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Abstract—Performance analysis is critical for pinpointing bot-
tlenecks in parallel applications. Several profilers exist to instru-
ment parallel programs on HPC systems and gather performance
data. Hatchet is an open-source Python library that can read
profiling output of several tools, and enables the user to perform
a variety of programmatic analyses on hierarchical performance
profiles. In this paper, we augment Hatchet to support new
features: a query language for representing call path patterns
that can be used to filter a calling context tree, visualization
support for displaying and interacting with performance profiles,
and new operations for performing analyses on multiple datasets.
Additionally, we present performance optimizations in Hatchet’s
HPCToolkit reader and the unify operation to enable scalable
analysis of large datasets.

Index Terms—performance analysis tools, parallel profiles,
calling context tree, call graph, graph analytics

I. INTRODUCTION

Profilers [1]–[5] measure code performance on HPC sys-

tems, allowing users to identify performance and scalability

bottlenecks. Most profilers use their own unique file formats

for storing profiling data. These profilers typically provide

graphical user interfaces (GUIs) to visualize the data. How-

ever, there is limited functionality available to the user to

analyze the data programmatically. This ultimately limits the

kinds of analyses users can perform on their data.

One challenge of parallel performance analysis is attribut-

ing execution time to the code. Simple profilers collect the

execution time of individual functions or statements in the

code. More advanced profilers can distinguish the time spent

in a function when called from different calling contexts, such

as an MPI_Bcast called by a physics routine versus an

MPI_Bcast called by a solver library. Other profilers may

attribute time to nodes in a call graph, which aggregates the

time spent in a function across all occurrences. In all these

cases, profile data may represent code in different ways, and

analyzing performance data can be a tedious process.

Hatchet [6] is an open-source Python library that overcomes

these analysis challenges by enabling users to read the hier-

archical profile data generated by different HPC profilers into

a canonical data model. Hatchet uses the pandas library [7],

[8] and combines graph data with pandas’ DataFrames. Using

Hatchet, users can perform a variety of operations on profiling

data either via the Hatchet API or their own analysis in Python.

In this paper, we present several recent changes in Hatchet that

improve its usability and performance.

We have developed a query language for representing call

path patterns that can be used to filter a calling context tree

(CCT). We have also added visualization support for display-

ing and interacting with performance profiles, in particular,

in Jupyter notebooks. We also present new operations added

to Hatchet for performing analyses on multiple datasets. And

finally, we present performance optimizations in Hatchet’s

HPCToolkit reader and the unify operation to enable scalable

analysis of large datasets.

The main contributions of this paper are as follows:

• a query language to specify call path patterns and a

demonstration of its use in analyzing performance varia-

tions across MPI implementations;

• enhancements to Hatchet’s existing tree-to-text renderer,

and a new interactive tree visualization for Jupyter note-

books;

• additions to the Hatchet API to facilitate comparing

multiple datasets; and

• optimization of some Hatchet operations and a study of

the performance impact of these optimizations.

II. BACKGROUND

In this section, we provide a brief overview of some

common profiling tools, the data they collect, and Hatchet’s

data model.

A. Profiling Tools and Performance Data

Two common methods for collecting execution profiles of

a program are: sampling and source code instrumentation.

A sampling-based tool such as HPCToolkit collects data at

a regular sampling frequency as the program is executing.

With source code instrumentation as used in Caliper, the user

annotates their code to specify annotation regions and the tool

collects data at each user annotation.

HPCToolkit: HPCToolkit [5] is a suite of tools for perfor-

mance measurement, analysis, and visualization. HPCToolkit

uses thread- and process-level sampling to measure different

performance metrics, and attributes their values to the full

calling context in which they occur (recorded as a CCT).

49

2020 IEEE/ACM International Workshop on HPC User Support Tools (HUST) and Workshop on Programming and Performance
Visualization Tools (ProTools)

DOI 10.1109/HUSTProtools51951.2020.00013
978-1-6654-2280-2/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: The University of Arizona. Downloaded on August 09,2021 at 18:19:40 UTC from IEEE Xplore.  Restrictions apply. 



main

physics solvers

mpi

psm2

hypre mpi

psm2

(a) Hatchet’s GraphFrame data structure consists of a Graph object (left) and a pandas
DataFrame object (right).

Frame: { function: ‘baz’,
             module: ‘libfoo.so’ }

Node 1 (key: 0xAB7FC4)

Frame: { function: ‘qux’,
             module: ‘libbar.so’ }

Node 2 (key: 0xCA19E4)

Frame: { function: ‘quux’,
             module: ‘libfoo.so’ }

Node 3 (key: 0xF6D5FA)

Frame: { loop: ‘grault’,
             module: ‘libbar.so’ }

Node 4 (key: 0x4E6CDA)

(b) The nodes in Hatchet’s Graph object
contain a Frame object, which identifies
the code construct it represents.

Fig. 1: Hatchet’s central data structure and data model.

Caliper: Caliper [2] is a general-purpose instrumentation

and profiling library for performance analysis. It provides an

API for annotating the application’s source code as well as

a flexible data aggregation model [9] for online or offline

analysis. Caliper generates a hierarchical annotation profile or

a CCT, depending on the use of source code annotations or

enabling the call path service.

Profiling data typically contains both contextual informa-
tion, such as the filename, line number, and call path for

a callsite, and performance metrics, such as exclusive and

inclusive time, number of instructions retired, or the number of

cache misses since the previous sample. The hierarchy might

represent a calling context tree (CCT) or call graph depending

on how the data is aggregated.

Calling Context Trees: A CCT represents the prefix tree of all

call paths in the execution of a parallel program. Each unique

function call based on its context becomes a node in the CCT,

and a path from the root to any node in the tree represents the

calling context that led to that particular function.

Call Graphs: A call graph is created when all nodes rep-

resenting the same function in a CCT are merged and their

performance metrics are aggregated. Call graphs contain all

the calling contexts for each node, but the performance metrics

are not stored per calling context.

B. Overview of the Hatchet Library

The primary data structure in Hatchet is called a

GraphFrame, which consists of two components: a

Graph defining the caller-callee relationships and a pandas

DataFrame storing the categorical and numerical data as-

sociated with each node. Fig. 1a shows the two objects of

a GraphFrame. Pandas [8], [10] is an open-source Python

library that provides data structures and manipulation tools

for data analysis. Hatchet introduces a canonical data model

for representing and indexing the performance data from

execution profiles. This structured index enables nodes in

the structured graph to be used as an index in the pandas

DataFrame. Fig. 1b illustrates that each node in the graph

contains a Frame, which identifies the code construct that

the node represents.

Hatchet provides readers for data gathered from several

popular profiling tools, such as HPCToolkit, Caliper, gprof,

callgrind, and cprofile. Once the data has been read into

Hatchet, a user can perform operations to filter or squash

the GraphFrame, for example. Some operations are applied

to a single GraphFrame (e.g., filter), while others are meant

to compare across GraphFrames (e.g., add). In the following

sections, we describe the new features that have been added

to Hatchet since it was initially introduced in [6].

III. CALL PATH QUERY LANGUAGE

We now present Hatchet’s call path query language and

demonstrate how it can be used to filter the GraphFrame in

the following subsections.

A. Design and Implementation

Previously, Hatchet did not provide a way for the user to

specify call path patterns to filter the graph. To enable this,

we design a call path query language based on Cypher [11]

and GQL [12] to filter performance data based on call path

patterns. In our query language, users provide a query path in

the form of a list of abstract graph nodes. A node consists

of two elements: (1) a wildcard specifying the number of real

graph nodes to match to the abstract graph node, and (2) a

filter determining whether a real graph node matches the

abstract graph node. We filter the nodes in the real graph

in three steps. First, we match all real nodes in the graph to

the abstract nodes in the user-provided query path. Second,

we collect an exhaustive list of paths in the graph that match

the entire query path. Finally, we use the exhaustive list to

create a list of real nodes found in the list of matched paths.

An example graph and query is shown in Fig. 3.

Our query language consists of two API levels. The “high-

level” API represents the query path as a Python list in which

each element is an abstract graph node. Filters in the high-

level API are represented as Python dictionaries keyed on the
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(a) MPI functions (b) Child calls of MPI functions (c) Child calls of MPI_Allgather

MPI Functions
MPI_Allgather MPI_Waitall

MPI_Allreduce MPI_Finalize

Remaining MPI Time

Child Functions
<unknown file> [libmlx5.so.1.0.0]:1133 memset.S:1133

<unknown file> [libmlx5.so.1.0.0]:0 Geometry.h:0

pthread_spin_lock.c:26 malloc.c:0

stl_vector.h:0 Remaining MPI Time

Fig. 2: Analysis of communication in AMG: (a) The percent of total MPI time spent in MPI functions, (b) The percent of

total MPI time spent in the children calls of MPI functions, and (c) The percent of total MPI_Allgather time spent in children

calls. We focus on those function calls that contribute 10% or more of the total MPI or MPI_Allgather time, and combine the

time of all remaining function calls into Remaining MPI Time. MVAPICH and Spectrum MPI libraries are denoted by by M
and S, respectively. The functions defined in the legends are listed as provided by the HPCToolkit profiles.

attribute names of real nodes in the graph. The “low-level”

API represents the query path as a set of chained function

calls in which each function call represents a single abstract
graph node. Filters in the low-level API are represented by

Python callables that accept a pandas Series representing a

row and return a boolean. In both API levels, we represent

wildcards as either a number or a regex-style wildcard string.

Fig. 3: Example using Hatchet’s new call path query language

to filter a graph. Here, our query specifies a call path rooted

at a node named “solvers”, followed by a node with a time

metric value less than 50, followed by any number of children

nodes. The result is a subtree containing three nodes.

B. Case Study: Identifying Sources of Performance Losses

We demonstrate the effectiveness of Hatchet once aug-

mented with our query language by analyzing the CPU perfor-

mance of MPI routines when using MVAPICH as compared

to IBM’s Spectrum MPI in two proxy applications and one

production application. We use the call path query language

to identify sources of performance losses associated with MPI

functions in AMG, Kripke, and LAMMPS. AMG [13] is a

parallel algebraic multigrid solver for linear systems derived

from the BoomerAMG [14] solver in the hypre library [15].

Kripke is a proxy application for a fully functional discrete-

ordinates transport code [16]. LAMMPS is a classical molecu-

lar dynamics code with a focus on materials modeling [17]. We

use two different MPI libraries (i.e., MVAPICH and Spectrum

MPI) with 64, 128, 256, and 512 processes on LLNL’s Lassen

supercomputer, where each node contains two IBM Power9

CPUs and four NVIDIA Volta V100 (though only the CPUs

were used in our study). We profile all the applications using

HPCToolkit [5].

Using our query language, we extract the subgraphs rooted

at standard MPI function calls from the generated profiles.

Using the subgraphs we obtain, we examine the percentage of

the total MPI time spent in each MPI function call. We also

examine the percentage of total MPI time spent in each child

call of the MPI functions. Using this data, we determine the

MPI routines and their children calls that are most important

to the performance of the application running with a particular

MPI library.

In this paper, we only show results related to the

MPI_Allgather function in AMG due to space constraints.

Our reasons for this are two-fold. First, as shown in Fig. 2a,

MPI_Allgather clearly comprises the majority of the MPI time

spent in the AMG benchmark. Second, the AMG benchmark

has the largest performance difference between MVAPICH

and Spectrum MPI. This suggests that, if we can determine a
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Fig. 4: An example tree rendered using Hatchet’s interactive tree visualization in Jupyter. Using the “Select nodes” feature, the

user brushes over the corge subtree (shown in the grey box). The metrics of the selected nodes are shown in the table in the

upper right. This selection can be accessed in other Jupyter cells using the fetchData function. Additional controls allow

for adjusting the color scale, changing which trees (in a forest of trees) are displayed, and changing what metric is displayed.

likely cause for the performance difference in MPI_Allgather

between the two MPI libraries, we can also determine the

likely primary cause for the overall performance difference

between the application versions using these two libraries.

To determine a likely cause for the performance difference

in MPI_Allgather, we first use the query language to obtain

the subgraphs of the AMG data rooted at MPI_Allgather calls.

We further reduce the data to consider only the children calls

of this MPI function that we previously identified in Fig. 2b as

most important to the performance of the program. The results

of this reduction are shown in Fig. 2c.

In our tests with MVAPICH and Spectrum MPI, we deter-

mine that the pthread_spin_lock function is consistently a

major contributor to MPI runtime (i.e., 10% or more of the

MPI time, usually 20% or more). Additionally, when consider-

ing MPI_Allgather, we conclude that the worse performance

of Spectrum MPI may be due to differences in its use of

pthread_spin_lock compared to MVAPICH.

Overall, Hatchet augmented with the call path query lan-

guage supports these new analysis capabilities: extracting

all call paths specific to a given library; determining the

performance contributions of function calls used internally in a

library; correlating children function calls to specific important

library API calls in an application; using this correlation to

determine children function calls that contribute the most to

the performance of the targeted library API call; and compar-

ing the correlation of children and API calls across libraries

to determine possible causes for performance differences in

these libraries.

IV. VISUALIZATION ENHANCEMENTS

We present a new interactive visualization for representing

the Hatchet tree, and interacting with it within a Jupyter

notebook. We also improve the existing tree-to-text renderer

in Hatchet. Both visualizations have refined designs for read-

ability.

A. Interactive Tree Visualization in Jupyter

A central design goal of Hatchet is easing analysis on

calling context trees and other similar performance data. While

programmatic analysis is the main focus of Hatchet, some

operations may be easier to perform in an interactive visual

environment. We introduce an interactive tree visualization

for Jupyter, shown in Fig. 4. The visualization is built using

D3.js [18] and Roundtrip [19]. Our Jupyter visualization has

several features that can be directly manipulated, with a key

addition of being able to select nodes visually and pass them

back to the scripting context.

The interactive tree permits selection of a single node on-

click or multiple nodes by brush (gray box drawn around

selected nodes). Selection of one or many nodes populates a

table in the visualization as shown in the upper right of Fig. 4.

The dynamic table lists all selected nodes and their associated

metric values. Selected nodes are outlined with a thick black

line. Once a user has drawn a selection over multiple nodes,

the corresponding query can be accessed in any other Jupyter

cell using the Roundtrip fetchData function. As shown in

Fig. 6, calling %fetchData(mySelection) returns the

corresponding call path query based on the selection, and

stores the query into the mySelection Python variable. The

resulting query can then be passed to the Hatchet filter function

to extract the same subtree programmatically that was selected

in the interactive visualization. With the interactive tree, users

can visually select nodes that can later be manipulated pro-

grammatically, allowing users to combine interactive visual

selection with scripting.
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Fig. 5: Tree-to-text rendering for a subtraction of two GraphFrames in Hatchet (resulting tree on the right). Any node that only

exists in one of the two trees is annotated with a green or red arrow in the result tree. Here, the mpi and psm2 nodes exist

only in the right tree, and are annotated with a green arrow. The hypre node exists only in the left tree, and is annotated

with a red arrow.

co r g e

b a r g r au l t ga rp ly

baz g r au l t

1 %fetchData mySelection
2 filter_gf = gf.filter(mySelection)

Fig. 6: Example demonstrating how the query (translated from

the user’s selection in the interactive tree in Fig. 4) can be

applied programmatically to filter the tree.

Additionally, the Jupyter tree visualization has several inter-

active controls for adjusting the display. The coloring of the

nodes is set by the selected metric in the Color by field.

Other metrics can be selected using the drop down menu. In

Fig. 4, nodes are colored by inclusive time. When multiple

trees are present in a Hatchet graph (forest of trees), users

can choose to display them all or just one, using a unified

colormap, or separate ones. Users can also choose to invert

the colormap. For the specific legend used in Fig. 4, dark

hues are associated with high metric values and light hues are

associated with low metric values.

B. Updates to Tree-to-text Renderer

Hatchet provides a visualization of its graph when the

graph is a tree via the tree-to-text renderer, inspired by

pyinstrument’s text renderer. We have redesigned the output

and extended its functionality to provide users with more

customization over their visualizations. Examples of the cur-

rent tree-to-text output can be seen in Fig. 5. By default,

node names are printed alongside the specified metric, such

as exclusive or inclusive time. Users can specify depth or

precision to Hatchet’s tree renderer to control the number

of tree levels to output and the number of decimal places to

output for the displayed metric values.

We also provide users with increased control over the

colormap. By default, the colormap annotates nodes with the

highest metric values in red and those with the lowest metric

values in green. In the case where a user computes the division

(or speedup) of two GraphFrames, a user may want to invert

the colormap, so that nodes with high speedup are annotated

in green, while nodes with low speedup are annotated in

red. Users can invert the default colormap by specifying

invert_colormap=True. Additionally, the tree renderer

now annotates nodes that only exist in one of the two Graph-

Frames in the right hand side of an algebraic operation, such

as subtraction. As shown in Fig. 5, the graphs of the two input

GraphFrames are structurally different, so we first unify the

graphs before computing the difference. Unifying the graphs

means that some nodes exist in one GraphFrame but not the

other, and vice versa. In the output GraphFrame, we annotate

those nodes with a red left arrow to indicate nodes that exist

only in the left input graph, or a green right arrow to indicate

nodes that only exist in the right input graph.

V. IMPROVEMENTS IN THE HATCHET API

In this section, we describe an extension to the filter function

and three new GraphFrame operations that have been added

to Hatchet – groupby aggregate, mul, and div. Filter and

groupby aggregate operate on a single GraphFrame object,

while mul and div operate on two GraphFrames objects.

Extension to filter: The existing filter operation takes a user-

supplied function and applies that to all rows in the DataFrame.

As an example, the filter function may keep all rows in the

DataFrame that have a particular column’s values greater than

some threshold. With the newly added query language, we

have extended the filter function to support taking a user-

defined query as input to filter the graph based on call path

patterns. Hatchet’s new call path query language is described

in detail in Section III. The Series or DataFrame represented

by the query is used to filter the GraphFrame’s DataFrame

to only match rows that are true. By default, filter performs

a squash on the graph to remove nodes that are no longer

in the DataFrame after applying the filter. Squash rewires the

graph such that the nearest remaining ancestor is connected to

the nearest remaining child on all call paths.

groupby aggregate: The groupby and aggregate operation

takes as input a column to use for the pandas groupby

operation and an aggregation function to apply on the members

of each group. It produces a new DataFrame that has number
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of rows equal to the number of groups (rows in each group

are aggregated). This operation is useful for aggregating the

data into alternative groups based on hierarchies other than

the column that denotes the calling context. As an example,

users may want to look at the performance attributed to

different modules or file names (instead of the default, which

is typically function or region names), and aggregate the data

values accordingly.

As part of the groupby and aggregate operation, the graph

is reorganized to be able to index the new rows in the

DataFrame. For each group, the graph reorganization merges

all nodes belonging to a group into a single “supernode”

(and aggregates corresponding rows in the DataFrame to a

single row). When a node is merged into a supernode, any

of its edges to a parent or child are added as edges to the

new supernode. Each supernode is represented by a new

node in the GraphFrame, and these new nodes are used

to index the DataFrame. The groupby aggregate returns a

new GraphFrame with a reorganized graph and a groupby-

aggregated DataFrame. Fig. 7 shows the graph before and after

a groupby-aggregate is performed, specifying module as the

new column to use for the groupby operation.

1 gf = GraphFrame( ... )
2 groupby_col = ["module"]
3 agg_func = {"time": np.sum, "time (inc)": np.sum}
4 gf2 = gf.groupby_aggregate(groupby_col, agg_func)

Fig. 7: Groupby-aggregate operation applied to a single Graph-

Frame. The bottom figures show the resulting module-level

graph and associated DataFrame.

mul: The multiplication (*) operation computes the multipli-

cation of the corresponding DataFrames in two GraphFrames.

If the graphs of the operands are not the same, then unify

is applied first to create a single unified graph. Then the

DataFrames are reindexed by the unified graph. The multipli-

cation operation returns a new GraphFrame with the unified

graph and the result of multiplying the DataFrames. The

multiplication operator can also be used in-place (a∗ = b)

to update an existing GraphFrame.

div: The division (/) operation is similar to the other algebraic

operations in Hatchet, and computes the division of two

DataFrames. Similar to mul, if the graphs of the operands

are not the same, it first unifies the graphs and reindexes

the DataFrames before performing the division. The division

operation either returns a new GraphFrame or updates the

GraphFrame in-place if the in-place division operator (a/ = b)
is used.

VI. PERFORMANCE IMPROVEMENTS

Performance improvements in Hatchet aim to support large

profiles collected from executions of parallel programs on a

large number of processes. These efforts target two critical

functions in Hatchet: the HPCToolkit reader and unify. We

detail the optimization process and the results of these efforts

in the following subsections.

A. Performance Analysis Infrastructure

To enable performance analysis of Hatchet, we developed a

custom-made cProfile [20] wrapper class. This class provides

simple annotations for starting, stopping, and resetting the

profiler in Python code that uses Hatchet. Furthermore, we

created several interfaces for aggregating and exporting the

measured performance data for post-mortem analysis. This

minimal profiling infrastructure provides Hatchet developers

and users with a framework for quickly identifying bottlenecks

within Hatchet workflows.

B. Optimizing the HPCToolkit Reader

The detailed calling contexts and per process metrics gath-

ered by HPCToolkit can result in large and complex datasets.

As an example, an HPCToolkit profile of LAMMPS collected

on 512 processes (13 nodes) on LLNL’s Lassen system pro-

duces a calling context tree (CCT) of over 34,000 call sites and

approximately 50,000,000 performance data records. The size

of HPCToolkit’s profiles made Hatchet’s HPCToolkit reader

an obvious first step toward extending Hatchet’s support for

big data.

We identified the critical bottleneck of the HPCToolkit

reader inside of a recursive, tree-traversing function call that

constructs Hatchet’s graph nodes from HPCToolkit’s XML

representation of call sites in a profile. In addition to construct-

ing nodes for the Hatchet graph, when this function arrives

at leaf nodes, it subtracts the exclusive time of leaf nodes

from their parents (HPCToolkit stores the exclusive time of

statement nodes in both the leaf nodes and their parents).

The few lines of Python code dedicated to this computation

dominate the bottleneck found in this function.

The procedure itself uses pandas’ conditional indexing

functionality to find all rows containing the current node’s

ID and its parent’s ID. The two resulting lists are then

subtracted as vectors and re-inserted into Hatchet’s DataFrame.

In a sequential profile, this would be only two rows in the

DataFrame, accessible directly by the structured index. How-

ever, HPCToolkit metrics are collected per execution thread
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and process for each call site. This means that a given node

ID appears in the DataFrame n times, where n is the product of

the total number of execution threads × processes the profiled

application was running on. For highly parallel programs, this

can mean searching for tens of thousands of rows containing

the same parent and child ID.

This significant number of rows, with slight variations in

the metric data across threads and processes, causes Hatchet’s

DataFrame to explode in size compared to its correspond-

ing CCT. Since the pandas DataFrame is not optimized to

handle operations on very large datasets, operations such as

conditional indexing are the primary bottlenecks in Hatchet.

For each statement node in HPCToolkit’s XML data, the

conditional indexing executes twice: once for the parent and

again for the child to get the two vectors of exclusive metrics,

increasing the time spent in this slow operation.

We optimized the conditional index operation by leveraging

the structure of this data as well as opportunities to speedup

array-based operations provided by the C/Python hybrid lan-

guage, Cython [21]. We first extract the relevant columns

(i.e., exclusive metrics) from the DataFrame, pass them into a

Cython function, and exploit the structure of the data to stride

over millions of rows of data in a few iterations, locating and

updating only those rows of interest.

Hatchet’s DataFrame can be decomposed into t equal sized

sub-frames of length m, where t is the number of execution

threads × processes used to run the application and m is

the number of call sites. Since each sub-frame is sorted by

node ID, there is no need to iterate over the entire DataFrame

row-by-row. Instead, we make t strides of length m over the

metric values and subtract the children metrics from the parent

metrics at each iteration. For our largest dataset, we reduced

the number of iterations over our DataFrame (per function

call) from more than 100,000,000 to just above 30,000.

C. Evaluation of Performance Improvements

To examine the impact of our optimizations to the HPC-

Toolkit reader, we measured the runtime of Hatchet’s HPC-

Toolkit reader on a series of profiles varying in size from 999

call graph nodes and 191,808 rows in the DataFrame to 34,855

nodes and 53,537,280 rows. The HPCToolkit profiles used in

our performance study came from the case study described in

Section III-B. The smallest profile was for a Kripke execution

on 64 processes (2 nodes) and the largest was for a LAMMPS

run on 512 processes (13 nodes). The results of these trials are

presented in Fig. 8. for each read first on the unoptimized code

and again on the optimized code. Each point represents the

average performance over five trials to read in a HPCToolkit

profile of a given size (i.e., number of DataFrame rows).

Our optimizations significantly improve the performance of

Hatchet’s HPCToolkit reader. As shown in Fig. 8, the slow-

down of the pre-optimized implementation is more pronounced

with larger DataFrames, while the post-optimized code scales

linearly. For even larger datasets, the relative speedup of the

optimized HPCToolkit reader will continue to increase. For

a DataFrame containing 50,000,000 rows, the HPCToolkit

Fig. 8: Log-log plot showing performance before and after op-

timization of the HPCToolkit reader as the size of the Hatchet

DataFrame increases. The optimized HPCToolkit reader scales

significantly better compared to its unoptimized predecessor.

reader went down from six hours and fifteen minutes to two

minutes and twenty-four seconds, a reduction of two orders

of magnitude.

D. Optimizing the Unify Operation

The unify operation takes two GraphFrame objects, unifies

the graphs in them, and reindexes the DataFrames by the

nodes in the unified graph. The updated GraphFrames contain

the new unified graph (as shown in Fig. 9) and reindexed

DataFrames. The DataFrame of the GraphFrame object calling

unify contains all the nodes from both DataFrames and also

stores metadata about the origin of nodes with a column

_missing_node, which denotes that a particular node ex-

isted only in its DataFrame or in the DataFrame of the other

GraphFrame. If a node existed in both GraphFrames, then this

column is left empty.

We chose to optimize unify since it is a primary operation

in most of Hatchet’s algebraic operations, such as multiply or

add. Since these algebraic operations are critical to the unique

profiling workflow offered by this library, it is essential that

they be performant. The initial performance analysis of unify,

executed with the same profiling infrastructure introduced in

Section VI-B, reveals merit in targeting unify as a potential

bottleneck. Unifying a LAMMPS dataset with 50,000,000

rows and 34,000 nodes with another dataset of roughly equiv-

alent size takes one hour and 38 minutes. Even when unifying

smaller datasets (100,000 rows and 1,000 nodes in the CCT),

the unify operation is notably slow, consuming 30 seconds.

Unify’s runtime is dominated by the time spent updating

the DataFrames. However, in contrast to HPCToolkit, slow-

downs are spread out among several pandas library opera-

tions in Hatchet’s internal DataFrame management function,
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1 gf1 = GraphFrame( ... )
2 gf2 = GraphFrame( ... )
3 gf1.unify(gf2)

Fig. 9: An example of Hatchet’s unify operation. The left graph

and middle graph are unified by traversing both graphs and

adding any nodes that exist in one graph but not the other to

the result. The result is a single unified graph shown on the

right. The DataFrame of the GraphFrame object calling unify

contains a new _missing_node column identifying which

nodes were exclusive to each graph (denoted by an L or R).

_insert_missing_rows. Our initial performance en-

hancements involved tweaking existing code to follow pandas

conventions. We replaced assignment of values in DataFrames

in C-like loops for Python lists or NumPy arrays that are

then assigned to a pandas DataFrame column. Both native

Python and NumPy handle single-element array access and

their array/list creation significantly better than pandas. This

optimization provides some marginal speedup and reveals a

need to integrate Cython for more substantial performance

gains.

Another bottleneck in unify is the pandas isin method,

called by the _insert_missing_rows function. This

particular method takes an argument of a list, NumPy array

or pandas Series, and returns a boolean mask with a true

or false for each element in the passed array. This mask

indicates each element’s presence in the calling DataFrame.

For DataFrames of over 1,000,000 rows, common for most of

our test datasets, pandas falls back to NumPy’s isin function-

ality, which combines np.unique for sorting, and a binary

search for determining membership. The isin operation does

not perform especially well with lists of complex objects, such

as the nodes used by Hatchet.

To improve the slowdown in pandas’ isin, we imple-

mented a more specialized function in Cython. Hatchet’s

specific isin function is directly optimized for Hatchet’s

data and designed to use as few columns as possible. By

using Cython, we reduced overhead introduced by superfluous

calls through pandas to NumPy, and into NumPy’s various

libraries. Furthermore, we pre-process our complex array of

“node” objects into a sorted array of integer node IDs. This

fundamental array can be quickly iterated over and with lower

memory overhead. We implemented the isin function itself

as a binary search inside of a loop over the searched-for array

of elements. We further sped up this binary search by adding

an early stopping condition: if we have previously visited the

current node ID, then copy the prior results to this one and

forego the search. This optimization ensures that the number

of binary searches performed is bound by the number of nodes

and not the number of rows.

There is very little opportunity for a critical spot op-

timization like Hatchet’s custom isin function. However,

removing multi-indexes resulted in another 25% speedup over

the order-of-magnitude speedup gained from prior optimiza-

tions. Hatchet leverages multi-indexes comprised of nodes,

processes, and threads to provide a meaningful and unique

index for each row in its DataFrame. Compared to single

indexes, multi-indexes introduce a noticeable overhead to

standard pandas operations like concat or even assignment

of a new column. Although the source of this overhead is

not abundantly clear, the use of multi-indexes apparently

introduces a layer of calls through the “multi” library in

pandas. By removing the multi-index, we eliminated this layer

of calls to “multi” and reduce the slowdown observed with

many pandas methods.

E. Evaluation of Performance Improvements

To measure the impact of our optimizations to the unify
method, we collected the runtimes produced by unifying

two similar GraphFrames produced from the same set of

HPCToolkit profiles we used to profile Hatchet’s HPCToolkit

reader. For our performance study, we unify two HPCToolkit

profiles for the same application, each using a different MPI

implementation. The performance results, averaged over five

trials are shown in Fig. 10. Because this experiment required

pairs of datasets per run (i.e., one profile using MVAPICH and

the other using Spectrum MPI), there are two fewer data points

in this figure as compared to Fig. 8. The two missing profiles

were only collected with MVAPICH or Spectrum MPI but not

both, so they were omitted from our performance study.

For smaller datasets, we saw a reduction in runtime from 30

seconds to approximately 1 second. For mid-sized DataFrames

containing millions of rows, unify’s execution time went

from minutes down to tens of seconds. For very large datasets,

unify’s runtime went down from greater than an hour to

only a few minutes. The primary contributor to the order-of-

magnitude speedup between our pre- and post-optimization

is Hatchet’s Cythonized, custom isin function. The simi-

larity in the trends of our pre- and post-optimization run-

time measurements speaks to the similarity of the underly-

ing functionality which drives NumPy’s isin method and

Hatchet’s. We attribute the substantial speedup to a reduction

in overhead from Python function calls, memory management,

bounds checking, and reduced space requirements. However,
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Fig. 10: Log-log plot showing the pre- and post-optimization

performance of the unify operation as the size of the dataset

increases.

no algorithmic advantage exists like that produced by our

HPCToolkit reader optimizations.

F. Performance Improvement of Common Workflows

A simple workflow for Hatchet is depicted in Fig. 11.

In this workflow, a user reads in two HPCToolkit profiles,

perhaps collected at two different levels of concurrency or

varying the underlying MPI implementation. A user then

uses one of Hatchet’s algebraic operators to make a quick

comparison between the two runs, storing the result in a new

GraphFrame. Before doing the optimizations discussed in this

section, this program would take fourteen hours to compare

two HPCToolkit profiles collected from a large program run

on 512 ranks. After integrating the optimizations detailed in

this section, the overall runtime for analyzing large datasets

has been significantly reduced. The runtime for this workflow

has been reduced to ten minutes and thirty seconds for the

same large profiles (80× improvement).

1 gf1 = GraphFrame.from_hpctoolkit( ... )
2 gf2 = GraphFrame.from_hpctoolkit( ... )
3 gf3 = gf1 - gf2

Fig. 11: Simple workflow using the Hatchet library. Two

similar HPCToolkit datasets are read in to Hatchet, and we

compute the difference in their metrics. With optimizations,

we reduced the time for executing this workflow from 14 hours

to 10 minutes and 30 seconds.

VII. RELATED WORK

There is a wide variety of profilers that can collect

call graphs or call paths for post-hoc analysis [2]–[5],

[22], [23]. Many of these profilers also provide visualiza-

tion tools for viewing calling context trees (CCT), includ-

ing Tau [4], HPCToolkit’s hpcviewer [24] and hpctrace-

viewer [25], CallFlow [26], [27], Cube GUI [28], and flame

graphs [29]. All of these profilers support their own data

format, and most visualization tools provide a custom GUI in-

terface for viewing the call path. While some tools are capable

of importing data from other tools, there is a lack of tools with

a programmable interface for automating interactions with the

profile data. With Hatchet, we develop a canonical data format

for profile data, so that data from several popular profiler tools

can be analyzed with Hatchet. Additionally, Hatchet provides

interfaces to automate the performance analysis of call path

data, so users do not have to learn new data formats or visual

interfaces.

Within the tools community, there is an effort to leverage

a database for storing data and to provide their own language

for interacting with the data. PerfExplorer [30], for example,

provides its own database, a GUI interface, and a custom data

format known as PerfDMF [31]. Similarly, Open|SpeedShop

uses an SQL database and its own GUI interface. The work

most closely related to Hatchet is differential profiling, which

demonstrated the benefits of computing the difference between

two call trees to pinpoint performance bottlenecks [32], [33].

To expand on this idea and to enable analysis of larger

profiles, Tallent et al. extended HPCToolkit to include derived

metrics [34], [35]. Since Hatchet is built upon the pandas

data analysis library [8], [10], it provides a number of data

manipulation APIs that are performant on large tabular data.

VIII. CONCLUSION AND FUTURE WORK

Analyzing performance and pinpointing bottlenecks in par-

allel programs are important to guide developers in their opti-

mization workflow. It is a significant challenge to effectively

analyze the performance of complex programs that contain

tens of thousands of lines of code, resulting in large dynamic

calling context trees or call graphs. In this paper, we provided

an overview of four different efforts to enhance Hatchet’s

usability and performance.

We introduced Hatchet’s new query language to enable

users to specify call path patterns for filtering the graph. We

demonstrated Hatchet’s new interactive visualization capabili-

ties in Jupyter, enabling users to drag and select a subtree to

filter the graph. We have also improved the functionality and

information displayed using Hatchet’s tree-to-text renderer. We

provided an overview of new APIs that have been added to

Hatchet’s analysis toolbox. Lastly, we discussed different op-

timizations to Hatchet’s existing APIs and showed significant

speedups at large scale.

In the future, we plan to add functionality to save Hatchet’s

GraphFrame to disk, enabling users to save intermediate

GraphFrames periodically throughout the analysis process.

For large datasets that may take a significant amount of

time to read in, this capability will significantly improve the

analysis workflow with Hatchet, since analysis can start from
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an intermediate step. We also plan to explore options that will

enable use of parallel frameworks for analyzing Hatchet data.
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T. Priol, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 97–106.

[34] N. R. Tallent, J. M. Mellor-Crummey, L. Adhianto, M. W. Fagan,
and M. Krentel, “Diagnosing Performance Bottlenecks in Emerging
Petascale Applications,” in Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, ser. SC ’09.
New York, NY, USA: Association for Computing Machinery, 2009.

[35] N. R. Tallent, L. Adhianto, and J. M. Mellor-Crummey, “Scalable
Identification of Load Imbalance in Parallel Executions Using Call
Path Profiles,” in Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’10. USA: IEEE Computer Society, 2010, p. 1–11.

58

Authorized licensed use limited to: The University of Arizona. Downloaded on August 09,2021 at 18:19:40 UTC from IEEE Xplore.  Restrictions apply. 


