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ABSTRACT

Hybrid organic-inorganic perovskites (HOIPs) are prime candidates for studying Rashba effects due to the heavy metal and halogen atoms
in their crystal structure coupled with predicted inversion symmetry breaking. Nevertheless, observation of the Rashba effect in cubic
CH3NH3PbBr3 single crystals that possess bulk inversion symmetry is the subject of extensive debate due to the lack of conclusive experi-
ments and theoretical explanations. Here, we provide experimental evidence that Rashba state in cubic CH3NH3PbBr3 single crystals at room
temperature occurs exclusively on the crystal surface and depends on specific surface termination that results in local symmetry breaking.
We demonstrate this using a suite of spatially resolved and depth-sensitive techniques, including circular photogalvanic effect, inverse spin
Hall effect, and multiphoton microscopy, that are supported by first principle calculations. Our work suggests using surface Rashba states in
these materials for spintronic applications.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0053884

INTRODUCTION

The Rashba spin-splitting state is an archetypal quantum phe-
nomenon in which the spin and momentum are locked.1–4 It causes
splitting of a doubly spin-degenerate continuum electronic band into
two subbands shifted with respect to each other in k space by 2k0
(Fig. 1) and is commonly represented by two displaced circular Fermi
contours. At k0, a minimum arises at depth E0. This splitting is
described by the Rashba coefficient (aR), as defined by aR ¼ 2E0=k0:

4

The Rashba effect can split differently the valence and conduction
band edges, resulting in an indirect bandgap semiconductor. Two pre-
conditions need to be satisfied for the occurrence of Rashba splitting:4

(i) the presence of heavy elements (such as lead) that introduce strong
spin–orbit coupling (SOC) and (ii) the lack of inversion symmetry,
which is satisfied in the bulk of non-centrosymmetric crystals or at the
crystal’s surfaces, interfaces, and grain boundaries. The Rashba effect

has revolutionized the field of spintronics, making it possible to envi-
sion the next generation of pure spin current generators, transmitters,
and detectors.5–9 This enhanced interest has led to a broad exploration
of novel Rashba materials.

Hybrid organic-inorganic metal halides have attracted immense
attention in recent years, mostly due to the remarkable success of lead
halide perovskites in photovoltaic and light-emitting diode applica-
tions.10–13 These materials can be classified as 3D perovskites adopting
AMX3 composition or as layered perovskites also known as quasi-2D
perovskites adopting Ruddlesden–Popper and Dion–Jacobson compo-
sitions. Broadly referred to as hybrid organic-inorganic perovskites
(HOIPs), these soft ionic semiconductors are amenable to solution-
phase processing as well as conducive to facile growth of macroscopic
single crystals (SCs) while maintaining excellent optoelectronic prop-
erties. The HOIPs have also shown a diversity of interesting properties,
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including long carrier lifetimes of up to tens of microseconds,14 quan-
tum confinement,15–17 ferroelectricity,18,19 and enhanced inherent sta-
bility.20 The long carrier lifetimes are particularly surprising given that
most HOIP films are polycrystalline and tend to be highly defective.
However, because HOIPs involve heavy metals that possess an intrin-
sically large SOC, a leading hypothesis to explain the slow carrier
recombination has been the formation of a large, static/dynamic bulk
Rashba effect that results in an indirect bandgap.21,22 This assumption
has led to a myriad of density functional theory (DFT) calculations
that have examined the Rashba effect in various HOIP structures.23,24

However, the Rashba effect in 3D HOIPs has been the subject of
extensive debate, given conflicting experimental evidence.32–34 The
reason for that is the lack of ample experimental tools for directly mea-
suring the Rashba effect.25–27

For example, a giant Rashba effect was first reported in
CH3NH3PbBr3 (MAPbBr3) SCs using angle-resolved photoemission
spectroscopy (ARPES).28 It was found that the Rashba parameter, aR
is 76 1 and 116 4 eV�Å in the orthorhombic (at low temperature)
and the cubic (at room temperature) phases, respectively. A recent sys-
tematic study of the circular photogalvanic effect (CPGE),29,30 i.e.,
observation of helicity-dependent photocurrent, indicated a dynamical
Rashba effect in the tetragonal phase of MAPbI3 SCs.

30 Indirect tail
states arising from the dynamic Rashba effect in MAPbBr3 SCs has
been observed where the dynamic inversion symmetry is broken by
thermally induced structural polar fluctuations at elevated tempera-
tures.31 However, it has also been reported that the predicted static
bulk Rashba effect in 3D HOIPs may be an artifact of DFT calcula-
tions.32 Furthermore, the needed inversion symmetry breaking has not
been observed in the bulk of MAPbBr3 samples using second har-
monic generation spectroscopy.32 More recently, no clear Rashba split-
ting has been observed in MAPbBr3 SCs in the valence band using the

ARPES method.33,34 It is noteworthy that MAPbBr3 forms a somewhat
disordered cubic structure at room temperature, having an “average”
space group symmetry of Pm3m due to the free rotation attributed to
the MAþ cations induced by thermal fluctuation. This “pseudo-
centrosymmetric” structure possesses inversion symmetry and, thus,
should not support a bulk Rashba effect unless an intrinsic surface
reconstruction occurs at low temperatures.35 Recall that ARPES is a
surface-sensitive technique, whereas CPGE is regarded as a bulk
method. In any case, these inconsistencies and conflicts call for further
investigation of the Rashba effect in MAPbBr3 SCs using a multi-
pronged strategy.

We examine in this work the existence of the Rashba state in
MAPbBr3 SCs at room temperature that apparently does not possess a
static inversion symmetry breaking.32 Using the CPGE technique, we
observed a substantial helicity-dependent photocurrent response when
excited with circularly polarized light. Also by utilizing the excellent
optoelectronic properties of MAPbBr3, we successfully demonstrate
the photoinduced inverse spin Hall effect (photo-ISHE) in a MAPbBr3
SC/Pt heterostructure.36,37 This experiment unravels the spin texture
related to the helicity-dependent photocurrent that is measured by the
CPGE technique. It also provides unambiguous proof for the existence
of surface Rashba states on MAPbBr3 surfaces but not in bulk (Fig. 1).
In addition, the magnetic field orientation dependence of the Hanle
effect38,39 related to the photo-ISHE response further validates the spin
texture on the crystal surface. We also used multiphoton microscopy
(MPM)40–43 in combination with spatially resolved photo-ISHE mea-
surements to show the existence of domains on the crystal’s surface
that exhibit various degrees of Rashba effect, depending on the surface
termination, in agreement with our DFT calculations. By reconstruct-
ing different surface terminations along the MAPbBr3 crystal, we
found that the Rashba parameter varies between null and �2.02 eV,

Cubic CH
3
NH

3
PbBr

3
SC

FIG. 1. Schematic illustration of Rashba state domains on the surface of a cubic MAPbBr3 SC due to the presence of local symmetry breaking. The spin split in the conduction
band is shown for the domains on the crystal surface due to the Rashba effect (top panel) but not in the bulk (bottom panel).
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which can account for the observed inhomogeneity of the Rashba
states. These results offer a cautionary note in measuring and reporting
this important phenomenon in 3D HOIPs at room temperature.

CIRCULAR PHOTOGALVANIC EFFECT AND
PHOTOINDUCED INVERSE SPIN HALL EFFECT

In the CPGE experiment, we resonantly generated photocurrent
in MAPbBr3 SCs with circularly polarized light to clarify the existence
of spin splitting in the band structure.29,30 CPGE is an intriguing quan-
tum phenomenon, namely, a photovoltaic effect that does not require
a built-in electric field. This process directly converts the angular
momentum of the photons to electron-spin polarization, enabling the
integration of polarized light in spintronic technologies. For a typical
Rashba-type band structure, the interband optical transition between
the spin-polarized valence and conduction bands depends on the hel-
icity of the incident light [Fig. 2(a)]. Since the associated group veloci-
ties dE/dk differ in sign in each spin-split band, the resulting
transverse spin-aligned (i.e., Sx along 6x direction) photocurrent
reverses its polarity (i.e., JC along6y direction) when the light helicity
is switched. The dependence of Jc(CPGE) on the rotation angle of the
k/4 waveplate (a) may be described by an oscillating function that con-
sists of three terms:29,30

Jc CPGEð Þ ¼ Csin 2að Þ þ Lcos 4að Þ þ D; (1)

where D is the polarization-independent photocurrent offset, and C
and L are, respectively, the circular and linear photogalvanic effect
coefficients (namely, CPGE and LPGE), which depend on the laser
incidence angle h.29,30 The C term describes the effect of light helicity
on the photocurrent and quantifies the difference between photocur-
rent excited using left-circularly polarized (LCP) and right-circularly
polarized (RCP) light.29,30 LPGE, the term with coefficient L, is usually
induced by asymmetric electron scattering with phonons or optical
beam anisotropy (e.g., optical ellipticity) that is helicity independent
and does not change with illumination by left-handed to right-handed
circular polarization. Figures 2(b) and 2(c) present the measured helic-
ity dependence of the photocurrent (JCPGE) at two different out-of-
plane inclination angles: h of 650� as a function of the k/4 waveplate
rotation angle a. A laser with polarized light at 450 nm and power of
P¼ 1 mW was used to excite the MAPbBr3 SC sample that had two
electrical contacts �500lm apart. Note that the laser photon energy
�hx¼ 2.75 eV is above the energy gap Eg of the MAPbBr3 (Eg
�2.3 eV). In Fig. 2(c), the polarization-independent photocurrent
background (i.e., the D term) has been subtracted from the data for
clarity. This large photocurrent background is one order of magnitude
higher than the C and L components, which can be attributed to the
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FIG. 2. Circular photogalvanic effect (CPGE) measurements. (a) A sketch of the photoexcitation process that leads to CPGE response at the Rashba state (right panel) and
the CPGE experimental configuration where the angles a and h are denoted (left panel). The bottom panel shows the equation that describes the resulting photocurrent at the
Rashba state. (b) The obtained photocurrent response in the CPGE configuration as a function of the k/4 waveplate rotation angle a. The line through the data points is a fit
using Eq. (1). (c) Helicity-dependent photocurrent measured at two impinging angles: h¼þ50� (blue symbols), h¼�50� (red symbols). The lines through the data points
are fits using Eq. (1) with fitting parameters C, L, D, and C/L ratio, as shown in panel (d), having different colors. QWP, quarter-wave plate.
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large photovoltaic effect in the MAPbBr3 SC. It is clearly seen that the
obtained photocurrent changes with a in a periodic fashion that can
be well fitted using Eq. (1). Note that the fitted circular coefficient C
changes sign when the incident light angle h is reversed from þ50� to
�50�, with a maximum amplitude of 8.3 pA; in contrast, the linear
photogalvanic coefficient L (�19–22 pA) does not change sign with h
[Fig. 2(d)]. The C/L ratio at the two incident angles is 0.3, which is in
agreement with the reported C/L ratio in MAPbI3 SCs

29 and that in
the layered perovskite (PEA)2PbI4.

30 Also, the coefficient C(h)
increases with h approximately as sin(h) and vanishes at normal inci-
dence (h¼ 0), whereas the coefficient L (h) exhibits a parabolic
response (see Fig. S3). The dependence of both photocurrent compo-
nents on a and h proves the existence of the CPGE response in the
MABr3 SC, which, in turn, shows that this SC supports the existence
of a Rashba state.29

To identify the spin texture characteristics in the photocurrent
generated in the CPGE experiment, we conducted helicity-dependent
photo-ISHE using a Pt overlayer as the spin detector36,37 [Fig. 3(a)].
The thin Pt overlayer (�3 nm) is semitransparent at the laser wave-
length, ensuring that the light excitation reaches the MAPbBr3/Pt
interface. Similar to the case of the CPGE measurement where the
light illumination was directed onto the MAPbBr3 SC surface, here,
under circular polarization illumination from the back, electrons with
spin orientation polarized along the light propagation direction are
photogenerated into the spin-polarized conduction band at the
Rashba state due to the optical selection rules. Subsequently, the result-
ing photoinduced spin polarization diffuses as a pure spin current into
the Pt overlayer across the MAPbBr3 SC/Pt interface. In turn, the
injected spin current is converted into an electromotive force
Jphoto�ISHE along the6y direction via the ISHE process in the adjacent
Pt layer44,45 having the strong spin–orbit interaction; this process may
be described as follows:37

Jphoto�ISHE ¼ hISHEJs CPGEð Þ � Sþ Jc CPGEð Þ; (2)

where the first term represents the ISHE process in the Pt layer, hISHE
is the spin Hall angle of the Pt layer, Js CPGEð Þ is the pure spin current
that diffuses into the Pt overlayer from the MAPbBr3 SC along the z
direction, and S denotes the spin orientation. The second term in
Eq. (2) arises from the photocurrent along the 6y direction that is
directly generated by the CPGE process, which may partially penetrate
into the Pt overlayer. However, this photocurrent is several orders of
magnitude smaller than the ISHE current due to the efficient spin-to-
charge conversion in the Pt overlayer. By detecting the photo-ISHE
response, the degree of spin polarization from the helicity-dependent
photocurrent of the CPGE in the MAPbBr3 SC may be directly charac-
terized. We anticipate that Jphoto�ISHE would hold similar light helicity
dependence as that in the CPGE measurement.

The photo-ISHE measurement has been performed on the
MAPbBr3 SC/Pt bilayer to validate the spin-dependent character of
the photocurrent under left- or right-circularly polarized illumination.
Figures 3(b) and 3(c) show the photogenerated charge current across
the Pt overlayer (Jphoto�ISHE) at two light incidence angles h. The
obtained light helicity dependencies of the charge current in the Pt
layer are consistent with the prediction of the photo-ISHE signal
induced by photoexcited spin currents at the Rashba state.46 While
sharing a similar photocurrent response for the left- and right-
circularly polarized illumination in the CPGE configuration, the

obtained C(photo-ISHE) coefficient for the Pt photocurrent (�330 pA
at h¼�50�) is about two orders of magnitude larger than that of
C(CPGE) (�8 pA) in the same MAPbBr3 sample. This can be attrib-
uted to the large spin-to-charge conversion efficiency in the Pt over-
layer, as indicated by a much larger C/L ratio (up to 0.97) [see
Fig. 3(d)]. The CPGE-generated spin-polarized photocurrent is esti-
mated, using Eq. (2), as JS(CPGE)¼ 2� 106 A�m�2�W�1. Note that
the obtained C(photo-ISHE) coefficient has an opposite sign com-
pared to the C(CPGE) coefficient in the CPGE experiment described
previously at the same incident angle. To explain this, we note that in
the photo-ISHE experiment, the spin current diffuses along the þz
direction, which is opposite of that in the CPGE configuration. Having
positive hISHE , this may lead to an opposite sign of the generated
charge current in the Pt layer, Jphoto�ISHE / Js � S. Based on the pre-
viously measured short spin diffusion length in polycrystalline
MAPbBr3 thin films at room temperature (�3nm),47 the observed
photo-ISHE signal indicates that the spin current in the Pt overlayer
originates mainly from the CPGE current diffusion from the adjacent
MAPbBr3 interface

47 rather than from the bulk crystal, suggesting an
interfacial Rashba state that occurs on the surface of MAPbBr3 SC (as
shown in the following sections).

HANLE EFFECT

Separation of the spin current from transverse photocurrent
using the photo-ISHE technique enabled us to probe the spin lifetime
of the Rashba state at the interface by measuring the Hanle effect;38,39

this method has been accepted as proof of spin-aligned current in
organic semiconductors and HOIPs.48–50 When an out-of-plane mag-
netic field, Bz, is applied perpendicular to the spin orientation (Sx), it
generates spin precession around the Bz direction, as illustrated in the
top panel of Fig. 3(e). This leads to Jphoto�ISHE quenching that increases
with the field Bz, which can be described by the following relation:50

Jphoto�ISHE Bzð Þ ¼
Jphoto�ISHE Bz ¼ 0ð Þ

1þ xLstotð Þ2
; (3)

1
stot

¼ 1

ss Ptð Þ þ
1

ss Rashbað Þ ; (4)

where xL ¼ lBgexBz=�h is the Larmor frequency (gex is the g-factor of
the electron spin). stot is the spin lifetime at the MAPbBr3/Pt interface,
which is affected by both the surface Rashba state on the MAPbBr3 SC
and the spin scattering inside the Pt overlayer. The spin lifetime stot
can thus be derived from the half width at half maximum of the
obtained Hanle response. In contrast, when the magnetic field is
applied in the direction of the spin orientation (e.g., Bx), no Hanle
effect is possible.

Figure 3(e) presents the measured Hanle effect of the photo-
ISHE response while applying an external magnetic field directed
along þz, causing spin precession around the field Bz. This leads to
quenching of the helicity-dependent C term in the photo-ISHE signal
via the Hanle effect up to 8%. In contrast, the spin-independent back-
ground D shows only a subtle change with B that may be attributed to
the magnetic field effect of the photocurrent in hybrid perovskite
materials.51 In contrast, when the field is applied in the x direction,
which is parallel to the spin polarization direction [Fig. 3(f)], no sub-
stantial Hanle effect is observed. The weak field dependence of the D
component along with both field directions also excludes a possible
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photo-ISHE as a function of the quarter-wave plate (QWP) rotation angle a. (c) Helicity-dependent photo-ISHE response vs a at two impinging light angles h. The lines through
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ordinary Hall effect, a planar Hall effect, and an anisotropy magneto-
resistance that may overlap with the Hanle effect, validating the
in-plane spin orientation (Sx) of the C component. The solid
red line in Fig. 3(e) is a fit, using Eq. (3), from which we obtained
stot ¼ 33:56 1 ps for both the L and C terms at T¼ 300K. Taking
ss Ptð Þ ¼ 35:56 1 ps from the oblique Hanle effect measured in a
NiFe/Pt control sample,49 the spin lifetime at the Rashba state of
MAPbBr3 SC is estimated to be ss Rashbað Þ ¼� 5006100 ps. This
value is in agreement with the obtained long spin lifetime measured by
spin pumping in MAPbBr3 SC.

49

OBSERVATION OF SPATIALLY RESOLVED SURFACE
RASHBA STATES

The observation of the Rashba effect by CPGE and photo-ISHE
measurements in cubic MAPbBr3 SC phase that possesses inversion
symmetry implies the existence of a substantial surface Rashba effect
on the MAPbBr3 SC surface. To show this, we sought to directly
observe the surface symmetry breaking, which is a precondition for
Rashba splitting, using spatially resolved second-harmonic generation
(SHG) measurements performed in the bulk and surface of the
MAPbBr3 SC samples by the MPM method40–43 (see Methods).
Figure 4(a) shows the spatially resolved MPM image on the MAPbBr3
SC surface48 (see also Fig. S5) using a pulse laser at 1.55lm. The
dominant green emission bands are due to third-harmonic generation
(THG) at 517 nm and three-photon absorption–induced photolumi-
nescence (TP-PL) at 550 nm; both occur regardless of inversion sym-
metry breaking.43 No clear SHG signal is observed when the laser is
focused inside the bulk of the crystal. In contrast, a weak SHG signal
(i.e., the red emission between 750 and 800nm) can be observed ema-
nating only from the surface, consistent with our previous observa-
tions.48 Whereas the existence of the SHG signal implies the presence
of the symmetry breaking on the surface of the MAPbBr3, it is striking
that its intensity is several orders of magnitude lower than that of the
THG and TP-PL signals. Indeed, should the symmetry breaking be
generalized to the whole surface of the MAPbBr3 SC sample, a stron-
ger SHG signal would undoubtedly be generated. We therefore con-
clude that the inversion symmetry breaking must be spatially
localized in certain parts of the MAPbBr3 SC surface. Closer investi-
gation of spatially resolved MPM spectra shown in Figs. 4(b) and 4(c)

confirms that the SHG signal indeed only appears at certain locations
(delineated as red spots) on the SC surface. The surface of as-grown
MAPbBr3 SCs appears to reveal the presence of mounds and features,
which are also observed by optical microscopy; these may be due to
the termination process of the inverse temperature crystallization
(ITC) crystal growth. First principle calculations described in the sec-
tion DFT Calculations show that the Rashba coefficient and splitting
for states on the surface depend on the surface terminations in sup-
port of the various domains on the MAPbBr3 surface that possess dif-
ferent CPGE strength,52–54 as measured experimentally.

Since the strength of the Rashba state determines the magnitude
of the injected spin current into the Pt overlayer, we expect to observe
a spatial distribution of the photo-ISHE signals across the MAPbBr3
SC surface analogous to the MPM imaging. Figures 5(a) and 5(b)
show the obtained 2D contour plots of the photocurrent background
(i.e., the D term) and the helicity-dependent photo-ISHE component
[i.e., the C(photo-ISHE) term]. The spatial distribution of the photo-
current background can be explained by the facet-dependent density
of trap states,55 which would not influence the strength of the Rashba
states. Different from the spatial distribution of the helicity-
independent photocurrent component, in the helicity-dependent
photo-ISHE component, the C(photo-ISHE) varies significantly across
the SC surface, ranging from 0 to 38 pA. To exclude the possible influ-
ence from the bulk photocurrent on the surface due to different reflec-
tions induced by the surface roughness and facet-dependent
photovoltaic efficiency,55 a normalized photo-ISHE component [i.e.,
C/D ratio, Fig. 5(c)] derived from the helicity-dependent measurement
in each pixel is calculated. The C/D ratio varies from 0% to 4.9% across
a large area of the SC surface (5mm� 5mm). A similar distribution
of the C/D ratio is also observed when the spatially resolved photo-
ISHE measurement is measured in a smaller area (180lm� 180lm)
[Figs. 5(d) and 5(f)]. The observed C(photo-ISHE) term response
changes from 67pA to 144 pA, whereas the C/D ratio changes from
2.2% to 6%. This local distribution of the photo-ISHE signals further
corroborates that the generated spin current excited by the LCP and
RCP illuminations occurs in small domains on the surface (where the
broken inversion symmetry is present), supporting the existence of
domain-related surface Rashba states on MAPbBr3 SCs.
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DFT CALCULATIONS

To understand the variability of the observed Rashba splitting,
we performed DFT calculations for atomistic models of several possi-
ble terminations of the MAPbBr3 (100) surface, as shown in Fig. 6(a).
These configurations, named according to the species located at the
surface (i.e., MABr, PbBr2, PbBr, and Br), may be either thermody-
namically stable or kinetically stabilized, depending on the synthesis
conditions and the termination process of the ITC process. Based on
experimental XPS spectra and STM imaging, it has been shown that
an aged surface of a MAPbBr3 SC undergoes reconstruction due to
adsorption of moisture.56,57 Hence, we also considered hydrated
PbBr2- and MABr-rich surfaces in our study. As a representative cal-
culation, we found the band structure of the MABr termination in
Fig. 6(b), which shows that the valence band maximum (VBM) and
the conduction band minimum (CBM) lie close to the M point
(0.5,0.5) of the two-dimensional Brillouin zone. The band structures of
other terminations are shown in Figs. S9–S15. In all cases considered
here, after geometry optimization starting from positions with inver-
sion symmetry, the atomistic configurations of the surfaces relax to a
new geometry with lower symmetry. SOC breaks the degeneracy of
the bands, resulting in the Rashba splitting seen in Fig. 6(b). The
Rashba nature of the splitting is evident from the spin texture of the
valence bands at the M point, one of which is shown in Fig. 6(c).

To quantify the stability and Rashba splitting of the different ter-
minations, we calculated the surface formation energy (SFE) and the
Rashba parameter aR along the high symmetry paths MC and MX/
MY of the Brillouin zone. The thermodynamic phase diagram results
in a narrow region of chemical potentials of Pb and Br in which

MAPbBr3 is stable. We computed the surface formation energies for
points lying in three different regions of chemical potential: Pb and
PbBr2 excess region (point 1), Br and MABr excess region (point 2),
and an intermediate point 3 (Fig. S3). Table S4 summarizes the SFE
and Rashba parameters for four different terminations of the
MAPbBr3 (100) symmetric slab, two different hydrated terminations,
and a stoichiometric asymmetric slab whose formation energy is inde-
pendent of the Pb and Br chemical potentials. The MABr termination
appears to be the most stable of the pristine terminations, consistent
with the findings of Meggiolaro et al. for MAPbI3.

58,59 However, the
volatile MAþ cations may be removed under thermal annealing or
storage,56 and other terminations might become exposed. The Br ter-
mination is greatly stabilized under Br and MABr excess conditions.

Our surface energy calculations show that the formation of
hydrates is favorable and PbBr2(H2O) and MABr(H2O) are the most
stable terminations. The Rashba parameter varies from 0 to 2.02 eV�Å
based on the termination and the high symmetry direction. The pres-
ence of water indirectly contributes to determining the Rashba split-
ting by causing distortions in the Pb–Br framework at the surface. The
dispersions and splitting along the MX andMY directions are different
due to symmetry breaking observed upon ionic relaxation. The
Rashba parameter values are generally higher for the CBM due to
the large contribution of Pb p states. We find that the highest value of
the Rashba parameter in the valence band is 0.96 eV�Å for the MABr
termination; the highest value of 2.02 eV�Å is instead found for the
conduction band in the case of the PbBr2 termination. Interestingly,
the Rashba parameter is significantly reduced if only the atoms in the
first surface layers are allowed to relax, thereby showing the impor-
tance of the contribution from the bulk layers (see Tables S2 and S4).
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Overall, our calculations show that even for the same MAPbBr3 sur-
face, there is significant heterogeneity in the Rashba splitting due to dif-
ferent terminations and non-idealities.

SUMMARY

Our circular photogalvanic effect and spatially resolved photoin-
duced inverse spin Hall effect measurements provide unambiguous
experimental proof for the existence of surface Rashba domains in a
cubic MAPbBr3 single crystal at room temperature, which is due to
sample non-idealities. In addition, these measurements unveil the

unique spin texture via the Hanle effect, as confirmed by examining
the symmetry-breaking features on the crystal surface. Our DFT calcu-
lations confirm the formation of different Rashba states, for which
strength strongly depends on surface termination, and explain the
experimental observation of the Rashba state in nominally HOIPs that
possess inversion symmetry. Our work resolves the controversy
regarding the Rashba effect in a cubic MAPbBr3 that possesses inver-
sion symmetry. Our results simultaneously offer a cautionary note in
measuring and reporting this important phenomenon in HOIPs as
well as in helping to design semiconductor surfaces and various
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metal/semiconductor interfaces, which may maximize the Rashba
effect even in HOIP materials that nominally do not fulfill conditions
for bulk or dynamical Rashba splitting. Our results offer new routes
for studying interconversion among photons, charges, and spins in
solution-processed compounds. Our findings, and the HOIP materials
characterized within, are expected to impact other research areas
where HOIPs (e.g., MAPbI3) are being applied, such as photovoltaic22

and terahertz devices.30

METHODS
Device fabrication

The ITC method was used to grow the MAPbBr3 single crystal.
0.734 g PbBr2 and 0.224 g MABr (1:1 molar ratio) were dissolved into
2ml dimethylformamide to make a 1 M precursor solution. After 24 h
of active stirring at room temperature in the nitrogen glovebox (O2

< 0.1 ppm, H2O< 5 ppm), the clear solution was further filtered with
a 0.2lm polytetrafluoroethylene filter. The glass vial containing the
precursor solution was then heated to 80 �C in an oil bath without any
disturbance for crystal growth of 8–12h. When reaching the desired
crystal size, the MAPbBr3 single crystal was taken out of the solution
in the glovebox and dried with an absorbent paper. Finally, the as-
grown single crystal was further dried in a vacuum oven at 60 �C for
12 h before device fabrication. A 5-nm-thick Pt layer was deposited
onto the single crystal using electron beam evaporation with a base
chamber pressure of 1� 10�7 Torr and deposition rate of 0.2 Å/s. This
very thin layer of Pt (�3nm) is semi-transparent to optical light
illumination.36

Device characterization

XRD measurements of the MAPbBr3 single crystal were carried
out using a Rigaku SmartLab x-ray diffractometer in a high-resolution
setup with a Ge(220)� 2 crystal collimator and a Cu x-ray tube. The
XRD data of the powder were acquired using the same diffractometer
with a Bragg–Brentano setup. Silver paste was painted onto the two
sides of the single crystal with two pieces of copper tape to realize elec-
trical connections. After painting the silver paste, the sample box hold-
ing the single crystal was sealed in the N2-filled glovebox with parafilm
to reduce the degradation of the material in the atmosphere. The illu-
mination was modulated by an optical chopper at a frequency of
501Hz. The generated traverse voltage signal in the Pt layer was
measured using a lock-in amplifier. The nonvoltaic photocurrent was
measured with an SR830 lock-in amplifier. The rotation of the
quarter-wave plate was motorized, with a step size equal to 5�. The
magnetic field in Hanle effect measurements was generated by an elec-
tromagnet (GMW 3470). The spatially resolved photo-ISHE measure-
ments were performed using a 2D X–Y stage with a laser incidence
angle of þ50�. All the measurements were conducted in ambient con-
ditions at room temperature.

MPM measurements

The MPMmeasurements were conducted with an erbium-doped
femtosecond mode-locked laser operating at 1560nm, having a pulse
duration �65 fs at an average power up to 80 mW with �8.5MHz
repetition rate; hence, the estimated peak power was�145kW at�9 nJ
pulse energy. The laser light was focused (�1 lm2 spot size) onto
the sample, and a half-wave plate and linear polarizer were placed in

front of a beam splitter for power attenuation. A rotatable 870-nm
dichroic mirror let the excitation reflection from the sample pass
and diverted the resulting THG, SHG, and/or TP-PL onto the pho-
tomultiplier tubes (PMTs). A 560-nm dichroic mirror was used to
further split the THG to one PMT and the SHG/PL to another
PMT. The MPM was collected from the SC surface and bulk sepa-
rately by moving the focused beam spot in the direction perpendicu-
lar to the surface.

DFT calculations

First principle calculations were performed using the plane wave
DFT code Quantum Espresso.60,61 Optimized norm-conserving
Vanderbilt (ONCV) pseudopotentials62 from the PseudoDojo library63

were used for all calculations. For phase diagram and calculation of
chemical potentials, the exchange correlation function of
Perdew–Burke–Ernzerhof (PBE) generalized gradient approxima-
tion64 together with DFT-D3 dispersion correction65 was used. For
calculating Rashba splitting, the results obtained using
Heyd–Scuseria–Ernzerhof (HSE) functionals66 and PBE with SOC
were compared for the non-centrosymmetric bulk structure of
MAPbBr3. The behavior of the bands close to the band edges was very
similar (Fig. S6); hence, PBE þ SOC was used for obtaining the band
structures of surfaces. The Wannier90 package67 was used to generate
the band structure from HSE calculations. For PBE calculations, we
used 14 valence electrons for Pb and 7 valence electrons for Br while
for HSE calculations, we used 22 valence electrons for Pb and 17
valence electrons for Br to get the correct bandgap. Energy cutoff val-
ues of 75Ry for the wave function and 300Ry for charge density were
used. Structures were relaxed using a force convergence<0.001Ry/
bohr and energy<0.0001Ry. A 6 � 6 � 6 k-point grid was used for
bulk calculations while a 6 � 6 � 1 k-point grid was used for slab cal-
culations. Symmetric slabs of the terminations are used in all simula-
tions and visualized using VESTA.68

SUPPLEMENTARY MATERIAL

See the supplementary material for the XRD, optical microscope
images of the MAPbBr3 single crystals and typical photoluminescence
spectrum, angular dependence of the CPGE response in MAPbBr3
SCs, power dependence of the CPGE and photo-ISHE response, MPM
measurements, and DFT calculation details.
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