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Abstract: We consider the geodesic flow for a rank one non-positive curvature closed
manifold. We prove an asymptotic version of the Central Limit Theorem for families of
measures constructed from regular closed geodesics converging to the Bowen-Margulis-
Knieper measure of maximal entropy. The technique expands on ideas of Denker, Senti
and Zhang, who proved this type of asymptotic Lindeberg Central Limit Theorem on
periodic orbits for expansive maps with the specification property. We extend these
techniques from the uniform to the non-uniform setting, and from discrete-time to
continuous-time. We consider Hölder observables subject only to the Lindeberg condi-
tion and a weak positive variance condition. If we assume a natural strengthened positive
variance condition, the Lindeberg condition is always satisfied. Our results extend to
dynamical arrays of Hölder observables, and to weighted periodic orbit measures which
converge to a unique equilibrium state.

1. Introduction

Agoal in the study of dynamical systemswith some hyperbolicity is to exhibit the kind of
stochastic behavior obeyed by sequences of i.i.d. random variables. In settings with non-
uniform hyperbolicity, we may be able to demonstrate this kind of stochastic behavior
within the system even in situations where it is intractable to demonstrate globally.
Our paper follows this philosophy. We consider the geodesic flow for a rank one non-
positive curvature closed manifold. We exhibit sequences of measures constructed from
regular closed geodesics whose first order behavior is that of the measure of maximal
entropy, and whose second order behavior obeys, in the limit, the Lindeberg Central
Limit Theorem.

The Lindeberg condition is a classical criteria from Probability Theory, which often
gives a necessary and sufficient criteria for the Central Limit Theorem (CLT) to hold
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for sequences of independent random variables which are not identically distributed.
Roughly, theLindeberg conditionguarantees that the varianceof a single randomvariable
is negligible in comparison to the sumof all the variances. This ideawas recently explored
by Denker, Senti and Zhang [8] in the setting of maps with the specification property.
They showed that a Lindeberg condition on the sequence of periodic orbit measures is
equivalent to a Central Limit Theorem in the limit.

The analysis of this paper extends the ideas ofDenker, Senti andZhang to the geodesic
flowon a rank one non-positive curvature closedmanifold. This is one of themain classes
of examples of non-uniformly hyperbolic flows.While the theory of equilibrium states in
this setting has been extended recently by [3], the statistical properties of these measures
remain largely wide open, even for the Knieper-Bowen-Margulis measure of maximal
entropyμKBM. This contrasts with thewell-understood case of geodesic flowon negative
curvature manifolds, for which the CLTwas established by Ratner [20]. In particular, the
CLT for the MME and other equilibrium states remains out of reach of current methods
in the non-positive curvature setting.

In this paper, we show that for a Hölder observable, the time averages for certain
measures constructed from regular closed geodesics asymptotically obey the Central
Limit Theorem. This enriches the picture for these time averages, whose first order
behavior is convergence to the integral with respect to the measure of maximal entropy.
This result applies under the Lindeberg condition and a weak positive variance condition
on the sequence of periodic orbit measures. This result is stated formally as Theorem 4.1.
We show that the Lindeberg condition is always satisfied under a natural strengthening
of the positive variance condition. This is carried out in Sect. 5. We now build up some
notation to state and motivate our results, and give an idea of the constructions involved.

Recall that for an invariant measure μ, and an observable f , the dynamical variance
for the flow (gt ), when it exists, is defined by

σ 2
Dyn( f, μ) = lim

T→∞

∫ (
F(·, T ) − ∫ F(·, T )dμ√

T

)2
dμ, (1.1)

where F(x, T ) = ∫ T
0 f (gsx)ds. In our setting, for a fixed η > 0, we construct a

sequence of discrete probability measures (ml) on closed orbits in T 1M corresponding
to uniformly η-regular closed geodesics (which are defined in Sect. 2.4). We consider
the collection of η-regular closed geodesics which have least period in the interval
(Tl − δl , Tl ], where Tl → ∞ and δl → 0, which we denote PerηR(Tl − δl , Tl ]. We define
ml by choosing one point in T 1M tangent to each such geodesic (we denote this set of
points by El ), and distributing mass equally over these points. By analogy with (1.1), it
is natural for us to define the (lower) dynamical variance for the sequence of measures
(ml) to be

σ 2
Dyn( f, (ml)) = lim inf

l→∞

∫ (
F(·, Tl) − ∫ F(·, Tl)dml√

Tl

)2
dml .

We choose two more sequences kl → ∞, Cl → ∞, and define another sequence of
measures (νl). Each νl is given by constructing points out of the product E

kl
l by using a

certain specification property on the η-regular closed geodesics to find an orbit segment
which loops Cl times round each of the closed geodesics indexed by an element of
Ekl
l . We write Sl for the total length of an orbit segment specified in this way (precisely,

Sl = kl(ClTl+M), whereM is the transition time in applying our specification property).
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The measure νl is given by putting mass equally along the initial segment of length Tl
of all the orbit segments defined this way.

If the variance quantity σ 2
Dyn( f, (ml)) is positive, we can choose kl and Cl so that the

family of measures (νl) satisfies an asymptotic central limit theorem for the observable
f . We can state a simple version of our main results as follows.

Theorem A. For any η > 0 and sequences δl → 0, Tl → ∞, we define a sequence of
discrete probability measures (ml)l∈N by choosing a point tangent to each element of
PerηR(Tl − δl , Tl ], and assigning each of these points equal mass. We assume that Tl is
chosen to increase sufficiently fast, depending on η and δl , to allow for our construction
of (νl) (see Hypothesis 3.1). Suppose f ∈ C(T 1M) is Hölder continuous with

σ 2
Dyn( f, (ml)) > 0. (1.2)

Then there exists sequences kl → ∞, Cl → ∞, so that the sequence of measures
(νl) defined by the data (δl , Tl , kl ,Cl)l∈N (see Sect. 3 for details of the construction),
which converges weak∗ to the measure of maximal entropyμKBM, satisfies the following
asymptotic central limit theorem. For all a ∈ R,

lim
l→∞ νl

({
v : F(v, Sl) − Sl

∫
f dνl

σνl (F(·, Sl)) ≤ a

})
= N (a), (1.3)

where N is the cumulative distribution function of the normal distributionN (0, 1), and
σ 2

μ(φ) denotes the usual ‘static’ variance σ 2
μ(φ) = ∫ (φ − ∫ φdμ

)2
dμ.

The sequences (kl) and (Cl) are determined by σ 2
Dyn( f, (ml)). Thus, given α > 0, we

can find a sequence of measures (νl), defined by the data (δl , Tl , kl ,Cl)l∈N, so that any
Hölder continuous observable f with σ 2

Dyn( f, (ml)) > α satisfies (1.3). We comment
on this positive variance condition. If the manifold has strictly negative curvature, (ml)

places mass on each closed periodic orbit whose length is in the interval (Tl −δl , Tl ], and
we expect that the variances for (ml ) converge to the variance of theMME, along the lines
of the basic argument in [19, Theorem 1]. Thus, in negative curvature, we expect that
σ 2
Dyn( f, (ml)) = σ 2

Dyn( f, μKBM). In negative curvature, the variance σ 2
Dyn( f, μKBM)

vanishes if and only if the observable is a coboundary [18]. It would be interesting to
characterize the class of observables for which σ 2

Dyn( f, (ml)) = 0 in the current context,
although this will require some substantial new ideas and techniques. Although rigorous
analysis of this question is beyond the scope of this paper, by analogy with the negative
curvature case, our intuition is that the positive variance condition (1.2) should be the
‘typical’ case.

Our result extends to arrays of observable functions, and a large class of equilibrium
states. Furthermore, the arguments of this paper will apply for other classes of systems
with enough hyperbolicity to yield some non-uniform specification properties.We do not
attempt to formalize an abstract general statement, butwe hope that our proofmakes clear
what the roadmap should be in other related settings. We discuss these generalizations
in Sect. 6.

The technique is an extension of Denker, Senti and Zhang (DSZ) [8]. The idea is
to build ε-independent collections of regular closed periodic orbits whose growth rate
is the topological entropy. Classical probability theory allows us to conclude that the
Lindeberg CLT holds for certain uniform measures on parameter spaces associated to
these collections. The analysis of the paper relies on using the specification property to
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propagate this result to measures with support in T 1M , modeled on closed geodesics.
For the analysis to work, we must restrict to closed periodic orbits with some uniform
regularity. For this, we use structure provided by the work of Burns, Climenhaga, Fisher,
and the first named author [3]. To obtain the first order behavior of measures on these
orbits, we need their growth rate to be comparable to the entropy, and that there is a
unique measure of maximal entropy. The first point is provided by [3] and the second
point was originally proved by Knieper [16].

While we are indebted to DSZ for the strategy and philosophy of this paper, our
analysis requires several novelties. In DSZ, the focus is on discrete-time dynamical
systems with uniform specification. They establish the Lindeberg CLT in their general
setting, but do not explore how to verify the Lindeberg condition in examples. The
novelty in the current work is that we deal with with non-uniformity and continuous-
time, we apply it to geodesic flow in non-positive curvature, and we verify the Lindeberg
condition from a natural positive variance condition. To achieve this, there are significant
technical differences. A key difference is that our construction involves looping round
closed geodesics multiple times. The reason that this is necessary is because in the flow
case, it is necessary to construct the measures using segments of orbit rather than point
masses. We lose independence between adjacent orbit segments due to the types of
averages we are forced to consider. The looping construction is designed to compensate
for this loss of independence, which is key to the whole approach. Looping brings new
technical issues—notably, the small differences in periods of the closed geodesics in
PerηR(Tl − δl , Tl ] add up. This is why we require δl → 0, and is one reason that the
choice of constants in our construction is subtle. A by-product of our construction is that
it easily generalizes to the case of equilibrium states, which was not clear in DSZ.

The paper is structured as follows. In Sect. 2, we recall relevant background infor-
mation. In Sect. 3, we describe our construction of measures from closed geodesics.
In Sect. 4, we state and prove our main results. In Sect. 5, we show how to check the
Lindeberg condition under a suitable positive variance condition. In Sect. 6, we discuss
various extensions of our main results.

2. Background

2.1. Preliminaries, entropy, and pressure. We consider a continuous flow (gt ) on a
compact metric space (X, d). For ε > 0 and t > 0, and x ∈ X , we define the dynamical
(Bowen) ball to be

Bt (x, ε) = {y ∈ X : d( fs x, fs y) < ε for all 0 ≤ s ≤ t}.
For a continuous function f : X → R, we write

F(x, t) =
∫ t

0
f (gτ x)dτ.

We also write

F(x, [s, t]) = F(gsx, t − s) =
∫ t

s
f (gτ x)dτ

We use analogous notation when we use other lower case letters for an observable. Thus,
for example, for an observable h, we write H(x, t) = ∫ t0 h(gτ x)dτ .
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We consider collections of finite-length orbit segments C ⊂ X × [0,∞), where
(x, t) is identified with the orbit segment {gsx : s ∈ [0, t)}. For t > 0, we define
Ct = {x ∈ X, (x, t) ∈ C}. We say E ⊂ Z is (t, ε)-separated for Z if for all x, y ∈ E ,
y /∈ Bt (x, ε).

For C ⊂ X × [0,∞), the entropy h(C, ε) at scale ε is defined as

h(C, ε) = lim sup
t→∞

1

t
log sup{#E : E ⊂ Ct is (t, ε)-separated},

and h(C) = limε→0 h(C, ε). For a set Z , we define h(Z , ε) as h(CZ , ε), where CZ =
{(x, t) : x ∈ Z , t ∈ [0,∞)}. In particular, h(X, ε) reduces to the standard definition of
topological entropy, see [21]. The Variational Principle states that h(X) is the supremum
of the measure-theoretic entropies hμ taken over flow-invariant probability measures. A
measure achieving the supremum is called a measure of maximal entropy.

2.2. Central limit Theorem. The Central Limit Theorem in dynamics describes the sec-
ond order behavior of the sequence of ergodic sums/integrals. The classical CLT for a
continuous flow equipped with an ergodic measure μ says that for a Hölder observable
f with

∫
f dμ = 0, the sequence 1√

t
F(·, t) converges in distribution to the normal dis-

tribution. This result was proved for hyperbolic flows by Ratner [20], and strengthened
by Denker and Phillip in [7]. See also Parry and Pollicott [18].

The classical Central Limit Theorem can be obtained using a variety of techniques.
We do not attempt to survey the literature here, but we recommend recent papers by
[1,5,8,9,14,17] for an excellent paper trail. One might expect the classical CLT to hold
in the setting of this paper, but none of these proof techniques are currently known to
apply. We also mention an interesting recent related result—an asymptotic central limit
theorem for lengths of closed geodesics in hyperbolic surfaces was recently proved by
Gekhtman, Taylor and Tiozzo [12].

Our result is based on the Lindeberg CLT, which is one of the most famous general-
izations of the classical CLT. We recall its statement in its original context of a sequence
of independent randomvariables. First we define the Lindeberg function for a probability
measure ν and an observable h, and a constant c ≥ 0.

Definition 2.1. Let Z(c) = Z(c, h, ν) = {x : |h−∫ hdν| > c}. The Lindeberg function
is

Lν(h, c) :=
∫

(h −
∫

hdν)21Z(c)(v)dν(v)

Recall that for a probability measure ν on a space 
 and a function f : 
 → R, the
variance σν( f ) is defined by

σ 2
ν ( f ) =

∫ (
f −

∫
f dν

)2
dν =

∫
f 2dν −

(∫
f dν

)2
. (2.1)

Theorem 2.2. (Lindeberg CLT for independent random variables) Let (
, ν) be a prob-
ability space and let (Xi )

∞
i=1 be an independent sequence of random variables. Let σi

be the variance of Xi , and let s2n =∑n
i=1 σ 2

i . Suppose that for every ε > 0

lim
n→∞

1

s2n

n∑
i=1

Lν(Xi , εsn) = 0. (2.2)
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Then 1
sn

∑n
i=1(Xi −

∫
Xidμ) converges in distribution to the standard normal distribu-

tion.

The hypothesis (2.2) is called the Lindeberg condition, see e.g. [11]. We will formulate
our results using a dynamical version of the Lindeberg condition on periodic orbits,
following Denker, Senti and Zhang [8].

2.3. Geometry and dynamics of the geodesic flow. We recall the necessary background
from [3] on geodesic flow for non-positive curvature manifolds. The arguments in this
paper use the dynamical structure obtained there, rather than direct geometric arguments.
We refer to [2,10] for general geometric background.

We consider a compact, connected, boundaryless smooth manifold M equipped with
a smooth Riemannianmetric g, with non-positive sectional curvatures at every point. For
each v in the unit tangent bundle T 1M there is a unique constant speed geodesic denoted
γv such that γ̇v(0) = v. The geodesic flow (gt )t∈R acts on T 1M by gt (v) = (γ̇v)(t). We
equip T 1M with a metric d given by

d(v,w) = max{dM (γv(t), γw(t)) | t ∈ [0, 1]}, (2.3)

where dM is the Riemannian distance on M . The flow is entropy expansive, which
implies that for sufficiently small ε, h(X) = h(X, ε). We call such a scale an expansivity
constant. Any positive ε which is less than one third of the injectivity radius of M is an
expansivity constant.

Given v ∈ T 1M , stable and unstable horospheres Hs
v and Hu

v can be defined locally
using Jacobi fields or using a standard geometric construction in the universal cover.
The horospheres are C2 manifolds. The (strong) stable and unstable manifolds Ws

v ,Wu
v

are defined as normal vector fields to Hs
v , Hu

v , and we can define the stable and unstable
subspaces Es

v, E
u
v ⊂ TvT 1M to be the tangent spaces ofWs

v ,Wu
v respectively. The weak

stable manifold Wcs
v is defined in the obvious way so that its tangent space is Es

v ⊕ E0
v ,

where E0
v is the space given by the flow direction. The bundles Es, Eu are invariant, and

depend continuously on v, see [10,13].
We define the singular set Sing as the set of v ∈ T 1M so that the geodesic determined

by v has a parallel orthogonal Jacobi field, and Reg to be the complement of Sing. We
say that M is rank one if Reg �= ∅. The Jacobi field formalism is used extensively in [3],
and we refer there for full definitons.

A key piece of geometric data which is at the heart of our analysis is a continuous
function λ : T 1M → [0,∞) defined in [3]. Roughly, λ(v) is the smallest normal curva-
ture at v (with sign chosen to be non-negative) of the stable and unstable horospheres
centered at v. If λ(v) > 0, then v ∈ Reg. We refer to [3] for the precise definition and
more geometric context. Let Reg(η) = {v : λ(v) ≥ η}. If v ∈ Reg(η), then we have
various uniform estimates at the point v, for example on how distance scales in the local
stable and unstable manifolds. These are the properties exploited in this paper. We recall
the precise statement obtained on local product structure.

Lemma 2.3 [3, Lemma 4.4]. For every η > 0, there exist δ > 0 and κ ≥ 1 such that
at every v ∈ Reg(η), the foliations Wu,Wcs have local product structure with constant
κ in a δ-neighborhood of v. That is, for every ε ∈ (0, δ] and all w1, w2 ∈ B(v, ε), the
intersection Wu

κε(w1) ∩Wcs
κε(w2) contains a single point, which we denote by [w1, w2],

and

du(w1, [w1, w2]) ≤ κd(w1, w2),
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dcs(w2, [w1, w2]) ≤ κd(w1, w2).

Uniformity of the local product structure on Reg(η) is used to obtain the specification
property for orbit segments starting and ending in Reg(η). Precisely, we define the
collection of orbit segments

C(η) := {(v, t) : λ(v) ≥ η, λ(gtv) ≥ η}.
We have the following result.

Theorem 2.4 [3, Theorem 4.1]. For each η > 0, the collection of orbit segments C(η)

has the specification property. That is, given ρ > 0, there exists τ = τ(ρ) such that for
every (x1, t1), . . . , (xN , tN ) ∈ C and every collection of times τ1, . . . , τN−1 with τi ≥ τ

for all i , there exists a point y ∈ X such that for s0 = τ0 = 0 and s j =∑ j
i=1 ti+

∑ j−1
i=0 τi ,

we have

fs j−1+τ j−1(y) ∈ Bt j (x j , ρ)

for every j ∈ {1, . . . , N }.
We recall some other results that we will use from [3] and [6]. We often consider the
following set of orbit segments

B(η) := {(v, t) :
∫ t
0 λ(gu(v))du

t
< η}.

Note that λ vanishes on Sing, so any orbit segment in Sing × [0,∞) is a member of
B(η). It was shown in [3, §5] that limη→0 h(B(η)) = h(Sing). For the class of geodesic
flows under consideration, it is known that

h(Sing) < h(T 1M).

This is easy in the case that M is a surface, since h(Sing) = 0. However, this entropy gap
is a highly non-trivial fact in higher dimensions. It was first proved as a consequence of
Knieper’s work [16], and a direct proof is given in [3]. The geodesic flow has a unique
measure of maximal entropy, known as the Knieper-Bowen-Margulis measure, which
we denote by μKBM.

2.4. Counting closed regular geodesics. For a small δ > 0, we define PerR(T − δ, T ]
to be the set of closed regular geodesics which have length in the interval (T − δ, T ].
For γ ∈ PerR(T − δ, T ], we write |γ | for its length, and vγ for an element of T 1M
chosen to be tangent to γ .

Recall from Proposition 6.4 in [3], for any δ > 0, there exists Tδ > 0 and

β = β(δ) ≈ e−hTδ (2.4)

such that for all T > Tδ , we have

β

T
eTh ≤ #PerR(T − δ, T ] ≤ β−1eTh . (2.5)



1220 D. J. Thompson, T. Wang

We take Tδ → ∞ as δ → 0 (and the proofs of Proposition 4.5, Lemma 4.7 and
Proposition 6.4 in [3] show that this is necessary). For η > 0, we define the uniformly
regular closed geodesics as

PerηR(T − δ, T ] := {γ ∈ PerR(T − δ, T ] :
∫ |γ |

0
λ(gsvγ )ds ≥ |γ |η},

that is the collection of elements in PerR(T − δ, T ] whose average of λ is at least
η. Writing h′ := h(Sing)+h

2 , we fix η > 0 throughout the rest of the paper such that
h(B(2η)) < h′ < h. We also choose ε so that 4ε is an expansivity constant. In particular,
h(T 1M, 4ε) = h. Notice that we can choose ε smaller if necessary.

Define δ′ := η
λmax

where λmax := max{λ(v) : v ∈ T 1M}. We now argue that for δ

sufficiently small, #PerηR(T − δ, T ] is bounded uniformly from below.

Lemma 2.5 For any δ < δ′, there exists T0 = T0(δ, η) such that for all T > T0,

#PerηR(T − δ, T ] ≥ β

2T
eTh . (2.6)

Proof Recall that we fix η such that h(B(2η)) < h′. It follows that there exists T ′
0 =

T ′
0(η) > 0 so for all T > T ′

0, there are maximal (T, 4ε)-separated sets ET for B(2η) so
that #ET < eTh

′
and also so that eTh

′
<

β
2T e

Th . Given δ ∈ (0, δ′), define T0(δ, η) :=
max{T ′

0(η), Tδ, 1}. With a fixed η, since Tδ → ∞ as δ → 0, we observe that T0(δ, η) =
Tδ when δ is sufficiently small.Wewrite Per<η

R (T −δ, T ] := PerR(T −δ, T ]\PerηR(T −
δ, T ]. For T > T0 and any γ ∈ Per<η

R (T − δ, T ], we choose a vector vγ ∈ T 1M such
that it is tangent to γ at some point. Due to the difference in the period of elements in
PerR(T − δ, T ], different choices of vγ may lead to variations in the precise value of∫ T
0 λ(gsvγ )ds. However, we have

∫ T

0
λ(gsvγ )ds ≤ |γ |η + δ′λmax < Tη + η < 2Tη, (2.7)

which shows that we always have (vγ , T ) ∈ B(2η). By the choice of 4ε and Sect. 6 in
[16] we know elements in PerR(T − δ, T ] are (T, 4ε)-separated, which in turns shows
that Per<η

R (T − δ, T ] < eTh
′
<

β
2T e

Th . As a consequence, we have

#PerηR(T − δ, T ] = #PerηR(T − δ, T ] − #Per<η
R (T − δ, T ]

>
β

T
eTh − β

2T
eTh = β

2T
eTh .

��
From now on we always assume that δ and T satisfy the conditions in Lemma 2.5.

By the definition of PerηR(T − δ, T ], if γ is an element in PerηR(T − δ, T ], there must
be some t ∈ [0, T ) such that v = γ̇ (t) ∈ Reg(η). Since v is periodic, we know that
(v, |γ |) ∈ C(η).

For each γ ∈ PerηR(T − δ, T ], we choose v = v(γ ) such that v ∈ γ ∩ Reg(η). We
let

Eδ(T ) = {v(γ ) : γ ∈ PerηR(T − δ, T ]},
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recalling that Eδ(T ) is a (T, 4ε)-separated set. From the definition of Eδ(T ) and (2.6),
we know that

#Eδ(T ) = #PerηR(T − δ, T ] ≥ β

2T
eTh . (2.8)

We will often work with the collection of orbit segments

{(v, T ) : v ∈ Eδ(T )}.
Here we use the same T across all v ∈ Eδ(T ) so we can compare lengths uniformly—
note that T differs from the least period of γ (v) by at most δ.

2.5. Growth of variations on C(η). For a collection of orbit segments C, any δ > 0, T >

0 and h ∈ C(T 1M) we define

ω(h, T, δ, C) := sup
(u,T )∈C,v∈BT (u,δ)

|H(u, T ) − H(v, T )| .

The following analogy of Lemma 5.6 in [22] holds for ω, and is a crucial estimate in
the construction given in Sect. 3.

Lemma 2.6 . Let C(η) be the collection previously defined. Then for sufficiently small
δ0, for any h ∈ C(T 1M), we have

lim
T→∞

ω(h, T, δ0, C(3η/4))

T
= 0. (2.9)

Proof This proof is parallel to the one of Lemma 5.6 in [22]. Choose the same η as
before and δ0 such that

(1) Reg( 3η4 ) has local product structure at scale 4δ′
0, with coefficient κ = κ(

3η
4 , 4δ′

0) >

1. Take δ0 = δ′
0/κ .

(2) for any u, v ∈ T 1M such that d(u, v) < κδ0, we have |λ(u) − λ(v)| <
η
4 . In

particular, we have B(Reg( 3η4 ), κδ0) ⊂ Reg( η
2 ) and B(Reg( η

2 ), κδ0) ⊂ Reg( η
4 ).

Consider (u, T ) ∈ C(3η/4) and v ∈ BT (u, δ0). By the local product structure,
there is a vector u0 ∈ T 1M such that u0 ∈ Ws

κδ0
(u) ∩ Wcu

κδ0
(v). Then there exists

s ∈ (−κδ0, κδ0) such that gs(u0) ∈ Wu
κδ0

(v). Observe that d(gT u, gT v) < δ0,
d(gT u, gT u0) < κδ0, d(gT u0, gT+su0) < κδ0. Combining the above three inequal-
ities together we have d(gT v, gT+su0) < 3κδ0. As gT+su0 ∈ Wu(gT v), we know
du(gT+su0, gT v) < 3κ2δ0, therefore dcu(gT u0, gT v) < 4κ2δ0 = 4κδ′

0. In other words,
gT u0 ∈ Ws

4κδ′
0
(gT u) ∩ Wcu

4κδ′
0
(gT (v)). As d(gT u, gT v) < δ0 and gT u ∈ Reg( 3η4 ),

by the local product structure we know gT u0 ∈ Ws
κδ0

(gT u) ∩ Wcu
κδ0

(gT v). In par-
ticular, gT+su0 ∈ Wu

κδ0
(gT v). We conclude that gt+su0 ∈ Wu

κδ0
(gtv) and gtu0 ∈

Ws
κδ0

(gtu) ∩ Wcu
κδ0

(gtv) for all t ∈ [0, T ]. Now, for any fixed h ∈ C(T 1M), we can
bound the variation of h over (u, T ) and (v, T ) by variations along the stable, cen-
tral and unstable directions. To be more precise, we have |H(u, T ) − H(v, T )| ≤
|H(u, T ) − H(u0, T )| + |H(u0, T ) − H(gsu0, T )| + |H(gsu0, T ) − H(v, T )|. From
the definition of C(3η/4) and property (2) of δ0, we know λ(u), λ(gT u) >

3η
4 and
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λ(v), λ(gT v) >
η
2 , so (v, T ) ∈ C(

η
2 ). Therefore, to prove (2.1), it suffices to prove the

following

lim
T→∞

ωs(h, T ; κδ0, 3η/4)

T
= 0 (2.10)

and

lim
T→∞

ωu(h, T ; κδ0, η/2)

T
= 0, (2.11)

where

ωs(h, T ; κδ0, 3η/4) := sup
gT (u)∈Reg(3η/4),v∈Ws

κδ0
(u)

|H(u, T ) − H(v, T )|

and

ωu(h, T ; κδ0, η/2) := sup
u∈Reg(η/2),v∈g−T (Wu

κδ0
(gT (u)))

|(H(u, T ) − H(v, T )|.

Let us prove (2.10). Consider u′ ∈ T 1M such that gT u′ ∈ Reg(3η/4) and v′ ∈
Ws

κδ0
(u′). For any ε̂ > 0, by uniform continuity of h on T 1M we know there exists

δ̂ > 0 such that if v1, v2 ∈ T 1M , d(v1, v2) < δ̂, then |h(v1) − h(v2)| < ε̂. Meanwhile,
property (2) of δ0 shows that any vector v̂ lying on the local stable arc connecting
u′ and v′ satisfies λ(gT v̂) >

η
2 . Following the proof of Lemma 3.10 in [3], for any

0 ≤ t1 ≤ t2 ≤ T we have

ds(gt1u
′, gt1v′) ≥ eη(t2−t1)/2ds(gt2u

′, gt2v′). (2.12)

Since ds(u′, v′) < κδ0, by (2.12) we have ds(gtu′, gtv′) < κδ0e−ηt/2. By writing
(2 log( κδ0

δ̂
))/η as T̂ and assuming that T > T̂ (which is possible since the choice on T̂

does not depend on T and T approaches ∞), it is easy to see that d(gtu′, gtv′) ≤
ds(gtu′, gtv′) < δ̂ for t ∈ [T̂ , T ]. Therefore, we have |H(u′, T ) − H(v′, T )| ≤
|H(u′, T̂ )−H(v′, T̂ )|+ |H(gT̂ u

′, T − T̂ )−H(gT̂ v′, T − T̂ )| ≤ 2T̂ ||h||+(T − T̂ )ε̂, and

this holds for all such u′, v′ and T > T̂ , which shows that limT→∞ ωs (h,T ;κδ0,3η/4)
T ≤ ε̂.

By making ε̂ arbitrarily small, (2.10) is proved. (2.11) is proved similarly by replacing
3η/4, η/2 with η/2, η/4. ��
The small δ0 in the above lemma can be chosen so that ε < δ0 < δ′, and we will do
so in §3. Recall ε is a choice of scale so that 4ε is an expansivity constant, and can be
chosen arbitrarily small, so we can ensure that it is chosen smaller than δ0.

3. Construction of Measures

We now construct sequences of measures that converge to μKBM, and are reference
measures for our CLT. Recall T0 and δ0 are chosen as in Lemmas 2.5 and 2.6. We start
by constructing a sequence of 4-tuples (Tl , kl , δl ,Cl)l∈N as follows.

Hypothesis 3.1 We choose sequences Tl ∈ (0,∞), kl ∈ N, δl ∈ (0, δ0), and Cl ∈ N

which satisfy the following relationships:



Fluctuations of Time Averages in Non-Positive Curvature 1223

(1) For all l ∈ N, Tl > max{T0(δl , η), 1}
(2) Tl ↑ ∞, Tl

T0(δl ,η)
↑ ∞ and kl ↑ ∞

(3) klδ2l ↓ 0 and
√
kl Tl
Cl

↓ 0.

Sequences which satisfy these conditions can be easily found by first choosing δl , then
Tl , then kl and Cl . For each l, let

El := Eδl (Tl)

be a (Tl , 4ε)-separated set chosen by following the procedure described in Sect. 2.4.
Each x ∈ El corresponds to a regular closed geodesic γ (x) with least period in the
interval (Tl − δl , Tl ]. We write t = t (x) for the period of γ (x), and we recall that by
construction (x, t) ∈ C(η).

For each l ∈ N, we consider Ekl
l , which is the Cartesian product of El of order kl .

By the specification property on C(η) at scale ε, we define a sequence of maps {πl}l∈N
: Ekl

l → T 1M as follows. The map πl sends x = (x1, x2, . . . , xkl ) to πl(x) by finding
a point which tracks the periodic orbit defined by x1 for Cl times, and then tracks the
periodic orbit defined by x2 for Cl times, etc. The transition times (which depend on
the choice of x) are chosen so that times line up correctly at the start of each prescribed
periodic orbit, independent of the choice of x .

More precisely, let x = (x1, x2, . . . , xkl ) ∈ Ekl
l . Since each (xi , ti ) with xi ∈ El is a

member of C(η), each such orbit segment has the specification property at scale ε. We
use this property to construct a point z = πl(x) such that

(1) dCl t1(z, x1) < ε,
(2) dCl t2(gClTl+Mz, x2) < ε,
(3) dCl t3(g2(ClTl+M)z, x3) < ε,

and continue this way so that

dCl ti (g(i−1)(ClTl+M)z, xi ) < ε

for all 1 ≤ i ≤ kl . In the above, M = M(η, ε) is the transition time in specification for
C(η). We note that the transition time between looping around one periodic orbit to the
next is bounded by M from below and ClTl −Cl(Tl − δl) +M = Clδl +M from above.
We define

Pl = πl(E
kl
l ).

Since El is (Tl , 4ε)-separated and we are applying specification at scale ε, for x =
(x1, x2, . . . , xkl ) and y = (y1, y2, . . . , ykl ) ∈ (El)

kl , we have

(1) If x1 = y1, then dCl (Tl−δl )(πl(x), πl(y)) < 2ε,
(2) If x1 �= y1, then dTl (πl(x), πl(y)) > 2ε,

and similarly for each i ∈ {2, . . . , kl}. In particular, #Pl = #Ekl
l and the set Pl is

(klClTl + (kl − 1)M, 2ε)-separated.
We define a measure ml by uniformly distributing mass over El , i.e. we let

ml = 1

#El

∑
v∈El

δv.
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Now define μl to be the self-product measure of ml on Ekl
l , equivalently the uniform

measure on Ekl
l , which is written as

μl := 1

#Ekl
l

∑
x∈Ekl

l

δx .

We write L(v, t) for the natural measure along the orbit segment (v, t), in the sense
that for any continuous function φ,

∫
φ dL(v, t) = ∫ t

0 φ(gsv)ds. For each l, define a
sequence of probability measures νl on T 1M by

νl = 1

#Pl

∑
y∈Pl

1

Tl
L(y, Tl) = 1

#Ekl
l

∑
x∈Ekl

l

1

Tl
L(πl(x), Tl).

Note that although νl puts mass along only the orbit segment of length Tl , we will be
interested in evaluating potentials of the form F(·, [s, t]) with respect to νl with s < t
taking carefully chosen values in the interval [0, klClTl + (kl − 1)M]. Integrals of these
functions thus incorporate information along the whole prescribed length of the orbit
segment. We often state our results with time running up to kl(ClTl + M), since this is
a slightly simpler expression and the extra run of time M makes no difference. This is
the time Sl denoted in Theorem A.

Lemma 3.2 . Given (Tl , kl , δl ,Cl)l∈N satisfying Hypothesis 3.1 the corresponding
sequence of measures νl converges to the measure of maximal entropy μKBM.

Proof It is convenient to define another sequence of probability measures on T 1M ,
{μ∗

l }l∈N by μ∗
l = 1

#El

∑
v∈El

1
Tl
L(v, Tl). We show that μ∗

l converges to μKBM when
l → ∞. It is not hard to observe that any weak∗ limit measure of μ∗

l is gt -invariant for
all t since δl ↓ 0 and Tl ↑ ∞. Recall that Tδl is the time defined at (2.4). We know El is
(Tl , 2ε)-separated, h(2ε) = h and

lim inf
l→∞

1

Tl
log #El ≥ lim

l→∞
1

Tl
log(

β(δl)

2Tl
eTlh) ≥ lim

l→∞
1

Tl
log(

e−Tδl h

2CTl
eTlh).

Observe from the proof of Lemma2.5 that T0(δl , η) = Tδl for l sufficiently large. Thus by
Hypothesis 3.1, for any small ε′ > 0, Tδl /Tl < ε′ for large enough l, so e−Tδl h > e−ε′Tlh .
Thus

lim
l→∞

1

Tl
log(

e−Tδl h

2CTl
eTlh) ≥ lim

l→∞
1

Tl
log(

e(1−ε′)Tlh

2CTl
) = (1 − ε′)h.

From the choice of ε′, it follows that liml→∞ 1
Tl
log #El = h. The proof of the second

half of variational principle in [21] will imply that μ∗
l converges to μKBM in the weak∗-

topology. Therefore, to prove the statement in the lemma, it suffices to show that for any
f ∈ C(T 1M), we have limt→∞

∫
f dμ∗

l = limt→∞
∫

f dνl .

Notice that for a fixed x1 ∈ El and any (x2, . . . , xkl ) ∈ Ekl−1
l , we have

|F(πl(x1, . . . , xkl ), Tl) − F(x1, Tl)| ≤ ω( f, Tl , ε, C(3η/4)). (3.1)

Here the scale 3η/4 is by property (2) in the choice of δ0.
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Averaging over all (x2, . . . , xkl ), we have∣∣∣∣∣∣
1

(#El)kl−1

∑
x2,...,xkl

(F(πl(x1, x2, . . . , xkl ), Tl) − F(x1, Tl))

∣∣∣∣∣∣
≤ 1

(#El)kl−1

∑
x2,...,xkl

∣∣F(πl(x1, x2, . . . , xkl ), Tl) − F(x1, Tl)
∣∣

≤ ω( f, Tl , ε, C(3η/4))

Tl

(3.2)

where the second inequality follows from (3.1). On the other hand, it is not hard to show
that

lim
l→∞ |

∫
f dμ∗

l −
∫

f dνl | = lim
l→∞

∣∣∣∣∣∣
1

#El

∑
x1∈El

Vl(x1)

∣∣∣∣∣∣ (3.3)

where the variation term Vl(x1) is defined as

Vl(x1) := 1

(#El)kl−1

∑
x2,...,xkl

(F(πl(x1, x2, . . . , xkl ), Tl) − F(x1, Tl)).

By (3.2), for each x1 ∈ El we have |Vl(x1)| ≤ ω( f,Tl ,ε,C(3η/4))
Tl

. By plugging this into
(3.3), observing ε < δ0 by property (3) of δ0 and applying Lemma 2.6, we get

lim
l→∞ |

∫
f dμ∗

l −
∫

f dνl | ≤ lim
l→∞

ω( f, Tl , ε, C(3η/4))

Tl
= 0,

which concludes the proof of the lemma. ��

3.1. Variance. Given a function f ∈ C(T 1M), we consider F(·, Tl) : El → R defined
in the obvious way, i.e. F(v, Tl) = ∫ Tl

0 f (gtv)dt for v ∈ El , and we consider the
variances

σ 2
l := σ 2

ml
(F(·, Tl)) = 1

#El

∑
x∈El

⎛
⎝F(x, Tl) − 1

#El

∑
x∈El

F(x, Tl)

⎞
⎠

2

.

Terms of the form klσ 2
l appear in our version of the Lindeberg condition. We let

Ql :=
⌊

(Tl − δl)Cl

Tl

⌋
− 1.

The interpretation of this constant is that it is chosen so that if we spend QlTl time
looping around one of the closed geodesics then we have definitely not exceeded Cl
times the actual length of the geodesic, which is the time at which we move on to
approximating the next closed geodesic. For fixed l ≥ 2 and each p ∈ [1, kl ], we let
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tp = (p − 1)(ClTl + M). For q ∈ [0, Ql − 1], we define a family of function Fl
p,q by

averaging f over the time interval [tp + qTl , tp + (q + 1)Tl ], that is

Fl
p,q(v) := F(gtpv, [qTl , (q + 1)Tl ]) = F(gtp+qTlv, Tl) =

∫ tp+(q+1)Tl

tp+qTl
f (gtv)dt.

We also consider this function summed over the range of q. Note that

∑
q

Fl
p,q(v) =

Ql−1∑
q=0

∫ tp+(q+1)Tl

tp+qTl
f (gtv)dt =

∫ tp+QlTl

tp
f (gtv)dt.

Thus, we define Fl
p by averaging f over the time interval [tp, tp + QlTl ], that is

Fl
p := F(gtpv, QlTl)

We define

s2l =
∑
p

σ 2
νl
(Fl

p) =
∑
p

σ 2
νl
(
∑
q

Fl
p,q),

where 1 ≤ p ≤ kl , 0 ≤ q ≤ Ql − 1. This quantity is the relevant variance quantity for
the measures νl , recording the sum of variances of each prescribed closed geodesic for
Ql times. To emphasize what goes into this variance quantity, we observe that it can be
easily computed that

σ 2
νl
(Fl

p) = 1

#Pl

∑
y∈Pl

1

Tl

∫ Tl

0

(∫ tp+QlTl

tp
f (gs+t y)ds

)2

dt

−
⎛
⎝ 1

#Pl

∑
y∈Pl

1

Tl

∫ Tl

0

∫ tp+QlTl

tp
f (gs+t y)dsdt

⎞
⎠

2

,

and summing the above expression over p from 1 to kl gives s2l .

3.2. Basic estimates. We have the following comparison between averages along the
total number of loops around a fixed xi , and the corresponding orbit segment along
π((x1, . . . , xkl )).

Lemma 3.3 . For aHölder continuous potential function f , any x ∈ Ekl
l , any t ∈ [0, Tl ]

and p ∈ {1, . . . , kl}, there exists K = K ( f ) such that

|Fl
p(gt (πl(x))) − Ql F(xp, Tl)| ≤ 2KTl + (2κε + 2δl Ql)‖ f ‖.

Proof Let x = (x1, . . . , xkl ) ∈ Ekl
l , and let z = πl(x), and we fix 1 ≤ p ≤ kl . By

construction, we have

dCl t (xp)(g(p−1)(ClTl+M)z, xp) < ε.

Recall that for each x ∈ El , we have (x, t (x)) ∈ C(η), where t (x) ∈ [Tl − δl , Tl ] is the
least period of the periodic orbit defined by x . In particular, since each lap round such
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a periodic orbit will carry a definite amount of hyperbolicity, the distance between the
orbit of (g(p−1)(ClTl+M)z,ClTl) and (xp,ClTl) is much smaller than ε when l is large.
This is the key idea in getting the desired estimate.

More precisely, for each l ≥ 2, 1 ≤ p ≤ kl and x ∈ Ekl
l , following the proof of

Lemma 2.6 we know there is some u p = u p(x) such that u p ∈ T 1M and

gsu p ∈ Ws
κε(gs+tp z ∩ Wcu

κε (gsxp)

for all s ∈ [0,Cltp+1]. In particular, it holds for all s ∈ [0, (Ql + 1)Tl ] by the definition
of Ql . There is sp = sp(x) such that sp ∈ [−κε, κε] and gsp+su p ∈ Wu

κε(gsxp). Fix
such l, p and for any t ∈ [0, Tl ] we want to control

|Fl
p(gt z) − Ql F(xp, Tl)|,

which is bounded above by the sum of the following four terms

(1) |Fl
p(gt z) − F(gtu p, QlTl)|

(2) |F(gtu p, QlTl) − F(gt+spu p, QlTl)|
(3) |F(gt+spu p, QlTl)) − F(gt xp, QlTl)|
(4) |F(gt xp, QlTl) − Ql F(xp, Tl)|.
Let us analyze these four terms.We begin with the first term. Suppose f satisfies | f (x)−
f (y)| ≤ L0d(x, y)α . We know for any u, v ∈ T 1M , |λ(u) − λ(v)| <

η
4 whenever

d(u, v) < δ0. Therefore, for each 0 ≤ q ≤ Ql − 1, by Lemma 3.10 in [3] we have

|Fl
p,q(gt z) − F(gtu p, [qTl , (q + 1)Tl ])| ≤

∫ (q+1)Tl

qTl
| f (gt+s+tp z) − f (gt+su p)|ds

≤ L0

∫ (q+1)Tl

qTl
d(gt+s+tp z, gt+su p)

αds

≤ L0Tld(gqTl+t+tp z, gqTl+t u p)
α

≤ L0Tlκεe− qTlηα

2 .

We obtain

|
Ql−1∑
q=0

Fl
p,q(gt z − F(gtu p, QlTl)| ≤

Ql−1∑
q=0

L0Tlκεe− qTlηα

2 ≤ L0Tlκε

1 − e− Tlηα

2

≤ KTl ,

where K := L0κε

1−e− ηα
2

is a constant (Recall that Tl > 1 for all l). This gives an upper

bound on the first term.
The above argument can be repeated along the unstable direction to control the third

term. We get

|F(gt+spu p, [qTl , (q + 1)Tl ])) − F(gt xp, [qTl , (q + 1)Tl ])| ≤ L0Tlκεe− (Ql−1−q)Tlηα

2 ,

and thus

|F(gt+spu p, QlTl)) − F(gt xp, QlTl)| ≤
Ql−1∑
q=0

L0Tlκεe− (Ql−1−q)Tlηα

2

≤ L0Tlκε

1 − e− Tlηα

2

≤ KTl
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To estimate the second term, we observe that

|F(gtu p, QlTl) − F(gt+spu p, QlTl)| ≤ 2|| f ||sp ≤ 2κε|| f ||.
To estimate the fourth term, we observe that |F(gt xp, QlTl)− Ql F(xp, Tl)| is bounded
above by

Ql−1∑
q=0

∣∣∣∣∣
∫ (q+1)Tl

qTl
f (gt+s x p)ds −

∫ Tl

0
f (gt xp)dt

∣∣∣∣∣ ≤ 2δl Ql || f ||.

where the last inequality follows because xp has period t (xp) ∈ [Tl−δl , Tl ]. By summing
the estimates on these four terms, the lemma is proved. ��
We also have the following basic comparison between integrals using νl and ml .

Lemma 3.4 . We have

|
∫

Fl
pdνl − Ql

∫
F(·, Tl)dml | ≤ 2KTl + 2κε‖ f ‖ + 2δl Ql‖ f ‖. (3.4)

Proof The expression | ∫ Fl
pdνl − Ql

∫
F(·, Tl)dml | can be rewritten as

1

(#El)kl

∣∣∣∣∣∣∣
∑
x∈Ekl

l

(
1

Tl

∫ Tl

0
Fl
p(gs(πl(x))ds − Ql F(xp, Tl)

)∣∣∣∣∣∣∣
.

The results follows using Lemma 3.3. ��

4. Main Theorem

Recall Lν(h, c) is the Lindeberg function from Definition 2.1.

Theorem 4.1 Let (νl)l∈N be a sequence of measures as constructed in the previous
section. Suppose f ∈ C(T 1M) is Hölder continuous with

lim inf
l→∞ σ 2

l > 0. (4.1)

Then the Lindeberg-type condition

lim
l→∞

∑
1≤p≤kl , Lνl (F

l
p, γ sl)

s2l
= 0 (4.2)

for any γ > 0, implies that for all a ∈ R,

lim
l→∞ νl

({
v : F(v, kl(ClTl + M)) − ∫ F(·, kl(ClTl + M))dνl

sl
≤ a

})
= N (a),

(4.3)

where N is the cumulative distribution function of the normal distribution N (0, 1).
Conversely, under the hypothesis (4.1), (4.3) implies (4.2).
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We also show in Lemma 4.6 that the conclusion (4.3) is equivalent to

lim
l→∞ νl

({
v : F(v, kl(ClTl + M)) − kl(ClTl + M)

∫
f dνl

σνl (F(·, kl(ClTl + M)))
≤ a

})
= N (a), (4.4)

which has the advantage of being in the most elementary possible terms.
The proof of Theorem 4.1 is based on comparing μl and νl . The measures μl are

product measures supported on Ekl
l (more precisely, the measures μl are products of

the measures ml on El ) and the version of the results we want can be obtained there by
considering these objects as sequences of independent random variables and appealing
to classical probability theory. Our main theorem is proved by showing that the relevant
quantities for νl are comparable to corresponding quantities for μl . The starting point
for our main theorem is thus the following theorem on the sequence of measures (μl).
We give the Lindeberg condition in terms of the uniform measure ml on El since this is
the most elementary object under consideration.

Theorem 4.2 . The condition

lim
l→∞

Lml (F(·, Tl), γ√
klσl)

σ 2
l

= 0. (4.5)

holds for any γ > 0 if any only if

lim
l→∞ μl

⎛
⎝
⎧⎨
⎩(v1, . . . , vkl ) :

∑kl
i=1 F(vi , Tl) − kl

∫
F(·, Tl)dml√

klσ 2
l

≤ a

⎫⎬
⎭
⎞
⎠ = N (a).

(4.6)

This result can be obtained formally using an analogous statement of Denker-Senti-
Zhang for dynamical arrays. It can be obtained quite easily from the classical Linde-
berg CLT [11]. We give a short formal proof based on verifying Denker-Senti-Zhang’s
hypotheses [8, Proposition 3.3].

Proof We follow the terminology of [8, Proposition 3.3]. We consider the product of kl
copies of a finite set. We consider a function Gl,i : Ekl

l → R which depends on the i th

component. That is,

Gl,i (x1, . . . , xkl ) = Gl,i (xi ).

Let ŝ2l =∑kl
i=1 σ 2

μl
(Gl,i ). As stated in [8, Proposition 3.3], it follows from Lindeberg’s

CLT for independent random variables that the Lindeberg condition holds

lim
l→∞

∑kl
i=1 Lμl (Gl,i , γ ŝl)

ŝ2l
= 0 for any γ > 0 (4.7)

if and only if (Gl,i ) is asymptotically negligible

lim
l→∞ max

1≤i≤kl

σ 2
μl

(Gl,i )

ŝ2l
= 0 (4.8)
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and for all a ∈ R,

lim
l→∞ μl

({
(x1, . . . , xkl ) :

∑kl
i=1 Gl,i − ∫ (

∑kl
i=1 Gl,i )dμl

ŝl
≤ a

})
= N (a). (4.9)

For our statement, we set Gl,i (x1, . . . , xkl ) = F(xi , Tl) for all 1 ≤ i ≤ kl . We observe
that for each i , we have

σ 2
μl

(x → F(xi , Tl)) = σ 2
ml

(F(·, Tl)).
This is because the first expression is

1

#Ekl
l

∑
x∈Ekl

l

⎛
⎜⎝F(xi , Tl) − 1

#Ekl
l

∑
x∈Ekl

l

F(xi , Tl)

⎞
⎟⎠

2

,

so using that #Ekl
l = (#El)(#E

kl−1
l ), and that

∑
x∈Ekl

l

F(xi , Tl) = #Ekl−1
l

∑
xi∈El

F(xi , Tl),

the result follows. Thus, ŝ2l = klσ 2
l . The expression ŝ−2

l σ 2
μl

(Gl,i ) in (4.8) reduces
to σ 2

l /klσ 2
l . Thus asymptotic negligibility is trivially satisfied. The condition (4.7)

clearly simplifies to (4.5). We obtain the desired statement, noting in (4.9) that∫
(
∑kl

i=1 Gl,i )dμl =∑kl
i=1

∫ (
x → F(xi , Tl)

)
dμl = kl

∫
F(·, Tl)dml . ��

The normalization quantities in (4.6) are stated in terms of ml to keep them in the most
elementary terms.We note that these quantities can be thought of as quantities depending
on the product measure μl (rather than ml ) since the proof above makes clear that

∫ kl∑
i=1

F(vi , Tl)dμl = kl

∫
F(·, Tl)dml ,

kl∑
i=1

σ 2
μl

(x → F(xi , Tl)) = klσ
2
l .

Wenowprove a key lemmawewill need in order to use Theorem4.2 to describe behavior
of the sequence (νl). For x ∈ El , define

Dml (x) := F(x, Tl) −
∫

F(·, Tl)dml .

For 1 ≤ p ≤ kl , t ∈ [0, Tl ] and x ∈ Ekl
l , define

Dνl (x, t; p) := Fl
p(gt (πl(x))) −

∫
Fl
pdνl ,

and define

�l
p(x, t) := Dνl (x, t; p) − Ql Dml (xp).

These quantities satisfy the following properties.
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Lemma 4.3 . For all t ∈ [0, Tl ] and x ∈ Ekl
l , we have

|�l
p(x, t)| ≤ 2(2KTl + 2κε‖ f ‖ + 2δl Ql‖ f ‖), (4.10)

Dνl (x, t; p)2 = �l
p(x, t)[�l

p(x, t) + 2Ql Dml (x, p)] + Q2
l Dml (xp)

2. (4.11)

Proof The first property follows directly fromLemmas 3.3 and 3.4. The second property
holds because

Dνl (x, t; p)2 = Dνl (x, t; p)2 − Q2
l Dml (xp)

2 + Q2
l Dml (xp)

2

= �l
p(x, t)[Dνl (x, t; p) + Ql Dml (xp)] + Q2

l Dml (xp)
2

= �l
p(x, t)[�l

p(x, t) + 2Ql Dml (x, p)] + Q2
l Dml (xp)

2.

��
Lemma 4.4 liml→∞

σ 2
νl

(Fl
p)

Q2
l σ

2
l

= 1 uniformly in 1 ≤ p ≤ kl .

Proof Observe that we can write

Q2
l σ

2
l = 1

#Ekl
l

∑
x∈Ekl

l

(
Ql F(xp, Tl) − Ql

∫
F(·, Tl)dml

)2

= 1

#Ekl
l

∑
x∈Ekl

l

(Ql Dml (xp))
2 = 1

#Ekl
l

∑
x∈Ekl

l

1

Tl

∫ Tl

0
(Ql Dml (xp))

2dt.

We thus observe using (4.10) and (4.11) that

σ 2
νl

(Fl
p) − Q2

l σ
2
l = 1

#Ekl
l

∑
x∈Ekl

l

1

Tl

∫ Tl

0
(Dνl (x, t; p))2dt − Q2

l σ
2
l

= 1

#Ekl
l

∑
x∈Ekl

l

1

Tl

∫ Tl

0
((Dνl (x, t; p))2 − Q2

l Dml (xp)
2)dt

= 1

#Ekl
l

∑
x∈Ekl

l

1

Tl

∫ Tl

0
�p(x, t)(�p(x, t) + 2Ql Dml (xp))dt

=
∫ (

1

Tl

∫ Tl

0
�l

p(x, t)
2dt

)
dμl +

1

#Ekl
l

∑
x∈Ekl

l

1

Tl

∫ Tl

0
2Ql�

l
p(x, t)Dml (xp)dt

≤
∫ (

1

Tl

∫ Tl

0
�l

p(x, t)
2dt

)
dμl + 2Ql sup

x,t
{|�l

p(x, t)|}
∫

Dml dml

≤
∫ (

1

Tl

∫ Tl

0
(�l

p(x, t))
2dt

)
dμl + 2Qlσl sup

x,t
{|�l

p(x, t)|}

≤ 4(2KTl + 2κε‖ f ‖ + 2δl Ql‖ f ‖)2 + 4Qlσl(2KTl + 2κε‖ f ‖ + 2δl Ql‖ f ‖).
By Hypothesis 3.1 on (Tl , kl , δl ,Cl)l∈N and our hypothesis that lim inf l→∞ σl > 0, we
conclude that

lim
l→∞

σ 2
νl
(Fl

p) − Q2
l σ

2
l

Q2
l σ

2
l

= 0.
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Notice that the above upper bound on σ 2
νl
(Fl

p) − Q2
l σ

2
l is independent of p. As a

result, the convergence is uniform in p and this ends the proof of Lemma 4.4. ��
We obtain the following lemma as an immediate corollary.

Lemma 4.5 . The sequence s2l =∑p σ 2
νl
(Fl

p), satisfies

lim
l→∞

sl
Qlσl

√
kl

= 1. (4.12)

We might also consider s′2
l := σ 2

νl
(
∑

p F
l
p) or s′′2

l := σ 2
νl
(F(·, kl(ClTl + M))) as

natural substitutes for s2l . We have the following result

Lemma 4.6 . liml→∞
s′2l
s2l

= liml→∞
s′′2l
s2l

= 1.

Proof We begin by verifying liml→∞
s′2l
s2l

= 1. For any l > 1 and 1 ≤ p1 < p2 ≤ kl ,

we have
∫

Dνl (x, t; p1)Dνl (x, t; p2)dνl

=
∫

((Ql Dml (xp1) + �l
p1(x, t))(Ql Dml (xp2) + �l

p2(x, t)))dνl .

The right hand side is the sumof four terms, amongwhich
∫
Q2

l Dml (xp1)Dml (xp2)dνl =
0, and

∫
(Ql Dml (xp1)|�l

p2(x, t)|dνl ≤ 2Qlσl(2KTl +2κε‖ f ‖+2δl Ql‖ f ‖), which also
holds true when p1 and p2 are switched, and

∫ |�l
p1(x, t)�

l
p2(x, t)|dνl ≤ 4(2KTl +

2κε‖ f ‖ + 2δl Ql‖ f ‖)2. As a result, we have

lim
l→∞

∣∣∣∣∣
s′2
l

s2l
− 1

∣∣∣∣∣ = lim
l→∞

∣∣∣∣∣
2
∑

1≤p1<p2≤kl

∫
(Dνl (x, t; p1)Dνl (x, t; p2))

s2l
dνl

∣∣∣∣∣
≤ lim

l→∞
8Qlσl(2KTl + 2κε‖ f ‖ + 2δl Ql‖ f ‖) + 4(2KTl + 2κε‖ f ‖ + 2δl Ql‖ f ‖)2

s2l

= lim
l→∞

8Qlσl(2KTl + 2κε‖ f ‖ + 2δl Ql‖ f ‖) + 4(2KTl + 2κε‖ f ‖ + 2δl Ql‖ f ‖)2
Q2

l σ
2
l kl

= 0,

where in the second last equality we use Lemma 4.5. The limit being 0 follows from
Hypothesis 3.1 on (Tl , kl , δl ,Cl)l∈N and lim inf l→∞ σl > 0.

Now to show liml→∞
s′′2l
s2l

= 1, it suffices to show that liml→∞
s′′2l
s′2l

= 1. Write

�′
l(x, t) := ∑kl

p=1

∫ p(ClTl+M)

(p−1)(ClTl+M)+QlTl
f (gs+tπl(x))ds. Notice that by the definition of

Ql , for any l ≥ 1 and x ∈ Ekl
l we have

|�′
l(x, t)| ≤ kl((Cl − Ql)Tl + M)|| f || ≤ kl(Clδl + 2Tl + M)|| f ||. (4.13)
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WewriteDνl (x, t) :=∑kl
p=1(F

l
p(gtπl(x))−

∫
Fl
p(gtπl(x))dνl) =∑kl

p=1 Dνl (x, t; p).
As in the proof of Lemma 4.4, we have

|s′′2
l − s′2

l |

=

∣∣∣∣∣∣∣
1

#Ekl
l

∑
x∈Ekl

l

1

Tl

∫ Tl

0
�′

l(x, t)(�
′
l(x, t) + 2Dνl (x, t))dt

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
∫ (

1

Tl

∫ Tl

0
(�′

l(x, t))
2dt

)
dμl +

1

#Ekl
l

∑
x∈Ekl

l

1

Tl

∫ Tl

0
2�′

l(x, t)Dνl (x, t)dt

∣∣∣∣∣∣∣
≤ (kl(Clδl + 2Tl + M)|| f ||)2 + 2(kl(Clδl + 2Tl + M)|| f ||)s′

l ,

which in turns shows that

lim
l→∞

∣∣∣∣∣
s′′2
l

s′2
l

− 1

∣∣∣∣∣
≤ lim

l→∞
(kl(Clδl + 2Tl + M)|| f ||)2 + 2(kl(Clδl + 2Tl + M)|| f ||)s′

l

s′2
l

= lim
l→∞

(kl(Clδl + 2Tl + M)|| f ||)2 + 2(kl(Clδl + 2Tl + M)|| f ||)Qlσl
√
kl

Q2
l σ

2
l kl

= lim
l→∞

k2l C
2
l δ

2
l + 2k3/2l Cl Qlσlδl

Q2
l σ

2
l kl

= 0,

and therefore concludes the proof of the lemma. ��
Applying Lemma 4.6, we can freely replace sl in (4.2) and (4.3) by s′

l or s
′′
l . Although

this is not used in proving Theorem 4.1, it allows us to reinterpret the conclusion.We also
observe that, in the conclusion, one can easily see that terms of the form

∫
F(·, kl(ClTl +

M))dνl can be replaced with kl(ClTl + M)
∫

f dνl .
We now prove the following statement where we compare the average of F along the

orbit segment of v over the time interval [0, kl(ClTl + M)] to its average over the sum
of the time intervals [tp, tp + QlTl ].
Lemma 4.7 . For each l ≥ 2, define the functions

Al(v) := F(v, kl(ClTl + M)) − ∫ F(·, kl(ClTl + M))dνl

sl
,

Bl(v) :=
∑

p F
l
p(v) − ∫ ∑p F

l
pdνl

sl
,

where the sum is over 1 ≤ p ≤ kl . For any a > 0, we have

lim
l→∞ νl(v : |Al − Bl | > a) = 0.
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Proof For any constant a > 0, we have

lim
l→∞ νl(v : |Al(v) − Bl(v)| > a) ≤ lim

l→∞

∫ |Al − Bl |dνl

a

≤ lim
l→∞

2kl(Clδl + M + 2Tl)‖ f ‖
asl

= lim
l→∞

2kl(Clδl + M + 2Tl)‖ f ‖
a
√∑

p σ 2
νl
(Fl

p)

= lim
l→∞

2kl(Clδl + M + 2Tl)‖ f ‖
a
√
kl Q2

l σ
2
l

= lim
l→∞

2klδl‖ f ‖
a
√
klσl

+
(2M + 4Tl)

√
kl‖ f ‖

aQlσl
= 0.

In the above calculation, the second line follows from

∣∣∣∣∣F(v, kl(ClTl + M)) −
∑
p

Fl
p

∣∣∣∣∣ ≤ kl(ClTl + M − QlTl)‖ f ‖

≤ kl(ClTl + M − ((Tl − δl)ClT
−1
l − 2)Tl)‖ f ‖

= kl(Clδl + M + 2Tl)‖ f ‖,

the fourth line follows from Lemma 4.4, and the fifth line converges to 0 by Hypothe-
sis 3.1 and lim inf σ 2

l > 0. ��

Lemma 4.7 is the reason we consider sums of the form
∑kl

p=1 F
l
p. We now show that

the CLT conclusions for μl and νl are equivalent. For the following proofs, we define a
function Yp : g[0,Tl ]πl(E

kl
l ) → R by

Yp(gsπl(x)) = F(xp, Tl) −
∫

(x → F(xi , Tl))dμl = Dml (xp),

and we note that
∑kl

p=1 Yp(gsπl(x)) =∑kl
p=1 F(xp, Tl) − kl

∫
F(·, Tl)dml .

Lemma 4.8 . The sequence (νl) satisfies the CLT (4.3)

lim
l→∞ νl({x : F(x, kl(ClTl + M)) − ∫ F(·, kl(ClTl + M))dνl

sl
≤ a}) = N (a).

if and only if the sequence (μl) satisfies the CLT (4.6)

lim
l→∞ μl

⎛
⎝
⎧⎨
⎩(x1, . . . , xkl ) :

∑kl
p=1 F(xp, Tl) − kl

∫
F(·, Tl)dml√

klσ 2
l

≤ a

⎫⎬
⎭
⎞
⎠ = N (a).
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Proof First we observe that by Lemma 4.5 and Lemma 4.7, and the fact that νl only
gives mass to points in g[0,Tl ]πl(E

kl
l ), that the CLT (4.3) holds if and only if

lim
l→∞ νl

({
gs(πl(x)) : x ∈ Ekl

l , s ∈ [0, Tl ],
∑kl

p=1(F
l
p − ∫ Fl

pdνl)√
kl Qlσl

≤ a

})
= N (a).

Observe that by (4.10) we have∣∣∣∣∣∣

⎛
⎝ kl∑

p=1

(Fl
p −

∫
Fl
pdνl) − Ql

kl∑
p=1

Yp

⎞
⎠ (gs(πl (x)))

∣∣∣∣∣∣ =
∣∣∣∣∣∣
kl∑
p=1

�p(x, t)

∣∣∣∣∣∣
≤ 2kl(2KTl + 2κε‖ f ‖ + 2δl Ql‖ f ‖).

Fix b > 0. By Hypothesis 3.1 and (4.1), for sufficiently large l,

2kl(2KTl + 2κε‖ f ‖ + 2δl Ql‖ f ‖)√
kl Qlσl

< b, (4.14)

and it thus follows that for sufficiently large l,
{
gsπl(x) : |∑kl

p=1(F
l
p − ∫ Fl

pdνl) − Ql
∑kl

p=1 Yp|√
kl Qlσl

> b

}
= ∅.

In particular,

lim
l→∞ νl

({
gsπl(x) : |∑kl

p=1(F
l
p − ∫ Fl

pdνl) − Ql
∑kl

p=1 Yp|√
kl Qlσl

> b

})
= 0.

Therefore (4.3) holds if and only if

lim
l→∞ νl

({
gsπl(x) : x ∈ Ekl

l , s ∈ [0, Tl ],
Ql
∑kl

p=1 Yp√
kl Qlσl

≤ a

})
= N (a).

We are now in a position to reformulate in terms of μl . Since Yp does not depend on
the variable s, then either gsπl(x) belongs to the above set for all s ∈ [0, Tl ] or for no
s ∈ [0, Tl ]. It thus follows from the definition of νl that

νl

({
gsπl(x) : Ql

∑kl
p=1 Yp√

kl Qlσl
≤ a

})
= 1

#Ekl
l

#

{
πl(x) : Ql

∑kl
p=1 Yp√

kl Qlσl
≤ a

}
.

Furthermore, by the definition of Yp, we see that{
πl(x) : Ql

∑kl
p=1 Yp√

kl Qlσl
≤ a

}
=
{
x ∈ Ekl

l :
∑kl

p=1 F(xp, Tl) − kl
∫
F(·, Tl)dml√

klσl
≤ a

}
.

We can thus conclude that

lim
l→∞ μl

({
x :
∑kl

p=1 F(xp, Tl) − kl
∫
F(·, Tl)dml√

klσl
≤ a

})
= N (a).

Thus, we conclude that (4.3) holds if and only if (4.6) holds. ��
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All that remains to show equivalence of the Lindeberg conditions in Theorem 4.1 on
(νl) and in Theorem 4.2 on (μl).

Lemma 4.9 . If lim inf l→∞ σl > 0, then the Lindeberg condition (4.2)

lim
l→∞

∑
1≤p≤kl , Lνl (F

l
p, γ sl)

s2l
= 0

holds for all γ > 0 if and only if the Lindeberg condition (4.5)

lim
l→∞

Lml (F(·, Tl), γ√
klσl)

σ 2
l

= 0

holds for all γ > 0.

Proof Let Zl(c) = Z(c, Fl
p, νl) = {x : |Fl

p − ∫ Fl
pdνl | > c} be the set from the

Lindeberg condition. Observe that

Lνl (F
l
p, γ sl) =

∫
(Fl

p −
∫

Fl
pdνl)

21Zl (γ sl )dνl

= 1

Ekl
l

∑
x∈Ekl

l

1

Tl

∫ Tl

0
Dνl (x, t; p)21Zl (γ sl )(gtπl(x))dt.

Using (4.11), we see that Lνl (F
l
p, γ sl) is bounded above by the sum of the terms

1

Ekl
l

∑
x∈Ekl

l

1

Tl

∫ Tl

0
�l

p(x, t)[�l
p(x, t) + 2Ql Dml (x, p)]dt,

and

1

Ekl
l

∑
x∈Ekl

l

1

Tl

∫ Tl

0
Q2

l Dml (xp)
21Z(γ sl )(gtπl(x))dt.

The first of these terms is equal to σ 2
νl
(Fl

p)−Q2
l σl as observed in the proof of Lemma 4.4.

The second term can be written as∫
(QlYp)

21Zl (γ sl )dνl .

Since s−2
l �p(σ

2
νl
(Fl

p) − Q2
l σ

2
l ) → 0 by the proof of Lemma 4.4, it follows that

lim
l→∞

∑
p Lνl (F

l
p, γ sl)

s2l
≤ lim

l→∞

∑
p

∫
(QlYp)

21Zl (γ sl )dνl

s2l
.

We now work on the set Zl(γ sl). Since νl({gt (πl(x)) : x ∈ Ekl
l , t ∈ [0, Tl ]}) = 1, it

suffices for our argument to consider the set

Z ′
l(γ sl) := {gt (πl(x)) : x ∈ Ekl

l , t ∈ [0, Tl ], |Fl
p −

∫
Fl
pdνl | > γ sl}.
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Note that |Fl
pgt (πl(x))−

∫
Fl
pdνl | = |Dνl (x, t)| ≤ |�l

p(x, t)|+Ql |Yp(gt (πl(x))|. Thus

Z ′
l(γ sl) ⊂ {gt (πl(x)) : |Yp(gt (πl(x))| ≥ Q−1

l (γ sl − |�l
p(x, t)|)}.

Recall that supx,t {|�l
p(x, t)|} ≤ 2(2KTl+κε‖ f ‖+2δl Ql‖ f ‖) and liml→∞ sl√

kl Qlσl
= 1.

Therefore, by Hypothesis 3.1 and (4.1), for sufficiently large l, we have |�l
p(x, t)| ≤ γ sl

2

for all t ∈ [0, Tl ] and x ∈ Ekl
l . It follows that for sufficiently large l,

Z ′
l(γ sl) ⊂ {gt (πl(x)) : |Yp(gt (πl(x))| ≥ γ sl(2Ql)

−1}
⊂ {gt (πl(x)) : |Yp(gt (πl(x))| ≥ (γ σl

√
kl)/4}.

(4.15)

Thus for all large l,
∫

(QlYp)
21Zl (γ sl )dνl =

∫
(QlYp)

21Z ′
l (γ sl )

dνl

≤
∫

(QlYp)
21{gt (πl (x)):|Yp(gt (πl (x))|≥(γ σl

√
kl )/4}dνl

= Q2
l

∫
Dml ((x → xp))

21{x :|Dml (xp)|≥(γ σl
√
kl )/4}dμl ,

= Q2
l

∫
Dml (x)

21{x :|Dml (x)|≥(γ σl
√
kl )/4}dml

= Q2
l Lml (F(·, Tl), γ σl

√
kl/4). (4.16)

Combining the above calculations, and using (4.12), it follows that if we assume (4.5),
then

lim
l→∞

∑
p Lνl (F

l
p, γ sl)

s2l
≤ lim

l→∞

∑
p

∫
(QlYp)

21Zl (γ sl )dνl

s2l

≤ lim
l→∞

kl Q2
l Lml (F(·, Tl), γ σl

√
kl/4)

s2l

= lim
l→∞

Lml (F(·, Tl), γ σl
√
kl/4)

σ 2
l

= 0,

and thus (4.2) is true.
To check (4.2) �⇒ (4.5), note that Lνl (F

l
p, γ sl) is bounded below by the sum of

− 1

Ekl
l

∑
x∈Ekl

l

1

Tl

∫ Tl

0
�l

p(x, t)[�l
p(x, t) + 2Ql Dml (x, p)]dt,

and

1

Ekl
l

∑
x∈Ekl

l

1

Tl

∫ Tl

0
Q2

l Dml (xp)
21Z(γ sl )(gtπl(x))dt.
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As in the discussion above, we have

lim
l→∞

∑kl
p=1 Lνl (F

l
p, γ sl)

s2l
≥ lim

l→∞

∑kl
p=1

∫
(QlYp)

21Zl (γ sl )dνl

s2l
.

Wealso have |Fl
pgt (πl(x))−

∫
Fl
pdνl | ≥ −|�l

p(x, t)|+Ql |Yp(gt (πl(x))|, which implies

that {gt (πl(x)) : |Yp(gt (πl(x))| ≥ Q−1
l (γ sl + |�l

p(x, t)|)} ⊂ Z ′
l(γ sl).

Since |�l
p(x, t)| ≤ γ sl for all x ∈ Ekl

l and t ∈ [0, Tl ] when l is sufficiently large,

we have {gt (πl(x)) : |Yp(gt (πl(x))| ≥ 2Q−1
l γ sl} ⊂ Z ′

l(γ sl). By (4.12), we have

{gt (πl(x)) : |Yp(gt (πl(x))| ≥ 4γ
√
klσl} ⊂ Z ′

l(γ sl).

Then following the same argument as in (4.16), we have
∫

(QlYp)
21Z ′

l (γ sl )
dνl ≥ Q2

l Lml (F(·, Tl), 4γ σl
√
kl),

which shows that

lim
l→∞

∑kl
p=1 Lνl (F

l
p, γ sl)

s2l
≥ lim

l→∞
Lml (F(·, Tl), 4γ σl

√
kl)

σ 2
l

.

This shows that (4.2) implies (4.5). ��

5. Verifying the Lindeberg Condition

Historically, the Lindeberg CLT is used in the case where an underlying probabilistic
mixing structure is available (see condition (I) and (II) in [15] for definitions of mixing
and K-property in probability). In those situations, given any L1 random variable f , to
evaluate the distribution of a sum Sn f , one observes its partial sums (Sbiai f )i∈N, where
0 = a0 < b0 < a1 < · · · . Due to the mixing assumptions on the system, one can
expect Sbiai f to behave ‘independently’ for different i ∈ N, if ai+1 − bi , which is the gap
between i-th and i +1-th segment, increases to ∞ uniformly for all i ∈ N. To make Sn f
well-approximated by the sum over Sbiai f , it is natural to consider bi − ai � ai+1 − bi
for all i ∈ N so that the effect from the gap is negligible. See Theorem 1.3 in [15]. In
particular, for f with finite 2+δ moments and σ 2(Sn f ) tending to infinity, the Lindeberg
condition is satisfied. The mixing structure of the system allows one to argue that the
Lindeberg variance distributed by each segment individually is sub-linear compared to
the total variance, while mixing also implies the growth of total variance is (almost)
linear. Therefore, the overall Lindeberg variance is negligible.

In our situation, we do not have any strong mixing properties available for the mea-
sures (νl). However, each νl is weighted over concatenations of kl segments of (repeated)
independent closed geodesicswith (approximately) Tl length, so one can study the global
Lindeberg condition (4.2) via the local condition (4.5). Intuitively, if we can make kl
increase at an appropriate rate compared to Tl , eventually the Lindeberg variance con-
tributed by individual terms becomes negligible, and thus the local condition (4.5) is
satisfied.
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From now on, we strengthen condition (4.1) to the following

lim
l→∞ σ 2

l = ∞. (5.1)

With this assumption, we can weaken the condition klδ2l ↓ 0 in Hypothesis 3.1 to

klδ2l
σ 2
l

↓ 0, (5.2)

and still obtain Theorem 4.1. This is because wherever the old condition klδ2l ↓ 0 is
applied, we are actually dealing with the limit of klδ2l /σ

2
l (see the last line in the proof

of Lemma 4.6, the fifth line of Lemma 4.7, (4.14) in Lemma 4.8 and (4.15) in Lemma
4.9). With the new assumption (5.2), we can allow kl to grow faster than before. If we
can find kl which satisfies (5.2) while simultaneously satisfying the hypothesis of the
following lemma, we are done.

Lemma 5.1 . Suppose that we have chosen δl and Tl , and our observable f , and that

σl → ∞. Suppose we can find kl → ∞ so that
√
klσl
Tl

→ ∞. Then the Lindeberg
condition (4.5) is satisfied.

Proof We consider the Lindeberg condition (4.5). For any fixed γ > 0 and v ∈ T 1M ,
the indicator function in the integral satisfies

1|F(·,Tl )−
∫
F(·,Tl )dml |≥γ

√
klσl (v) ≤ 12Tl || f ||≥γ

√
klσl (v) = 1Kγ, f ≥T−1

l

√
klσl

(v) (5.3)

where Kγ, f := 2|| f ||γ −1 is a constant. Thus,

lim
l→∞

Lml (F(·, Tl), γ√
klσl)

σ 2
l

= lim
l→∞

∫
(F(·, Tl) − ∫ F(·, Tl)dml)

21|F(·,Tl )−
∫
F(·,Tl )dml |≥γ

√
klσl dml

σ 2
l

≤ lim
l→∞

∫
(F(·, Tl) − ∫ F(·, Tl)dml)

21Kγ, f ≥T−1
l

√
klσl

dml

σ 2
l

= 0

(5.4)

which verifies Lindeberg condition (4.5) ��
Recall that we defined the (lower) dynamical variance for the sequence of measures (ml)

to be

σ 2
Dyn( f, (ml)) = lim inf

l→∞

∫ (
F(·, Tl) − ∫ F(·, Tl)dml√

Tl

)2
dml = lim inf

l→∞
σ 2
l

Tl
(5.5)

See the introduction for a discussion of this quantity.

Theorem 5.2 . Suppose that we have chosen δl and Tl , and our observable f . Suppose
that σ 2

Dyn( f, (ml)) > 0. Then there exists sequences kl → ∞ and Cl → ∞ so that the
measures (νl) constructed from the data (δl , Tl , kl ,Cl)l∈N are valid for Theorem 4.1 to
hold, and so that the Lindeberg condition (4.2) holds.
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Proof We let kl := σ 2
l /δl , which clearly tends to ∞. Observe that

klδ2l
σ 2
l

= δl ↓ 0, and

thus (5.2) is satisfied. Making any suitable choice of Cl , it follows from the discus-
sion above that Theorem 4.1 is valid for the measures (νl) constructed from the data
(δl , Tl , kl ,Cl)l∈N.

Observe that from the hypothesis that σ 2
Dyn( f, (ml)) > 0, the sequence σl

Tl
is eventu-

ally greater than some constant α > 0, and thus we have
√
klσl
Tl

→ ∞.

Thus the hypothesis of Lemma 5.1 is satisfied, and we can conclude that the Lindeberg
condition (4.5) on (ml) holds. Thus, by Lemma 4.9, the Lindeberg condition (4.2) holds
on (νl). ��
Combining Theorem 4.1 and Theorem 5.2 gives us Theorem A as an immediate conse-
quence.

Remark 5.3 . One can investigate when the Lindeberg condition holds under the weaker
condition that liml→∞ σ 2

l = ∞ without assuming that σ 2
Dyn( f, (ml)) > 0. It can be

verified that a suitable sequence (kl) satisfyingLemma5.1 can be found ifσ 2
l /δl Tl → ∞.

To verify this condition, first recall from Hypothesis 3.1 that the choice on Tl is only
determined by δl . Thus, we need information on how Tδl is related to δl as δl → 0. This
information can be extracted in the uniform case using symbolic dynamics, and the issue
does not appear at all in discrete-time analogues of this result. While it may be possible
to use this criterion to slightly sharpen our results in some concrete examples where the
relationship between δl and Tδl is tractable, we do not pursue this at present.

6. Extensions of Main Result

In this section, we extend our main result to dynamical arrays of observables. We also
discuss how our techniques extend to equilibrium states and how they apply to other
classes of dynamical system beyond geodesic flow.

6.1. Dynamical arrays. A benefit of the Lindeberg approach is that we can consider
dynamical arrays in the CLT instead of a single function. In this section, our setup is as
follows. We let ( fl)l∈N be a sequence of Hölder continuous observables. We allow for
different Hölder constants and exponents, not necessarily bounded away from ∞ and 0
respectively. We let Ll and αl be the Hölder constant and exponent respectively for fl ,
so that | fl(x) − fl(y)| ≤ Lld(x, y)αl for all l ∈ N.

Given a sequence of 4-tuples (Tl , kl , δl ,Cl)l∈N to be chosen precisely later, and the
sequence of observables ( fl), we write Fl(v, Tl) := ∫ Tl

0 fl(gt (v))dt , and Fl
p,q(v) :=∫ tp+(q+1)Tl

tp+qTl
fl(gt (v))dt . Using these modified definitions, new definitions for σ 2

l , F
l
p and

s2l follow as in §3.1. We have the following analogy to the statement of Lemma 3.3, with
only minor modifications to the proof.

Lemma 6.1 For ( fl)l∈N given as above and x ∈ Ekl
l , 1 ≤ p ≤ kl , we have

|Fl
p(gt (πl(x))) − Ql Fl(xp, Tl)| ≤ 2KlTl + (κε + 2δl Ql)‖ fl‖,

where Kl := Llκε(1 − e− ηαl
2 )−1.
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We need to modify our assumptions on the sequence of 4-tuples (Tl , kl , δl ,Cl)l∈N.

Hypothesis 6.2 We choose sequences Tl ∈ (0,∞), kl ∈ N, δl ∈ (0, δ0), and Cl ∈ N

which satisfy the following relationships:

1) For all l ∈ N, Tl > max{T0(δl , η), 1},
2) Tl ↑ ∞, Tl

T0(δl ,η)
↑ ∞ and kl ↑ ∞,

3) klδ2l max{‖ fl‖, 1} ↓ 0,

4)
√
kl Tl max{|Kl |,1}

Ql
↓ 0 and

√
kl Tl max{‖ fl‖,1}

Ql
↓ 0.

It is always possible to have such sequence of 4-tuples as we can first choose kl , then
δl and Tl , finally Ql . We will demonstrate why we choose (Tl , kl , δl ,Cl) this way below.
We have the following analogy to Theorem 4.1:

Theorem 6.3 . Fix ( fl)l∈N as above. Let (Tl , kl , δl ,Cl)l∈N be a sequence satisfying
Hypothesis 6.2 and (νl)l∈N be the sequence of measures constructed as in §3. Suppose
( fl)l∈N satisfies

lim inf
l→∞ σ 2

l > 0. (6.1)

Then the Lindeberg-type condition

lim
l→∞

∑
1≤p≤kl , Lνl (F

l
p, γ sl)

s2l
= 0 (6.2)

for any γ > 0, implies that for all a ∈ R,

lim
l→∞ νl({v : Fl(v, kl(ClTl + M)) − ∫ Fl(·, kl(ClTl + M))dνl

sl
≤ a}) = N (a),

(6.3)

where N is the cumulative distribution function of the normal distribution N (0, 1).
Conversely, under the hypotheses (6.1), (6.3) implies (6.2).

The proof follows the arguments of §4, with F replaced by Fl and other notations
referring to the array version of the definitions.We point out where the differences appear
in the proofs between Theorem 6.3 and Theorem 4.1.

We inherit the definitions of Dml (x), Dνl (x, t; p) and �l
p(x, t) from §4, which all

adapt to the dynamical array setting. Observe that as a direct consequence of Lemma 6.1,
(4.10) in Lemma 4.3 now becomes

|�l
p(x, t)| ≤ 2(2KlTl + 2κε‖ fl‖ + 2δl Ql‖ fl‖). (6.4)

Therefore, to conclude the main lemma, which says that liml→∞
σ 2

νl
(Fl

p)

Q2
l σ

2
l

= 1 uni-

formly in 1 ≤ p ≤ kl , it suffices to show liml→∞ 2(2KlTl+κε‖ fl‖+2δl Ql‖ fl‖)
Qlσl

= 0. This can
be observed from the proof of Lemma 4.4, using Hypothesis 6.2 and (6.1). As a simple
follow-up we have

lim
l→∞

s2l
Q2

l σ
2
l kl

= 1. (6.5)
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To retrieve the content of Lemma 4.7, it suffices to show the last step of its proof
holds true in the array case, which is that

lim
l→∞

(
2klδl‖ fl‖√

klσl
+

(2M + 4Tl)
√
kl‖ fl‖

Qlσl

)
= 0.

This is obtained by applying condition 3) in Hypothesis 6.2 to the first half, condition
4) to the second and applying (6.1).

To verify the equivalence between the CLT for (νl) and (μl), which is Lemma 4.8, it
suffices to replace (4.14) by showing 2kl (2KlTl+κε‖ fl‖+2δl Ql‖ fl‖)√

kl Qlσl
< b for any b > 0 when

l is sufficiently large. Finally, to verify the equivalence of the Lindeberg conditions,
analogous to Lemma 4.9, we invoke (6.4) and (6.5) along with Hypothesis 6.2 and (6.1).
As a result, we are able to conclude that Theorem 6.3 holds.

6.2. Equilibrium states. We refer the reader to [3] for definitions and notations. We
consider a potential function ϕ that is either Hölder continuous or qϕu with q < 1, where
ϕu is the geometric potential. We assume that the pressure gap condition P(Sing, ϕ) <

P(ϕ) holds. Theorem A in [3] shows that the geodesic flow has a unique equilibrium
state μϕ . Our main result, Theorem 4.1, extends to equilibrium states of this type. The
generalization is a natural one. In place of the measures (ml), we use weighted measures

m̂l := 1∑
v∈El

e�(v,Tl )

∑
v∈El

e�(v,Tl )δv,

andwe define aweighted sequence ofmeasures (ν̂l) analogously to our definition of (νl).
We can show that (ν̂l) converges to μϕ , and that we have the analogue of Theorem 4.1:
if the variance of an observable f with respect to the sequence (m̂l) is positive, we can
ensure that the sequence (ν̂l) satisfies (4.3). The details of the statement and proof can
be found in the PhD thesis of T. Wang [23].

6.3. Systems with non-uniform specification. The reader will have observed that our
arguments used dynamical structure proved in [3] rather than direct geometric arguments,
and thus it is clear that the arguments of this paper will apply to a variety of systems
other than the geodesic flow on non-positive curvature manifolds. We do not attempt to
make an general statement abstracting the properties of the geodesic flow used in our
analysis—a main point of course is the non-uniform specification structure obtained in
[3]. The interested reader can infer from Sects. 2–4 exactly what properties are needed to
obtain this Lindeberg-type CLT on periodic orbits for other systems. In [4], we defined
λ-decompositions as an abstraction of the non-uniform structure enjoyed by rank one
geodesic flows. Systems admitting this kind of structure are prime candidates for this kind
of analysis. We note that our arguments are all given for flows, but could also be given
in the simpler discrete-time case. In discrete-time, one advantage of our construction is
that it extends easily from the MME case to equilibrium states.
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