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Abstract: This paper presents a novel neutral-pion reconstruction that takes advantage of the
machine learning technique of semantic segmentation using MINERvA data collected between
2013–2017, with an average neutrino energy of 6 GeV. Semantic segmentation improves the
purity of neutral pion reconstruction from two 𝛾s from 70.7 ± 0.9% to 89.3 ± 0.7% and improves
the efficiency of the reconstruction by approximately 40%. We demonstrate our method in a
charged current neutral pion production analysis where a single neutral pion is reconstructed. This
technique is applicable to modern tracking calorimeters, such as the new generation of liquid-
argon time projection chambers, exposed to neutrino beams with 〈𝐸𝜈〉 between 1–10 GeV. In
such experiments it can facilitate the identification of ionization hits which are associated with
electromagnetic showers, thereby enabling improved reconstruction of charged-current 𝜈𝑒 events
arising from 𝜈𝜇 → 𝜈𝑒 appearance.
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1 Introduction

MINERvA’s extensive data set is used to investigate a wide variety of neutrino interaction channels,
including both neutral and charged pion production. Neutral pion production is challenging to
measure because the neutral pion reconstruction relies on identifying two photon-like objects in
an event, and until now the primary approach to reduce backgrounds has been to simply cut on
the neutral pion invariant mass. This is particularly true for the MINERvA dataset taken between
2013-17, called NuMI [1] Medium Energy Beam data, where most neutral pions are produced with
a kinetic energy between 0.015–2.0 GeV at 〈𝐸𝜈〉 ∼ 6 GeV. This dataset can be contrasted with the
dataset for 2009-2012, called Low Energy Beam data, where most neutral pions are produced with
a kinetic energy between 0.015–1.0 GeV at 〈𝐸𝜈〉 ∼ 3.5 GeV. The increased number and energy of
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particles produced by the neutrino interaction at 〈𝐸𝜈〉 ∼ 6 GeV creates a complicated environment
for neutral pion reconstruction. For the results presented here, we use a subset of the Medium
Energy Beam data corresponding to 1.65 × 1020 protons on target.

Machine Learning (ML) reconstruction applications traditionally have taken one of two ap-
proaches [2–6]. In the first approach, the entire record from an event is provided to the machine
learning algorithm (MLA) [7, 8]. This may prove problematic for exclusive or semi-exclusive
measurements. In such measurements, many or most particles produced by the interaction are
reconstructed. A challenge for this technique is the possibility that the different algorithms may
claim conflicting hypotheses for the same information. In the second approach, which grew out of
the log-likelihood based reconstructions [9, 10], only a subset of the data is provided to the MLA.
Here the problem is no longer that information may be used to make incompatible hypotheses, but
rather that valuable information may not be provided to the algorithms.

Deep Convolutional Neural Networks [11, 12] (DCNN) using techniques like semantic seg-
mentation [13] make it possible to identify individual objects in an input image where pixels in
the image are related by some regular metric (in [4] a distance weighted graph network is used
for irregular geometry). These developments could revolutionize the reconstruction of events in
some high energy particle physic experiments, in cases where the data can be represented by im-
ages with regular geometry, by allowing DCNN methods to model the activity in the detector as
a step in the characterization of the interaction. This improves the measurement of energy that
is deposited in the detector and motivates a third approach, where MLA provides context to the
reconstruction [14].

In semantic segmentation, the MLA classifies individual bits of information (ionization hits in
MINERvA) as one of several interesting classes. The classification then can be used as a filter for the
hits used in the reconstruction algorithms (in [15] a CNN was used to construct a hit filter for track
pixel seeds used as input to the CMS track reconstruction algorithm ). The hits and information can
be provided to further MLAs, however the clearest way to test the impact of the MLA responsible
for semantic segmentation is to use it as a filter for the current state-of-the-art algorithm.

The ability to identify electromagnetic-like energy depositions within complicated event topolo-
gies is also important for the identification of electrons in charged-current electron-neutrino inter-
actions. Improving the identification of such showers would improve both the efficiency and purity
of measurements of electron neutrino appearance in current and future experiments, which are a
crucial component of the worldwide effort to measure neutrino oscillations.

1.1 Overview of the paper

The paper is organized as follows. First, section 2 provides a short review of details of the MINERvA
detector, details of the NuMI Medium Energy Beam data set and neutral pion production analyses in
MINERvA. Section 3 describes the development of a machine learning algorithm for the semantic
segmentation of energy deposition within the detector based on the class of particle which deposited
that energy. Section 4 discusses the neutral pion reconstruction algorithm and an extension using
semantic segmentation as a filter of electromagnetic-like hits. Section 5 presents conclusions and
discusses implications for other experiments.

– 2 –
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2 Background

The main goal of the MINERvA experiment is to measure neutrino-nucleus interaction cross-
sections with a high degree of precision. Resonance production is the most abundant interaction
mechanism at energies relevant to DUNE [16], a flagship neutrino experiment using a neutrino
beam whose energy is comparable to that of MINERvA. Thus, measurements of baryon resonance
production yielding final state pions are crucial.

In this work we study 𝜋0 reconstruction algorithms applied to neutrino interactions on hydrocar-
bon (CH) target using the NuMI Medium Energy Beam dataset. To study the performance of these
algorithms, we use a sample of candidates in the semi-exclusive channel 𝜈𝜇 + 𝐶𝐻 −→ 𝜇− + 𝜋0+
nucleons. Performance in an alternative semi-inclusive channel, where instead of just nucleons
anything is allowed other than a neutral pion, is considered in appendix B.

2.1 The MINERvA Experiment

Neutrinos are produced by decays of charged pions produced by 120 GeV protons incident on a
fixed carbon target and focused with two magnetic horns to create the NuMI beam. The muons
associated with those same decays are stopped by approximately 200 meters of rock, leaving
a beam of neutrinos. The MINERvA detector is located directly in front of the MINOS near
detector [17, 18]. The core of the detector is a volume with a hexagonal cross section with 120
modules along the beam direction (𝑧), 5 m long, and 1.7 m of apothem, as shown in figure 1. Starting
from upstream and proceeding downstream, the full detector consists of multiple nuclear targets (He,
Pb, Fe, C, H2O), a central scintillator tracker inner detector, an electromagnetic calorimeter (ECAL),
a hadronic calorimeter (HCAL), and the MINOS near detector, which serves as a magnetized iron
spectrometer to identify the charge and momentum of muons.

The inner detector is made up of 8.3 tons of polystyrene (CH) strips divided into planes in three
orientations: X, U and V (U and V are offset by ±60 degrees from the orientation of the X-view).
These orientations allow the planes to be divided into three classes defining “views”, the X-view,
U-view and V-view. Each view can also be represented as a two dimensional image, i.e. the X-view
can be represented as a x-z image. The planes are ordered in the pattern UXVXUXVX such that
the sampling frequency of the X-view is double that of the U-view and V-view along the z-axis.
Further details are available in [17, 19].

2.2 Neutrino-nucleus interactions

In pursuit of a suite of cross-section measurements covering 𝜈𝑒/�̄�𝑒 and 𝜈𝜇/�̄�𝜇 interactions [20–
26], MINERvA has made a series of resonance production measurements including of neutral pion
production in the NuMI Low Energy Beam dataset, 〈𝐸𝜈〉 ∼ 3.5 GeV. Extending these measurements
to the NuMI Medium Energy Beam dataset, 〈𝐸𝜈〉 ∼ 6 GeV, provides an opportunity to expand the
phase space of the earlier measurement, but also introduces challenges given the higher intensity
and higher mean energy of the Medium Energy beam.

A neutrino interaction can produce a pion through several different processes. One process
proceeds through baryon resonance production, in which the neutrino excites the target nucleon to a
baryon resonance state that then decays to a nucleon and a pion in∼ 10−23 seconds. Another process
is deep inelastic scattering (DIS), in which the neutrino interacts with one of the quarks inside the
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(a) Front View — Inner Detector
(b) Side View — Detector

Figure 1. a) The inner detector has four regions, which are the nuclear target region, active tracking region
(tracker), downstream electromagnetic calorimeter (ECAL) and downstream hadronic calorimeter (HCAL)
region. b) Side view of the MINERvA detector with highlighted regions: nuclear targets, active tracker,
calorimeters and MINOS near detector. The nuclear target region consists of passive material (Pb, Fe and C)
interspersed with scintillator. From [19].

nucleon and the quark then hadronizes to form one or multiple pions. The main characteristic of DIS
events is that the struck quark is ejected from the nucleon as opposed to being merely transformed
within the nucleon, unlike other pion production processes. Pion production from a nucleon not
involving a resonance is commonly called a non-resonant process and it is treated as a sub-sample
of DIS processes. A third process is coherent pion production from nuclei, a process in which a
pion is created from neutrino-nucleus interaction where the target nucleus remains unchanged in its
ground state after the scattering.

2.3 Neutral pion production in MINERvA

In the semi-exclusive neutral pion production analyses, the signal is 𝜋0 + 𝑋 + 𝜇 where 𝑋 can not be
a meson. An example of this analysis is given by [27]. This type of analysis provides the central
context for our application and the discussion in section 4. Also examined in this work is a less
selective analysis, here referenced as semi-inclusive with figures and details in appendix B, which
is defined by a signal 𝜋0 + 𝑋 + 𝜇 where 𝑋 is not a neutral pion. An example of a neutral pion
production event relevant for semi-exclusive analyses is provided in figure 2.

Other charged current neutral pion production analyses, not examined in this work, are vari-
ations of the measurements described above. A more selective analysis is defined by a signal
𝜇− + 𝜋0 + 𝑃 + 𝑋 where 𝑋 can not be a meson or any energetic proton. An example of such an
analysis is given by [28]. In other analyses 𝑋 is minimal, such as in anti-neutrino analyses [29] and
in analyses of neutral current neutral pion production [30].

2.4 GENIE and Geant4 simulation in MINERvA

Detailed event simulation is essential for the development of reconstruction algorithms and analysis
of MINERvA data. We use an event generator to simulate neutrino-nucleus interactions and a
detector simulation to simulate the response of the MINERvA detector to the products of those
interactions. Our event generator is GENIE v2.12.6 [32], and our detector simulation package is
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Figure 2. Arachne display of a simulated DIS event with a single neutral pion in the final state. Arachne
is the MINERvA event viewer and is useful for developing and analyzing reconstructions, evaluating data
quality during the MINERvA’s data run, and providing a natural image representation of the MINERvA
data, [31].

based on Geant4 v9.4.2 [33]. GENIE models neutrino interactions, while the final state particles
generated by GENIE are propagated through the MINERvA detector by Geant4.

The charge current (CC) pion production processes relevant to this work proceed via baryon
resonance production or by DIS. For the baryon resonance channels, GENIE uses the Rein and
Sehgal model without interference between neighboring resonances [34]. It models DIS using the
Bodek and Yang model [35]. The nuclear medium is simulated by GENIE based on a modified ver-
sion of the relativistic Fermi gas model that includes short-range nucleon-nucleon correlations [36].
GENIE models final-state interactions of pions and nucleons (FSI) within the primary nucleus using
an effective cascade model [37].

GENIE output for the final state particle kinematics after FSI is used as the input for Geant4,
which propagates particles in discrete steps. In each step, the energy deposited in the detector is
calculated due to ionization and radiation based on the particle type. After each step, Geant4
uses interaction models to determine whether any of the particles interacted in the detector. If an
interaction occurs, Geant4 produces outgoing particles according to the interaction model.

3 Semantic segmentation of energy deposition within MINERvA

Our machine learning algorithm was developed to provide context for further reconstructions in
MINERvA, in particular the neutral pion reconstruction. We built a fully connected network
(FCN) [13] to realize a semantic segmentation of the hits within the views of MINERvA. This
provides additional information for each hit to physics reconstruction algorithms in MINERvA,
such as the neutral pion reconstruction algorithm. While this machine learning algorithm was
developed with the goal of providing context to the neutral pion reconstruction, it was developed
in an analysis independent way, only assuming that the neutrino interaction was a charged current
interaction where a muon was measured in the MINOS spectrometer. Alternative machine learning
models are described appendix A. These includes ones where the requirement of a regular geometry
is bent by including as additional layers the other MINERvA views, which are spatially shifted and
which require extrapolation relative to the X-view.

– 5 –
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3.1 Data description

The dataset used to train this MLA was collected as described in [38] but with an additional label.
In [38] the data was simulated with flux from the Medium Energy configuration of the NuMI beam.
The simulation has been tuned based on previous MINERvA analyses (for a recent description, [39])
but each analysis using sides bands for a final correction as a final step which has not been done here
during the development of the reconstruction. The data shown represents approximately 10% of
the total data available to the semi-exclusive neutral pion production analysis, and the MC statistics
shown is about twice that of the data. The MC used is semi-inclusive and includes the target region.

The additional label vector was the full image but with each pixel labeled as “electromag-
netic(EM)”, “neutron”, “non-electromagnetic(non-EM)”, or “null”. This label looks up the history
of the highest energy deposited in that pixel and selects the source that produced that energy de-
posit, which is not necessarily the particle that was produced directly in the neutrino interaction. As
such the label defines the source energy which was deposited in the detector and is not necessarily
directly related to particles that were produced in the neutrino interaction. If the immediate history
was a 𝛾, 𝑒 or 𝜋0, the pixel was defined as being from the “EM” class. If the immediate history
was a neutron, the pixel was defined as being from the “neutron” class. The remaining pixels were
defined as “non-EM” unless there was no immediate history in which case they were classed as
“null”. This “null” class includes activity in the detector unrelated to the neutrino interaction. The
majority of the “null” class pixels have no energy in the pixel, but some pixels assigned the “null”
class may have energy due to cross-talk or other backgrounds (including activity in the detector
from cosmic rays or residual activity from earlier neutrino interactions). Each pixel is assigned one
and only one class.

3.2 Network description

In order to reconstruct neutral pions via the semantic segmentation approach, we labeled each pixel
of the image as “EM”, “Neutron” or “non-EM”. The pixel was left without a label (NULL) if it was
not given one of these three labels. This ML task can be described as multi-class classification with
3 classes. The energy originating from neutrons was explicitly labeled due to the possibility that
hits from the neutron could be mistaken for a low energy 𝛾 shower and to provide the opportunity
to reconstruct neutrons at a later stage. We differentiate the pixel labels from the simulation given
in 3.1 from those that the classifier returns (EM, Neutron, non-EM and NULL) to emphasize that
the classifier has 3 classes and not 4.

The MINERvA events are sparse, i.e. the majority of pixels in any given event, (∼ 99%), are
not assigned and are thus left unlabeled. The package LarCV [40] was adopted to save the views as
an image in the ROOT [41] file format and to facilitate the use of the U-ResNet network [42, 43].
The implementation of the U-ResNet model used is described by figure 3. The U-ResNet model
was initially developed within the MicroBooNE collaboration [44], and combines U-Net [45] with
ResNet [46] to create a fully convolutional network for image or particle physics event segmentation.
The skip connections of ResNet allow deeper networks with more expressive power, or the breadth
of the domain of functions that the network can compute, to be trained without running into the
problem of vanishing gradients during back-propagation based machine learning [47].

– 6 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
P
0
7
0
6
0

Each ResNet module consists of two convolution layers and each of these layers is followed
by a batch normalization operation [48] and a rectified-linear unit (ReLU) activation function. In
figure 3, black arrows indicate the direction of tensor data flow and the brown dashed lines indicate
concatenation operations to combine the output of convolution layers from the encoding path to the
decoding path. The final output has the same spatial dimension as the input with a depth defined
by the number of labels.

As described in section 2, the data can be represented in three views: X, U and V, which may be
interpreted as images. Each image has two channels: hit time and energy. Three separate semantic
segmentation models were trained using the same algorithm with prediction applied to each view
separately.

The detailed description of the production of images containing hit and energy information
at the detector can be found in [38]. For the training of the whole detector configuration, both
nuclear target and tracker regions were used. But for the semantic prediction and the neutral pion
reconstruction, only the tracker region was used.

Figure 4 shows the confusion matrix obtained by training over one million simulated Monte
Carlo (MC) events and validating over fifty thousand simulated events. The validation set is in-
dependent of the training sample but comes from the same MINERvA MC dataset. A confusion
matrix represents the correlation between reconstructed and true values. The labels classified cor-
rectly according to the simulation are represented by the diagonal value, whereas miss-assignments
are represented by the off-diagonal cells. Figure 4 represents the row-normalized matrix, which can
be interpreted as the fraction of events reconstructed under a label (row value) that matches the one
that truly originated the event. The values along the row-normalized matrix diagonal are above 70,
which indicates the goodness of the network’s ability to predict the data.

We applied semantic segmentation to the X-view only. We made this decision based on numer-
ous factors, including the dominance of the X-view in the baseline reconstruction, the transparency
of the impact of the application of the semantic segmentation to the neutral pion reconstruction
and the requirement of a regular geometry for the use of a FCN for semantic segmentation. In the
reconstruction of the neutral pion the X-view is reconstructed first and the sampling of the X-view
is twice that of the other views, increasing the importance of the X-view for the reconstruction.
Details about an alternative where we apply semantic segmentation in all three views is provided
in appendix A. The neutral pion reconstruction would need to be modified to include application to
the U and V views, complicating the comparison and evaluation.

Figure 5 shows the comparison between true MC events and their corresponding predictions
from the MLA. The left panel of the figure 5 is a visualization of MC events using a web-based
event viewer called Arachne [31]. The right panel of the figure 5 is the corresponding predicted
hits of the event. The colors of the pixel signify the different labels where 0, 1, 2 and 3 represent
label null, EM-like, neutron and non-EM-like, respectively.

4 Neutral pion reconstruction

Here we present the baseline neutral pion reconstruction algorithm in the context of the semi-
exclusive analysis and compare it to the machine learning-based algorithm in a step-by-step manner.
The baseline neutral pion reconstruction algorithm in MINERvA is based on the identification of

– 7 –
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Convolution 
(128 x 96 x 3)

Resnet 
(128 x 96 x 16)

Resnet 
(4 x 3 x 512)

Resnet 
(8 x 6 x 256)

Deconvolution 
(8 x 6 x 256)

Convolution 
(128 x 96 x 16)

Deconvolution 
(128 x 96 x 16)

Convolution 
(128 x 96 x 16)

Resnet 
(64 x 48 x 32)

Deconvolution 
(64 x 48 x 32)

Resnet 
(64 x 48 x 32)

Resnet 
(32 x 24 x 64)

Resnet 
(32 x 24 x 64)

Deconvolution 
(32 x 24 x 64)

Resnet 
(16 x 12 x 128)

Resnet 
(16 x 12 x 128)

Deconvolution 
(16 x 12 x 128)

Resnet 
(8 x 6 x 256)

Concatenation (16 x 12 x 256 )

Concatenation (8 x 6 x 512)

Concatenation (32 x 24 x 128)

Concatenation (64 x 48 x 64)

Concatenation (128 x 96 x 32)

128 x 96 x 1

128 x 96 x 3

Figure 3. UResNet model architecture. The input image (left) is encoded using ResNet modules along the
left before decoding on the right resulting in the semantic segmented image (top right). During decoding,
the output of the encoding ResNet modules is combined at each decoding step. For each step, the width X
height X (semantic) depth is provided. This diagram is for the energy only x-view with 4 class output.

two electromagnetic shower candidates as 𝛾 candidates produced via the decay 𝜋0 → 𝛾𝛾. The
neutral pion reconstruction algorithm is designed to identify and measure the energy and direction
of the two electromagnetic candidate showers; the algorithm proceeds in four stages.

The first stage is a hit filter, which removes hits which are used by the muon or proton reconstruc-
tions, considered likely to be from optical or electronic cross-talk, or are in the HCAL. The remaining
hits are available to the second stage, the electromagnetic shower candidate reconstruction. The
only change for the machine learning-based algorithm is to modify this hit filter to remove hits which
are determined by the machine learning algorithm to be not arising from electromagnetic activity.
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Figure 4. Row normalized confusion matrix with four labels: “null”, EM, “neutron”, non-EM. Only X-
views are used. This confusion matrix is for a sample representative of the full training sample, including
the nuclear target region.

In the second stage, the hits are grouped into candidate showers under the hypothesis that
they originated from the electromagnetic cascade of an energetic 𝛾 originating in the neutrino
interaction vertex.

While the neutral pion analyses primarily focus on the reconstruction of neutral pions in neutrino
interactions with only a single neutral pion (and therefore two electromagnetic showers), recon-
structions of one or three electromagnetic shower candidates are also kept. Three electromagnetic
candidate reconstructions are kept due to the likelihood that one of these cannot be reconstructed
into a 𝛾 candidate. Single electromagnetic candidate reconstructions are kept because the single
electromagnetic candidate can possibly be divided into two overlapping showers.

The electromagnetic shower candidates are then available for the third stage, the 𝛾 candidate
reconstruction. As part of the requirement to be able to be reconstructed as a 𝛾, only shower
candidates comprised of hits from two or three views are considered.

In the final stage, the reconstruction of the 𝛾 candidates from the electromagnetic candidates is
realized. Here, properties of energetic 𝛾s are used, such as the conversion length in the scintillator
and the average energy per unit length deposited by the shower candidate, 𝑑𝐸

𝑑𝑋
. Finally, the

neutral pion candidate is reconstructed from the 𝛾 candidates using the invariant mass, 𝑚𝛾𝛾 =√︁
2𝐸𝛾1𝐸𝛾2(1 − cos 𝜃) where 𝐸𝛾1 and 𝐸𝛾2 are the energy for 𝛾 candidate 1 (most energetic) and for

𝛾 candidate 2 (less energetic) respectively, 𝜃 is the angle between the 𝛾 candidates.
Each of the four stages is described in more detail below. Figure 5 shows an event that illustrates

the challenge to 𝛾 and neutral pion production in multi-GeV CC inclusive interactions.
The procedure that we use for the application of semantic segmentation to the reconstruction of a

neutral pion is to add an additional step to the hit selection, as described below in section 4.1. Having
such a simple and obvious application of ML to an existing reconstruction has distinct advantages,
including the advantage of transparency when assigning and propagating systematic uncertainties.
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The simplicity and clearness of the application can be contrasted with the expressive complexity
and opacity of the semantic segmentation model or even the relative algorithmic complexity of the
Γ score used in the reconstruction of 𝛾 candidates. A benefit of applying semantic segmentation
in such a way, instead of, for example, an a more complicated likelihood algorithm during the
reconstruction, is that the reconstruction and associated uncertainties can be compared at every
point in the reconstruction.

Figure 5. Left: a visualization of a simulated DIS neutral pion production event using the web-based tool
Arachne [31] tool. Right: a semantically-segmented image of the same event. For the medium energy
dataset, many events have 𝛾s with trajectories very close to each other, thereby increasing the difficulty of
distinguishing 𝛾 pairs. The higher the 𝜋0 energy is, the smaller the opening angle is, raising the complexity
of distinguishing the 𝛾s’ pair. A common approach when faced with this type of issue is by rejecting these
mis-reconstructed events, which reduces the efficiency of 𝑝𝑖0 reconstruction.

4.1 Hit selection

Clusters are a set of nearby hits in the same plane; those not used to create tracks (generally charged
pions, protons, and muons) are made available for the electromagnetic shower reconstruction.
The hits in the cluster must have an associated time within 25 ns of the identified muon track.
Additionally, low-activity clusters that have less than three photo-electrons per hit are removed, as
they are most likely to originate from cross-talk. Moreover, clusters in the HCAL are not included
in the available hits.

For the semantic segmentation based reconstruction, we place a requirement that the considered
hits must have probability to be electromagnetic-like, as determined by the MLA, greater than a
threshold of 0.5 which is the expected optimum due to the interpretation of the MLA output as
a probability of the given class. This improves the purity of the sample during the formation
of available clusters. This additional filter in the hit selection is the only difference between the
baseline reconstruction and the reconstruction that uses ML.
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4.2 Electromagnetic shower (EM) candidate reconstruction

Clusters are then assigned to electromagnetic showers via a Bayesian algorithm that groups the
available clusters of the X-view into conical regions emanating from the neutrino interaction vertex.
The assumption is that these clusters arise from an electromagnetic shower originating at the
neutrino interaction vertex. In figure 6a we show the results of the Bayesian algorithm applied
to the semi-exclusive analysis. This allows one to associate a group of clusters with a shower
that is characterized by the angle between the shower and the longitudinal axis of the detector.
These groupings of clusters are then considered in the next stage of the electromagnetic shower
reconstruction.

Clusters of the U-view and V-view are then included to form electromagnetic shower candidates.
The position of the centroid for the electromagnetic shower candidate is given by ®𝑅 =

∑
𝑐 𝐸𝑐 ®𝑟𝑐∑
𝑐 𝐸𝑐

where
𝐸𝑐 is the energy of the cluster in photo-electrons and ®𝑟𝑐 is the position of the vector with respect to
the interaction vertex.

The first topological condition for the electromagnetic shower candidate is that each candidate
must have hits in at least two views. This allows three-dimensional reconstruction of the direction
of the shower. In figure 6b these are referred to as “Selected Showers”. The corresponding figures
for the electromagnetic shower candidate reconstruction with ML are in figure 7 demonstrating
improved purity.

Figure 6. Baseline reconstruction in the semi-exclusive analysis: a) Number of electromagnetic shower
candidates selected by a Bayesian algorithm. b) Showers from a) for which a three-dimension reconstruction
is possible. The number of events in the simulation is normalized to the data. Systematic uncertainties are
not shown.

4.3 𝜸 reconstruction

The electromagnetic shower candidates are then reconstructed into 𝛾 candidates. As part of this
reconstruction, a second topological condition is applied. This requirement, that the distance from
the interaction vertex to the centroid of the shower candidate be at least 14 cm, is motivated by the
conversion length of a 𝛾 in scintillator being 40 cm.

In analyses of the NuMI Low Energy Beam dataset [27–29] the second requirement was only
applied to the highest energy 𝛾 candidate. In the NuMI Medium Energy Beam dataset, neutral
pions are produced at higher energy, as are the other particles produced in the interaction. This
results in complications in the reconstruction of 𝛾s due to the production of more particles in the
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Figure 7. Machine learning reconstruction in the semi-exclusive analysis: a) Number of electromagnetic
shower candidates selected by a Bayesian algorithm. b) Showers from a) for which a three-dimension
reconstruction is possible. The number of events in the simulation is normalized to the data. Systematic
uncertainties are not shown. Shown are the distributions before tuning of the Monte-Carlo simulation and
determination of the systematic uncertainty.

neutrino interaction, increased interactions of energetic particles with the detector material, and the
production of high energy 𝛾s through stochastic processes in the electromagnetic shower.

These complications, exacerbated by passive material in the detector, can result in the pro-
duction of a high energy 𝛾 early in the electromagnetic shower, the production of more neutrons
and the production of energetic particles not originating from the neutrino vertex. This produces
more 𝛾 candidates during the electromagnetic shower reconstruction and increases the energy of the
candidate 𝛾s, both due to 𝛾s being at higher energy and due to overlap between the electromagnetic
shower from the 𝛾 and other energy from non-electromagnetic sources. Additionally, the more
energetic neutral pions often have a narrower opening angle between the 𝛾s. The strategy that
we have followed to address such challenges for neutral pion reconstruction in the NuMI Medium
Energy Beam dataset is to improve the selection of 𝛾 candidates during the 𝛾 reconstruction as
described below.

A third topological feature was developed for the 𝛾 candidates. This feature is based on the
total deposited visible energy in the 𝛾 candidate per unit length, given by:

𝑑𝐸

𝑑𝑥
=

𝐸vis
𝑙

(4.1)

where 𝐸vis is the visible energy and 𝑙 is the length of the 𝛾 candidate. Figures 8 and 9 show
reconstructed energy versus 𝑑𝐸

𝑑𝑥
for 𝛾 candidates using the baseline and ML-based reconstructions,

respectively.
In both cases, 𝛾 candidates created by true photons have a clear correlation between recon-

structed energy and 𝑑𝐸
𝑑𝑥

. The mean and standard deviation of the 𝑑𝐸
𝑑𝑥

distributions for 𝛾 candidates
produced by true photons are used to create a Γ score given by:

Γscore =

𝑑𝐸
𝑑𝑥 obs − 〈 𝑑𝐸

𝑑𝑥
〉𝑖

𝜎𝑑𝐸
𝑑𝑥

,𝑖

, (4.2)

where 𝑑𝐸
𝑑𝑥 obs is the 𝑑𝐸

𝑑𝑋
of a 𝛾 candidate and 〈 𝑑𝐸

𝑑𝑥
〉𝑖 and 𝜎𝑑𝐸

𝑑𝑥
,𝑖 are the mean and standard deviation

of the simulated dE/dx distribution for true photons, evaluated in the reconstructed energy bin
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(a) 𝛾 (b) Pion (+) (c) Pion (−)

(d) Proton (e) Neutron

Figure 8. Reconstructed energy versus 𝑑𝐸
𝑑𝑥

for the primary 𝛾 candidate in simulated events in the semi-
exclusive analysis with the baseline reconstruction. The candidates are classified according to the particle
which produced the electromagnetic shower, (a) to (e). There is a clear correlation between energy and 𝑑𝐸

𝑑𝑥

for candidates produced by true photons (a).

(a) 𝛾 (b) Pion (+) (c) Pion (−)

(d) Proton (e) Neutron

Figure 9. Reconstructed energy versus 𝑑𝐸
𝑑𝑋

for the primary 𝛾 candidate in simulated events in the semi-
exclusive analysis with the ML reconstruction. The candidates are classified according to the particle which
produced the electromagnetic shower, (a) to (e). There is a clear correlation between energy and 𝑑𝐸

𝑑𝑋
for

candidates produced by true photons (a).
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corresponding to the 𝛾 candidate. The distribution of 𝛾 candidate scores in the semi-exclusive
analysis is shown in figure 10 for both the baseline and ML reconstruction.

For 𝛾 candidates that are not associated with photons, the Γs score is observed to be very
asymmetric, while the score for true 𝛾s behaves approximately as a Gaussian. In the baseline
reconstruction, this provides the third topological requirement that the 𝛾 candidate has a score of
Γscore < 2. Having a score of Γscore > 2 indicates that the 𝛾 candidate is not likely to be a photon.
For the ML-based reconstruction, Γ score is not a useful discriminator, presumably because 𝑑𝐸

𝑑𝑥
has

already been taken into account by the ML algorithm.
In figure 10 we see that the match between simulation and data is similar for both techniques for

𝛾 candidates with Γ score ≤ 2.0, but that data is more often under simulation for the baseline recon-
struction and over simulation for the semantic segmentation based reconstruction in the peak area of
−2 to 2. The neutral pion reconstruction includes the cut on Γ score of less than 2 and this is reflected
in the final plots and numbers. In the high tail, with high uncertainty we see that, the semantic
segmentation based reconstruction over predicts the data with a linear dependence on the Γ score.

Finally, the energy of the 𝛾 candidates is corrected by a scale factor to correct the simulation
for the detector response due to electromagnetic activity. To do this we used energetic 𝛾s from
the semi-inclusive neutral pion analysis; as described in [49]. Analysis of this scale factor is an
important contribution to the systematic uncertainty of analyses which depend on measurements of
electromagnetic activity.

4.4 Neutral pion reconstruction

The neutral pion analyses select events with one and only one neutral pion, so the first part of
the neutral pion reconstruction is to require that two and only two reconstructed 𝛾s remain after 𝛾
reconstruction. The second component of the neutral pion reconstruction is the calculation of the
neutral pion candidate invariant mass, 𝑚𝛾𝛾 , and selection based on that invariant mass. The neutral
pion candidate invariant mass is given by

𝑚𝛾𝛾 =

√︃
2𝐸𝛾1𝐸𝛾2

(
1 − cosΘ𝛾𝛾

)
(4.3)

where 𝐸𝛾1(2) is the reconstructed energy of the most (least) energetic 𝛾 and Θ𝛾𝛾 is the opening
angle between the reconstructed 𝛾s. The neutral pion invariant mass is shown in figure 11 for
the semi-exclusive analysis, where we can see that the two 𝛾s are most often reconstructed into a
neutral pion candidate with 60 < 𝑚𝛾𝛾 < 200 MeV. There is also an evident shift between data
and simulation whose source is currently unknown, but it is present with both the baseline and
ML reconstructed samples, and is also present in the semi-inclusive analysis. That analysis has a
different background than the semi-inclusive, due to both the change of signal definition and the
change in event selections and is discussed in appendix B.

The simulated invariant mass distribution in figure 11 is divided according to the true identity
of the particles creating the photon candidates. The percentage of events in each category is given
in table 1 for the entire 0–700 MeV mass range and for the 60–200 MeV range where most true 𝜋0

candidates reside. Within the 60–200 MeV range, 70.7 ± 0.9% of reconstructed 𝜋0 candidates are
reconstructed from two true photons in the simulation, while this number rises to 89.3± 0.7% with
the ML-based algorithm.
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(a) Baseline reconstruction (b) Machine learning reconstruction

(c) Ratio between data and simulation for the baseline
reconstruction

(d) Ratio between data and simulation for the ML re-
construction

Figure 10. Γscore for the semi-exclusive analysis in data and simulation. The simulation is classified based
on the true particle that contributed the greatest fraction of energy to the 𝛾 candidate. In the baseline
reconstruction a Γ score of less than 2 is a signature of a photon. When using the ML prediction, the Γ score
is not a useful metric to improve the purity of the 𝛾 reconstruction. The number of events in the simulation
is normalized to the data.

While the neutral pion reconstruction obviously also provides the neutral pion kinetic energy,
momentum and angle with respect to the neutrino beam axis, this paper will not include a detailed
discussion of such quantities other than to note the evident relationship between improving the
reconstruction of the 𝛾s and improving the measurement of these kinematic quantities, which will
be the subject of future MINERvA publications.
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(a) Baseline reconstruction (b) Machine learning reconstruction

(c) Ratio between data and simulation for the baseline
reconstruction

(d) Ratio between data and simulation for the ML re-
construction

Figure 11. Neutral pion invariant mass distribution between [0 − 700] MeV for the semi-exclusive analysis
in data and simulation. The simulation is classified based on the true particle that contributed the greatest
amount of energy to the primary and secondary 𝛾 candidates. 𝑋 corresponds to the absence of a 𝛾. Note the
significant improvement in the size of the 𝛾 + 𝛾 category and decrease in all other categories when semantic
segmentation provides context. From this result our final event selection are events between [60− 200] MeV
as shown on table 1. The number of events in the simulation is normalized to equal that of the data.
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Event Full Distribution [0–700] MeV Selection Distribution [60–200] MeV
Category Baseline Machine Learning Baseline Machine Learning
𝛾 + 𝛾 62.5 ± 0.8 87.1 ± 0.6 70.7 ± 0.9 89.3 ± 0.7
𝛾 + X 11 ± 2 6 ± 2 9 ± 2 5 ± 3
X + 𝛾 12 ± 2 6 ± 3 10 ± 2 5 ± 3
X + X 14 ± 2 1+6

−1 10 ± 2 1+7
−1

Total 100 100 100 100

Table 1. Fraction (in per cent) of simulated events by category in the neutral pion invariant mass distributions
between [0–700] MeV and between [60–200] MeV which is the region where the efficiency of the selection
is better, from figure 11. uncertainties are statistical.

5 Discussion & conclusions

The new approach keeps more real neutral pion signal and rejects more background than the baseline
approach. This is clearly observed in figures 10 and 11 (with associated table 1). The reconstruction
purity is observed to increase from 70.7±0.9% to 89.3±0.7% in the signal region [60–200] MeV of
figure 11 as shown in table 1, while the efficiency of the reconstruction increases by approximately
40%. The only change in the new approach is the application of semantic segmentation to provide
context in the hit filter stage of the reconstruction. This improvement results in improvements to
both the efficiency and purity in the charged current neutral pion production analysis, which is the
subject of a forthcoming publication by MINERvA.

5.1 Discussion

A similar technique to the one described in section 3 was used by MicroBooNE, both for semantic
segmentation of electromagnetic showers [43] and for the application of that semantic segmentation
as a hit filter for a neutral pion reconstruction [50]. While the techniques are similar in that they
are both based on semantic segmentation, the experimental environments are quite different. The
mean energy of NuMI Medium Energy Beam dataset for MINERvA is 〈𝐸𝜈〉 ∼ 6 GeV while for
MicroBooNE 〈𝐸𝜈〉 ∼ 800 MeV, causing MINERvA to have a much richer sample in the resonant and
DIS region. The detector technologies, MINERvA’s segmented scintillator versus MicroBooNE’s
liquid Argon TPC, are also very different. The success of the technique in both cases indicates
that ML-based semantic segmentation can benefit 𝜋0 reconstruction in a wide variety of neutrino
detectors and beams.

The behavior with Γ score > 2 in figure 10b is consistent with an imperfect process, energy
and spatial simulation being used to train the ML algorithm and/or used as the input to the score.
While this distribution is primarily 𝛾 candidates, for the semi-exclusive pion production analysis
it is primarily background and the discrepancy will be accounted for in the systematic uncertainty
analysis. The significant reduction in the background contamination shown in table 1 should provide
an improvement in the uncertainty analysis that should make up for the systematic associated with
the ML algorithm which may be the source of this behavior. The reconstruction includes a cut
removing candidates with Γ score > 2 and this is reflected in figure 11b.

While figure 10b shows a mismatch between data and simulation that increases linearly for
a Γ score greater than 2, the hypothesis that this arises due to bias coming from the semantic
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segmentation due to an unexpected mis-identification of hits caused by 𝛾s can be disfavored because
such hypothesis would suggest a correction that is more proportional to the number of events or
linear in Γ score. While linearity is seen above a Γ score of 2, it is not linear in the peak region
between −2 and 2 where the vast majority of the 𝛾 candidates reside.

The sample in the semi-inclusive analysis is significantly different than that of the semi-
exclusive analysis due to the exclusion of a significant fraction of events with at least one charged
pion. That the same machine learning is able to provide a similarly strong filter for reconstruction
of neutral pions from two 𝛾s for both the semi-inclusive and semi-exclusive analyses with a similar
match between data and simulation provides additional evidence that the machine learning algorithm
is successfully filtering out energy from charged pions.

5.2 Conclusions

We have described various methods for neutral pion reconstruction: one is the baseline approach,
one is a ML-based approach. The paper describes those approaches for a semi-exclusive analysis,
with a different approach presented in the appendix. These measurements were done in a beam
with 𝐸𝜈 around 6 GeV. We have also described the development of a semantic segmentation-
based filter on the hits used in the neutral pion reconstruction and demonstrated that it allows a
significant reduction of mis-reconstructed 𝛾s and thus mis-reconstructed neutral pions. We expect
significant increases in the final purity and efficiency of the analyses due to the improvement of the
reconstruction purity from approximately 70.7 ± 0.9% to 89.3 ± 0.7% in the peak region (60 to
200 MeV) of the invariant mass distributions (uncertainty is statistical).

Additionally, we have seen that the semantic segmentation-based filter reduces instances where
energy from other particles is included in the reconstructed pions. This allows the energy to be
fully available to other reconstructions which enables an improved estimate of the neutrino energy.
This approach thus provides a advantage over using multiple full event machine learning algorithms
which may count features towards multiple quantities. It also is an advantage over the baseline
reconstruction which lacked the sophistication necessary to separate energy from a 𝛾 from that of
other particles within the reconstruction cone (see section 4.2).

This semantic segmentation based approach could be extended to include identifying the en-
ergy originating from protons, charged pions and more exotic hadrons. Such an extension would
be particularly interesting for semi-exclusive measurements of neutrino-induced meson production.
Semantic segmentation should be used to provide context to reconstructions in next generation exper-
iments in High Energy Physics and should enable improved identification of 𝜈𝑒 appearance events.
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A Alternative Machine Learning models

We also studied an alternative model where the neutron was included in the “other” class during
the training of the ML algorithm. In this study, the data was labeled with three classes and the
segmentation was done by labeling each pixel as being one of two classes: “electromagnetic”
(EM-like) or “non-electromagnetic” (non-EM-like). The “null” labeled pixels were left unlabeled.
In this study the ML task is described as multi-class classification with 2 classes. This model more
closely follows the approach described in [43].

In another alternative model, we also combined those three images into one by layering
them [51]. We trained one network using those combined images and obtained the prediction for
three views separately. In figure 13 we show result of the layered 4-class semantic segmentation
model for one charged current neutral pion production event.

Figure 12a shows the confusion matrix obtained by training over images with three labels such
“null”, EM-like and non-EM-like. On the other hand, figure 4 shows the confusion matrix with
four labels such as “null”, EM-like, “neutron” and non-EM-like. The comparison between these
two figures brings the conclusion that with four labels, the purity for EM-like hits improves by 5%
where as for non-EM-like hits the purity decreases by 3%. Figure 12b shows the confusion matrix
where the images are formed by layered three views together ƒand are labeled into four classes such
as “null”, EM-like, “neutron” and non-EM-like. Comparing figure 12b with figure 4 we see that
the purity for EM-like hits and non-EM-like hits are decreased by 5% and 3% respectively for the
combined image case whereas for “neutron” the purity is increased by 10%. An example of an
event with a neutron is provided in figure 14.

From our studies of alternative semantic segmentation models, including the “neutron” class
improves the performance but layering did not, at least not to an X-view only application. Addition-
ally, the paucity of hits in U and V may complicate the application of the semantic segmentation
due to the baseline reconstruction reconstructing candidate showers in the U and V-views before
combining them into a candidate 3D shower. A better application of semantic segmentation for U
and V may be as a correction to the energy of the candidate 𝛾 and not as a hit filter.

B Semi-inclusive analysis

In figure 15 we see the invariant mass for both the baseline reconstruction and the reconstruction
using the ML prediction for the semi-inclusive analysis. The semi-inclusive analysis is similar to the
semi-exclusive analysis, one exception being that the semi-exclusive analysis has additional filters
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(a) (b)

Figure 12. (a) Row-normalized confusion matrix with three labels: “Null”, EM-like, non-EM-like. Only
X-views are used. (b) Row Normalized confusion matrix with four labels: “null”, EM-like, “neutron”,
non-EM-like shower where three views (X,U and V) are combined. These confusion matrices are for a
sample representative of the full training sample, including the nuclear target region.

Figure 13. The lower panel represents the corresponding predicted images obtained by ML-based approach
where the input images are formed by layered the three views together. The color bar represents the integer
values of each class.

designed to remove events with charged mesons, especially the positively charged pion (𝜋+). By
comparing figure 15 with figure 11, we see that the additional filters in the semi-exclusive analysis
remove a significant number of the mis-reconstructions from non-𝛾s. However, the reconstructions
using semantic segmentation have a similar purity for both analyses.
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Figure 14. Simulation of neutral pion production in MINERvA for DIS event with a neutron in the FS. Here
the three columns show the X, U and V-view of an event respectively. The upper panel is the visualization
of a MC event on web-based tool Arachne. The lower panel represents the corresponding predicted images
obtained by ML-based approach where the input images are formed by layered the three views together. The
color bar represents the integer values of each class.

(a) Baseline reconstruction of the neutral pion (b) Neutral pion reconstruction with ML prediction

Figure 15. Neutral pion invariant mass distribution between [0–700] MeV for the semi-inclusive analysis
in data and simulation. The simulation is classified based on the true particle that contributed the greatest
amount of energy to the primary and secondary 𝛾 candidates. 𝑋 corresponds to the absence of a 𝛾. Note the
significant improvement in the size of the 𝛾 + 𝛾 category and decrease in all other categories when semantic
segmentation provides context. The number of events in the simulation is normalized to equal that of the data.
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Additionally, despite the very disparate samples in the two analyses, the application of semantic
segmentation to the reconstruction does not significantly impact the agreement between data and
simulation. This provides of evidence for the success of our thesis, that semantic segmentation
provides a strong hit filter which allows for the reconstruction of neutral pions independent of the ex-
istence of other energy within the detector which would normally have impacted the reconstruction.
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