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Abstract—Today, network-based intrusions are among the
most prevalent security threats our networked systems face.
In the case of software-defined networks (SDN), not only the
connected devices and services but also the SDN controllers
may be subjected to intrusion attempts. The advent of efficient
and robust machine learning (ML) algorithms along with the
availability of a large number of network datasets enabled the
development of ML-based network intrusion detection systems
(NIDS). Recent work has demonstrated that ML-based NIDS
systems are vulnerable to evasion attacks where the adversary
targets the ML classifier in the NIDS system to evade detection
by performing various packet perturbations. In this work, we
propose an approach to build robust ML based NIDS systems
that use multiple ML classifiers trained with reduced feature sets.
Our approach depends on a careful feature selection procedure
based on Permutation Feature Importance, a wrapper based
feature engineering method. Our evaluations on well-known
datasets show that the proposed hybrid multi-classifier system is
robust and performs well against the packet perturbation attacks
considered in this work.

Keywords—-Intrusion detection systems, software defined net-
works, adversarial evasion attacks, machine learning, feature
engineering, multi-classifier systems.

I. INTRODUCTION
Due to ever expanding size and fully connected nature of

the Internet, assuring the security of our networks and their
connected services as well as devices has become a significant
challenge. Today, network-based intrusions are among the
most prevalent security threats our networked systems face [1].
In the case of software-defined networks (SDN), not only the
connected devices and services but also the SDN controllers
may be subjected to intrusion attempts.

Defense against intrusion attempts involves utilizing in-
trusion detection systems (IDS). IDS that mainly focus on
detecting network-based intrusion attempts are called network-
based IDS or NIDS. The advent of efficient and robust
machine learning (ML) algorithms along with the availability
of a large number of network datasets enabled the development
of ML-based NIDS. In case of SDN, the centralized nature of
the network control provides strong support to implement ML-
based NIDS that leverage the ability to have an easy access
to network wide monitoring data in SDN [2].

While ML-based NIDS are effective in detecting intrusion
attempts, it has been recently shown that they can be misled

by capable adversaries who aim to evade ML classifiers in
NIDS [3]. There are different types of adversarial attacks that
can be launched against ML-based NIDS including evasion,
poisoning, and over-stimulation attacks [1]. Here, we aim to
work against evasion-based adversarial attacks on ML-based
NIDS in SDN. In evasion attacks, the adversary launches
an attack by perturbing the features of the packet with the
goal of evading the ML-based NIDS. Using packet crafting
techniques, the adversaries can make an ML classifier inaccu-
rately classify attack packets as benign, thereby bringing the
accuracy of the ML-based NIDS from 99+% all the way down
to 0% [3]. When we use ML classifiers in the conventional
way, with all useful features in the dataset to train the model,
the adversary with domain knowledge and access to packet
crafting techniques can manipulate packet headers and launch
attacks on ML-based NIDS.

Our goal is to improve the effectiveness of ML-based NIDS
so as to detect such packet perturbations by making these
systems immune and robust against evasion attacks. To combat
these attacks, we propose to identify multiple sets of essential
features and utilize several ML classifiers on these RFS. We
require that the ML classifiers utilizing the RFS perform as
well as the ones that utilize the entire feature set in the absence
of adversarial attacks. We need the individual ML classifiers
to be robust to some type of evasion attacks such that the
collection of these ML classifiers are robust to all known
evasions and using them together in some fashion helps us
better fight against evasion attacks.

Using KDD’99 [4], CICIDS [5] and DARPA [6] datasets,
(1) we demonstrate that working with a subset of important
features can be as effective as using the full feature set in
ML-based NIDS, (2) we propose a methodology to identify
important feature sets in a given dataset, and (3) we use ML
classifiers that utilize these RFS and show that they perform
better than the conventional classifiers when subjected to
adversarial evasion attacks. Our experimental results show that
the accuracy of the resulting ensemble classifier has improved
across all considered types of evasion attacks.

II. RELATED WORK
ML algorithms perform well in applications that involve

pattern recognition and anomaly detection. With the availabil-
ity of large number of network datasets, several ML-based978-1-6654-0522-5/21/$31.00 ©2021 IEEE
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solutions are implemented in IDS. The centralized nature of
network control in SDN provides strong support to implement
ML-based IDS in these networks. In [2], authors study existing
ML-based solutions for intrusion detection in SDN. They
provide an extensive analysis of various types of learning
methods for IDS in SDN. In [7], authors implement a scalable
ML-based anomaly detection framework, called Athena, in
SDN. Athena uses several supervised and unsupervised ML
algorithms and achieves good detection accuracy. In addition
to the ML techniques, deep learning methods are applied to
build IDS with good performance results [8]. For example, in
[9], the authors propose Reconstruction from Partial Obser-
vation (RePO) in NIDS by using denoising autoencoders in
unsupervised manner to deal with adversarial evasion.

Adversarial attacks make up an important attack vector for
IDS. Corona et al. [1] provide a taxonomy of adversarial at-
tacks on IDS and outline approaches to address them. A more
recent work by Aiken and Scott-Hayward [3] demonstrates the
impact of feature manipulation by adversaries. The adversary
performs feature engineering to learn the features that could
be used by the ML classifiers in the IDS to generate attack
packets. By perturbing those features, they successfully bypass
the IDS using SYN flood DDoS attacks bringing down the
accuracy of the IDS drastically. Here, we propose a solution
to the problem demonstrated in this work. We also make use
of the adversarial tool developed in this work, called Hydra,
to perform evasion based attacks in our evaluations.

In [10], authors propose a wrapper based feature engineering
technique as an adversary aware method using both forward
selection and backward elimination. Although the feature set
is proved to perform better than the alternatives, the resulting
feature set is fixed. This is important because the adversary
can now figure out that feature set and can come up with new
packet manipulation approaches to evade detection.

In [11], the authors propose a defense mechanism against
the adversarial attacks on NIDS based on Neural Networks.
They generate their evasion dataset using a part of the training
dataset by performing mathematical transformations. In our
work, we use multiple ML classifiers to build an ensemble
based solution and test our solution by generating evasion
datasets using an adversarial tool in an emulated SDN. In
[12], authors perform a feature engineering to find the best
RFS to train considered ML models for DDoS attack defense
in SDN. In our work, we develop multiple RFS to be used
by several ML algorithms in an ensemble ML classifier for
defense against evasion attacks.

III. PROPOSED SOLUTION
We observe that evasion attacks are effective because of

successful feature manipulation. Here, we perform extensive
feature engineering to address the problem. First, we conduct
an experiment to demonstrate that working with a carefully
selected RFS can provide good results in intrusion detec-
tion under no evasion case. Next, we use a feature ranking
method along with four ML classifiers, namely Support Vector
Machine (SVM), Logistic Regression (LR), Neural Networks
(NN), and Random Forests (RF), to identify feature sets to be

utilized in our ML-based NIDS. Last, we conduct extensive
experiments to evaluate the performance of the resulting ML
classifiers in the absence as well as presence of evasion attacks.
A. Feature Engineering

While designing a ML model, the number of features
and the contribution of those features to the model play an
important role in forming the resulting decision boundary,
the geometrical surface that separates the feature space into
regions belonging to each class of the target variable (be-
nign/malicious). We see that evasion attacks are successful
because the adversary is able to manipulate certain packet
features to evade the ML based IDS. That is, when we
perform feature engineering to identify the importance of each
feature, form several subsets of the overall feature set, and use
only these subsets of the features during training of the ML
classifiers, we obtain different decision boundaries that may be
robust against different evasion attacks. If the selected feature
is not impacting the decision of the ML classifier in use, we
may expect the perturbation attacks targeting the feature may
not be effective in misleading the classifier.

To make the ML-based IDS robust, we propose using
multiple classifier models trained with different feature sets.
Consider a dataset with 12 usable features and assume that
the minimum number of features with which the models can
be generated is 7. Even with this limit, there are

∑5
r=1 12Pr

possible feature sets, where 12Pr = 12!
(12−r)! , which is quite

large. Therefore, it becomes essential to introduce some
structure while choosing the feature sets for training. Here,
we remove features based on feature importance. There are
several methods that can be used to rank the features based on
their importance, namely, wrapper based methods, filter based
methods, and embedded methods [13]. Here, we use a wrapper
based method for ranking features for their importance.
B. Permutation Feature Importance

We use permutation feature importance (PFI), a wrapper
based method, to rank features based on their importance.
PFI is model agnostic, i.e., it can be used with different ML
classifiers. We use PFI with four ML classifiers (SVM, LR,
NN, and RF) to obtain feature rankings. PFI ranks features
through a greedy approach and the resulting feature ranking
can be considered as an optimal feature ranking for the
selected ML model and the training dataset.

PFI works by changing the values of the features in the
dataset and evaluates the impact of those changes in the model
score. This is an iterative method, where during each iteration,
one feature is picked and the values of that feature column
is randomly shuffled multiple times to generate multiple
corrupted versions of the dataset. Based on the change in
the model score with the corrupt data, importance value of
that particular feature is evaluated. The module gives out the
importance value of each feature and based on which the
feature ranking is obtained. This operation is performed for
every feature of the dataset iteratively.
C. Hypothesis

We propose to find multiple subsets of essential features
and develop multiple ML models using those feature sets.
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Features No evasion pairflow pay pair payload rate pair rate pay rate stealth

Support Vector
Machine 0.97522 0.28642 0.99012 0.98678 0.27386 0.98645 0.43747 0.99095

Logistic
Regression 0.97759 0.53037 0.98653 0.98129 0.52153 0.98083 0.43183 0.98720

Neural
Networks 0.95188 0.26640 0.28740 0.39921 0.25584 0.40913 0.40977 0.27318

Random
Forests 1.0 0.54083 0.99685 0.99944 0.53351 1.0 0.45097 0.99701

TABLE I: Accuracy values of original classifiers including all features with Evasion

We make sure that those models do not perform worse
than the original classifier. That is, we need the accuracy
of those classifiers to be acceptable when compared to the
original classifiers that we would normally use in the absence
of adversarial attacks. Then, we could use these classifiers
together in multiple different ways to design a robust IDS.
In this work we propose one way to use the combination of
multiple classifiers with RFS by programming the resulting
IDS to pick an ML classifier randomly so as to predict the class
of the incoming packets in a periodic manner. The classifiers
can also be used in a time shared manner, that is, a certain
model with a certain feature set can be used for a period of
time before it is replaced with another one. The reason behind
this approach is that, when the IDS uses the entire feature
set, there is no uncertainty for the adversary, that is, with the
right packet manipulation, evasion is straightforward. With the
proposed scheme, a successful evasion will require that the
adversary choose to focus on a certain feature that is important
to the classifier currently in use. Since the scheduling of the
classifier will be kept confidential, it will be difficult for the
adversary to successfully launch these type of evasion attacks.

IV. EVALUATIONS AND RESULTS

In this work, the metric used for evaluation of the ML
models is accuracy as the problem in hand is a classification
problem. The accuracy of a model is defined as the ratio of
the total number of data points classified correctly to the total
number of data points the model encounters during testing and
it can be calculated as

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where TP = True Positives, FP = False Positives, TN = True
Negatives, FN = False Negatives.

The evaluations of the proposed method are done in two
phases. In phase 1, we use the well-known KDD’99 [4] dataset
to evaluate the performance of ML models with RFS. This
phase does not consider evasion attacks and mainly focuses on
the accuracy of the models with smaller number of features as
compared to the case with full feature set. In phase 2, we train
the models using CICIDS [5] and DARPA [6] datasets to eval-
uate the performance of the classifiers during evasion attacks.
The dataset for evasion is generated by using Hydra [3] which
emulates an SDN in Mininet with Faucet controller to launch
attack traffic. The final model is tested against the evasion
dataset generated by this emulation environment.

A. Phase 1: Hypothesis Validation
Here, we used KDD’99 dataset to analyse the efficiency of

classifiers built with lesser number of features after removing
the features not ranked important by the PFI. We want to
ensure that the accuracy of the system with RFS is as well
as that of the system with the full feature set. While trying
to make an ML-based IDS robust against evasion attacks,
we cannot accept a system that will have poor accuracy
during the normal operation. The results showed us that with
proper feature engineering, even as the number of features
goes as low as 4 or 5 from 41, the accuracy values are
comparable. In case of LR trained with the features obtained
from SVM, the accuracy value improved even with just 3
features when compared to 41. We also found that there are
large number of models that perform extremely well with RFS.
These results were encouraging and showed that building an
ensemble classifier with multiple classifiers with RFS will be
efficient during normal operations (i.e., no evasion attacks).
The evaluations are not presented due to space constraints.

B. Datasets with RFS for Evasion
In this part, we use the dataset that is used in [3]. In [3],

the authors use a dataset consisting of CICIDS and DARPA
datasets for training. They have designed and implemented
an adversarial tool, called Hydra, to generate evasion based
attacks on an emulated SDN environment for testing. We use
the same setup to run our experiments.

The training dataset comprises of benign data points
from CICIDS dataset and malicious data points from DARPA
SYN flood dataset. The original CICIDS dataset after pre-
processing includes about 40,000 benign data points and the
original DARPA data set has 32,000 malicious data points.
We randomly select 80% of the data points from the CICIDS
datasets and all of the data points from the DARPA dataset to
include in our training dataset. The 20% of data points from
the CICIDS dataset are used as part of the evasion dataset,
that is used for testing. The datasets used in this part have a
total of 12 usable features.

Evasion dataset is generated using the Hydra adversarial
tool on an emulated SDN environment. The evasion dataset
includes seven types of packet manipulations performed on
some prominent features of the flows. The features are manip-
ulated separately as well as in combinations of two features.
Every generated dataset is mixed with the isolated 20% of
the data points from CICIDS dataset to make sure the attack
dataset is not skewed and has both benign and evasion traffic.
This makes the experiments look closer to real time network
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Rank Support Vector
Machine

Logistic
Regression

Neural
Networks

Random
Forests

Overall Feature
Ranking (OFR)

1 bytes per second bytes dst bytes bytes per second bytes per second (8)
2 dst bytes dst bytes bytes per second pair flow bytes(12)
3 src pkts src bytes bytes bytes per packet dst bytes(13)
4 bytes bytes per second pkts bytes bytes per packet(18)
5 bytes per packet bytes per packet bytes per packet src pkts src pkts(25)
6 pkts pair flow dst pkts packet pair ratio pair flow(27)
7 dst pkts ip proto src pkts pkts per sec src bytes(30)
8 dst bytes packet pair ratio src bytes pkts per sec pkts(33)
9 pair flow pkts per sec pkts per sec src bytes pkts per sec(33)
10 src bytes src pkts pair flow dst pkts dst pkts(34)
11 packet pair ratio dst pkts packet pair ratio pkts packet pair ratio(36)
12 ip proto pkts ip proto ip proto ip proto(43)

TABLE II: Feature engineering on the evasion dataset

Models Classifiers # Features No Evasion pairflow pay pair payload rate pair rate pay rate stealth

Support
Vector

Machine

C1

C2

C3

C4

C5

11
10
9
8
7

0.95273
0.90889
0.94890
0.79775
0.97653

0.99458
0.28433
0.26883
0.27682
0.27660

0.99415
0.60673
0.29002
0.98012
0.97988

0.99188
0.42625
0.40285
0.97239
0.97206

0.99479
0.27339
0.25818
0.26464
0.26442

0.99167
0.43604
0.41286
0.97171
0.97136

0.99166
0.43689
0.41356
0.42270
0.42235

0.99444
0.53092
0.27571
0.98110
0.98087

Logistic
Regression

C6

C7

C8

C9

C10

11
10
9
8
7

0.96455
0.97229
0.96422
0.95338
0.95387

0.94145
0.96682
0.96375
0.97078
0.26711

0.93530
0.96420
0.95989
0.96698
0.96815

0.91472
0.95027
0.94815
0.95867
0.96030

0.94495
0.96813
0.96677
0.97348
0.25685

0.91306
0.94904
0.94686
0.95862
0.96029

0.91281
0.94896
0.94683
0.95844
0.41114

0.93803
0.96597
0.96183
0.96815
0.96926

Neural
Networks

C11

C12

C13

C14

C15

11
10
9
8
7

0.95163
0.95196
0.95008
0.95750
0.95391

0.26625
0.26558
0.26606
0.51453
0.51382

0.28720
0.28648
0.58618
0.96787
0.96710

0.39899
0.39798
0.39871
0.95991
0.95884

0.25581
0.25505
0.25552
0.50785
0.50717

0.40902
0.40787
0.40861
0.96017
0.95908

0.40959
0.40850
0.40925
0.41109

0.41

0.27303
0.27234
0.51122
0.96899
0.96838

Random
Forests

C16

C17

C18

C19

C20

11
10
9
8
7

0.99991
0.99991
0.99991
0.99983
0.99975

0.29203
0.54281
0.54281
0.99996
0.99996

0.99504
0.99995
0.99995
0.99995
0.99995

0.99764
0.99994
0.99994
0.99994
0.99994

0.28042
0.53347
0.53347
0.99996
0.99996

0.99804
0.99994
0.99994
0.99994
0.99994

0.44896
0.45097
0.45097
0.99994
0.99994

0.99482
0.99996
0.99996
0.99996
0.99996

TABLE III: Combined results with the RFS

operation. The evasion cases are pairflow, payload, payload
and pairflow, rate, rate and pairflow, rate and payload, stealth.

Using the training dataset we trained four ML classifiers
including SVM, LR, NN and RF and performed the experi-
ments with and without evasions. Table I shows the effect of
evasion on the ML classifiers trained with the full feature set
of 12 features. We see that out of the seven evasions analysed,
pairflow, rate-pairflow and rate evasions are successful across
all four models trained with 12 features. Rest of the evasions,
namely, payload-pairflow, payload, rate-payload and stealth
evasion attacks are successful in at least one of the classifiers.
We see that not a single classifier is robust across the entire
range of evasion attacks. Hence, using one model in an IDS
makes it vulnerable to at least three evasion attacks. Thus we
need to design an IDS that is robust and efficient in catching
all known evasion attacks. We also observe in Table I that, in
the absence of evasion, all four classifiers perform extremely
well, which is validated by [3].

C. Phase 2: Evaluations with Evasion Attacks
Our experimental study in Section IV-A demonstrated that

the use of RFS could be effective in defending against non-
evasion attacks. In this section, we use a similar methodology
to develop a number of ML classifiers trained with RFS and
test their performances in the presence of evasion attacks.

In the first step, we rank the features of our evasion dataset
based on their importance. We use PFI with four ML classifiers
including SVM, LR, NN and RF to calculate importance
values of each feature and rank them from most to least
important as shown in Table II. From these rankings, we
calculate an overall feature ranking (OFR) for each feature in
the dataset. OFR value of a feature i is calculated as the sum
of the ranks for feature i as OFRi =

∑
j rij , where rij refers

to the rank of feature i in ranking j ∈ {SVM,LR,NN,RF}.
The last column in Table II shows the ranking of the features
based on their OFR values. We use the OFR ranking of the
features in building ML classifers with RFS. We expect that
the nature of OFR calculation will help normalize the impact
of feature removal across all the ML classifiers with RFS.

From the training dataset, using the OFR ranking, datasets
with RFS are obtained. The original dataset has 12 features and
in this process we obtain 5 datasets with number of features
going from 11 to 7 by removing the top five highest ranked
features, consecutively, from the main feature set. Using these
five datasets, we train four ML algorithms and get 20 ML
classifiers named as Ci for i = [1..20] in Table III. Each
RFS when used for training a model will result in a different
decision boundary and hence different performance results.
The performance of the models with RFS show that some of
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these models perform on par with models trained with full
feature set in the absence of evasion and perform better in the
presence of various type of evasion attacks.

We performed another analysis keeping the number of
features constant as 11 and swapping out one of the top
five ranked features from the feature set where ranking of
the features are obtained from PFI with the corresponding
ML algorithm, i.e., we do not use OFR but use the ranking
corresponding to the ML algorithm given in Table II. This
analysis is performed to increase the available model choices
when building an ensemble classifier. The evaluations are not
included due to space constraints. With the above experimental
cases, we have a total of 40 classifiers to be considered. The
classifiers are named C1, C2, ...C40 for reference. We see that,
out of the 40 cases observed, some classifiers are not as good
as the original classifiers in case of no evasion scenario (e.g.,
C11). Therefore, from these classifiers, we choose the ones
that are robust both with and without evasion for our ensemble
classifiers. We build two different the ensemble classifiers: one
with just two models, C19 and C20 and the other one with 6
models, namely, C7, C19, C20, C23, C24, C28 (C23, C24, C28 -
not included due to space limitations).

Fig. 1: Ensemble IDS (IDS with multiple ML classifiers)

Evasion Accuracy of ensemble
classifier with 2 models

Accuracy of ensemble
classifier with 6 models

No evasion 1.0 0.98940
pairflow 0.99996 0.98277
pay pair 0.99995 0.98049
payload 0.99994 0.97435
rate pair 0.99996 0.98399
rate pay 0.99994 0.97463

rate 0.99994 0.97373
stealth 0.99996 0.98064

TABLE IV: Accuracy of the ensemble classifier

The working of the proposed method is shown in Figure 1.
The individual models used in the ensemble classifier are
trained with the training data as discussed above. During
testing (or operational) time, for each data point, we randomly
select one of the models in the ensemble classifier to label
the data point as benign or malicious. Once we go through
the entire evasion dataset by going through the data points
individually, we accumulate the individual predictions and
calculate the accuracy of the overall ensemble classifier for the
evasion dataset and report it. The accuracy of the two ensemble
classifiers is tabulated in Table IV. For this training dataset
and evasion cases considered, we find that the first ensemble

classifier performs extremely well. In addition to this, we
are interested in the second ensemble classifier with six ML
models to establish the idea of increasing the uncertainty for
the adversary so that it is not possible to launch an attack
targeted at a particular model or feature. The accuracy values
in column 2 of Table IV show that the ideal case of robustness
is achievable by using models with RFS whereas the column
3 shows that in case we do not find models like C19 and
C20, using multiple models as an ensemble together definitely
improves the performance when compared to the original case
as shown in Table I. We see that the proposed ensemble
classifiers are robust against the tested types of evasion attacks.

V. CONCLUSION
We have focused on the evasion based adversarial attacks

on ML-based IDS in SDN. Observing that the evasion attacks
mainly target at manipulating certain features to confuse the
ML classifiers via packet perturbations, we have proposed to
use multiple feature sets of reduced size to identify multiple
ML classifiers that would be more robust to evasion attempts
when used in an ensemble. Our experimental evaluations using
well-known datasets has shown that the proposed ensemble
classifier is effective in detecting several evasion strategies that
were gone undetected by the traditional use of a single ML
classifier with the full training dataset. This work is partially
supported by NSF award DGE-1820640.
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