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Abstract: We consider the geodesic flow for a rank one non-positive curvature closed
manifold. We prove an asymptotic version of the Central Limit Theorem for families of
measures constructed from regular closed geodesics converging to the Bowen-Margulis-
Knieper measure of maximal entropy. The technique expands on ideas of Denker, Senti
and Zhang, who proved this type of asymptotic Lindeberg Central Limit Theorem on
periodic orbits for expansive maps with the specification property. We extend these
techniques from the uniform to the non-uniform setting, and from discrete-time to
continuous-time. We consider Holder observables subject only to the Lindeberg condi-
tion and a weak positive variance condition. If we assume a natural strengthened positive
variance condition, the Lindeberg condition is always satisfied. Our results extend to
dynamical arrays of Holder observables, and to weighted periodic orbit measures which
converge to a unique equilibrium state.

1. Introduction

A goal in the study of dynamical systems with some hyperbolicity is to exhibit the kind of
stochastic behavior obeyed by sequences of i.i.d. random variables. In settings with non-
uniform hyperbolicity, we may be able to demonstrate this kind of stochastic behavior
within the system even in situations where it is intractable to demonstrate globally.
Our paper follows this philosophy. We consider the geodesic flow for a rank one non-
positive curvature closed manifold. We exhibit sequences of measures constructed from
regular closed geodesics whose first order behavior is that of the measure of maximal
entropy, and whose second order behavior obeys, in the limit, the Lindeberg Central
Limit Theorem.

The Lindeberg condition is a classical criteria from Probability Theory, which often
gives a necessary and sufficient criteria for the Central Limit Theorem (CLT) to hold
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for sequences of independent random variables which are not identically distributed.
Roughly, the Lindeberg condition guarantees that the variance of a single random variable
isnegligible in comparison to the sum of all the variances. This idea was recently explored
by Denker, Senti and Zhang [8] in the setting of maps with the specification property.
They showed that a Lindeberg condition on the sequence of periodic orbit measures is
equivalent to a Central Limit Theorem in the limit.

The analysis of this paper extends the ideas of Denker, Senti and Zhang to the geodesic
flow on a rank one non-positive curvature closed manifold. This is one of the main classes
of examples of non-uniformly hyperbolic flows. While the theory of equilibrium states in
this setting has been extended recently by [3], the statistical properties of these measures
remain largely wide open, even for the Knieper-Bowen-Margulis measure of maximal
entropy iwkpM. This contrasts with the well-understood case of geodesic flow on negative
curvature manifolds, for which the CLT was established by Ratner [20]. In particular, the
CLT for the MME and other equilibrium states remains out of reach of current methods
in the non-positive curvature setting.

In this paper, we show that for a Holder observable, the time averages for certain
measures constructed from regular closed geodesics asymptotically obey the Central
Limit Theorem. This enriches the picture for these time averages, whose first order
behavior is convergence to the integral with respect to the measure of maximal entropy.
This result applies under the Lindeberg condition and a weak positive variance condition
on the sequence of periodic orbit measures. This result is stated formally as Theorem 4.1.
We show that the Lindeberg condition is always satisfied under a natural strengthening
of the positive variance condition. This is carried out in Sect. 5. We now build up some
notation to state and motivate our results, and give an idea of the constructions involved.

Recall that for an invariant measure p, and an observable f, the dynamical variance
for the flow (g;), when it exists, is defined by

2
Fr,Ty—ch,Twu) . w1)

%Mﬁm=g%/< T

where F(x,T) = fOT f(gsx)ds. In our setting, for a fixed n > 0, we construct a
sequence of discrete probability measures (mm;) on closed orbits in 7! M corresponding
to uniformly n-regular closed geodesics (which are defined in Sect. 2.4). We consider
the collection of n-regular closed geodesics which have least period in the interval
(T; — 61, T;], where T; — oo and §; — 0, which we denote Per'}e(Tl — &1, T;]. We define
m; by choosing one point in 7' M tangent to each such geodesic (we denote this set of
points by E;), and distributing mass equally over these points. By analogy with (1.1), it
is natural for us to define the (lower) dynamical variance for the sequence of measures
(my) to be

2

We choose two more sequences k; — 0o, C; — o0, and define another sequence of
measures (v7). Each vy is given by constructing points out of the product Elk’ by using a
certain specification property on the n-regular closed geodesics to find an orbit segment
which loops C; times round each of the closed geodesics indexed by an element of
Elk’. We write S; for the total length of an orbit segment specified in this way (precisely,
S; = ki (C;Ti+ M), where M is the transition time in applying our specification property).

OBy (S (1) = hlrgggff(
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The measure v; is given by putting mass equally along the initial segment of length 7;
of all the orbit segments defined this way.

If the variance quantity g%)yn (f, (my)) is positive, we can choose k; and C; so that the
family of measures (v;) satisfies an asymptotic central limit theorem for the observable
f. We can state a simple version of our main results as follows.

Theorem A. For any n > 0 and sequences §; — 0, T — 00, we define a sequence of
discrete probability measures (m;)jen by choosing a point tangent to each element of
Per"R(Tl — &1, T1l, and assigning each of these points equal mass. We assume that T; is
chosen to increase sufficiently fast, depending on 1 and §;, to allow for our construction
of (v}) (see Hypothesis 3.1). Suppose f € C(T'M) is Holder continuous with

Obyn(f: (mp)) > 0. (1.2)

Then there exists sequences k; — oo, C; — 00, so that the sequence of measures
(v;) defined by the data (8;, Ty, ki, C1)jeN (see Sect. 3 for details of the construction),
which converges weak™ to the measure of maximal entropy LM, satisfies the following
asymptotic central limit theorem. For all a € R,

lim v; <{v : FQ.5) — 5 ffdw < a}) = N(a), (1.3)
=00 oy (F (-, 8))

where N is the cumulative distribution function of the normal distribution N'(0, 1), and
oﬁ (¢) denotes the usual ‘static’ variance 0’5 @ =[(p—[ ¢du)2 du.

The sequences (k;) and (C;) are determined by gszn( f, (mp)). Thus, given o > 0, we
can find a sequence of measures (v;), defined by the data (;, 7}, k;, C;);en, so that any
Holder continuous observable f with g%yn( f, (mp)) > «a satisfies (1.3). We comment
on this positive variance condition. If the manifold has strictly negative curvature, (;)
places mass on each closed periodic orbit whose length is in the interval (7; —§;, 7], and
we expect that the variances for (m;) converge to the variance of the MME, along the lines
of the basic argument in [19, Theorem 1]. Thus, in negative curvature, we expect that
le)yn( f, (my)) = O’I%yn( /> kBM)- In negative curvature, the variance UI%yn( f, WKBM)
vanishes if and only if the observable is a coboundary [18]. It would be interesting to
characterize the class of observables for which ¢’ 2Dyn( f, (m;)) = 0in the current context,
although this will require some substantial new ideas and techniques. Although rigorous
analysis of this question is beyond the scope of this paper, by analogy with the negative
curvature case, our intuition is that the positive variance condition (1.2) should be the
‘typical’ case.

Our result extends to arrays of observable functions, and a large class of equilibrium
states. Furthermore, the arguments of this paper will apply for other classes of systems
with enough hyperbolicity to yield some non-uniform specification properties. We do not
attempt to formalize an abstract general statement, but we hope that our proof makes clear
what the roadmap should be in other related settings. We discuss these generalizations
in Sect. 6.

The technique is an extension of Denker, Senti and Zhang (DSZ) [8]. The idea is
to build e-independent collections of regular closed periodic orbits whose growth rate
is the topological entropy. Classical probability theory allows us to conclude that the
Lindeberg CLT holds for certain uniform measures on parameter spaces associated to
these collections. The analysis of the paper relies on using the specification property to
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propagate this result to measures with support in 7' M, modeled on closed geodesics.
For the analysis to work, we must restrict to closed periodic orbits with some uniform
regularity. For this, we use structure provided by the work of Burns, Climenhaga, Fisher,
and the first named author [3]. To obtain the first order behavior of measures on these
orbits, we need their growth rate to be comparable to the entropy, and that there is a
unique measure of maximal entropy. The first point is provided by [3] and the second
point was originally proved by Knieper [16].

While we are indebted to DSZ for the strategy and philosophy of this paper, our
analysis requires several novelties. In DSZ, the focus is on discrete-time dynamical
systems with uniform specification. They establish the Lindeberg CLT in their general
setting, but do not explore how to verify the Lindeberg condition in examples. The
novelty in the current work is that we deal with with non-uniformity and continuous-
time, we apply it to geodesic flow in non-positive curvature, and we verify the Lindeberg
condition from a natural positive variance condition. To achieve this, there are significant
technical differences. A key difference is that our construction involves looping round
closed geodesics multiple times. The reason that this is necessary is because in the flow
case, it is necessary to construct the measures using segments of orbit rather than point
masses. We lose independence between adjacent orbit segments due to the types of
averages we are forced to consider. The looping construction is designed to compensate
for this loss of independence, which is key to the whole approach. Looping brings new
technical issues—notably, the small differences in periods of the closed geodesics in
Per';e(Tl — &1, T7] add up. This is why we require §; — 0, and is one reason that the
choice of constants in our construction is subtle. A by-product of our construction is that
it easily generalizes to the case of equilibrium states, which was not clear in DSZ.

The paper is structured as follows. In Sect. 2, we recall relevant background infor-
mation. In Sect. 3, we describe our construction of measures from closed geodesics.
In Sect. 4, we state and prove our main results. In Sect. 5, we show how to check the
Lindeberg condition under a suitable positive variance condition. In Sect. 6, we discuss
various extensions of our main results.

2. Background
2.1. Preliminaries, entropy, and pressure. We consider a continuous flow (g;) on a
compact metric space (X, d). Fore > Oand ¢ > 0, and x € X, we define the dynamical
(Bowen) ball to be

Bi(x,e) ={y e X :d(fsx, f;y) <eforall 0 <s <t}

For a continuous function f : X — R, we write

t
F(x,t) = / f(grx)dr.
0
We also write
t
F(x,[s,t]) = F(gsx,t —5) = [ f(grx)dt

We use analogous notation when we use other lower case letters for an observable. Thus,
for example, for an observable h, we write H(x, t) = fot h(g.x)drt.
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We consider collections of finite-length orbit segments C C X x [0, c0), where
(x, t) is identified with the orbit segment {g;x : s € [0,7)}. For t > 0, we define
C={x € X,(x,t) € C}. Wesay E C Z is (¢, €)-separated for Z if forall x, y € E,
y ¢ Bi(x,€).

For C C X x [0, 00), the entropy h(C, €) at scale € is defined as

h(C,€) =lim sup ! logsup{#E : E C C; is (t, €)-separated},
—00
and h(C) = lime¢_ 0 h(C, €). For a set Z, we define h(Z, €) as h(Cz, €), where Cz =
{(x,t) :x € Z,t € [0, 00)}. In particular, 7(X, €) reduces to the standard definition of
topological entropy, see [21]. The Variational Principle states that /(X)) is the supremum
of the measure-theoretic entropies /,, taken over flow-invariant probability measures. A
measure achieving the supremum is called a measure of maximal entropy.

2.2. Central limit Theorem. The Central Limit Theorem in dynamics describes the sec-
ond order behavior of the sequence of ergodic sums/integrals. The classical CLT for a
continuous flow equipped with an ergodlc measure p says that for a Holder observable
f with [ fdu = 0, the sequence TF (-, t) converges in distribution to the normal dis-

tribution. This result was proved for hyperbolic flows by Ratner [20], and strengthened
by Denker and Phillip in [7]. See also Parry and Pollicott [18].

The classical Central Limit Theorem can be obtained using a variety of techniques.
We do not attempt to survey the literature here, but we recommend recent papers by
[1,5,8,9,14,17] for an excellent paper trail. One might expect the classical CLT to hold
in the setting of this paper, but none of these proof techniques are currently known to
apply. We also mention an interesting recent related result—an asymptotic central limit
theorem for lengths of closed geodesics in hyperbolic surfaces was recently proved by
Gekhtman, Taylor and Tiozzo [12].

Our result is based on the Lindeberg CLT, which is one of the most famous general-
izations of the classical CLT. We recall its statement in its original context of a sequence
of independent random variables. First we define the Lindeberg function for a probability
measure v and an observable &, and a constant ¢ > 0.

Definition 2.1. Let Z(¢) = Z(c, h,v) = {x : |h—fhdv| > c}. The Lindeberg function
is
Ly(h,c) = /(h —fhdv)zlz(c)(v)dv(v)

Recall that for a probability measure v on a space 2 and a function f : Q — R, the
variance o, (f) is defined by

ovz(f):/(f—/fdv)zdv:/fzdv—(/fdv)z. (2.1)

Theorem 2.2. (Lindeberg CLT for independent random variables) Let (2, v) be a prob-
ability space and let (X;){, be an independent sequence of random variables. Let o;

be the variance of X;, and let s,% =y, al.2. Suppose that for every € > 0

lim — Z Ly(X;, esp) = 0. (2.2)

n— 00 S
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Then é Z:':l (X; — f X;du) converges in distribution to the standard normal distribu-
tion.

The hypothesis (2.2) is called the Lindeberg condition, see e.g. [11]. We will formulate
our results using a dynamical version of the Lindeberg condition on periodic orbits,
following Denker, Senti and Zhang [8].

2.3. Geometry and dynamics of the geodesic flow. We recall the necessary background
from [3] on geodesic flow for non-positive curvature manifolds. The arguments in this
paper use the dynamical structure obtained there, rather than direct geometric arguments.
We refer to [2,10] for general geometric background.

We consider a compact, connected, boundaryless smooth manifold M equipped with
a smooth Riemannian metric g, with non-positive sectional curvatures at every point. For
each v in the unit tangent bundle 7'' M there is a unique constant speed geodesic denoted
Yo such that y,(0) = v. The geodesic flow (g;);cr acts on T'M by g;(v) = (3,,)(1). We
equip 7'M with a metric d given by

d(v, w) = max{dy (yu(t), yu()) | 1 € [0, 1]}, (2.3)

where dys is the Riemannian distance on M. The flow is entropy expansive, which
implies that for sufficiently small €, h(X) = h(X, €). We call such a scale an expansivity
constant. Any positive € which is less than one third of the injectivity radius of M is an
expansivity constant.

Given v € T' M, stable and unstable horospheres H: and H" can be defined locally
using Jacobi fields or using a standard geometric construction in the universal cover.
The horospheres are C? manifolds. The (strong) stable and unstable manifolds W5, W
are defined as normal vector fields to H;), H}/, and we can define the stable and unstable
subspaces E¥, E“ C T,T' M to be the tangent spaces of W?, W respectively. The weak
stable manifold W is defined in the obvious way so that its tangent space is ES @ EV,
where E 8 is the space given by the flow direction. The bundles E®, E* are invariant, and
depend continuously on v, see [10,13].

We define the singular set Sing as the set of v € T M so that the geodesic determined
by v has a parallel orthogonal Jacobi field, and Reg to be the complement of Sing. We
say that M is rank one if Reg # . The Jacobi field formalism is used extensively in [3],
and we refer there for full definitons.

A key piece of geometric data which is at the heart of our analysis is a continuous
function A: T'M — [0, co) defined in [3]. Roughly, A(v) is the smallest normal curva-
ture at v (with sign chosen to be non-negative) of the stable and unstable horospheres
centered at v. If A(v) > 0, then v € Reg. We refer to [3] for the precise definition and
more geometric context. Let Reg(n) = {v : A(v) > n}. If v € Reg(n), then we have
various uniform estimates at the point v, for example on how distance scales in the local
stable and unstable manifolds. These are the properties exploited in this paper. We recall
the precise statement obtained on local product structure.

Lemma 2.3 [3, Lemma 4.4]. For every n > 0, there exist § > 0 and k > 1 such that
at every v € Reg(n), the foliations W", W have local product structure with constant
K in a §-neighborhood of v. That is, for every € € (0, §] and all wi, wy € B(v, €), the
intersection WY_(w1) N WS (wy) contains a single point, which we denote by (w1, wa],
and

d"(wy, [wy, wal) < kd(wy, wa),
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d (w2, [wy, wa]) < kd(wi, wa).

Uniformity of the local product structure on Reg(#) is used to obtain the specification
property for orbit segments starting and ending in Reg(n). Precisely, we define the
collection of orbit segments

C) == {(, 1) : A(v) = n, A(gv) = n}.
We have the following result.

Theorem 2.4 [3, Theorem 4.1]. For each n > 0, the collection of orbit segments C(n)
has the specification property. That is, given p > 0, there exists T = t(p) such that for
every (x1, 1), ..., (xn, ty) € C and every collection of times t1, ..., Ty—1 Witht; > T
foralli, there exists apointy € X such thatforsy = v = Oandsj = Y !_, ti+2{;01 T,
we have

ij,1+Tj71(y) € Btj(-xj9 IO)
forevery j e {l,..., N}

We recall some other results that we will use from [3] and [6]. We often consider the
following set of orbit segments

: Jo Mgu(v))du -
t

Bm) = {(v, 1) n}.

Note that A vanishes on Sing, so any orbit segment in Sing x [0, 00) is a member of

B(n). It was shown in [3, §5] that lim, .o h(B(n)) = h(Sing). For the class of geodesic
flows under consideration, it is known that

h(Sing) < h(T'M).

This is easy in the case that M is a surface, since 2 (Sing) = 0. However, this entropy gap
is a highly non-trivial fact in higher dimensions. It was first proved as a consequence of
Knieper’s work [16], and a direct proof is given in [3]. The geodesic flow has a unique
measure of maximal entropy, known as the Knieper-Bowen-Margulis measure, which
we denote by UKBM-

2.4. Counting closed regular geodesics. For a small § > 0, we define Perg(T — 6, T']
to be the set of closed regular geodesics which have length in the interval (T — &, T'].
For y € Perg(T — 6, T], we write |y| for its length, and v,, for an element of T'M
chosen to be tangent to y .

Recall from Proposition 6.4 in [3], for any § > 0, there exists 75 > 0 and

B=pB@) ~e T 24)
such that for all 7 > Ts, we have

?e” < #Perg(T — 8, T] < '™, (2.5)
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We take Ts — o0 as § — 0 (and the proofs of Proposition 4.5, Lemma 4.7 and
Proposition 6.4 in [3] show that this is necessary). For n > 0, we define the uniformly
regular closed geodesics as

[yl
Perh (T — 8, T]:={y € Perg(T — 6, T]: /0 Agsvy)ds = |yIn},

that is the collection of elements in Perg(7T — §, T] whose average of X is at least

n. Writing A’ := M, we fix n > 0 throughout the rest of the paper such that
h(B(2n)) < h' < h. We also choose € so that 4¢ is an expansivity constant. In particular,
h(TYM, 4¢) = h. Notice that we can choose € smaller if necessary.

Define §' := ﬁ where Apax := max{A(v) : v € TIM}. We now argue that for §

sufficiently small, #Peryl’e( T — 8, T] is bounded uniformly from below.

Lemma 2.5 For any § < &', there exists Ty = Ty(8, n) such that for all T > Ty,

IBTh

#PerR(T —34,T] (2.6)

Proof Recall that we fix 1 such that 2(B(2n)) < h'. It follows that there exists Tjj =
Ty(n) > Osoforall T > T, there are maximal (T, 4¢)-separated sets E7 for B(2n) so
that #E7 < eTh" and also so that 7" < %e”’. Given § € (0, §'), define Ty(8, n) :=
max{T/(n) Ts, 1}. With a fixed n, since Ts — oo as § — 0, we observe that T (8, n) =

Ts when 4 is sufficiently small. We write PerR"(T 8, T]:=Perg(T—6,T] \PerR(T —

6, T].ForT > Ty and any y € PerR"(T — 8, T1, we choose a vector v, € T'M such
that it is tangent to y at some point. Due to the difference in the period of elements in
Perg(T — 6, T], different choices of v, may lead to variations in the precise value of

) A(gsv,)ds. However, we have

T
f Mgsvy)ds < [y1n+ 8 Amax < Tn+1 < 2T, @.7)
0

which shows that we always have (v, , T') € B(2n). By the choice of 4¢ and Sect. 6 in
[16] we know elements in Perg (T — §, T] are (T, 4€)-separated, which in turns shows
that Per (T — 8, T < e™" < £eT". As a consequence, we have

#Per’}e(T -6, T = #Per'}e(T -6, T]— #Per;"(T —46,T]
>éeTh_£eTh=£eTh'
T 2T 2T
O

From now on we always assume that § and T satisfy the conditions in Lemma 2.5.
By the definition of Per"R(T — 4§, T], if y is an element in Per% (T — 8, T], there must
be some t € [0, T') such that v = y(¢) € Reg(#n). Since v is periodic, we know that
(v, ly]) € C().

For each y € Per"R(T — 8, T], we choose v = v(y) such that v € y N Reg(n). We
let

Es(T) = {v(y) : y € Perp(T — 8, T1},
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recalling that Es(T) is a (T, 4¢)-separated set. From the definition of Es(7) and (2.6),
we know that

#E5(T) = #Perp(T —8,T] > %eﬂ'. (2.8)

We will often work with the collection of orbit segments
{(v, T) :v e Es(T)}.

Here we use the same T across all v € E5(T") so we can compare lengths uniformly—
note that T differs from the least period of y (v) by at most §.

2.5. Growth of variations on C(n). For a collection of orbit segments C, any § > 0, T >
0and h € C(T'M) we define

wh,T,s8,C) = sup |H(u,T)— HWw,T)|.
(u,T)eC,veBr (u,8)

The following analogy of Lemma 5.6 in [22] holds for w, and is a crucial estimate in
the construction given in Sect. 3.

Lemma 2.6 . Let C(n) be the collection previously defined. Then for sufficiently small
8o, forany h € C(TIM), we have

i @ T.%0.COn/4) _ (2.9)
T— 00 T

Proof This proof is parallel to the one of Lemma 5.6 in [22]. Choose the same 7 as
before and §( such that

(1) Reg( '7) has local product structure at scale 45, with coefficient k = K(3" 48) >
1. Take 8o = 8;/«.

(2) for any u,v € T'M such that d(u,v) < k8, we have [A(u) — A(v)| < 7. In
particular, we have B(Reg(%”), «k80) C Reg(%) and B(Reg(%), k89) C Reg(}).

Consider (u,T) € C(3n/4) and v € Br(u,ép). By the local product structure,
there is a vector ug € T'M such that uy € W* 50 () N Wég‘ (v). Then there exists
s € (—«dp, k80) such that gs(up) € W,ﬁ‘ao(v) Observe that d(gru, grv) < &,
d(gru, grug) < k8o, d(gruo, gr+sito) < kdp. Combining the above three inequal-
ities together we have d(grv, gr+suo) < 3k8p. As gr+suo € W"(grv), we know
d"(gr+sto, gTV) < 3K260, therefore d“ (gruo, grv) < 442 8o = 4/(8/ In other words,
gruo € Wy g (gru) N Wy (87(v). As d(gru, grv) < 8o and gru € Reg(3),
by the local product structure we know grug € 50(gTu) N W,fgo(grv) In par-
ticular, grisup € ;«30(87”) We conclude that g;5ug € KBO(gtv) and g;ug €

Kso(gt”) N WK‘g‘ (g:v) for all t € [0, T]. Now, for any fixed h € C(T'M), we can
bound the variation of 4 over (#, T) and (v, T) by variations along the stable, cen-
tral and unstable directions. To be more precise, we have |H(u,T) — H(v, T)| <
|H(u,T) — H(uo, T)| + |H(uo, T) — H(gsuo, T)| + |H(gsuo, T) — H(v, T)|. From
the definition of C(3n/4) and property (2) of 8y, we know A(u), A(gru) > %T" and
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A(V), A(gTV) > g, so(v,T) e C(%). Therefore, to prove (2.1), it suffices to prove the
following

ws(h, T; k8o, 3n/4)

lim =0 (2.10)
T—o00 T
and
h,T;kéy,n/2

fim 2o Tic%0. /D) _ @2.11)
T—o00 T

where

wg(h, T; kdp,3n/4) = sup [H(u,T) — H(v, T)|
g1 (w)eReg(3n/4), veWSs (u)
and
wyu(h, T; k80, n/2) = sup [(H(u,T)— H(v,T)|

ueReg(n/2),veg—r( ,(ao(gr(u)))

Let us prove (2.10). Consider 4’ € T'M such that gru’ € Reg(3n/4) and v/ €

w; 50 (u'). For any € > 0, by uniform continuity of 7 on T'M we know there exists
§ > O such thatif v, v, € T'M, d(vy, vp) < $, then |h(v1) — h(vy)| < €. Meanwhile,
property (2) of 8o shows that any vector ¥ lying on the local stable arc connecting
u’ and v’ satisfies A(g70) > g Following the proof of Lemma 3.10 in [3], for any

0<t <tp <T wehave
d*(gnu', gnv') = "G5 (i g, v)). (2.12)

Since d* (u’, v ) < K80, by (2.12) we have d*(g,u’, g;v') < x8pe /%, By wr1t1ng
2 log(" 8")) /1 as 7 and assuming that T > T (which is possible since the choice on T

does not depend on T and T approaches 00), it is easy to see that d(g.u’, giv') <
d*(gu’, g,v/) < §fort e [T T]. Therefore, we have |Hu',T) — H(W',T)| <

\Hw', T)—H ', T)|+|H(gTu T—T)—H(gsv', T—T)| < 27||h|[+(T —T)é, and

this holds for all such u’, v’ and T > T, which shows that lim7_, oo @s(h.Tixdo,30/4)

By making € arbitrarily small, (2.10) is proved. (2.11) is proved similarly by replaging
3n/4,n/2 with n/2, n/4. ]

The small § in the above lemma can be chosen so that € < §y < &', and we will do
so in §3. Recall € is a choice of scale so that 4¢ is an expansivity constant, and can be
chosen arbitrarily small, so we can ensure that it is chosen smaller than .

3. Construction of Measures

We now construct sequences of measures that converge to ukpMm, and are reference
measures for our CLT. Recall T and §( are chosen as in Lemmas 2.5 and 2.6. We start
by constructing a sequence of 4-tuples (77, k;, 8;, C)jen as follows.

Hypothesis 3.1 We choose sequences T; € (0,00), k; € N, §; € (0, 8y), and C; € N
which satisfy the following relationships:
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(1) Foralll € N, T; > max{Ty(8;, n), 1}
(2) Ty 4 00, g5y 1 00 and ki 1 00

(3) ki6} L 0 and Y& | 0.

Sequences which satisfy these conditions can be easily found by first choosing &;, then
T;, then k; and C;. For each [, let

E; .= E5 (1))

be a (7}, 4¢)-separated set chosen by following the procedure described in Sect. 2.4.
Each x € E; corresponds to a regular closed geodesic y (x) with least period in the
interval (7; — &;, T;]. We write t = ¢(x) for the period of y (x), and we recall that by
construction (x, 1) € C(n).

For each [ € N, we consider Elk’ , which is the Cartesian product of E; of order k;.
By the specification property on C(7) at scale €, we define a sequence of maps {71;};eN
: Elk’ — T'M as follows. The map 7; sends x = (x1, x2, ..., Xk,) to m;(x) by finding
a point which tracks the periodic orbit defined by x; for C; times, and then tracks the
periodic orbit defined by x, for C; times, etc. The transition times (which depend on
the choice of x) are chosen so that times line up correctly at the start of each prescribed
periodic orbit, independent of the choice of x.

More precisely, let x = (x1, X2, ..., Xk) € Elk’. Since each (x;, t;) with x; € Ejis a
member of C(n), each such orbit segment has the specification property at scale €. We
use this property to construct a point z = m;(x) such that

(1) dC[tl (val) <€,
(2) dC[tz (gC1T1+MZ» x2) <€,
3) dei(g2(¢i1+M) 2, X3) < €,

and continue this way so that

dey (8Gi—1)(CiTi+M) Ty Xi) < €

forall 1 <i < k;. In the above, M = M (n, €) is the transition time in specification for
C(n). We note that the transition time between looping around one periodic orbit to the
next is bounded by M from below and C;T; — C;(T; — ;) + M = C;6; + M from above.
We define

P = JTI(Elkl).

Since E; is (Tj, 4€)-separated and we are applying specification at scale €, for x =
(X1, X2, ..., XK;) andX =1, Y25 Vk) € (El)k’, we have

(1) Ifxy = y1, then de; (73— (m1(x), m(y)) < 2€,
(2) Ifx1 # y1, then dr; (m;(x), m(y)) > 2e,

and similarly for each i € {2,..., k;}. In particular, #P; = #Elkl and the set P; is
(kiCiTy + (ki — 1) M, 2¢)-separated.
We define a measure m; by uniformly distributing mass over Ej, i.e. we let

1
my = — Sy
l #E, v
veE
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Now define p; to be the self-product measure of m; on Elk’ , equivalently the uniform
k L .
measure on E;", which is written as

I, ::Lk, Z Oy

We write L(v, t) for the natural measure along the orbit segment (v, t), in the sense
that for any continuous function ¢, fd) dL(v,t) = f(; ¢ (gsv)ds. For each [, define a
sequence of probability measures v; on 7' M by

1

V] = ——
#P;

1 1 1

lo = —p > L@ 1.
yeP I e E]kl
Note that although v; puts mass along only the orbit segment of length 7;, we will be
interested in evaluating potentials of the form F (-, [s, t]) with respect to v; with s < ¢
taking carefully chosen values in the interval [0, k;C; T} + (k; — 1) M]. Integrals of these
functions thus incorporate information along the whole prescribed length of the orbit
segment. We often state our results with time running up to k;(C;T; + M), since this is
a slightly simpler expression and the extra run of time M makes no difference. This is
the time S; denoted in Theorem A.

Lemma 3.2 . Given (Tj, ki, 61, C))1en satisfying Hypothesis 3.1 the corresponding
sequence of measures v; converges to the measure of maximal entropy [LKBM.

Proof Tt is convenient to define another sequence of probability measures on 7'M,

{1 hien by uf = #LE[ ZUGE] %L(v, T;). We show that uj converges to uggm when

[ — oo. Itis not hard to observe that any weak™ limit measure of )" is g;-invariant for
all ¢ since §; | 0 and 7; 1 oo. Recall that T}, is the time defined at (2.4). We know E; is
(T;, 2¢)-separated, h(2¢) = h and

eiT‘Slh
"y > lim = log(——-¢"").
I—o00 Tj

1 1
liminf — log#E; > Ilirglo 7 log( 20T,

,3 (61) eT]
I—oo T 2T,
Observe from the proof of Lemma 2.5 that 7y (8;, n) = Ty, for/ sufficiently large. Thus by

Hypothesis 3.1, forany small ¢’ > 0, 75,/ T; < €’ for large enough/, so e Tl 5 o=€'Tih,

Thus

~Ty,h 1 (1—€NTih

1 e
lim —1 ity > lim — log(——=—) = (1 — €)h.
Jim o log(Fap-e™) = lim 2 log(—mr—) = (1 =€)

From the choice of €', it follows that lim;_, o % log#E; = h. The proof of the second

half of variational principle in [21] will imply that ;' converges to pkgm in the weak*-
topology. Therefore, to prove the statement in the lemma, it suffices to show that for any
f € C(T'M), we have lim, o0 [ fdu} = lim; o0 [ fdvr.

Notice that for a fixed x; € E; and any (x2, ..., xg,) € Elk’_l, we have
|F(m(xt, ..o xi), T)) — F(x1, )| < o(f, T, €,C(3n/4)). (3.1

Here the scale 37/4 is by property (2) in the choice of §p.
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Averaging over all (x2, ..., x,), we have

: > (Feu( ), i) — F(x1, T1)
P (X1, X2, o ooy X)), — F(xy,
FEhT 1(x1, x2 k) 11 1, T1

X2, Xl
1
3.2
= WE)T > Fuixa, . ..x). T) — Fxr, T (3.2)
X2, Xy

_ o T1,€,C3n/4)
a 1

where the second inequality follows from (3.1). On the other hand, it is not hard to show
that

lim |/fdu*—ffdv1| = lim = Z Vi(x1) (3.3)
|—00 ! I—o0 |#E] ’

x1€E;
where the variation term V;(x) is defined as

1

Vilxy) == GE =T

Y (Fmen,xa, .. x), ) — F(x1, Th)).

X250y X

By (3.2), for each x; € E; we have |V;(x1)| < %16(3”/4» By plugging this into

(3.3), observing € < &g by property (3) of 6o and applying Lemma 2.6, we get

,T1,€,C(3n/4
lim |/fdu;‘— Fdv| < lim 2T €COD) _
l—00 [—o0 T
which concludes the proof of the lemma. O

3.1. Variance. Given a function f € C(T'M), we consider F (-, Tj) : E; — R defined
in the obvious way, i.e. F(v,T}) = fOT’ f(grv)dt for v € E;, and we consider the
variances

2

1 1
of 1= o (FC.T)) = o= 3 | F@ ) = o ) F. T))
! xekE; ! xekE;

Terms of the form klal2 appear in our version of the Lindeberg condition. We let

| @=aC |
Q"{ T Jl'

The interpretation of this constant is that it is chosen so that if we spend Q;T; time
looping around one of the closed geodesics then we have definitely not exceeded C;
times the actual length of the geodesic, which is the time at which we move on to
approximating the next closed geodesic. For fixed [ > 2 and each p € [1, k;], we let



1226 D. J. Thompson, T. Wang

tp = (p — D(CiT; + M). For g € [0, Q; — 1], we define a family of function Fll,’q by
averaging f over the time interval (7, + qT}, 1, + (¢ + 1)T}], that is
| tp+(q+D)T;
F, () = F(g,v,[qT;, (g + DTi]) = F(g1,+q1,v, T1) = / S (grv)dr.
tp+q Ty

We also consider this function summed over the range of g. Note that

l Q=L (gD T tp+QITy
>r,m=Y [ P = [ fa.
q

q:O p+qT/ P
Thus, we define F' ;, by averaging f over the time interval [z, ¢, + Q;T;], that is

Fl == F(g,v. QiT)
We define

st = 0u(Fp) =D ou (O F,
p p q

where 1 < p <k;,0 < g < Q; — 1. This quantity is the relevant variance quantity for
the measures vy, recording the sum of variances of each prescribed closed geodesic for
0, times. To emphasize what goes into this variance quantity, we observe that it can be
easily computed that

1 T [ ptp+QiTi 2
(F)—FHZ 7 / / f(gswey)ds | dt

YEP
2

i tp+Q1TI
- #PIZTI / / f(gswy)dsdt |

yeP

and summing the above expression over p from 1 to k; gives slz.

3.2. Basic estimates. We have the following comparison between averages along the
total number of loops around a fixed x;, and the corresponding orbit segment along

(X1, ...y XK))-

Lemma 3.3 . Fora Holder continuous potential function f, any x € Elk’ ,anyt € [0, T7]
and p € {1, ..., k}, there exists K = K (f) such that

|Fp (8 (i () — Q1F (xp, )| < 2K Ty + (2c€ + 28,00 £ 1.

Proof Let x = (xi,...,xy) € E)', and let z = m(x), and we fix I < p < k. By
construction, we have

dcyt(x,) (8(p—1)(CiT+M) 2 Xp) < €.

Recall that for each x € Ej, we have (x, f(x)) € C(n), where t(x) € [T} — §;, T;] is the
least period of the periodic orbit defined by x. In particular, since each lap round such
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a periodic orbit will carry a definite amount of hyperbolicity, the distance between the
orbit of (g(p—1)(c;7+m)2. Ci1T}) and (xp, C;T;) is much smaller than € when [ is large.
This is the key idea in getting the desired estimate.

More precisely, foreach/ > 2,1 < p < k; and x € Elk’, following the proof of
Lemma 2.6 we know there is some u, = up(x) such that u, € T'M and

8sUp € W;je (gs+th N W,fg(gsxp)
for all s € [0, Cjtp41]. In particular, it holds for all s € [0, (Q; + 1)T;] by the definition

of Q;. There is s, = s5,(x) such that s, € [—«e, ke] and gs,+sup € Wi (85x)). Fix
such /, p and for any ¢ € [0, 7;] we want to control

|Fl(812) — QiF (xp. T\
which is bounded above by the sum of the following four terms

(1) |F}(:2) = F(gup, QT

() |F(giup, QuT) — F(8ras,up, Q1711

(3) |F(graspup, QiT1) — F(gixp, QiT))|

) |F(grxp, QiT)) — Q1F (xp, T)I.

Let us analyze these four terms. We begin with the first term. Suppose f satisfies | f (x) —
FO)| < Lod(x, y)*. We know for any u,v € T'M, |A(u) — A(v)| < % whenever
d(u, v) < d8p. Therefore, foreach0 < g < Q; — 1, by Lemma 3.10 in [3] we have

(q+1)T;

|F), (8:2) — F(giup. [qTy. (g + DT < fT | f(&ras+1,2) — [ (&rastp)lds
q1ir

(g+DT;
= LO/ d(ras+1, 2 Grestp)ds
qT

= LOTId(qulHHva 8qT1+zup)a

_qTna
< LoTikee 2

We obtain
0i1—1 0i1—1
_aTpne LoTike
| Y Fpg(aiz— Flaup, QDI < ) LoTikee™ 2 < ———— < KT,
q=0 q=0 1—e 2
where K = LO—KTW is a constant (Recall that 7; > 1 for all /). This gives an upper
l—e 7

bound on the first term.
The above argument can be repeated along the unstable direction to control the third
term. We get

_ Q@ =1-¢)Tyne
|F (gr+s,up, [qT1, (g + DTID) — F(gixp, [qT1, (g + DTID| < LoTikee 2 )
and thus

011 (-1
_ Qi -1-9)Tyna
|F(8rasyttp, Q1)) — F(gixp, QT < Y LoTikee™ 2
g=0
LoTike
= Tm < KT

1—e 2
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To estimate the second term, we observe that

|F(grup, Q1) — F(&ras,up, QT < 2| fllsp < 2cell f1I.

To estimate the fourth term, we observe that | F'(g;x,, Q1T;) — Q1 F (x), T7)| is bounded
above by

Q- r@+DT 7
> / F@uesxp)ds — | f(gixp)dt| <28,01lIf]I.
q=0 qT) 0

where the lastinequality follows because x , has periodt (x) € [7;—4;, T;]. By summing
the estimates on these four terms, the lemma is proved. O

We also have the following basic comparison between integrals using v; and m;.

Lemma 3.4 . We have
|/F,édvz - QI/F(',Tl)de <2KTi+2cel fl+28 Qi f.  (3:4)

Proof The expression | [ F;,dw — Q; [ F(-, Ty)dm| can be rewritten as

1 |
FEE Z (E fo F,,(gs(m@))ds—QzF(xp,Tz)> :

X€E,

The results follows using Lemma 3.3. O

4. Main Theorem

Recall L, (h, c¢) is the Lindeberg function from Definition 2.1.

Theorem 4.1 Let (v))jen be a sequence of measures as constructed in the previous
section. Suppose f € C(T'M) is Hilder continuous with

liminf o7 > 0. (4.1)

[—o00

Then the Lindeberg-type condition

i Dtzpsh, LuFpys)
[—o0 S12 -

4.2)

for any y > 0, implies that for all a € R,

lim vy ({v: F, ki(C/Ty + M)) — [ F(-, ki(CiT; + M))dv, < a}) — N@).
s

[—00

4.3)

where N is the cumulative distribution function of the normal distribution N (0, 1).
Conversely, under the hypothesis (4.1), (4.3) implies (4.2).
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We also show in Lemma 4.6 that the conclusion (4.3) is equivalent to

i ({ CFQ, k(Ci T + M) — ki (C Ty + M) [ fdv
imuv|{v:

< a}) = N(a), (4.4)
00 (F (ki (CiTi + M)

[—o0

which has the advantage of being in the most elementary possible terms.
The proof of Theorem 4.1 is based on comparing p; and v;. The measures p; are

product measures supported on Elk’ (more precisely, the measures w; are products of
the measures m; on E;) and the version of the results we want can be obtained there by
considering these objects as sequences of independent random variables and appealing
to classical probability theory. Our main theorem is proved by showing that the relevant
quantities for v; are comparable to corresponding quantities for w;. The starting point
for our main theorem is thus the following theorem on the sequence of measures (u;).
We give the Lindeberg condition in terms of the uniform measure m; on E; since this is
the most elementary object under consideration.

Theorem 4.2 . The condition

i Lml(F('v 1), yvkior)
1m B ==
=00 o;

0. (4.5)

holds for any y > 0 if any only if

SIL P T~k [ FC Tdm

This result can be obtained formally using an analogous statement of Denker-Senti-
Zhang for dynamical arrays. It can be obtained quite easily from the classical Linde-
berg CLT [11]. We give a short formal proof based on verifying Denker-Senti-Zhang’s
hypotheses [8, Proposition 3.3].

lim py Wi, ..., ) = N(a).
[— o0

(4.6)

Proof We follow the terminology of [8, Proposition 3.3]. We consider the product of k;

copies of a finite set. We consider a function Gy ; : E;(’ — R which depends on the i
component. That is,

Gri(xt, ..., x) = G i(x;).

Let §12 = Zf’: | 051 (G1.i). As stated in [8, Proposition 3.3], it follows from Lindeberg’s
CLT for independent random variables that the Lindeberg condition holds

k .
Yo L (Gri, v$)

lim > =0 foranyy >0 4.7)
=00 S
if and only if (G, ;) is asymptotically negligible
2
0,,(GLi)
lim max £ = (4.8)

2
[

[—>ocol<i<k,  §
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and for all a € R,

ki L ].(I .
llim I ({(xl, LX) > ic1 Gl I(ZIZI Grid < a}) = N(a). 4.9

51

For our statement, we set Gy ; (x1, ..., xg) = F(x;, T;) forall 1 <i < k;. We observe
that for each i, we have

o (x > F(xi, T) = o, (F(-. T)).

This is because the first expression is

1 1

EZ F(xi,Tl)—HzF(xi,Tl) ,
I kp 1 kp
XEE, X€E,

s0 using that #E)" = (#E;)(#E;"~"), and that

Y Fi. Ty =#E""" Y Fxi. T,

k .
ieE,I x;€E;

the result follows. Thus, 312 = klalz. The expression §1_2‘7;31 (G;i) in (4.8) reduces
to 012 / kzolz. Thus asymptotic negligibility is trivially satisfied. The condition (4.7)
clearly simplifies to (4.5). We obtain the desired statement, noting in (4.9) that

f(Zf-q:l Gri)dw = Zf-q:] [(x— FGxi,T))dw =k [ F(-, T)dm;. O

The normalization quantities in (4.6) are stated in terms of m; to keep them in the most
elementary terms. We note that these quantities can be thought of as quantities depending
on the product measure p; (rather than m;) since the proof above makes clear that

ki

[ 3 Fetdi =k [ Fe T,
i=1

ki
> op @ — F(xi, T) = kiof.

i=1

We now prove a key lemma we will need in order to use Theorem 4.2 to describe behavior
of the sequence (v;). For x € Ej, define

Doy () i= F(x,Tz)—/Fc,Tz)dml.
Forl <p<k,tel0,T]andx € Elk’,deﬁne
Duy(x.t: ) 1= Fyaim() = [ Fhau.

and define

Al (x, 1) := Dy (x, 15 p) — Q1D (x)).

These quantities satisfy the following properties.
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Lemma 4.3 . Forallt € [0, Tj] and x € Elk’, we have

|AL(x, )] < 2QKTj +2ke|| f1| + 28 QI 1.
Dy, (x. 1: p)* = AL (x. O[AL (x. 1) +2Q1 Dy, (x. p)] + QF Dy (x)*.

Proof The first property follows directly from Lemmas 3.3 and 3.4. The second property

holds because
Dy (x. t; p)* = Dy/(x.t; p)* = QF Dy (x)* + QF Dy, (xp)?
= AL (x. DDy, (x. t: p) + Q1 Dy, (xp)] + OF Dy, (x)*
= AL (x, O[AL (x, 1) +2Q1 Dy (x, p)]+ Q7 Dy (x)°.

oy (F})

Q% ;T
Proof Observe that we can write

1 2
Qjof = e Z (QIF(xval)_ QI/F(',Tl)dmz>

k,
! xEEll

k, Y Q1D (xp))* = k, Z / (Q1 Dy, (xp))7dt.
xeE l

Lemma 4.4 lim;, » = 1l uniformlyin1 < p < k.

#E
erh

We thus observe using (4.10) and (4.11) that

T

> L Dy .1 2 - 02}

2 [ 2.2
o, (F,) —Qjof = —
7 P 1% kl
#E, lez 0
X€E;

#Ek’ Zk Tl/ ((Dy, (x, t; PN — Q,Dm,(xp) )dt
X€e E’

#Ek, Z f Apx, D(Ap(x, 1) +201 Dy (xp))dt

1

:/<71/ Al (x, t)zdt) du1+# ; > Tz/ 201AL (x, 1) Dy (xp)dt

xeE!

1 T
< [ (?, / A, r)zdz) dpi +2Q; sup{| A}, (x, D)} f Dy, dm
0 x,t

1 T
=/ (71 fo @A, ,))2d,> dp +20107 supl| Al (x, 1))
x.t

<AQKT +2cel fIl +28 011 FID)* +4Qio1 2K Ty + 2ke £ 1| + 28, Q1 £ 1.

By Hypothesis 3.1 on (77, k;, 1, C1)1en and our hypothesis that lim inf;_, o, 07 > 0, we

conclude that

o (Fl)— o?
e 070 =0
[—o0 Qlo'l
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Notice that the above upper bound on le (F, Iy — Q ol is independent of p. As a
result, the convergence is uniform in p and this ends the proof of Lemma 4.4. O

We obtain the following lemma as an immediate corollary.

Lemma 4.5 . The sequence sl2 =Y o (F Iy, satisfies

p %u
. S1
lim —— = (4.12)
I~c0 Qror/ki
We might also consider sl’ = o, (Z ) or s”2 = o, (F( ki(CT; + M))) as
natural substitutes for slz. We have the followmg result

/2 23
N
Lemma 4.6 . lim;_ o0 -5 = lim;_ o ’2 =1
l Si

2

Proof We begin by verifying hml_moi =1.Forany!/ > land 1 < p; < p2 < ki,
°l

we have
/ Dy, (x,t; p1) Dy, (x, t; p2)dy;

= / ((Qi Dy (xp,) + AL (£, )(Q1 Dy (xp,) + AL, (x. )))d ;.

The right hand side is the sum of four terms, among which f QIZDm,(xpl)Dm, (xp,)dv; =
0,and [ (Q; Dy, (xp, )IAlp2 (x, Dldv; < 20701 2K Ty +2xce|| f1| +28; Qs f1I), which also
holds true when p; and p; are switched, and [ |Alp1 (x, t)Alm()_c, Hldv < 4QKT; +
2kel|l fIl +26: 01 ||f||)2. As a result, we have

2 . .
lim % 1l = 1lim 221§p1<p2§k1 f(DV[(Z)_Cv t; Pl)Dv,()_Ca t; p2))d‘)[
[—o0 Y [—o0 N
< lim 80101 2K Ty + 2ke| f1| + 28 Q11| £ ) + 4QK Ty + 2ke | f1| +28; Q1| £ )2
>0 s12
— lim 8Qi012K Ty + 2ke| f1I +28; Q11| £ ) + 4QK Ty + 2ke | f1| + 28, Q1| £ 1)?
[—o00 QlUl
=0,

where in the second last equality we use Lemma 4.5. The limit being 0 follows from
Hypothesis 3.1 on (77, k;, 61, C)1en and lim inf;_, 5, 07 > 0.

"2 "2
Now to show lim;_, o Ssllz = 1, it suffices to show that lim;_, o S’I/z = 1. Write

Aj(x, 1) i= Zl;le (’;(_C{)T(’E%)JrM) +0,1, f (8s+:71(x))dss. Notice that by the definition of
Q;,forany/ > land x € Elk’ we have

|81, D1 < ki ((Cr = QDT + M| fI] < ki(Ci + 2T + MDIIfIl. - (4.13)
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. k k
We write Dy, (x, 1) := Y| (Fp, (g ())— [ Fj(gm(x)dv) = Y- )_; Dy (&, 13 p).
As in the proof of Lemma 4.4, we have
"2 2
— 8 1 |

|s;

T
= #Ek, Z f Aj(x, 1)(A)(x, 1) + 2Dy, (x, 1))dt

T; T
- [(% i I(AZL t))2dt> dm+ Z / lZA,(x 1Dy, (x, 1)dt
l

er[

< (ki(Cy81 + 2T; + M)\ I f11)* + 2(ki (C18; + 2T, + M) £ 1])s/,

which in turns shows that

l//2
lim |L —
lilgo 51/2
im (ki (C18; +2T; + M)|| FID? + 2kt (Ci8; +2T3 + M)| £1D)s)
N 1/2
_ lim (ki (Cy81 +2T; + M)|| £11)? + 20k (C18; + 2T + M)|| £11) Quorv/ki
[—00 Q[2012kl
i KCTS +2k2C1 Q1018
[—00 leo'l2k[ ’

and therefore concludes the proof of the lemma. 0O

Applying Lemma 4.6, we can freely replace s; in (4.2) and (4.3) by s; or 5;’. Although
this is not used in proving Theorem 4.1, it allows us to reinterpret the conclusion. We also
observe that, in the conclusion, one can easily see that terms of the form f F(,k(CT+
M))dv; can be replaced with k;(C;T; + M) f fdvy.

‘We now prove the following statement where we compare the average of F along the
orbit segment of v over the time interval [0, k;(C;T; + M)] to its average over the sum
of the time intervals [z, 1, + O;T;].

Lemma 4.7 . For eachl > 2, define the functions

F,k(C/Ti + M) = [ FC ki(CT + M))dv,
S ’
Y, Fh) = [X, Fhdw

St

Al(v) =

B;(v) .=

where the sum is over 1 < p < k;. For any a > 0, we have

lim v;(v : |A; — Bi| > a) =0.
[— 00
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Proof For any constant a > 0, we have

. _ f |A; — Bildv,
lhm v :|A(v) — Bi(v)| > a) < hm
—00

. 2kl(C13z +M +27))| 1
< lim
[—o00 as|
i 2k (Cror + M +2T) || f |l
= l1im

N ST

lim 2k (Ciép + M +2T)| f |l

[=o0 a,/k lealz

— Lm 2kiéill £l (2M+4Tl)\/k_l||f||
I—o00 afal aQjo;

=0.

In the above calculation, the second line follows from

Fu.k(CiTi+M) =) F,
P

<kCTi+M—- 0/ IHIfI

< ki(CiTi+ M — ((Ti — 8)C, T, = 2T £
= ki (C18 + M +2T)| £,

the fourth line follows from Lemma 4.4, and the fifth line converges to 0 by Hypothe-
sis 3.1 and lim inf 012 >0. O

Lemma 4.7 is the reason we consider sums of the form Zkl: W F 117 We now show that
the CLT conclusions for p; and v; are equivalent. For the following proofs, we define a
function Y, : g[o,T,]m(E[k’) — Rby

Yp(gsmi(x)) = F(xp, ) — /(J_c — F(x;, T)))dpu; = Dy (xp),

and we note that Y\ _, ¥, (gem1 () = Y, F(xp. T)) — ki [ F(-. Tydmy.

Lemma 4.8 . The sequence (vy) satisfies the CLT (4.3)

CFQ k(GT+ M) — [ FC ki(CT + M))dy <a}) = N(a)

lim v;({x
[—o00 N

if and only if the sequence () satisfies the CLT (4.6)

ki
1 FCp, T)) =k | F(-, Tp)dmy
Jim g |G ) 2pmt PO / <all =Na.
— 00
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Proof First we observe that by Lemma 4.5 and Lemma 4.7, and the fact that v; only
gives mass to points in g[o,T,]m(Elk’), that the CLT (4.3) holds if and only if

YN (FL— [ Fldu) )
a
Vki Qi1 N

lim v ({gs(m(i)) ix € Ef's € [0, Tjl, = N(a).

Observe that by (4.10) we have

ki ki
(Z(Fll, - / F},dvl) Y Z Yp) (gs (1 (x)))
p=1

p=1

ki
=D Ay

p=1
<2k QKT+ 2cell fIl + 28 Qull f1ID-

Fix b > 0. By Hypothesis 3.1 and (4.1), for sufficiently large /,
2ki QKT + 2ice | f1I + 281 Qull £1D
<
Vki Q101

and it thus follows that for sufficiently large /,

. k
| > (Fpy = [ Fpdv) = Q1 3 Yl - b} —q.

b, (4.14)

{gsm(x) : N

In particular,

. ) |Z];:1(Ffa_fF;l>dVl)_QlZl;:1 Yl
llirgo V] <Igsm(x) : N >b =0.

Therefore (4.3) holds if and only if

k;
1y, Y
. k; p=1"P
1 , ixeElsel0,T], —F—~ < = N(a).
lgg(}w([gm(z) x€E ,s€[0,T] N <a (a)

We are now in a position to reformulate in terms of ;. Since Y, does not depend on
the variable s, then either g;7;(x) belongs to the above set for all s € [0, 7;] or for no
s € [0, T;]. It thus follows from the definition of v; that

) ] ZI;;:] Y, 1 ) Qi ZI;;:l Y,
Vl({é’sﬂl(&)-mia —Elkl# ﬂl(i)-mfa .

Furthermore, by the definition of Y, we see that
k
1YY, b et FCep, T) =l [ F (-, Tydm
X)) ————<ag=1x€E": <ay.
Vki Qo ko

We can thus conclude that

ki
=1 FGp, 1) — ki | FC, Tdmy
lim py [ {x: r=l P f <a = N(a).
[—o0 4/klo’l

Thus, we conclude that (4.3) holds if and only if (4.6) holds. O
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All that remains to show equivalence of the Lindeberg conditions in Theorem 4.1 on
(v7) and in Theorem 4.2 on (7).

Lemma 4.9 . [fliminf;_ » o7 > 0, then the Lindeberg condition (4.2)

hm Zlfpfkl, Lv/(Fllya Vsl) _ 0
[— 00 slz o

holds for all y > 0 if and only if the Lindeberg condition (4.5)

li Lml(F('v T‘l)v VN k[O'[)
m 5 =
=00 o

0

holds for all y > 0.
Proof Let Zi(c) = Z(c, Fl,v) = {x : |F), — [ Fldv| > c} be the set from the
Lindeberg condition. Observe that

/(F,g - / Fldv)*1z,0,5)dvi

1
E}

Ly (F}. ys1)

1 rh
> 71/ Dy, (x, 15 p)* 1z, (e (0))dl1.
0

k,
iEEll

Using (4.11), we see that L,, (F ;,, ys1) is bounded above by the sum of the terms

1 1
5 X 7 [ ahntal w0 +20/D . .

1 ki

x€E,
and
1 L, )
— 2 7 | QD () Lz (gm0,
E, w1 Jo
XEE,

The first of these terms is equal to avzl (F Il,) — leal as observed in the proof of Lemma 4.4.
The second term can be written as

f(Ql Yp)zlzl(ysl)dvl-
Since sl_2 Ep(afl (Fll?) — Qfof) — 0 by the proof of Lemma 4.4, it follows that

. >, Ly(Fp,ys) . >, Q1Y) lzyspdvr
|—00 sl2 T lso0 S12 ’

We now work on the set Z;(ys;7). Since v;({g:(m;(x)) : x € Elk’,t e[0,T7]}) = 1,1t
suffices for our argument to consider the set

Zj(ys) = {g(m@) 1 x € E' .1 € [0, T, |F}, - / Fpdv| > ysi).
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Note that | F}, g, (1 (x)) — [ Fpdvi| = [Dy, (x, )| < |AL(x, 0)|+Q1]Yp (g (m(x))|. Thus

Zi(ys) Cgi(m) : 1¥p(&(m@)| = 07 (v — 1AL (x, D).

Recallthatsup&,{IA;(g, I} <2QKTi+kel|l f1+28; Ol f1) and lim;—, o W =1.
Therefore, by Hypothesis 3.1 and (4.1), for sufficiently large /, we have |Alp(£ , D] < %
forallr € [0, T}] and x € Elkl. It follows that for sufficiently large /,

Z)(ys) C g (m(x)) 1 1Y (g (m @) = ysi20) ")

(4.15)
C{egm) : 1Y, (g (m @) = (vorvki)/4}.

Thus for all large /,
[ @1z = [(@0,710d
= / (Q1Yp)* g, (ry 0117, (g1 )=y R 41 LV
= QIZ/sz((i—) XD L1, (e = oy 4 ML

2 2
=9 f Do CO™ Dy (00 2 o oy 41
= Q7 Ly (FC.T). yory/ki/4). (4.16)

Combining the above calculations, and using (4.12), it follows that if we assume (4.5),
then

1 2
> Lvl(jp,J/SI) < lim >0 J(QiYp) 1z, ¢5pdvr

lim < 5
[— o0 S; [—o00 S;
ki QF L (F(, T1), yor/ki/4)
< lim 5
[— 00 S
li Lm](F(v T‘I)v Valvkl/4)
= 11m B = O,
[— 00 o;

and thus (4.2) is true.
To check (4.2) = (4.5), note that L,, (F ;), y 1) is bounded below by the sum of

1 1 [h
- —/ Al (x, O[AL (x. 1) + 201Dy, (x. p)ldt,
EN— TiJo 7 b
l geEl’

and

1 | 5
— § — D 1 dr.
E,"l 7 fo Q7 Dy (xp) L zp5p (811 (x))

X€E;
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As in the discussion above, we have

k k
. Yot Ly (Fp, ys) . Y1 J(Q1Yp) 1z pspdur
[—00 512 T l—>o0 512 ’

Wealso have | F,g; (711(x))— [ Fhdvi| = —| AL (x, 0)[+011Y, (g (1(x))], which implies
that {g; (71(x)) : ¥, (g (m ()| = O ' (ys + |AL (x, DD} C Z(ysp).

Since |Alp (x,1)] < ysyforall x € Elk’ and ¢ € [0, T7] when [ is sufficiently large,
we have {g; (7 (x)) : |Y,(g:(m (X)) = 20; 'ys1} € Z](ys1). By (4.12), we have

(g (m@) : 1Yy (g (u )| = 4yvkior) C Zj(ys)-
Then following the same argument as in (4.16), we have
/ (O )P gt = OF Ly (FC-, Ty, 4y 1 /Ko,

which shows that

k
X Lu(Fpys) Ly (FC, T, dyor/R)
lim > lim .
[— 00 512 S (7[2

This shows that (4.2) implies (4.5). O

5. Verifying the Lindeberg Condition

Historically, the Lindeberg CLT is used in the case where an underlying probabilistic
mixing structure is available (see condition (I) and (II) in [15] for definitions of mixing
and K-property in probability). In those situations, given any L' random variable £, to

evaluate the distribution of a sum S,, f, one observes its partial sums (S,ljj f)ien, where
0 =ayp < bgp < a; < ---.Due to the mixing assumptions on the system, one can
expect ng [ to behave ‘independently’ for different i € N, if a;4; — b;, which is the gap
between i-th and i + 1-th segment, increases to oo uniformly for all i € N. To make S, f
well-approximated by the sum over ng f, it is natural to consider b; — a; > aj+1 — b;
for all i € N so that the effect from the gap is negligible. See Theorem 1.3 in [15]. In
particular, for f with finite 2+8 moments and o2 (S, f) tending to infinity, the Lindeberg
condition is satisfied. The mixing structure of the system allows one to argue that the
Lindeberg variance distributed by each segment individually is sub-linear compared to
the total variance, while mixing also implies the growth of total variance is (almost)
linear. Therefore, the overall Lindeberg variance is negligible.

In our situation, we do not have any strong mixing properties available for the mea-
sures (v7). However, each v; is weighted over concatenations of k; segments of (repeated)
independent closed geodesics with (approximately) 7; length, so one can study the global
Lindeberg condition (4.2) via the local condition (4.5). Intuitively, if we can make k;
increase at an appropriate rate compared to 77, eventually the Lindeberg variance con-
tributed by individual terms becomes negligible, and thus the local condition (4.5) is
satisfied.
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From now on, we strengthen condition (4.1) to the following

lim of = o0. (5.1
[—o0

With this assumption, we can weaken the condition k1812 J 01in Hypothesis 3.1 to

klalz

— Lo, (5.2)

9]
and still obtain Theorem 4.1. This is because wherever the old condition k1812 J 0is
applied, we are actually dealing with the limit of k; 812 / O’lz (see the last line in the proof
of Lemma 4.6, the fifth line of Lemma 4.7, (4.14) in Lemma 4.8 and (4.15) in Lemma
4.9). With the new assumption (5.2), we can allow k; to grow faster than before. If we

can find k; which satisfies (5.2) while simultaneously satisfying the hypothesis of the
following lemma, we are done.

Lemma 5.1 . Suppose that we have chosen §; and Tj, and our observable f, and that

“/ETi"’ — 00. Then the Lindeberg

o7 — 00. Suppose we can find k; — oo so that
condition (4.5) is satisfied.

Proof We consider the Lindeberg condition (4.5). For any fixed y > Oand v € T'M,
the indicator function in the integral satisfies

Lpe—f Fetydmizyao V) = Log flzy vl (V) = 1 o771 ke, (@) (5.3)
where K, = 2|| fIly ! is a constant. Thus,

Lml(F(', ’Tl)s y\/k_lal)

i
lirgo 012
. JECT) = [ FC TN L p 1= [ FeTydm =y Jiodmi
=00 (712 (5.4)
2
. J(FC.T) — [ F(, Tdmy) le.sz,"«/l?zozdm’
T >0 612
=0

which verifies Lindeberg condition (4.5) O

Recall that we defined the (lower) dynamical variance for the sequence of measures (11;)
to be

.. F(,T) — [ F(, T)dm ? .. o}
2 _ _ l
gDyn(f, (myp)) = hlm mf/ < i dm; = hlm inf _Tl (5.5)

See the introduction for a discussion of this quantity.

Theorem 5.2 . Suppose that we have chosen §; and T;, and our observable f. Suppose
that g2Dyn( f, (mp)) > 0. Then there exists sequences k; — 0o and C; — 00 so that the

measures (vy) constructed from the data (61, Tj, ki, C1)1en are valid for Theorem 4.1 to
hold, and so that the Lindeberg condition (4.2) holds.
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2
Proof We let k; := oj 2/8;, which clearly tends to co. Observe that —+ =6 | 0, and

thus (5.2) is satisfied. Making any suitable choice of Cj, it follows from the discus-
sion above that Theorem 4.1 is valid for the measures (v;) constructed from the data
01, T, ki, Cr)ien-

Observe that from the hypothesis that aDyn( f, (m;)) > 0, the sequence T is eventu-

ally greater than some constant > 0, and thus we have

Vkioy
—_—
T
Thus the hypothesis of Lemma 5.1 is satisfied, and we can conclude that the Lindeberg

condition (4.5) on (m;) holds. Thus, by Lemma 4.9, the Lindeberg condition (4.2) holds
on (v). 0O

Combining Theorem 4.1 and Theorem 5.2 gives us Theorem A as an immediate conse-
quence.

Remark 5.3 . One can investigate when the Lindeberg condition holds under the weaker
condition that lim;_, Ulz = oo without assuming that gszn( f, (mp)) > 0. It can be

verified that a suitable sequence (k;) satisfying Lemma 5.1 can be found if 012 /81T; — oo.
To verify this condition, first recall from Hypothesis 3.1 that the choice on 7; is only
determined by §;. Thus, we need information on how Ty, is related to §; as §; — 0. This
information can be extracted in the uniform case using symbolic dynamics, and the issue
does not appear at all in discrete-time analogues of this result. While it may be possible
to use this criterion to slightly sharpen our results in some concrete examples where the
relationship between §; and Ty, is tractable, we do not pursue this at present.

6. Extensions of Main Result

In this section, we extend our main result to dynamical arrays of observables. We also
discuss how our techniques extend to equilibrium states and how they apply to other
classes of dynamical system beyond geodesic flow.

6.1. Dynamical arrays. A benefit of the Lindeberg approach is that we can consider
dynamical arrays in the CLT instead of a single function. In this section, our setup is as
follows. We let (f;);en be a sequence of Holder continuous observables. We allow for
different Holder constants and exponents, not necessarily bounded away from co and 0
respectively. We let L; and «; be the Holder constant and exponent respectively for f7,
so that | fi(x) — fi(y)| < Lid(x, y)* foralll € N.
Given a sequence of 4-tuples (77, k;, §;, C;)jen to be chosen precisely later, and the
sequence of observables ( f;), we write Fj(v, Tj) = fOT’ fi(g:(v))dt, and F,l,,q v) =
tp+(q+)T;
1p+q T
sl2 follow as in §3.1. We have the following analogy to the statement of Lemma 3.3, with
only minor modifications to the proof.

fi(g:(v))dt. Using these modified definitions, new definitions for o7, F 117 and

Lemma 6.1 For (f;);en given as above and x € Elkl, 1 < p <k, we have

Fl(g(m(x))) — QiFi(xp. T| < 2K, T) + (ke + 250 fill.

where K; == Like(1 — e*n;ﬂ)*].
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We need to modify our assumptions on the sequence of 4-tuples (77, k;, 8;, Cj)jeN-

Hypothesis 6.2 We choose sequences Ty € (0, 00), k; € N, §; € (0, 89), and C; € N
which satisfy the following relationships:
1) Foralll € N, T; > max{Ty(5;, n), 1},
2) Ti 1 00, gy 1 00 and ki 1 o0,
3) ki8f max{| fill. 1} | 0,
k, , ki .
4) SEISKLY | g SELmMUALY | g,

It is always possible to have such sequence of 4-tuples as we can first choose k;, then
8; and Ty, finally Q;. We will demonstrate why we choose (77, k;, &;, C;) this way below.
We have the following analogy to Theorem 4.1:

Theorem 6.3 . Fix (f1);en as above. Let (T}, ki, 8, C1)1eN be a sequence satisfying
Hpypothesis 6.2 and (v;)jeN be the sequence of measures constructed as in §3. Suppose

(fD)ieN satisfies

liminf o* > 0. 6.1)

[— o0

Then the Lindeberg-type condition

Yi<pty, Lu(Fp vs)

lim 5 (6.2)
[—o00 Sl
for any y > 0, implies that for all a € R,
Fi(v, ki (CiTi+ M) — | Fi(-, ki (CiT; + M))d
lim vy (v - 1(v, ki (C;Th ) — [ Fi(, ki(CT, ))dv <a)) = N(a).
=00 N
(6.3)

where N is the cumulative distribution function of the normal distribution N (0, 1).
Conversely, under the hypotheses (6.1), (6.3) implies (6.2).

The proof follows the arguments of §4, with F replaced by F; and other notations
referring to the array version of the definitions. We point out where the differences appear
in the proofs between Theorem 6.3 and Theorem 4.1.

We inherit the definitions of D, (x), D,,(x, t; p) and Afn (x, t) from §4, which all
adapt to the dynamical array setting. Observe that as a direct consequence of Lemma 6.1,
(4.10) in Lemma 4.3 now becomes

|AL e D)) < 2QKI T + 2ke] fill + 28, Q1 fil)- (6.4)

. . . ol (F)) .
Therefore, to conclude the main lemma, which says that lim;_, % = 1 uni-

!
formlyin 1 < p < ky, it suffices to show lim;_, 2(2K’T’+m|fl”+25’ QA — (. This can

be observed from the proof of Lemma 4.4, using Hypothes1s 6 2 and (6.1). As a simple
follow-up we have

2

lim —L_ —1. 6.5)
=00 Ql(jl



1242 D. J. Thompson, T. Wang

To retrieve the content of Lemma 4.7, it suffices to show the last step of its proof
holds true in the array case, which is that

) 2kidill fill - @M +4T) kil fi]]
lim + =0.
Vkiog Qo

This is obtained by applying condition 3) in Hypothesis 6.2 to the first half, condition
4) to the second and applying (6.1).
To verify the equivalence between the CLT for (v;) and (u;), which is Lemma 4.8, it

suffices to replace (4.14) by showing 2. QKJ”S%JQ):”’ QullfiD

[ is sufficiently large. Finally, to verify the equivalence of the Lindeberg conditions,
analogous to Lemma 4.9, we invoke (6.4) and (6.5) along with Hypothesis 6.2 and (6.1).
As a result, we are able to conclude that Theorem 6.3 holds.

[—o0

< bforany b > 0 when

6.2. Equilibrium states. We refer the reader to [3] for definitions and notations. We
consider a potential function g that is either Holder continuous or g withg < 1, where
" is the geometric potential. We assume that the pressure gap condition P (Sing, ¢) <
P () holds. Theorem A in [3] shows that the geodesic flow has a unique equilibrium
state t,. Our main result, Theorem 4.1, extends to equilibrium states of this type. The
generalization is a natural one. In place of the measures (m;), we use weighted measures

1
L D (v,T7)
mp = PP ION ) Z e Sv,
veE veE;

and we define a weighted sequence of measures (V;) analogously to our definition of (v;).
We can show that (D;) converges to Mg, and that we have the analogue of Theorem 4.1:
if the variance of an observable f with respect to the sequence (71;) is positive, we can
ensure that the sequence (V) satisfies (4.3). The details of the statement and proof can
be found in the PhD thesis of T. Wang [23].

6.3. Systems with non-uniform specification. The reader will have observed that our
arguments used dynamical structure proved in [3] rather than direct geometric arguments,
and thus it is clear that the arguments of this paper will apply to a variety of systems
other than the geodesic flow on non-positive curvature manifolds. We do not attempt to
make an general statement abstracting the properties of the geodesic flow used in our
analysis—a main point of course is the non-uniform specification structure obtained in
[3]. The interested reader can infer from Sects. 2—4 exactly what properties are needed to
obtain this Lindeberg-type CLT on periodic orbits for other systems. In [4], we defined
A-decompositions as an abstraction of the non-uniform structure enjoyed by rank one
geodesic flows. Systems admitting this kind of structure are prime candidates for this kind
of analysis. We note that our arguments are all given for flows, but could also be given
in the simpler discrete-time case. In discrete-time, one advantage of our construction is
that it extends easily from the MME case to equilibrium states.
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