 2  Segment 3  Total  Segment 1  Segment 2 

 Requesting Fact  20  20  0  40  0  2 

 Requesting an Idea  3  0  0  3  0  6 

 Requesting a Method  2  1  0  3  0  0 

 Requesting Elaboration  14  2  0  16  0  9 

 Requesting Evaluation  1  0  0  1  0  1 
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 Requesting Clarification  1  0  0  1  0  2 

 Requesting 

 Revoicing 

 0  0  0  0  0  0 

 Total  41  23  0  64  0  20 

 Table A4 

 Questioning Types across segments in percent. 

 Questioning Type PERCENT 

 Lesson 1  Lesson

 Segment 

 1 
 Segment 2  Segment 3 

 Total 
 Segment 1  Segment 2 

 Requesting Fact  49  87  0  63  0  10 

 Requesting an Idea  7  0  0  5  0  30 

 Requesting a Method  5  4  0  5  0  0 

 Requesting Elaboration  34  9  0  25  0  45 

 Requesting Evaluation  2  0  0  2  0  5 

 Requesting Clarification  2  0  0  2  0  10 

 Requesting Revoicing  0  0  0  0  0  0 

 Total  100  100  0  100  0  100 
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 Table A5: 

 Supportive actions across segments in instances. 

 Supportive Action Type INSTANCES 

 Lesson 1  Lesso

 Segment 
 1  Segment 2  Segment 3  Total  Segment 1  Segment 2 

 Directing Actions  4  5  0  9  0  2 

 Promoting Actions  9  1  0  10  1  8 

 Evaluating Actions  3  5  0  8  0  1 

 Informing Actions  8  8  0  16  1  2 

 Repeating Actions  3  4  0  7  0  0 

 Total  27  23  0  50  2  13 

 Table A6 

 Supportive actions across segments in percent 

 Supportive Action Type PERCENT 

 Year 0  Yea

 Segment 1  Segment 2  Segment 3  Total  Segment 1  Segment 2 
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 Directing 
 Actions 

 15  22  0  18  0  15 

 Promoting 
 Actions 

 33  4  0  20  50  62 

 Evaluating 
 Actions 

 11  22  0  16  0  8 

 Informing 
 Actions 

 30  35  0  32  50  15 

 Repeating 
 Actions 

 11  17  0  14  0  0 

 Table A7 

 Student contributions across the lesson segments. 

 Student Contributions  Lesson 1  Lesson 2 

 Segment 1  Segment 2  Segment 3  Total  Segment 1  Segment 2 

 Number of Instances 

 P/F  26  23  0  49  0  11 

 J  2  1  0  3  0  0 

 G  0  0  0  0  0  0 

 Percent (of categorized instances) 

 P/F  93  96  0  94  0  100 

 J  7  4  0  6  0  0 

 G  0  0  0  0 
 0 

 0 
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