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Bridging	gaps	in	demographic	analysis	using	1	

phylogenetic	imputation	2	

	3	

Abstract	4	

Population	 responses	 to	 threats	 such	 as	 habitat	 loss,	 climate	 change	 and	5	

overexploitation	are	usually	explored	using	demographic	models	parameterized	with	6	

estimates	of	vital	rates	of	survival,	maturation	and	fecundity.	However,	 the	vital	rate	7	

estimates	 required	 to	 construct	 such	 models	 are	 often	 unavailable,	 particularly	 for	8	

species	of	conservation	concern.	Phylogenetically	informed	imputation	methods	have	9	

rarely	 been	 applied	 to	 such	 demographic	 data	 but	 may	 be	 a	 powerful	 tool	 for	10	

reconstructing	vital	rates	for	vertebrates.	Here,	we	use	standardized	vital	rate	estimates	11	

for	 50	 bird	 species	 to	 assess	 the	 use	 of	 phylogenetic	 imputation	 to	 fill	 gaps	 in	12	

demographic	data.	We	calculated	 imputation	accuracy	 for	vital	 rates	of	 focal	 species	13	

excluded	from	the	dataset	either	singly	or	in	combination,	with	and	without	phylogeny,	14	

body	 mass	 and	 life	 history	 trait	 data.	 We	 used	 imputed	 vital	 rates	 to	 calculate	15	

demographic	metrics,	 including	generation	 time,	 to	validate	 the	use	of	 imputation	 in	16	

demographic	 analyses.	Covariance	among	vital	 rates	 and	other	 trait	data	provided	a	17	

strong	basis	to	guide	imputation	of	missing	vital	rates	in	birds,	even	in	the	absence	of	18	

phylogenetic	 information.	 Accounting	 for	 phylogenetic	 relationships	 improved	19	

imputation	 accuracy	 for	 vital	 rates	 with	 high	 phylogenetic	 signal	 (Pagel’s	 λ	 >	 0.8).	20	

Importantly,	 including	body	mass	and	 life	history	 trait	data	 compensated	 for	 lack	of	21	

phylogenetic	 information.	 Estimates	 of	 demographic	 metrics	 were	 sensitive	 to	 the	22	

accuracy	 of	 imputed	 vital	 rates.	 Accurate	 demographic	 data	 and	 metrics	 such	 as	23	

generation	 time	 are	needed	 to	 inform	 conservation	planning	processes,	 for	 example	24	

through	 IUCN	 Red	 List	 assessments	 and	 population	 viability	 analysis.	 Imputed	 vital	25	

rates	 could	 be	 useful	 in	 this	 context	 but,	 as	 for	 any	 estimated	 model	 parameters,	26	

awareness	of	the	sensitivities	of	demographic	model	outputs	to	the	imputed	vital	rates	27	

is	essential.	28	
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Introduction	29	

Globally,	biodiversity	 faces	an	unprecedented	 threat	of	 extinction	 (Barnosky	et	al.	2011;	30	

Pimm	et	al.	2014;	Ceballos	et	al.	2015),	driven	by	human-induced	threats	such	as	habitat	31	

loss	and	degradation,	climate	change,	and	overexploitation	(Brook	et	al.	2003;	Parmesan	32	

2006;	Maclean	&	Wilson	2011;	Maxwell	et	al.	2016).	Understanding	population	responses	33	

to	 such	 threats	 is	 crucial	 for	 identifying	 at-risk	 species	 and	 to	 guide	 conservation	34	

interventions	(e.g.	Bruna	et	al.	2009;	Dahlgren	et	al.	2016;	Lunn	et	al.	2016).	Population	35	

models	 parameterized	 with	 estimates	 of	 vital	 rates	 of	 survival,	 development,	 and	36	

reproduction	can	be	used	to	generate	predictions	about	how	a	population	will	respond	to	37	

pressures	that	cause	changes	to	vital	rates	(Selwood	et	al.	2015).	38	

Obtaining	the	vital	rate	estimates	necessary	to	populate	demographic	models	requires	39	

investment	of	resources	and	time,	which	may	be	lacking	in	a	critical	conservation	setting.	40	

The	most	at-risk	species	may	be	those	for	which	information	is	most	lacking	(Beissinger	&	41	

Westphal	 1998;	 Coulson	 et	 al.	 2001;	 González-Suárez	 et	 al.	 2012),	 due	 to	 geographical,	42	

taxonomic,	or	other	biases	in	recording	(Roberts	et	al.	2016;	Troudet	et	al.	2017;	dos	Santos	43	

et	al.	2020),	or	logistical	barriers	to	collecting	complete	demographic	data	(Menges	2000;	44	

Weimerskirch	 2001;	 Pike	 et	 al.	 2008;	 Clutton-Brock	 &	 Sheldon	 2010).	 Consequently,	45	

complete	empirical	demographic	data	represents	only	a	small	and	biased	subset	of	species	46	

(Lebreton	et	al.	2012;	Salguero-Gómez	et	al.	2015,	2016;	Conde	et	al.	2019).	47	

When	data	are	missing	for	a	 focal	species,	ad	hoc	 imputation	methods	are	commonly	48	

used	 to	 fill	 in	 such	 gaps	 for	 demographic	 modelling	 (Beissinger	 &	 Westphal	 1998).	49	

Parameter	 estimates	 may	 be	 derived	 from	 empirical	 data	 for	 other	 species	 based	 on	50	

relatedness	(Heinsohn	et	al.	2004;	Koenig	2008)	or	trait	similarity	(McCarthy	et	al.	1999;	51	

Valle	et	al.	2018).	Other	approaches	include	combining	estimates	from	populations	to	form	52	

a	representative	model	for	a	species	(Sæther	&	Bakke,	2000),	or	parameterization	of	models	53	

based	 on	 a	 range	 of	 plausible	 values	 (Rodríguez	 et	 al.	 2004)	 or	 on	 data	 from	 captive	54	

individuals	(e.g.	Young	et	al.	2012).	Such	approaches	produce	bias	(Schafer	&	Graham	2002)	55	
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and	their	use	raises	concerns	about	the	reliability	of	model	outputs	and	the	ability	to	make	56	

robust	conclusions	(Sæther	&	Engen,	2002;	Ellner	&	Fieberg,	2003;	McGowan	et	al.	2011).	57	

Therefore,	formal	methods	for	estimating	missing	vital	rates	and	quantifying	uncertainty	in	58	

such	estimates	are	needed.	59	

Many	ad	hoc	methods	of	imputing	missing	values	are	based	on	the	expectation	that	the	60	

vital	rates	of	the	focal	species	will	be	similar	to	closely	related	species	(Felsenstein	1985;	61	

Pagel	 1999).	 By	 accounting	more	 formally	 for	 evolutionary	 history,	 we	may	 be	 able	 to	62	

improve	 the	 imputation	 of	 missing	 vital	 rates.	 Phylogenetic	 imputation	 methods	 use	63	

phylogeny,	together	with	an	evolutionary	model	describing	the	divergence	of	trait	values	64	

(Martins	&	Hansen	1997;	Pagel	1999;	Freckleton	et	al.	2002),	to	estimate	missing	values	in	65	

species-based	data.	Traits	may	be	more	or	less	labile,	leading	to	differences	in	how	well	trait	66	

values	may	be	predicted	by	evolutionary	relationships	(Freckleton	et	al.	2002;	Blomberg	et	67	

al.	2003).	Phylogenetic	signal,	a	measure	of	the	strength	of	phylogenetic	dependence	of	trait	68	

values	 (Pagel	 1999;	 Blomberg	 &	 Garland	 2002),	 may	 determine	 the	 benefit	 of	 using	69	

phylogenetic	information	when	imputing	trait	values	(Penone	et	al.	2014).	If	phylogenetic	70	

signal	 is	 strong,	 phylogenetically	 informed	methods	 can	 potentially	 improve	 imputation	71	

performance.	72	

Phylogenetic	 imputation	has	been	proposed	 for	 filling	gaps	 in	 functional	 trait	data	 in	73	

plants	 (Swenson	 2014)	 and	 mammals	 (Guénard	 et	 al.	 2013;	 Penone	 et	 al.	 2014).	 Such	74	

methods	have	rarely	been	applied	to	demographic	data,	although	hierarchical	approaches	75	

incorporating	taxonomy	have	been	used	to	estimate	life	history	parameters	in	fish	(Thorson	76	

et	al	2017).	Here,	we	focus	on	demographic	traits,	namely	vital	rates	of	survival,	maturation	77	

and	fecundity.	In	plants,	imputation	of	single	vital	rates	suggested	that	neither	fecundity	nor	78	

the	survival	of	different	life	stages	were	strongly	predicted	by	phylogeny	or	species-level	79	

traits	 (Che-Castaldo	 et	 al.	 2018),	 reflecting	weak	 phylogenetic	 signal	 in	 plant	 vital	 rates	80	

(Burns	et	al.	2010).	In	vertebrates,	strong	phylogenetic	signal	in	characteristics	that	covary	81	

with	vital	rates	(body	size,	morphology	and	life	history	traits)	has	been	interpreted	as	being	82	

informative	about	evolutionary	processes	such	as	the	strength	of	stabilising	selection	and	83	
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evolutionary	lability	(Blomberg	et	al.	2003;	but	see	Revell	et	al.	2008).	Whatever	the	exact	84	

evolutionary	 processes	 involved,	 the	 tendency	 of	 vital	 rates	 to	 covary	 with	 body	 size	85	

(Stearns	1983)	and	life	history	traits	(e.g.	age	at	maturity	and	clutch	size,	Sæther	&	Bakke	86	

2000)	suggests	that	they	will	also	have	strong	phylogenetic	signal,	which	would	be	useful	in	87	

an	 applied	 setting	 to	 infer	 vital	 rates	 for	 related	 species.	 The	 inclusion	 of	 covarying	88	

allometric	and	life	history	trait	data	may	help	to	inform	the	imputation	of	vital	rates	(e.g.	89	

Shine	&	Charnov	1992;	Brawn	et	al.	1995).	90	

Imputed	 vital	 rates	 provide	 a	 means	 by	 which	 demographic	 characteristics	 of	 a	91	

population	 may	 be	 derived.	 Demographic	 metrics	 of	 interest	 in	 a	 conservation	 setting	92	

include	population	growth	rate	and	 its	sensitivity	and	elasticity	 to	underlying	vital	 rates	93	

(Benton	&	Grant	1999),	and	life	history	metrics	such	as	generation	time.	Sensitivity	analysis	94	

identifies	vital	rates	with	the	most	capacity	to	produce	change	in	population	growth	rate.	95	

Accurate	 imputation	of	vital	rates	to	which	population	growth	rate	 is	sensitive	would	be	96	

valuable	 for	 making	 well-founded	 demographic	 predictions	 to	 guide	 conservation	97	

interventions.	 Generation	 time	 is	 used	 by	 international	 conservation	 bodies	 such	 as	 the	98	

International	 Union	 for	 Conservation	 of	 Nature	 (IUCN)	 to	 produce	 indicators	 for	99	

conservation	 decision-making	 (Mace	 et	 al.	 2008).	 When	 underlying	 life	 history	 data	 is	100	

missing	 or	 sparse,	 demographic	 metrics	 may	 be	 estimated	 using	 proxies	 based	 on	 life	101	

history	 traits	such	as	reproductive	 lifespan	(Fung	&	Waples	2017;	Staerk	et	al.	2019)	or	102	

imputed	either	directly	(Fagan	et	al.	2013;	Cooke	et	al.	2018)	or	by	means	of	underlying	life	103	

history	 traits	 (Pacifici	 et	 al.	 2013;	Bird	 et	 al.	 2020).	Demographic	metrics	 derived	using	104	

phylogenetically	 imputed	 vital	 rates	 could	 improve	 accuracy	 over	 these	 alternative	105	

methods.	106	

Here,	 we	 use	 existing	 vital	 rate	 data	 for	 birds	 to	 assess	 the	 feasibility	 of	 using	107	

phylogenetic	 imputation	 to	 fill	 gaps	 in	 demographic	 analysis.	 While	 much	 avian	108	

demographic	data	has	been	compiled	(Sæther	&	Bakke	2000;	Lebreton	et	al.	2012;	Salguero-109	

Gómez	et	al.	2016),	information	about	vital	rates	is	missing	for	many	species	of	conservation	110	

concern	 (e.g.	 survival	 is	 missing	 for	 82%	 of	 bird	 species,	 Conde	 et	 al.	 2019).	 We	 use	111	
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demographic	data	for	50	species	to	derive	standardized	vital	rates	and	apply	a	multivariate	112	

imputation	 framework	which	 incorporates	phylogenetic	 covariance	 among	vital	 rates	 to	113	

impute	missing	values.	We	determine	how	accurately	values	excluded	from	the	vital	rate	114	

data	 can	 be	 imputed,	 either	 singly	 or	 in	 combination.	 Further,	 we	 assess	 the	 value	 of	115	

including	body	mass	and	life	history	trait	data	(clutch	size	and	female	age	at	maturity)	when	116	

imputing	 missing	 vital	 rate	 data.	 We	 use	 original	 and	 imputed	 vital	 rates	 to	 calculate	117	

demographic	metrics	 that	 inform	assessments	of	population	performance	and	extinction	118	

risk.	119	

Methods	120	

All	analyses	were	carried	out	in	R	(version	3.6.3,	R	Core	Team	2020).	121	

Standardized	vital	rate,	body	mass	and	life	history	trait	data	122	

We	 extracted	 matrix	 population	 models	 for	 birds	 from	 the	 COMADRE	 Animal	 Matrix	123	

Database	(version	3.0.1,	COMADRE	2019)	and	other	sources	(Sæther	&	Bakke	2000).	We	124	

screened	the	data	to	avoid	models	with	errors	in	construction	(Kendall	et	al.	2019)	and	to	125	

ensure	valid	structure	for	the	subsequent	analysis	(Supporting	Information).	The	resulting	126	

set	of	matrix	population	models	represented	50	bird	species	across	15	orders	and	a	range	127	

of	 avian	 life	 histories.	We	 identified	pre-breeding	 and	post-breeding	 census	models	 and	128	

categorized	each	life	history	as	early	maturation	(individuals	mature	and	breed	after	one	129	

year)	or	delayed	maturation	(individuals	remain	as	non-breeding	juveniles	for	one	or	more	130	

years)	(Fujiwara	&	Diaz-Lopez	2017).	Allowing	for	the	different	representation	of	early	and	131	

delayed	maturation	species	in	pre-breeding	and	post-breeding	census	models,	we	collapsed	132	

pre-reproductive	and	reproductive	stages	(Salguero-Gómez	&	Plotkin	2010)	and	derived	a	133	

set	 of	 standardized	 vital	 rates	 representing	 first	 year	 survival	 (𝑠! ),	 adult	 survival	 (𝑠" ),	134	

fecundity	(𝑓),	and	maturation	rate	(𝑚)	from	the	resulting	matrices.	To	ensure	a	full	set	of	135	

standardized	vital	 rates	 in	 the	 imputation	analysis	we	restricted	 the	main	analysis	 to	40	136	
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species	 with	 post-breeding	 census	 models	 (Supporting	 Information).	 We	 combined	 the	137	

standardized	 vital	 rates	 with	 avian	 body	 mass,	 clutch	 size,	 and	 female	 age	 at	 maturity	138	

(Wilman	 et	 al.	 2014;	Myhrvold	 et	 al.	 2015)	 and	 transformed	 all	 variables	 to	 satisfy	 the	139	

requirements	of	the	imputation	model	(Supporting	Information).	140	

Phylogeny	141	

We	downloaded	a	sample	of	1,000	full	avian	phylogenetic	trees	(Hackett	backbone)	from	142	

the	BirdTree	website	(www.birdtree.org,	Jetz	et	al.	2012),	pruned	to	match	the	species	in	143	

the	 standardized	 vital	 rate	 data.	 The	 tree	 topology	 was	 well-supported	 (3	 nodes	 with	144	

posterior	probability	<	0.95),	so	we	used	the	least	squares	consensus	method	(Lapointe	et	145	

al.	1997;	phytools version	0.7-20,	Revell	2012)	to	create	an	average	tree	for	phylogenetic	146	

imputation	 analysis	 (Supporting	 Information).	This	method	 creates	 a	 consensus	 tree	 for	147	

which	the	sum-of-squares	patristic	(node-to-node)	distances	to	the	set	of	trees	in	the	sample	148	

is	minimized.	We	compared	outputs	from	imputation	using	the	consensus	tree	with	results	149	

for	a	sample	of	50	trees	from	the	posterior	distribution	to	demonstrate	that	our	results	are	150	

insensitive	to	phylogenetic	uncertainty	(Supporting	Information).	151	

Phylogenetic	signal	152	

Phylogenetic	 signal	 is	 a	 measure	 of	 pattern	 derived	 by	 comparing	 observed	 trait	153	

distributions	 with	 expectations	 from	 a	 specified	 model	 of	 evolution.	 Pagel’s	 λ	 is	 a	154	

transformation	of	the	phylogeny,	obtained	by	maximum	likelihood,	which	produces	the	best	155	

fit	 of	 the	 data	 to	 a	 Brownian	motion	model	 of	 evolution.	 Pagel’s	 λ	 takes	 values	 from	 0	156	

(complete	phylogenetic	independence)	to	1	(patterns	of	similarity	observed	in	the	data	are	157	

proportional	 to	 shared	 evolutionary	 history)	 or	 above	 (traits	 are	 more	 similar	 among	158	

species	than	expected)	(Pagel	1999;	Freckleton	et	al.	2002).	We	used	phytools (version	0.7-159	

20,	Revell	2012)	to	estimate	mean	Pagel’s	λ	for	each	standardized	vital	rate	across	1,000	160	

phylogenetic	trees	obtained	from	BirdTree	to	account	for	any	residual	uncertainty	in	branch	161	

lengths.	In	addition,	we	used	Rphylopars (version	0.2.12,	Goolsby	et	al.	2016)	to	estimate	162	
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Pagel’s	λ	for	each	of	the	trait	datasets	to	characterize	phylogenetic	dependence	in	the	data,	163	

taking	into	account	covariance	among	the	data.	164	

Phylogenetic	imputation	165	

We	 carried	 out	 a	 multi-stage	 analysis	 to	 assess	 the	 use	 of	 phylogenetic	 imputation	 to	166	

reconstruct	missing	values	introduced	systematically	into	the	standardized	vital	rate	data	167	

(Fig.	1).	Phylogenetic	imputation	predicts	missing	values	based	on	covariance	among	the	168	

data,	supplemented	by	phylogeny	and	a	model	for	evolution.	We	used	Rphylopars (version	169	

0.2.12,	Goolsby	et	al.	2016),	which	implements	maximum	likelihood	estimation	of	missing	170	

trait	 values	 in	 a	 phylogenetic	 generalized	 least	 squares	 framework,	 assuming	 normally	171	

distributed	continuous	variables.	We	combined	the	consensus	phylogeny	with	a	null	model	172	

of	evolution,	in	which	phylogeny	does	not	influence	trait	values,	and	a	Pagel’s	λ	model,	which	173	

incorporates	phylogenetic	dependence	(Phylogeny,	Fig.	1).	We	created	three	trait	datasets:	174	

standardized	vital	rates	only;	vital	rates	and	body	mass	data;	and	vital	rates,	body	mass,	and	175	

life	 history	 trait	 data	 (Trait	 datasets,	 Fig.	 1).	Within	 each	 trait	 dataset,	we	 introduced	 a	176	

known	structure	of	missing	values	among	the	vital	rates	for	a	focal	species.	We	removed	177	

vital	rate	values	in	all	possible	combinations	of	single	and	multiple	vital	rates,	resulting	in	178	

15	datasets	per	 species	 (Missing	data	 combinations,	 Fig.	 1).	We	 imputed	missing	 values	179	

assuming	either	model	of	evolution.	After	transformation	to	the	original	scale	for	each	vital	180	

rate,	we	used	the	normalized	root	mean	square	error	(NRMSE),	181	

	NRMSE		=		
!∑ 	(&'

∗	)	&')+'
,

"#$'(&')	)	"*+'	(&')
	,	 	 	 	 (1)	182	

to	assess	imputation	accuracy	for	each	vital	rate,	missing	vital	rate	combination	and	trait	183	

dataset.	Here,	𝑋!∗	and	𝑋𝑖 	represent	imputed	and	original	values,	respectively,	of	a	vital	rate	184	

for	 species 	𝑖 .	 Normalization	 by	 the	 range	 of	 observed	 values	 for	 the	 vital	 rate	 allows	185	

comparison	of	errors	across	vital	rates.	186	
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We	used	species	means	 to	estimate	phylogenetic	 covariance	 (Goolsby	et	 al.	2016)	 to	187	

avoid	conditioning	problems	in	the	datasets	which	included	body	mass	and	life	history	trait	188	

data.	We	imputed	values	both	with	and	without	phenotypic	variation	for	the	vital	rate	data	189	

to	demonstrate	that	excluding	phenotypic	covariance	from	the	analysis	was	not	detrimental	190	

to	the	estimation	of	phylogenetic	covariance	(Supporting	Information).	191	

Demographic	metrics	192	

We	represented	avian	 life	histories	using	 stage-structured,	post-breeding	census	models	193	

with	an	annual	time	step	(Caswell	2001)	parameterized	with	first	year	survival	(𝑠!),	adult	194	

survival	(𝑠"),	fecundity	(𝑓),	and	maturation	rate	(𝑚)	imputed	under	the	phylogenetic	model.	195	

For	early	maturation	species,	196	

𝐀	 = (
𝑠!	𝑓 𝑠"	𝑓

𝑠! 𝑠"
)	,		 	 	 	 	 	(2)	197	

and	for	delayed	maturation	species,	198	

		 	 	 				𝐀	 = +

0 𝑚	𝑠"	𝑓 𝑠"	𝑓

𝑠! (1 − 𝑚)	𝑠"	 0

0 𝑚	𝑠"	 𝑠"

1	.    	(3)	199	

We	used	these	population	models	to	generate	population	growth	and	life	history	metrics	200	

(Table	1).	For	each	missing	data	combination	and	trait	dataset,	we	calculated	the	normalized	201	

root	mean	square	error	(Equation	1)	to	compare	estimates	of	these	demographic	metrics	202	

from	models	parameterized	with	imputed	and	original	vital	rates.	We	inspected	differences	203	

in	 the	 sensitivity	 and	 elasticity	 of	 population	 growth	 rate	 to	 each	 vital	 rate	 for	 bias	204	

(systematic	differences)	or	increased	variance.	205	



	

9	

Results	206	

Phylogenetic	signal	207	

For	post-breeding	census	data,	mean	Pagel’s	λ	was	weak	for	first	year	survival	(0.246,	SD	208	

0.013),	intermediate	for	fecundity	(0.532,	SD	0.018),	and	strong	for	adult	survival	(0.889,	209	

SD	0.016)	and	maturation	rate	(0.923,	SD	0.116).	Mean	values	for	pre-breeding	census	data	210	

were	similar	(sa:	0.817,	SD	0.019;	m:	0.934,	SD	0.094).	High	phylogenetic	signal	suggests	that	211	

adult	survival	and	maturation	rate	should	be	successful	targets	for	phylogenetic	imputation	212	

but	 high	 variance	 in	 Pagel’s	 λ	 for	 maturation	 rate	 suggested	 greater	 phylogenetic	213	

uncertainty	in	maturation	rate.	214	

For	post-breeding	census	models,	Pagel’s	λ	was	0.488	for	the	vital	rate	data,	increasing	215	

to	0.702	when	body	mass	was	added,	and	decreasing	to	0.684	when	life	history	trait	data	216	

was	included,	with	a	similar	pattern	for	pre-breeding	census	data.	These	results	 indicate	217	

that	 body	mass	 improves	 the	 characterization	 of	 phylogenetic	 dependence	 among	 vital	218	

rates,	but	life	history	trait	data	does	not	produce	further	improvement	and	may	even	act	219	

slightly	negatively	on	phylogenetic	signal.	220	

Imputed	vital	rates	221	

Adult	 survival	 and	 fecundity	 were	 the	most	 accurately	 imputed	 vital	 rates	 in	 the	 post-222	

breeding	 census	 data,	 with	 mean	 NRMSE	 of	 0.169	 (SD	 0.039)	 and	 0.172	 (SD	 0.019),	223	

respectively.	Imputed	first	year	survival	(mean	NRMSE:	0.248,	SD	0.010)	and	maturation	224	

rate	(mean	NRMSE:	0.346,	SD	0.055)	had	poorer	accuracy.	225	

For	first	year	survival	and	fecundity,	the	phylogenetic	model	was	no	more	accurate	than	226	

the	null	model	(Fig.	2).	However,	phylogenetic	information	helped	to	improve	imputation	227	

accuracy	for	adult	survival	and	maturation	rate,	particularly	for	multiple	missing	vital	rates.	228	

Including	 body	mass	 and	 life	 history	 trait	 data	 improved	 imputation	 accuracy	 for	 adult	229	

survival	 and	 maturation	 rate	 (Fig.	 2)	 and	 reduced	 the	 difference	 in	 accuracy	 between	230	

phylogenetic	and	null	models	for	adult	survival.	231	
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Life	history	metrics	232	

Generation	time	233	

Generation	time	calculated	with	a	single	imputed	vital	rate	had	a	similar	accuracy	across	234	

trait	datasets	for	first	year	survival,	adult	survival	and	fecundity	(mean	NRMSE:	0.075,	SD	235	

0.011,	Fig.	3),	despite	differences	in	imputation	accuracy	for	these	vital	rates	(Fig.	2).	For	236	

maturation	 rate,	mean	NRMSE	was	 higher	 (0.140,	 SD	 0.073)	 and	NRMSE	was	markedly	237	

higher	when	body	mass	and	 life	history	trait	data	were	 included,	due	to	two	outliers	 for	238	

which	 imputed	 maturation	 rate	 was	 under-estimated,	 leading	 to	 over-estimation	 of	239	

generation	time	(Supporting	Information).	240	

Mean	age	at	maturity	241	

Mean	age	at	maturity	was	sensitive	to	imputed	adult	survival	because	we	assumed	juvenile	242	

survival	to	be	equal	to	adult	survival,	but	it	was	relatively	well	characterized	when	adult	243	

survival	was	imputed	(mean	NRMSE:	0.041,	SD	0.007,	Fig.	3).	For	imputed	maturation	rate,	244	

mean	age	at	maturity	was	not	well	estimated	(mean	NRMSE:	0.234,	SD	0.035)	and,	as	for	245	

generation	time,	mean	age	at	maturity	was	less	accurate	when	life	history	data	was	included	246	

due	to	two	outliers	for	which	the	metric	was	over-estimated	(Supporting	Information).	247	

Mean	lifespan	248	

Mean	lifespan	had	similar	accuracy	when	either	first	year	or	adult	survival	were	unknown	249	

(mean	NRMSE:	0.121,	SD	0.007,	and	0.118,	SD	0.011	respectively)	and	was	not	influenced	250	

by	adding	body	mass	and	life	history	trait	data.	251	

Population	growth	metrics	252	

Population	growth	rate	253	

When	maturation	rate	was	imputed,	population	growth	rates	matched	the	original	values	254	

reasonably	well	(mean	NRMSE:	0.051,	SD	<0.001,	Fig.	4).	Population	growth	rate	was	less	255	
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accurate	when	first	year	or	adult	survival	were	imputed	(mean	NRMSE:	0.125,	SD	0.010,	and	256	

0.126,	SD	0.014,	respectively).	The	least	accurate	results	arose	when	fecundity	was	imputed	257	

(mean	NRMSE:	0.221,	SD	0.039)	driven	by	over-estimation	of	fecundity	for	a	single	species	258	

(Supporting	Information).	259	

Sensitivity	and	elasticity	of	population	growth	rate	260	

Estimates	of	the	sensitivity	of	population	growth	rate	to	the	underlying	vital	rates	varied	in	261	

accuracy	across	missing	vital	rates	and	focal	vital	rate	for	the	sensitivity	calculation	(Fig.	4).	262	

Responses	to	 imputed	vital	rates	were	more	consistent	across	vital	rate	elasticities,	with	263	

greatest	accuracy	for	maturation	rate	(mean	NRMSE:	0.042,	SD	0.009)	and	adult	survival	264	

(mean	NRMSE:	0.060,	SD	0.019)	and	least	accuracy	for	first	year	survival	(mean	NRMSE:	265	

0.105,	SD	0.013)	and	fecundity	(mean	NRMSE:	0.161,	SD	0.027).	Errors	in	sensitivities	and	266	

elasticities	 were	 unbiased	 except	 when	 maturation	 rate	 was	 imputed	 (Supporting	267	

Information).	268	

Discussion	269	

Detailed	understanding	of	species’	responses	to	global	change,	which	is	needed	to	address	270	

the	current	biodiversity	crisis,	is	limited	by	gaps	in	the	demographic	data	needed	to	predict	271	

population	trajectories	(Kindsvater	et	al.	2018;	Conde	et	al.	2019).	Efforts	such	as	the	IUCN	272	

Red	List	(IUCN	2020)	are	designed	to	make	the	most	of	limited	information	(Rodrigues	et	273	

al.	2006;	Mace	et	al.	2008),	but	the	use	of	proxies	to	compensate	for	missing	data	can	result	274	

in	bias	and	under-	or	over-estimation	of	extinction	risk	(Fung	&	Waples	2017;	Staerk	et	al.	275	

2019).	Accurate	estimation	of	vital	rates,	particularly	those	to	which	elasticity	of	population	276	

growth	rate	 is	high,	such	as	adult	survival	 in	 long-lived	species,	 is	 important	 for	reliable	277	

predictions	of	population	performance.	We	evaluated	the	use	of	phylogenetic	imputation	to	278	

replace	missing	vital	rate	data	in	birds.	We	found	that	applying	a	multivariate	framework	279	

which	 accounted	 for	 covariance	 among	 rates	 of	 survival,	 reproduction,	 and	 maturation	280	

allowed	 us	 to	 impute	 some	 missing	 vital	 rates	 relatively	 well,	 even	 in	 the	 absence	 of	281	
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phylogenetic	 information.	 Including	phylogenetic	relationships	 improved	the	accuracy	of	282	

imputed	 values	 in	 some	 cases.	 However,	 auxiliary	 trait	 data	 also	 tended	 to	 improve	283	

imputation	accuracy	for	multiple	vital	rates	and	compensated	for	lack	of	phylogeny	in	most	284	

cases.	285	

Imputation	 accuracy	did	not	 reflect	 the	 ranking	of	 vital	 rates	by	phylogenetic	 signal.	286	

However,	vital	rates	with	the	strongest	phylogenetic	signal,	adult	survival	and	maturation	287	

rate,	 improved	 in	 accuracy	with	 phylogeny,	 particularly	 for	multiple	missing	 vital	 rates.	288	

Penone	et	al.	(2014)	linked	the	influence	of	phylogeny	on	trait	estimates	in	carnivores	both	289	

to	 phylogenetic	 signal	 and	 to	 how	much	 traits	 covaried	 with	 body	 size.	We	 found	 that	290	

imputation	 accuracy	 deteriorated	 for	 multiple	 missing	 vital	 rates,	 suggesting	 that	291	

covariance	patterns	among	the	vital	rates	were	important.		292	

Imputation	 tended	 to	 over-estimate	 maturation	 rates	 (Supporting	 Information).	 In	293	

discrete	time,	stage-based	population	models,	species	that	mature	in	a	single	time	step	have	294	

a	maturation	rate	of	1,	while	for	species	with	delayed	onset	of	reproduction,	maturation	rate	295	

can	be	markedly	 less	 than	1.	The	 resulting	bimodal	distribution	 is	 severely	non-normal,	296	

even	after	 transformation.	The	 imputation	model	used	here	estimates	covariance	among	297	

normally	distributed	variables	and	was	unable	to	compensate	for	this	unusual	distribution.	298	

Our	finding	that	body	mass	and	life	history	trait	data	improved	the	accuracy	of	imputed	299	

values	contrasts	with	studies	which	demonstrate	relatively	minor	effects	of	species-level	300	

traits	 on	 the	 estimation	of	demographic	 rates.	 For	 example,	 body	mass	did	not	 improve	301	

estimation	 of	per	 capita	 population	 growth	 rate	 in	mammals	 (Fagan	 et	 al.	 2013)	 and	 in	302	

plants,	size	and	growth	form	largely	failed	to	improve	predictability	of	demographic	rates	303	

(Che-Castaldo	et	al.	2018).		304	

We	 found	 that	 accuracy	 of	 demographic	 metrics	 typically	 used	 for	 conservation	305	

assessment	purposes,	 such	as	generation	 time	(Mace	et	al.	2008),	depended	both	on	 the	306	

accuracy	of	imputed	values	and	on	the	sensitivity	of	the	metric	to	the	imputed	vital	rates.	307	

Moreover,	 the	 simplified	 life	 cycle	underlying	our	 approach	may	 introduce	bias	 in	 some	308	

demographic	outputs	(Fujiwara	&	Diaz-Lopez	2017).	Many	studies	have	advised	caution	in	309	
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the	interpretation	of	demographic	model	outputs	due	to	parameter	uncertainty	(Beissinger	310	

&	Westphal	1998;	Ellner	et	al.	2002;	Reed	et	al.	2002);	similar	care	is	necessary	for	models	311	

parameterized	with	imputed	values.	312	

Our	results	are	limited	by	the	availability	and	partiality	of	demographic	data	(Salguero-313	

Gómez	et	al.	2015,	2016;	Conde	et	al.	2019),	which	inform	estimates	of	covariance	among	314	

vital	rates.	Including	data	for	more	species	might	improve	accuracy	of	imputed	vital	rates	315	

by	strengthening	patterns	of	covariance	(e.g.	Penone	et	al.	2014).	However,	vital	rate	data	316	

may	be	missing	not	at	random	(MNAR)	for	species	of	conservation	concern,	and	such	biases	317	

in	 missing	 values	 can	 influence	 comparative	 analyses	 by	 skewing	 trait	 distributions	318	

(Nakagawa	 &	 Freckleton	 2008;	 González-Suárez	 et	 al.	 2012).	 Although	 geographical	319	

variation	in	demographic	traits	(e.g.	differences	in	clutch	size	and	survival	across	latitudes)	320	

could	 create	different	patterns	of	 covariance	among	vital	 rates,	 including	phylogeny,	 life	321	

history	traits,	and	latitude	may	be	sufficient	to	control	for	such	variation	(Jetz	et	al	2008,	322	

Scholer	 et	 al	2020).	 Future	 studies	 could	use	a	broader	 coverage	of	 avian	 life	history	 to	323	

investigate	how	biases	in	the	availability	of	demographic	data	affect	imputation	accuracy	324	

and	could	assess	imputation	of	vital	rates	in	other	taxonomic	groups.	325	

Recommendations	326	

The	 success	 of	 phylogenetic	 imputation	 rests	 on	 the	 validity	 of	 the	 data	 covariance	327	

structure.	This	structure	is	determined	by	the	phylogeny,	and	by	the	known	values	for	vital	328	

rates	and	important	covariates	like	body	size.	Thus,	the	quantity	and	accuracy	of	these	data	329	

may	strongly	influence	the	reliability	of	imputed	values.	We	suggest	exploring	the	impact	of	330	

uncertainty	in	the	input	data	by,	for	example,	varying	the	values	within	reasonable	limits	to	331	

determine	the	sensitivity	of	outputs.	Uncertainty	in	the	phylogeny	could	be	explored	in	a	332	

similar	way	by	sampling	from	a	distribution	of	plausible	trees.	333	

We	found	that	maturation	rate	was	poorly	handled	by	the	distributional	assumptions	of	334	

the	imputation	method.	We	advise	the	use	of	an	alternative	approach	such	as	using	a	two-335	

component	mixture	model	to	capture	the	bimodal	distribution	for	maturation	rate.	336	
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We	 have	 provided	 a	 qualitative	 assessment	 of	 how	 differences	 in	 the	 accuracy	 of	337	

imputed	 vital	 rates	 translate	 to	 accuracy	 of	 demographic	 metrics.	 A	 global	 sensitivity	338	

analysis	could	be	used	to	quantify	how	uncertainty	propagates	from	imputed	vital	rates	to	339	

demographic	metrics.		340	

We	have	demonstrated	a	novel	approach	to	bridging	gaps	in	demographic	analysis	using	341	

phylogenetic	imputation.	While	this	method	cannot	replace	demographic	metric	calculation	342	

when	detailed	age-specific	life	history	parameters	are	available,	the	ability	to	impute	vital	343	

rates	for	species	with	sparse	demographic	data	is	valuable	in	a	data-limited	conservation	344	

context	and	avoids	biases	associated	with	assuming	family	or	genus	based	mean	values	for	345	

underlying	traits	(Schafer	&	Graham	2002).	Accurate	demographic	information	is	vital	for	346	

indicators	 such	as	 the	 IUCN	Red	List,	which	 informs	 conservation	decision-making	 from	347	

species-level	 conservation	 to	 spatial	prioritization	 (Rodrigues	et	al.	2006),	and	 the	 IUCN	348	

Green	List,	a	framework	for	assessing	species	recovery	and	conservation	success	(Akçakaya	349	

et	 al.	 2018).	 In	 addition,	 data-driven	 assessments	 are	 essential	 in	 guiding	 business	350	

processes	and	supporting	sustainable	development	goals	(Brooks	et	al.	2015;	Bennun	et	al.	351	

2018).	352	

Supporting	Information	353	

Data	extraction	procedure,	species	list,	phylogenetic	tree,	and	taxonomic	bias	(Appendices	354	

S1–S4);	exploration	of	phylogenetic	uncertainty	(Appendix	S5);	comparison	of	imputation	355	

with	and	without	phenotypic	variation	(Appendix	S6);	observed	vs	imputed	vital	rates	for	356	

post-breeding	 census	 data	 under	 the	 null	 (Appendices	 S7–S10)	 and	 phylogenetic	357	

(Appendices	 S11–S14)	models;	 observed	 vs	 imputed	 vital	 rates	 for	 pre-breeding	 census	358	

data	under	 the	null	 and	phylogenetic	models	 (Appendices	 S15–S16);	 and	 results	 for	 life	359	

history	(Appendices	S17–S19)	and	population	growth	(Appendices	S20–S22)	metrics	are	360	

available	 online.	 The	 authors	 are	 solely	 responsible	 for	 the	 content	 and	 functionality	 of	361	
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these	materials.	 Queries	 (other	 than	 absence	 of	 the	material)	 should	 be	 directed	 to	 the	362	

corresponding	author.	363	
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Population	growth	metrics	567	

Asymptotic	population	growth	rate	 Long-term	performance	of	a	population	

Sensitivity	and	elasticity	of	population	growth	
rate	

Response	of	population	growth	rate	to	changes	
in	underlying	vital	rates	

Life	history	metrics	
	

Generation	time	 Time	required	for	the	population	to	increase	by	
a	factor	equal	to	the	net	reproductive	rate	

Mean	age	at	maturity	 Average	time	taken	to	enter	the	reproductive	
stage	

Mean	lifespan	 Average	age	of	individuals	at	death	
Table	 1:	We	 used	 imputed	 vital	 rates	 to	 parameterise	 matrix	 population	 models	 and	 calculated	568	
demographic	metrics	of	population	growth	and	 life	history	 (Caswell	2001)	 to	assess	 the	effect	of	569	
imputed	parameters	on	demographic	model	outputs.	570	
	 	571	
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Figure	1:	We	applied	phylogenetic	imputation	to	vital	rate,	body	mass	and	life	history	trait	572	

data	to	assess	the	accuracy	of	predicting	vital	rates	for	use	in	demographic	models.	Our	key	573	

questions	 related	 to	phylogeny,	 trait	 data,	 and	missing	data	 structure.	 1.	Does	 including	574	

phylogenetic	 relationships	 among	 species	 improve	predictions	 of	 vital	 rates?	We	used	 a	575	

consensus	phylogenetic	 tree	 and	 imputed	vital	 rates	under	 two	alternative	 evolutionary	576	

models:	a	null	model	which	assumes	that	phylogenetic	relationships	have	no	influence	on	577	

trait	 values,	 and	Pagel’s	λ,	 in	which	 the	 phylogeny	 is	 scaled	 to	 account	 for	 phylogenetic	578	

dependence	 in	 the	 data.	 2.	What	 is	 the	 value	 of	 including	 additional	 body	mass	 and	 life	579	

history	 trait	 data	 when	 imputing	 missing	 vital	 rates?	 We	 used	 three	 alternative	 trait	580	

datasets	for	imputation:	a	baseline	dataset	containing	standardized	vital	rate	data	and	two	581	

extended	datasets	which	added	body	mass	and	 life	history	trait	data,	retaining	complete	582	

cases	only.	3.	How	are	predictions	affected	by	how	many,	and	which,	vital	rates	are	missing?	583	

For	each	focal	species,	we	removed	vital	rate	data	systematically	in	combinations	of	single	584	

and	 multiple	 missing	 vital	 rates	 and	 used	 phylogenetic	 imputation	 to	 reconstruct	 the	585	

missing	values.	4.	We	calculated	imputation	accuracy	for	each	focal	vital	rate,	missing	vital	586	

rate	combination,	trait	dataset	and	evolutionary	model.	587	

Figure	2:	Adult	survival	and	fecundity	were	the	most	accurately	imputed	vital	rates	under	588	

different	missing	vital	rates,	trait	dataset,	and	evolutionary	model.	When	multiple	vital	rates	589	

were	missing,	phylogenetic	information	or	body	mass	and	life	history	trait	data	improved	590	

accuracy	 of	 imputed	 adult	 survival	 and	maturation	 rates.	 Points	 show	 the	mean	 errors	591	

across	combinations	of	the	same	number	of	missing	vital	rates	and	error	bars	indicate	the	592	

range	of	normalized	root	mean	square	error	for	different	missing	vital	rate	combinations.	593	

Figure	3:	Life	history	metrics	calculated	from	matrix	population	models	parameterized	with	594	

imputed	vital	rates	varied	in	accuracy	according	to	the	contribution	of	the	imputed	vital	rate	595	

to	the	life	history	metric.	Imputed	vital	rates	which	did	not	have	an	effect	on	the	life	history	596	
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metric	estimate	are	not	shown.	Filled	symbols	show	the	mean	errors	across	trait	datasets	597	

and	open	symbols	show	errors	for	individual	trait	datasets.	598	

Figure	4:	Estimates	of	population	growth	rate	(a)	and	sensitivity	and	elasticity	of	population	599	

growth	rate	to	underlying	vital	rates	(b)	varied	in	accuracy	when	vital	rates	were	imputed,	600	

with	 imputed	 fecundity	 causing	 the	 least	 accurate	 values	 in	 many	 cases.	 Accuracy	 was	601	

similar	across	 trait	datasets	except	 in	 two	cases	when	 life	history	 trait	data	reduced	 the	602	

accuracy	 of	 the	 demographic	 metric.	 Filled	 symbols	 show	 the	 mean	 errors	 across	 trait	603	

datasets	and	open	symbols	show	errors	for	individual	trait	datasets.	 	604	
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	605	

Figure	1:	We	applied	phylogenetic	imputation	to	vital	rate,	body	mass	and	life	history	trait	data	to	606	
assess	the	accuracy	of	predicting	vital	rates	for	use	in	demographic	models.	Our	key	questions	related	607	
to	phylogeny,	 trait	 data,	 and	missing	data	 structure.	 1.	Does	 including	phylogenetic	 relationships	608	
among	 species	 improve	 predictions	 of	 vital	 rates?	 We	 used	 a	 consensus	 phylogenetic	 tree	 and	609	
imputed	vital	 rates	under	 two	alternative	evolutionary	models:	 a	null	model	which	assumes	 that	610	
phylogenetic	relationships	have	no	influence	on	trait	values,	and	Pagel’s	λ,	in	which	the	phylogeny	is	611	
scaled	to	account	for	phylogenetic	dependence	in	the	data.	2.	What	is	the	value	of	including	additional	612	
body	mass	and	life	history	trait	data	when	imputing	missing	vital	rates?	We	used	three	alternative	613	
trait	 datasets	 for	 imputation:	 a	 baseline	 dataset	 containing	 standardized	 vital	 rate	 data	 and	 two	614	
extended	datasets	which	added	body	mass	and	life	history	trait	data,	retaining	complete	cases	only.	615	
3.	How	are	predictions	 affected	by	how	many,	 and	which,	 vital	 rates	 are	missing?	For	 each	 focal	616	
species,	we	removed	vital	rate	data	systematically	 in	combinations	of	single	and	multiple	missing	617	
vital	 rates	 and	 used	 phylogenetic	 imputation	 to	 reconstruct	 the	missing	 values.	 4.	We	 calculated	618	
imputation	 accuracy	 for	 each	 focal	 vital	 rate,	 missing	 vital	 rate	 combination,	 trait	 dataset	 and	619	
evolutionary	model.	620	
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	621	

Figure	2:	Adult	survival	and	fecundity	were	the	most	accurately	imputed	vital	rates	under	different	622	
missing	vital	rates,	 trait	dataset,	and	evolutionary	model.	When	multiple	vital	rates	were	missing,	623	
phylogenetic	information	or	body	mass	and	life	history	trait	data	improved	accuracy	of	imputed	adult	624	
survival	and	maturation	rates.	Points	show	the	mean	errors	across	combinations	of	the	same	number	625	
of	missing	vital	rates	and	error	bars	 indicate	the	range	of	normalized	root	mean	square	error	 for	626	
different	missing	vital	rate	combinations.	627	

	 	628	
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	629	

Figure	3:	Life	history	metrics	calculated	from	matrix	population	models	parameterized	with	imputed	630	
vital	rates	varied	in	accuracy	according	to	the	contribution	of	the	imputed	vital	rate	to	the	life	history	631	
metric.	Imputed	vital	rates	which	did	not	have	an	effect	on	the	life	history	metric	estimate	are	not	632	
shown.	Filled	symbols	show	the	mean	errors	across	trait	datasets	and	open	symbols	show	errors	for	633	
individual	trait	datasets.	634	
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	635	

Figure	4:	Estimates	of	population	growth	rate	(a)	and	sensitivity	and	elasticity	of	population	growth	636	
rate	to	underlying	vital	rates	(b)	varied	in	accuracy	when	vital	rates	were	imputed,	with	imputed	637	
fecundity	causing	the	least	accurate	values	in	many	cases.	Accuracy	was	similar	across	trait	datasets	638	
except	in	two	cases	when	life	history	trait	data	reduced	the	accuracy	of	the	demographic	metric.	Filled	639	
symbols	show	the	mean	errors	across	trait	datasets	and	open	symbols	show	errors	for	individual	640	
trait	datasets.	641	


