
Distributed Asynchronous Array Computing with
the JetLag Environment

Steven R. Brandt
Center for Computation & Technology

Louisiana State University
Baton Rouge, LA, USA

sbrandt@cct.lsu.edu

Bita Hasheminezhad
Center for Computation & Technology

Louisiana State University
Baton Rouge, LA, USA

bhashe1@lsu.edu

Nanmiao Wu
Center for Computation & Technology

Louisiana State University
Baton Rouge, LA, USA

wnanmi1@lsu.edu

Sayef Azad Sakin
Dept. of Computer Science

University of Arizona
Tucson, AZ, USA

sayefsakin@email.arizona.edu

Alex R. Bigelow
Dept. of Computer Science

University of Arizona
Tucson, AZ, USA

0000-0002-4593-2675

Katherine E. Isaacs
Dept. of Computer Science

University of Arizona
Tucson, AZ, USA

0000-0002-9947-928X

Kevin Huck
OACISS

University of Oregon
Eugene, OR, USA

0000-0001-7064-8417

Hartmut Kaiser
Center for Computation & Technology

Louisiana State University
Baton Rouge, LA, USA

0000-0002-8712-2806

Abstract—We describe JetLag, a Python-based environment
that provides access to a distributed, interactive, asynchronous
many-task (AMT) computing framework called Phylanx. This
environment encompasses the entire computing process, from a
Jupyter front-end for managing code and results to the collection
and visualization of performance data.

We use a Python decorator to access the abstract syntax tree
of Python functions and transpile them into a set of C++ data
structures which are then executed by the HPX runtime. The
environment includes services for sending functions and their
arguments to run as jobs on remote resources.

A set of Docker and Singularity containers are used to simplify
the setup of the JetLag environment. The JetLag system is
suitable for a variety of array computational tasks, including
machine learning and exploratory data analysis.

I. INTRODUCTION

Interactive runtimes based on high-level languages such as
Python, R, or Julia are becoming increasingly common, dis-
placing traditional large, statically-compiled codebases. Typi-
cally, high-level languages provide user-friendly interfaces to
the underlying, more complex statically-compiled codebases.
Python is a simple, well-designed, object-based framework
and mature libraries for interfacing with other languages (e.g.
Pybind11 [1] which is used in this project) make it an obvious
choice for creating a distributed array toolkit.

In the current context, we make use of Python’s decorator
functionality and reflection libraries to access the abstract
syntax tree (AST) of functions. We transpile the AST to expose
a subset of Python which we implement using a set of C++
data structures.

Notebooks are popular interfaces, enabling researchers to
experiment or play with data. Notebooks are easily deployed
both on laptops for smaller datasets or on remote systems
with access to more computing power through interfaces like
JupyterHub.

Yet another trend in these frameworks is to make and
use services based on web-based frameworks. Toward this
end, JetLag employs the RESTful interface known as Tapis
or Agave [2] for remote job execution, and the web-based
performance visualization framework known as Traveler to
help users interpret performance data.

The JetLag project has been reported on previously [3],
[4]. What is new in this work is the ability to run distributed
code, to gather performance data from such code (including
PAPI [5] counters) and to visualize said performance data. In
addition, this work provides a deeper description of the Python
interface used to access the underlying C++ code. Finally,
we present results from a distributed alternating least squares
(ALS) benchmark, and discuss tiling and other considerations
for running distributed codes.

Phylanx is based on HPX, an open source C++ library
for parallelism and concurrency [6]. HPX provides a high
performance, cutting edge implementation of the C++ parallel
standard.

II. RELATED WORK

There are a number of Python-based environments for dis-
tributed computing. GAiN [7] is one of the first distributed re-
implementations of NumPy functionality. GAiN has overcome

49

2020 IEEE/ACM 9th Workshop on Python for High-Performance and Scientific Computing (PyHPC)

978-0-7381-1086-8/20/$31.00 ©2020 IEEE
DOI 10.1109/PyHPC51966.2020.00011

Authorized licensed use limited to: The University of Arizona. Downloaded on August 09,2021 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

the challenge of a single node memory constraints in array
computing and is compatible with MPI.

Spartan [?] offers an automatic tiling on multidimensional
arrays. It is a distributed lazy evaluation framework that
converts user code to a graph of high-level operators like
map, fold, and filter. Then it finds a solution considering the
improvement in data locality.

Dask [9] is a flexible parallel computing framework for tasks
and “Big Data,” which is how they refer to their distributed
array framework that is similar in form to numpy and pands.

PyCOMPSs [?] offers a sequential interface but is able to
identify and exploit implicit parallelism on both clusters and
clouds.

Legate Numpy [10] is a distributed array framework on top
of the Legion runtime system that has native support for GPUs.
Like Spartan, it can replace NumPy without any extra code or
configuration changes.

NumPyWren [11] is a serverless linear algebra interface
on top of PyWren that can execute its algorithms on AWS
Lambda. Serverless computing cannot compete with high-
performance clusters with their fast networks, however, using
the cloud is easier than maintaining a cluster especially for
a domain scientist. We studied these frameworks and many
other similar ones to design JetLag.

Arkouda [12] is a distributed numpy-like array toolkit based
on Chapel, an asynchronous many task language for HPC.

Numba [13], Pythran [14], and Cython [15] use decorators
to access the abstract syntax tree and transpile into low level
C or C++.

III. COMPONENTS

A. HPX

HPX is a C++ standard library for distributed and parallel
programming built on top of an AMT. It has been described
in detail in other publications [16], [17], [18], [19], [20],
[21], [22]. Such AMT runtimes provide a means for helping
programming models to fully exploit available parallelism
on complex emerging HPC architectures. The HPX runtime
includes the following essential components:

• An ISO C++ standard-conforming API that enables wait-
free asynchronous parallel programming, including Fu-
tures, Channels, and other primitives for asynchronous
execution. The exposed API ensures syntactic and se-
mantic equivalence of local and remote operations, which
greatly simplifies writing complex applications [23], [24].

• A work-stealing lightweight task scheduler [25] that
enables finer-grained parallelization and synchronization,
exposes greatly reduced overheads related to threading,
and ensures automatic load balancing across all local
compute resources.

• HPX features an Active Global Address Space
(AGAS) [19], [26] that supports load balancing
via object migration, enables runtime-adaptive data
placement, distributed garbage collection, and an active-
message networking layer that enables running functions
close to the objects they operate on [25], [27].

• APEX [28], an in-situ profiling and adaptive tuning
framework that utilizes HPX’s sophisticated performance
counter framework [29].

In the context of the present work, we use HPX because of
its full conformance to the recent C++ standards [30], [31], its
extensive support for asynchronous and parallel computation,
its distributed scheduling capabilities, and its sophisticated
performance measurement and in-situ profiling capabilities
provided by APEX (see Section III-D for more information).

B. Phylanx

Phylanx is a software framework that is based on the
HPX runtime system, which in turn was designed from first
principles to address well known key challenges of high-
performance computing applications. As such, Phylanx im-
plicitly and naturally benefits from inheriting the advantages
of applying fine-grain parallelism, message driven compu-
tation, constraint-based synchronization (never synchronize
more than needed for the local progress of execution), implicit
overlapping computation with communication, and runtime-
adaptive granularity control.

1) Phylanx and Python: There are a number of frameworks
that use Python as a front-end for an underlying, higher
performance framework, e.g. numpy [32], scipy [33], Spar-
tan [34], Tensorflow [35], and Keras [36]. Many of these
frameworks use operator overloading as a primary mechanism
for accessing high performance code. Because of this, in the
code snippet in Listing 1, Python will typically execute the
while loop and orchestrate the calls to transpose, the
multiply operator, etc. Often, the amount of time spent in
Python is trivial compared to the overall execution.

w h i l e k < i t e r a t i o n s :
YtY = np . d o t (np . t r a n s p o s e (Y) , Y) +

r e g u l a r i z a t i o n ∗ I f
XtX = np . d o t (np . t r a n s p o s e (X) , X) +

r e g u l a r i z a t i o n ∗ I f

Listing 1. Code Snippet

The Phylanx project, however, uses a decorator (i.e.
@Phylanx) to enable transpiling of entire Python functions
into C++ data structures. That means that, for the duration of
the function’s execution, the orchestration of the calculation,
including the while loop itself, is carried out by C++. This
choice comes with certain tradeoffs.

On the negative side, it means that inside the body of
the function, certain Python features, functions, libraries, and
capabilities will not be supported. The goal is not to provide
a complete Python interpreter but to ensure that functionality
relating to control flow and distributed array programming is
present. However, this choice comes with the risk of creating
semantic differences with regular Python code.

On the positive side, we have the opportunity for doing
higher level optimization on a larger fraction of the code
(though, at this stage of development, that is a future work).
For those cases where it matters, less time is spent calling
across the Python/C++ barrier. In addition, we have the capa-
bility of collecting performance data on a complete subroutine.

50

Authorized licensed use limited to: The University of Arizona. Downloaded on August 09,2021 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

C. Distributed Computing in Phylanx

Many applications of Phylanx, especially in the Machine
Learning (ML) and Deep Learning (DL) fields require com-
putation on multidimensional arrays that do not always fit
into the memory of a single node. This is the result of a
common technique in ML/DL. When we require an explicit
for loop to repeat an operation on multiple tensors, we add a
new dimension to the tensor. For example, to train a neural
network on a set of samples, we need to execute a learning
algorithm repeatedly on all samples for the given number of
epochs. Thus, we represent the corresponding input tensor
with a sample dimension and one or more data dimensions.
In the same way, parameters may contain a filter dimension
that stacks different filters to train. Although the sample
dimension usually is usually divided into mini-batches, the
large-scale datasets necessitate adopting a distributed data
parallelism algorithm to train deep neural networks. Therefore,
a distributed representation of arrays is the next logical step.

To process multidimensional arrays on multiple nodes,
Phylanx has defined the notion of distributed arrays using
an attached annotation. Annotations represent the information
about all partitions of the distributed array. The annotations are
metadata about the array. They contain a unique name that is
recognized by AGAS, a generation number (which counts the
number of times the array was updated), the ID of the current
locality, the number of localities the array is distributed across,
and tiling of the array.

At this stage of development, Phylanx is a Single Instruction
Multiple data (SIMD) project, and the primitives (our term for
built-in functions) for working with distributed data reflect that
programming style. Each node executes the same program on
a different part of the distributed array and they communicate
as necessary. To execute the program on a node, sometimes a
part of the data that is on a remote node is required. In that
case, the primitive fetches that partition using the information
provided by the annotation. For instance, let us consider a
naive implementation of vector-vector-multiplication on two
localities. For the case that we have the first half of two
vectors on node 1 and the second half on node 2, each node
calculates the dot product on the local array partitions and
an all_reduce operation generates the final result on both
nodes. For the case that the second array has fewer elements
on node 1, node 1 fetches the elements it needs from node 2 to
evaluate its dot product result and the all_reduce operation
finalizes the result afterward.

Distributed primitives and algorithms that are implemented
in Phylanx can be categorized into four groups.

The first group contains distributed primitives that propagate
the arguments to their non-distributed form. These primitives
update the annotations for the calculated results. All element-
wise operations are in this category; they do not need any
communication to perform the operation and only the gener-
ation in their annotations needs to increment.

The primitives in the second group may use the non-
distributed form of the operations but also require additional

steps to finalize the result. The naive implementation of
vector-vector-multiplication belongs to this group. A non-
distributed vector-vector-multiplication is performed on each
tile. The distributed operation includes an all_reduce and
might include fetching on some nodes. Another example of
primitives in the second group is argmin. In order to find
the global index with the minimum value, we must keep the
minimum value on each tile.

The third group constitutes distributed algorithms. Primi-
tives of this group are optimized taking the communication
between distributed tiles of the array into account. Take, for
example, the Cannon product algorithm [37]. This algorithm
is an iterative distributed implementation of matrix-matrix-
multiplication. It determines the computation and communi-
cation of each iteration based on the number of tiles.

Finally, the last group consists of the generative primitives
which create data. Distributed forms of random, full, ones,
zeros and file read csv are examples of primitives in this
group.

Some primitives perform better in the presence of certain
tilings. For example, the Cannon product algorithm performs
best if the matrices are block distributed. Phylanx benefits
from a retiling operation that retiles an array to any arbitrary
but consecutive tiles. The user can utilize the retile operation
manually, feeding all tiles specifications, or they can provide
one of the defined tiling types, e.g. row, column, page or sym
which stands for symmetric tiling.

Implementing a data parallel method of training a Deep
Neural Network (DNN) using the distributed and local arrays
of Phylanx is straightforward. Training a DNN consists of
three phases: the forward pass, the backward pass, and an
optimization step to update parameters. In the data parallel
approach, every worker (computational resource) has a replica
of the entire DNN along with a partition of samples. In
each iteration, samples in a mini-batch are distributed between
the active workers. Each worker independently goes through
two computation-intensive phases, the forward and backward
passes. Then a collective operation aggregates the output from
all workers and updates the parameters of the DNN on all
workers. At the end of the iteration, the workers have a DNN
with identical parameters. To implement this in Phylanx, we
use local arrays for all the parameters and distributed arrays
for other tensors.

@Phylanx
d e f i n i t i a l k e r n e l (k e r n e l s i z e , i n p u t c h a n n e l s ,

o u t p u t c h a n n e l s , bound , s eed) :
r e t u r n random ([k e r n e l s i z e , i n p u t c h a n n e l s ,

o u t p u t c h a n n e l s] , [” un i fo rm ” , −bound , bound
] , s e ed = s eed)

@Phylanx (debug=True)
d e f i n p u t c o n v (c s v f i l e n a m e , rows per page , k e r n e l ,

padd ing) :
i n p u t a r r a y = f i l e r e a d c s v d (c s v f i l e n a m e ,

rows per page , t i l i n g t y p e = ” page ”)
r e t u r n conv1d d (i n p u t a r r a y , k e r n e l , padd ing)

Listing 2. Example of a 1D convolution operation tiled on its sample
dimension

51

Authorized licensed use limited to: The University of Arizona. Downloaded on August 09,2021 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Convolution of the input array and the kernel on two localities. The
result is a distributed array with the same tiling as the input array

Here we show an example of the first iteration of a
convolution operation in a DNN that is trained using the
data parallel approach. Listing 2 demonstrates the very first
convolution in a convolutional neural network that is to be
trained in parallel with respect to samples. Here we assume the
input consists of one-dimensional data. For instance, a human
activity recognition dataset is a time series that is represented
as a one-dimensional data. Along with samples and feature
dimensions, the dataset constitutes a three-dimensional array
that can be stored in a csv file. At the first iteration, parameters
are initialized randomly using non-distributed arrays. As such,
each locality has a copy of parameters that for this convolution
layer is stored in kernel. The read_csv_file_d gen-
erates a distributed array where the input_array is tiled
along its page dimension (sample dimension). The operation
conv1d_d is called with a distributed array tiled on samples
and a non-distributed kernel. It performs the index calcula-
tions and, utilizing conv1d, generates the distributed results.
Therefore, the input to the next layer is also a distributed array
tiled on its page dimension. As in this example we did not
specify the number of nodes in either of read_csv_file_d
or conv1d_d operations, the number of nodes sets to its
default value which is the number of nodes that the runtime
uses.

A representation of what the input array contains is shown
at Listing 3. Assume we run the program in Listing 2 on
two nodes. The input csv file demonstrates each sample using
80 timestamps of one human activity type and three features.
Here, activity types are jogging, walking, sitting, etc. and
features are accelerations on the x-axis, y-axis and, z-axis.
Having 2000 samples on each mini-batch, the input tensor
should be of (2000, 80, 3) shape. Let us train 100 filters
of length 10. Using a valid padding, the output tensor has
a shape of (2000, 71, 100). Since in Listing 2, we tile the
input array on its sample dimension, samples are divided
between the two active nodes; so, each node trains the network
for 1000 samples in each iteration. We illustrate this operation
in Figure 1. Both nodes execute the program (here the print
function) in Listing 3. On both nodes, annotations are identical
except for the locality index.
>> p r i n t (i n p u t a r r a y) # bo t h l o c a l i t i e s p r i n t t h e i r

a r r a y s
[[[−0 . 7 , 1 2 . 2 , 0 . 5] , [. . .] , . . . , [. . .]] , . . . ,

[[. . .] , [. . .] , . . . , [. . .]]] , a n n o t a t i o n (”
l o c a l i t i e s ” ,

[” meta 0 ” , [” t i l e ” , [” pages ” , 0 , 1 0 0 0] , [” rows ” , 0 ,
8 0] , [” columns ” , 0 , 3]]] ,

[” meta 1 ” , [” t i l e ” , [” pages ” , 1000 , 2 0 0 0] , [” rows ” ,
0 , 8 0] , [” columns ” , 0 , 3]]] ,

[” l o c a l i t y ” , 0 , 2] ,
[”name” , ”HAR csv 1 / 0 ”])

[[[0 . 3 , 1 . 5 , 1 3 . 0] , [. . .] , . . . , [. . .]] , . . . ,
[[. . .] , [. . .] , . . . , [. . .]]] , a n n o t a t i o n (”
l o c a l i t i e s ” ,

[” meta 0 ” , [” t i l e ” , [” pages ” , 0 , 1 0 0 0] , [” rows ” , 0 ,
8 0] , [” columns ” , 0 , 3]]] ,

[” meta 1 ” , [” t i l e ” , [” pages ” , 1000 , 2 0 0 0] , [” rows ” ,
0 , 8 0] , [” columns ” , 0 , 3]]] ,

[” l o c a l i t y ” , 1 , 2] ,
[”name” , ”HAR csv 1 / 0 ”])

Listing 3. A demonstration of a distributed array

D. APEX

APEX [28] (Autonomic Performance Environment for Ex-
ascale) is a performance measurement library for distributed,
asynchronous multitasking runtime systems such as HPX.
It provides lightweight measurement while maintaining high
concurrency. To support performance measurement in systems
that employ user level threading, APEX can use a dependency
chain rather than the call stack to produce traces. APEX sup-
ports both synchronous and asynchronous introspection. The
synchronous module of APEX uses an event API and event
listeners. Whenever an event occurs, APEX will start, stop,
yield or resume timers for correct measurements. These timers
can also capture hardware metrics using the PAPI [5] library.
The asynchronous module does not rely on events, rather it
periodically interrogates hardware, operating system and user-
level runtime system counters. Beyond the scope of its role in
this paper, APEX also includes a policy engine for using the
performance measurements to reconfigure system, application
or library parameters in an optimization or feedback-control
capacity.

APEX has native support for performance profiling in which
all tasks scheduled by the runtime are measured. At any point
during the execution, the profile contains the number of times
each task was executed and the total time spent executing
that type of task. In order to perform detailed performance
analysis involving task dependency analysis, full event traces
(including event identification and start/stop) times have to
be captured. To that end, APEX is integrated with the Open
Trace Format 2 [38] (OTF2) library—an open, robust format
for large scale parallel application event trace data. OTF2 is a
robust reader/writer library and binary format specification that
is typically used for high-performance computing (HPC) trace
data. In order to capture full task dependency chains in HPX
applications, all tasks are uniquely identified by their GUID
(globally unique identifier) and the GUID of their parent task.
These GUIDs are captured as part of the OTF2 trace output.

In order to correctly write OTF2 traces, each process needs
to know the number of processes involved and its own index
within the group. HPX typically initializes APEX with the

52

Authorized licensed use limited to: The University of Arizona. Downloaded on August 09,2021 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

current process’ locality (rank index) and the total number
of localities (distributed processes participating). HPX can be
configured with many different parcel ports (e.g. MPI, TCP,
etc.) to provide support for networking. APEX uses locality
information from HPX to manage the recording of distributed
performance data, so that each process in the distributed
execution can write to its own unique file in a common
location.

E. Traveler

Traveler [39] is a web-based visualization platform for
parallel performance data. The goal of Traveler is to provide
interactive access to performance data at multiple levels of
abstraction, thereby enabling dynamic exploration of the data
in familiar contexts. To this end, Traveler supports Gantt
charts (trace data timelines with dependencies), source code,
expression tree [40] and the recently added aggregated time
series line charts for counter data and, task-level histograms.

Time views supported linked navigation—zooming or pan-
ning in one view will update the others. A utilization chart
shows full run information and can be brushed to jump to a
specific point.

All views support linked highlighting—selecting a specific
primitive in one view will highlight the others of same type in
the other views. Selecting points in a time series will highlight
the related intervals in the Gantt chart.

We introduce a histogram that plots counts of a primitive by
their duration, allowing investigators to view the distribution
of task length. Durations of interest, such as exceedingly short
tasks or long tasks can be selected via the histogram view and
then further investigated in the other views. Figure 2 shows
this feature in action.

The time series plots have been updated to show minimum,
maximum, and average values across all hardware threads.
The gray area in the short shows the standard deviation
across hardware threads at each time point. Figure 3 shows
an example of this chart. Though one chart is shown in this
example and the previous, Traveler allows adding arbitrarily
many to the view.

Traveler’s Python server component ingests and processes
OTF2 [41] trace files to provide time-dependent features,
with HPX-specific counters packaged into OTF2 by APEX.
Phylanx also ships its expression tree with profile data and
source code correspondence, which is what Traveler uses for
the expression tree and source code views.

IV. PERFORMANCE

We test the performance of the distributed algorithm on
Queen Bee 3 system maintained by LONI [42], where the
information about the compute nodes is shown in Table I.
Specifically, we test the distributed ALS (Alternating Least
Squares) algorithm. For the source code, see Listing 4). We
use a non-distributed ALS based on Numpy as a benchmark.
Phylanx is built on HPX 1.5.0, master of Blaze, BlazeTensor,
and Pybind11 as of Sep 2020. Both Phylanx and the Numpy
version use openblas 0.3.10.

TABLE I
SPECIFICATION OF THE COMPUTE NODES OF THE QUEEN BEE

SUPERCOMPUTER.

Processor type Intel Cascade Lake Xeon 64bit
Processor 2 24-Core
Processor speed 2.4GHz
Memory 192 GB

First, we compare the time performance for distributed
ALS (Phylanx) and non-distributed ALS (Numpy) on the
MovieLens 20M dataset [43] for two runs. See Figure 4. The
distributed ALS scales well as the increasing of number of
nodes. Furthermore, we find that distributed Phylanx version
on 1 node is better than the non-distributed Numpy version.
To figure out the reason, we take a closer look at Figure 5,
which compares their performance. It demonstrates that the
time of Phylanx version is better able to exploit parallelism
than the Numpy version.

In Fig.6, we test the speedup of distributed ALS on four
different dataset sizes: which are 4800 x 4800, 9600 x 9600,
19200 x 9600, and 19200 x 19200 datasets, respectively.
Firstly, it can be seen that distributed ALS scales well on all
the datasets as the number of nodes increases. Secondly, we
find that the larger dataset has better scalability than smaller
dataset.

V. FUTURE WORK

Phylanx will be an ongoing target of development work,
both in expanding the built-in functions and capabilities it has
for distributed calculations, and in optimizing performance.

While Traveler’s interface can manage data from multiple
runs, allowing side-by-side comparison of charts, it does not
yet support charts that combine data from multiple runs. Some
of these charts may be better suited to be Jupyter-native, so we
are exploring improving our API for managing data in this use
case, as well as extending our in-interface support for multiple
datasets.

Although the OTF2 trace format used by APEX has been
sufficient for our needs so far, it has its drawbacks. All
measurements are tied to specific operating system resources
(processes, threads, devices), and the format doesn’t flexibly
allow for interleaved or asynchronous measurement. We are
evaluating other trace formats and approaches that will enable
time-series abstractions of performance data that are not tied to
bulk synchronous performance models. We also aim to merge
the dependency graphs collected by APEX and Phylanx into a
unified task graph representing the algorithm as imagined by
the Phylanx developer. In addition, APEX policies for Phylanx
applications could be developed to help tune so-called “magic
number” (heuristically set) algorithmic parameters such as
group sizes and error bounds.

VI. CONCLUSION

We have described JetLag, a Python-based environment for
working with distributed arrays. We have described the inte-
gration of this environment with performance data gathering

53

Authorized licensed use limited to: The University of Arizona. Downloaded on August 09,2021 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Traveler interface showing performance data collected during a distributed run. The top window shows the task intervals in time across four locations.
The middle window shows utilization over the run. The gray box indicates which portion is being shown in the other two windows. The bottom window
is a histogram showing the distribution of durations of the async launch policy dispatch task. The yellow rectangle selects durations in the histogram. The
corresponding intervals are then colored yellow in the timeline.

Fig. 3. Traveler interface showing performance data collected during a distributed run. The top window shows the task intervals in time across eight work
threads. The middle window shows utilization over the run. The gray box indicates which time range is being shown in the other two windows. The bottom
window is a time series plot showing the maximum, minimum, and average values of the PAPI branch misprediction counter as lines. The gray area in the
time series shows standard deviation across all worker threads in time.

54

Authorized licensed use limited to: The University of Arizona. Downloaded on August 09,2021 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Performance of different number of nodes on 4800 x 4800 dataset

Fig. 5. Performance of different number of threads on 4800 x 4800 dataset

Fig. 6. Performance of distributed ALS on different sizes of datasets

and analysis tools and shown sample plots of the kinds of
analysis that are possible with JetLag.

In addition, we have described the integration with Python
and provided a few small examples of what kind of codes the
environment can run (e.g. distributed ALS). We’ve also shown
how our ALS implementation scales.

REFERENCES

[1] W. Jakob, J. Rhinelander, and D. Moldovan, “pybind11
– seamless operability between c++11 and python,” 2017,
https://github.com/pybind/pybind11.

[2] R. Dooley, S. R. Brandt, and J. Fonner, “The agave platform: An open,
science-as-a-service platform for digital science,” in Proceedings of the
Practice and Experience on Advanced Research Computing. ACM,
2018, p. 28.

[3] S. R. Brandt, A. Bigelow, S. A. Sakin, K. Williams, K. E. Isaacs,
K. Huck, R. Tohid, B. Wagle, S. Shirzad, and H. Kaiser, “Jetlag: An
interactive, asynchronous array computing environment,” in Practice and
Experience in Advanced Research Computing, 2020, pp. 8–12.

[4] R. Tohid, B. Wagle, S. Shirzad, P. Diehl, A. Serio, A. Kheirkhahan,
P. Amini, K. Williams, K. Isaacs, K. Huck et al., “Asynchronous
execution of python code on task-based runtime systems,” in 2018
IEEE/ACM 4th International Workshop on Extreme Scale Programming
Models and Middleware (ESPM2). IEEE, 2018, pp. 37–45.

[5] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting perfor-
mance data with papi-c,” in Tools for High Performance Computing
2009, M. S. Müller, M. M. Resch, A. Schulz, and W. E. Nagel, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 157–173.

[6] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey,
“Hpx: A task based programming model in a global address space,” in
Proceedings of the 8th International Conference on Partitioned Global
Address Space Programming Models, 2014, pp. 1–11.

[7] J. Daily and R. R. Lewis, “Using the global arrays toolkit to reimplement
numpy for distributed computation,” in Proceedings of the 10th Python
in Science Conference, 2011.

[8] C.-C. Huang, Q. Chen, Z. Wang, R. Power, J. Ortiz, J. Li, and Z. Xiao,
“Spartan: A distributed array framework with smart tiling.”

[9] Dask Development Team, Dask: Library for dynamic task scheduling,
2016. [Online]. Available: https://dask.org

[10] M. Bauer and M. Garland, “Legate numpy: accelerated and distributed
array computing,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2019,
pp. 1–23.

[11] V. Shankar, K. Krauth, Q. Pu, E. Jonas, S. Venkataraman, I. Stoica,
B. Recht, and J. Ragan-Kelley, “Numpywren: Serverless linear algebra,”
arXiv preprint arXiv:1810.09679, 2018.

[12] M. Merrill, W. Reus, and T. Neumann, “Arkouda: interactive data
exploration backed by chapel,” in Proceedings of the ACM SIGPLAN
6th on Chapel Implementers and Users Workshop, 2019, pp. 28–28.

[13] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A llvm-based python
jit compiler,” in Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, 2015, pp. 1–6.

[14] S. Guelton, P. Brunet, M. Amini, A. Merlini, X. Corbillon, and
A. Raynaud, “Pythran: Enabling static optimization of scientific python
programs,” Computational Science & Discovery, vol. 8, no. 1, p. 014001,
2015.

[15] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and
K. Smith, “Cython: The best of both worlds,” Computing in Science
& Engineering, vol. 13, no. 2, pp. 31–39, 2011.

[16] H. Kaiser, P. Diehl, A. S. Lemoine, B. A. Lelbach, P. Amini, A. Berge,
J. Biddiscombe, S. R. Brandt, N. Gupta, T. Heller, K. Huck, Z. Khatami,
A. Kheirkhahan, A. Reverdell, S. Shirzad, M. Simberg, B. Wagle,
W. Wei, and T. Zhang, “Hpx - the c++ standard library for parallelism
and concurrency,” Journal of Open Source Software, vol. 5, no. 53, p.
2352, 2020. [Online]. Available: https://doi.org/10.21105/joss.02352

[17] T. Heller, H. Kaiser, and K. Iglberger, “Application of the ParalleX
Execution Model to Stencil-based Problems,” in Proceedings of the
International Supercomputing Conference ISC’12, Hamburg, Germany,
2012. [Online]. Available: http://stellar.cct.lsu.edu/pubs/isc2012.pdf

55

Authorized licensed use limited to: The University of Arizona. Downloaded on August 09,2021 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

from phy lanx i m p o r t Phy lanx

@Phylanx
d e f a l s d (r a t i n g s r o w , r a t i n g s c o l u m n , \

r e g u l a r i z a t i o n , num fac to r s , \
i t e r a t i o n s , a lpha , e n a b l e o u t p u t) :

t o t a l n u m u s e r s = shape d (r a t i n g s r o w , 0)
t o t a l n u m i t e m s = shape d (r a t i n g s r o w , 1)
num users = shape (r a t i n g s r o w , 0)
num items = shape (r a t i n g s c o l u m n , 1)
conf row = a l p h a ∗ r a t i n g s r o w
conf column = a l p h a ∗ r a t i n g s c o l u m n
conf u = c o n s t a n t (0 . 0 , [t o t a l n u m i t e m s])
c o n f i = c o n s t a n t (0 . 0 , [t o t a l n u m u s e r s])
c u = c o n s t a n t (0 . 0 , [t o t a l n u m i t e m s ,

t o t a l n u m i t e m s])
c i = c o n s t a n t (0 . 0 , [t o t a l n u m u s e r s ,

t o t a l n u m u s e r s])
p u = c o n s t a n t (0 . 0 , [t o t a l n u m i t e m s])
p i = c o n s t a n t (0 . 0 , [t o t a l n u m u s e r s])
X l o c a l = random d ([t o t a l n u m u s e r s , \

n u m f a c t o r s] , n i l , n i l , n i l , ” row ”)
Y l o c a l = random d ([t o t a l n u m i t e m s , \

n u m f a c t o r s] , n i l , n i l , n i l , ” row ”)
X = a l l g a t h e r d (X l o c a l)
Y = a l l g a t h e r d (Y l o c a l)
I f = i d e n t i t y (n u m f a c t o r s)
I i = i d e n t i t y (t o t a l n u m i t e m s)
I u = i d e n t i t y (t o t a l n u m u s e r s)
k = 0
i = 0
u = 0
XtX = d o t (t r a n s p o s e (X) , X) + \

r e g u l a r i z a t i o n ∗ I f
YtY = d o t (t r a n s p o s e (Y) , Y) + \

r e g u l a r i z a t i o n ∗ I f
A = c o n s t a n t (0 . 0 , [num fac to r s , \

n u m f a c t o r s])
b = c o n s t a n t (0 . 0 , [n u m f a c t o r s])
w h i l e k < i t e r a t i o n s :

i f e n a b l e o u t p u t :
p r i n t (” i t e r a t i o n ” , k)
p r i n t (”X: ” , X l o c a l)
p r i n t (”Y: ” , Y l o c a l)

w h i l e u < num users :
conf u = s l i c e r o w (conf row , u)
c u = d i a g (conf u)
p u = ne (conf u , 0 . 0 , t r u e)
A = d o t (d o t (t r a n s p o s e (Y) , c u) , Y) + YtY
b = d o t (d o t (t r a n s p o s e (Y) , c u + I i) , \

p u)
X l o c a l [u] = d o t (i n v e r s e (A) , b)
u = u + 1

u = 0
X = a l l g a t h e r d (X l o c a l)
XtX = d o t (t r a n s p o s e (X) , X) + \

r e g u l a r i z a t i o n ∗ I f
w h i l e i < num items :

c o n f i = s l i c e c o l u m n (conf column , i)
c i = d i a g (c o n f i)
p i = ne (c o n f i , 0 . 0 , t r u e)
A = d o t (d o t (t r a n s p o s e (X) , c i) , X) + XtX
b = d o t (d o t (t r a n s p o s e (X) , c i + I u) , \

p i)
Y l o c a l [i] = d o t (i n v e r s e (A) , b)
i = i + 1

i = 0
Y = a l l g a t h e r d (Y l o c a l)
YtY = d o t (t r a n s p o s e (Y) , Y) + \

r e g u l a r i z a t i o n ∗ I f
k = k + 1

r e t u r n (X,Y)

Listing 4. The Python source code for the distributed ALS implementation

[18] T. Heller, H. Kaiser, A. Schäfer, and D. Fey, “Using HPX and
LibGeoDecomp for Scaling HPC Applications on Heterogeneous
Supercomputers,” in Proceedings of the Workshop on Latest Advances
in Scalable Algorithms for Large-Scale Systems, ser. ScalA ’13.
New York, NY, USA: ACM, 2013, pp. 1:1–1:8. [Online]. Available:
http://doi.acm.org/10.1145/2530268.2530269

[19] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey,
“HPX: A Task Based Programming Model in a Global Address Space,”
in Proceedings of the 8th International Conference on Partitioned
Global Address Space Programming Models, ser. PGAS ’14. New
York, NY, USA: ACM, 2014, pp. 6:1–6:11. [Online]. Available:
http://doi.acm.org/10.1145/2676870.2676883

[20] H. Kaiser, T. Heller, D. Bourgeois, and D. Fey, “Higher-level
parallelization for local and distributed asynchronous task-based
programming,” in Proceedings of the First International Workshop on
Extreme Scale Programming Models and Middleware, ser. ESPM ’15.
New York, NY, USA: ACM, 2015, pp. 29–37. [Online]. Available:
http://doi.acm.org/10.1145/2832241.2832244

[21] H. Kaiser, B. Adelstein-Lelbach, T. Heller, and A. B. et.al., “HPX V1.5:
The C++ Standard Library for Parallelism and Concurrency,” 2020,
http://dx.doi.org/10.5281/zenodo.598202.

[22] T. Heller, H. Kaiser, P. Diehl, D. Fey, and M. A. Schweitzer, “Closing the
Performance Gap with Modern C++,” in High Performance Computing,
ser. Lecture Notes in Computer Science, M. Taufer, B. Mohr, and J. M.
Kunkel, Eds., vol. 9945. Springer International Publishing, 2016, pp.
18–31.

[23] T. Heller, B. A. Lelbach, K. A. Huck, J. Biddiscombe, P. Grubel, A. E.
Koniges, M. Kretz, D. Marcello, D. Pfander, A. Serio et al., “Harnessing
Billions of Tasks for a Scalable Portable Hydrodynamic Simulation of
the Merger of two Stars,” The International Journal of High Performance
Computing Applications, vol. 33, no. 4, pp. 699–715, 2019.

[24] G. Daiß, P. Amini, J. Biddiscombe, P. Diehl, J. Frank, K. Huck,
H. Kaiser, D. Marcello, D. Pfander, and D. Pfüger, “From Piz-Daint to
the Stars: Simulation of Stellar Mergers using High-level abstractions,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019, pp. 1–37.

[25] H. Kaiser, M. Brodowicz, and T. Sterling, “ParalleX: An Advanced
Parallel Execution Model for Scaling-impaired Applications,” in 2009
International Conference on Parallel Processing Workshops. IEEE,
2009, pp. 394–401.

[26] P. Amini and H. Kaiser, “Assessing the Performance Impact of using
an Active Global Address Space in HPX: A Case for AGAS,” in
2019 IEEE/ACM Third Annual Workshop on Emerging Parallel and
Distributed Runtime Systems and Middleware (IPDRM), 2019, pp. 26–
33.

[27] J. Biddiscombe, T. Heller, A. Bikineev, and H. Kaiser, “Zero Copy
Serialization using RMA in the Distributed Task-Based HPX Runtime,”
in 14th International Conference on Applied Computing. IADIS,
International Association for Development of the Information Society,
2017.

[28] K. Huck, A. Porterfield, N. Chaimov, H. Kaiser, A. Malony, T. Sterling,
and R. Fowler, “An autonomic performance environment for exascale,”
Supercomputing Frontiers and Innovations, vol. 2, no. 3, 2015. [Online].
Available: https://superfri.org/superfri/article/view/64

[29] P. Grubel, H. Kaiser, J. Cook, and A. Serio, “The performance implica-
tion of task size for applications on the hpx runtime system,” in 2015
IEEE International Conference on Cluster Computing. IEEE, 2015,
pp. 682–689.

[30] S. ISO/IEC, “ISO International Standard ISO/IEC 14882:2017(E) -
Programming Language C++,” Geneva, Switzerland: International Or-
ganization for Standardization (ISO), 2017.

[31] ——, “ISO International Standard ISO/IEC 14882:2020(E) - Program-
ming Language C++. [Working draft],” Geneva, Switzerland: Interna-
tional Organization for Standardization (ISO), 2020.

[32] S. v. d. Walt, S. C. Colbert, and G. Varoquaux, “The numpy array: a
structure for efficient numerical computation,” Computing in science &
engineering, vol. 13, no. 2, pp. 22–30, 2011.

[33] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov,
A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng,
E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman,
I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and S. . . Contributors, “SciPy

56

Authorized licensed use limited to: The University of Arizona. Downloaded on August 09,2021 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

1.0: Fundamental Algorithms for Scientific Computing in Python,”
Nature Methods, vol. 17, pp. 261–272, 2020.

[34] C.-C. Huang, Q. Chen, Z. Wang, R. Power, J. Ortiz, J. Li, and Z. Xiao,
“Spartan: A distributed array framework with smart tiling.” in USENIX
Annual Technical Conference, 2015, pp. 1–15.

[35] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
http://tensorflow.org/

[36] F. Chollet et al. (2015) Keras. [Online]. Available:
https://github.com/fchollet/keras

[37] H.-J. Lee, J. P. Robertson, and J. A. Fortes, “Generalized cannon’s
algorithm for parallel matrix multiplication,” in Proceedings of the 11th
international conference on Supercomputing, 1997, pp. 44–51.

[38] D. Eschweiler, M. Wagner, M. Geimer, A. Knüpfer, W. E. Nagel, and
F. Wolf, “Open trace format 2: The next generation of scalable trace
formats and support libraries.” in Advances in Parallel Computing.
Amsterdam, NL: IOS Press, 2012, vol. 22, pp. 481–490.

[39] S. A. Sakin, A. Bigelow, K. Williams, and K. E. Isaacs, “Traveler,”
https://github.com/hdc-arizona/traveler-integrated, 2020.

[40] K. Williams, A. Bigelow, and K. E. Isaacs, “Visualizing a moving target:
A design study on task parallel programs in the presence of evolving
data and concerns,” To appear in IEEE Transactions on Visualization
and Computer Graphics (Proceedings of InfoVis ’19), Jan. 2020.

[41] OTF2 developer community, “Open trace format version 2 (otf2),” Jul.
2019. [Online]. Available: https://doi.org/10.5281/zenodo.3356709

[42] “Louisiana optical network initiative.” [Online]. Available: http://loni.org
[43] K. Abbas, “Movielens 20m dataset,” 2018.

57

Authorized licensed use limited to: The University of Arizona. Downloaded on August 09,2021 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

