Materia: A Data Quality Control Embedded
Domain Specific Language in Python

Connor Scully-Allison

University of Arizona, Tucson AZ, USA
cscullyallison@email.arizona.edu

Abstract. Current solutions for data quality control (QC) in the en-
vironmental sciences are locked within propriety platforms or reliant on
specialized software. This can pose a problem for data users when at-
tempting to integrate QC into their existing workflows. To address this
limitation, we developed an embedded domain specific language (EDSL),
Materia, that provides functions, data structures, and a fluent syntax
for defining and executing quality control tests on data. Materia en-
ables developers to more easily integrate QC into complex data pipelines
and makes QC more accessible for students and citizen scientists. We
evaluate Materia via two metrics: productivity and a quantitative per-
formance analysis. Our productivity examples show how Materia can
simplify complex descriptions of tests in Pandas and mirror natural lan-
guage descriptions of common QC tests. We also demonstrate that Ma-
teria achieves satisfactory performance with over 200,000 floating-point
values processed in under three seconds.

1 Introduction

Quality Control (QC) on scientific data is a critical step in the data prepro-
cessing pipeline and is essential to performing good science. This “QC process”
describes any systematic approach undertaken by data experts to check for er-
rors in datasets. It can be done manually or automatically. In the manual case
an expert scientist scans through columns of records and notes any problems
they find. For example, they may discount a temperature value for being too
cold for the season or when visualizing data they will see that a value spikes up
dramatically compared to its preceding measurements, or drifts over time.

If these anomalies are not recorded and properly associated with their corre-
sponding dataset, the utility of collected scientific data is significantly limited.
Errenous values in a dataset do not accurately reflect the ground truth they are
supposed to measure and, accordingly, cannot be used in scientific models to en-
hance our understanding of natural phenomena. In recent years, automation has
transformed both the data collection and QC process but has not fully solved
the QC problem [11, 12].

Increased automation in the data collection process has introduced novel
vectors for the propagation of data errors. Old sensors, dying batteries, poor
wiring, network failures, and more, can contribute to a missed data point or an
incorrect value being logged. In the environmental sciences, these opportunities
for failure are compounded by the relative remoteness and wild characteristics



2 Connor Scully-Allison

that pervade data collection sites [2]. Everything from weather events to wild
animals can cause sensors to log incorrect data or stop data feeds altogether.

To combat this problem of quality issues introduced by autonomous data
collection, a handful of technologies have been devised and deployed into mod-
ern workflows to provide quality control. Among them are the GCE Toolbox [7],
Loggernet [9], ArcGIS [4], and Pandas [8]. The GCE Toolbox was produced to
provide a dedicated toolkit for managing QC processes in the earth and envi-
ronmental sciences. Loggernet’s support software and ArcGIS provide tools and
modules which enable users to perform limited Quality Control on data. Pandas,
by contrast, is a general purpose statistics and data analytics library embedded
in Python which was not built for data Quality Control but provides function-
ality which supports QC tasks very well, like binding metadata to data frames
and allowing users to define time-series indices.

Together these libraries, software packages and frameworks give data man-
agers a variety of options to choose from for their QC needs. Unfortunately,
they have drawbacks that hinder their utility to specific individuals or prevent
easy integration into existing data collection workflows. For the GCE Toolbox,
Loggernet and ArcGIS, each of these solutions are reliant on proprietary or ex-
pensive software to run. For the GCE Toolbox, a subscription to the Matlab
language is required. The ArcGIS software requires a licence costing a minimum
of 200 dollars per year. Loggernet QC solutions only work with Campbell Scien-
tific sensors: which are expensive, enterprise-level instruments used for collecting
data, and are often eschewed for cheaper “iButton” devices, which are used in
projects as prominent as the NSF funded McMurdo Dry Valleys Long Term
Ecological Research Network (LTER) in Antarctica [1].

dfcopy[’repeat-ids’] = (dfcopylself.column] !=
dfcopy[self.column].shift (1))
. cumsum ()

counts = dfcopy[[’repeat-ids’,self.column]]
.groupby ([’repeat-ids’]) .agg(’count’)
counts_less = counts.loc[counts[self.column] > 1]

dfcopy = dfcopy
.join(counts_less,
on=’repeat-ids’,
lsuffix=’_caller’,
rsuffix=’_other’)
dfcopyl[self.column] = dfcopylself.column + ’_other’]
.map (lambda x: x >= 3)

Listing 1.1. Code which checks for repeat values in Pandas and returns a Boolean
array indicating if a value is a repeat or not if it exceeds the repeat threshold of “3”.

Pandas does not suffer from these limitations being a free, open-source library
implemented in a free programming language: Python. Instead, Pandas’ problem
is one of domain expressiveness. The abstractions provided in that library do not
always map well to defining tests in the quality-control space. An example of




Title Suppressed Due to Excessive Length 3

such a mapping can be seen in Listing 1.1, which depicts a test that checks for
values that do not vary across multiple time steps. This implementation, while
efficient, can be difficult to parse even as an experienced coder, making it that
much more difficult for a domain scientist.

To fill these gaps which are unmet by existing solutions we developed Materia:
a domain specific language embedded in Python. This language provides several
data structures which simplifies the development effort required to read in tab-
ular time-series data, manage quality control flags and perform the logical com-
parisons required for QC workflows. Furthermore, Materia leverages Python’s
built in method chaining to support a fluent syntax for managing tests. Finally,
Materia provides a functional syntax which abstracts away iterative operations
and enables tests to be defined over an “arbitrary” value at a single point in
time. And, although the default assumption is that a function will be testing
a single value, these tests also keep track of the context around a single value
enabling more complex operations on one series or multiple.

The remainder of this paper is organized as follows: related and prior work
are presented in Section 2; design and implementation details on Materia are
presented in Section 3; evaluations of Materia and discussions of results are
presented in Section 4. Finally, conclusions and future work are presented in
Section 5.

2 Related Work

Relevant to the motivating problem of this research, there are several papers that
discuss the importance of data quality control in the environmental sciences.
Recent scholarship on this topic has emphasized an increased need for program-
matic solutions to this problem. In the paper “Quantity is Nothing Without
Quality: Automated QA/QC Streaming for Environmental Sensor Data,” the
motivation and execution of automateable quality control processes are discussed
at length[2]. This paper informs domain expectations of general quality control
processes and helps circumscribe the domain problem space.

In addition to this, several other works in the environmental science domain
describe what standards are expected from quality controlled data [14, 6]. Specif-
ically, the handbook by Gouldman et al. provides examples of flag codes in use
by the National Oceanic and Atmospheric Administration (NOAA). This re-
source exemplifies what a QC-focused programming language should support. It
also details many types of automated tests which are standard for their organi-
zation: “Rate of change in time”, “Spike Test”, “Regional Range Test”, “Stuck
Value Test”. These tests map directly to several of the tests we will evaluate for
performance and brevity, and reinforces the validity of our chosen tests.

The development of the GCE toolkit, which represents the closest prior imple-
mentation of an EDSL for QC is detailed in Sheldon et al [13]. In this work, Shel-
don provides implementation and design details for the GCE toolkit which were
leveraged to build up Materia. Specifically, the Dataset data structure used in
Materia can be thought of as a simplified version of the GCE toolkit’s “Dataset”
object with some implementation features drawn from Pandas. This work also



4 Connor Scully-Allison

provides context about the use and impact of the GCE toolkit in the earth
science domain and provides insight into the specific communities which could
benefit from Materia. Sheldon indicates that it is used by various Long Term
Ecological Research (LTER) sites, the United States Geologic Survey (USGS),
and by GCE itself in addition to many others.

In addition to the above paper, the paper associated with the Pandas library
was also mined for insight on how to construct an efficient data management/-
analytics library in Python [8]. This work helped us understand how to organize
the columnar data in our datasets and use numpy arrays most efficiently. Specif-
ically, we organized our arrays into numpy matrices with shared types mirroring
their “block manager” and provide support for “label based data access.” Using
Pandas as a reference in this way enables us to build upon state-of-the-art work
and provide interfaces people are familiar with.

The concept of an embedded domain specific language (EDSL) has been
steadily growing in attention and scholarship over the past two decades. For an
overview of embedded domain specific languages, see Gill [5]. This classification
describes programming languages built within and using an existing program-
ming language. This construct allows for ease of development on the part of
the language developer and allows language users to use syntax and supporting
libraries which are familiar to them when working on domain problems.

3 Materia

Materia is a domain specific language (DSL) shallowly embedded in Python.
The term, “shallowly-embedded,” means that it extends the host programming
language with additional functionality and makes-use of language provided con-
structs. It provides data structures, an abstraction which removes loop-definition
clutter from function definitions, and a fluent syntax. Together this functionality
enables users to quickly define and execute QC tests on tabular, time-series data.
In addition to these features, Materia was designed to work with a wide variety
of datasets and arbitrary flag codes to enhance its utility to various organiza-
tions. The following subsections will describe in detail these specific aspects of
Materia. For more details on the usage and implementation of Materia, source
code and documentation can be found at [10].

3.1 Data Structures

Materia is comprised of 2 key data structures: a DataSet and a TimeSeries.
Both of these structures were designed to mitigate overhead of array creation
and management, flag storage and data alignment on the part of the user.

The first data structure, a DataSet, can be thought of as a lightweight Pandas
dataframe. Compared to it’s bulkier cousin, it provides some domain-specific
functionality which the dataframe lacks. First, it stores header metadata found in
many tabular data files in a dedicated row-major matrix. This header metadata
can be used for reference at any point in the development of a quality control
script and can also be used to produce unique and semantically meaningful
header names for label-based array access of specific data columns. An abridged



Title Suppressed Due to Excessive Length 5

example of a tabular data file which would work with Materia can be seen in
Table 1.

Second, a DataSet operates under the assumption that data will be indexed
by a series of datetime values. Accordingly, it performs automatic detection
and conversion of any datetime columns found in the provided data file. It also
automatically sets one of these columns as the primary index for the DataSet.
This timeseries index is used in Quality Control tests to find missing values and
align time series for comparison when they have the same temporal range but
may not have the same number of array elements. All vectors in the DataSet
object are are numpy arrays and are stored in column major format.

To provide a simple and familiar interface for extracting an individual Time-
Series object from a DataSet, the DataSet class overloads the “[]” operators to
enable label-based access of individual columns. The returned TimeSeries ob-
ject manages the execution of tests and storage of resultant flags. A time series
object is comprised of three numpy arrays: the global time series index which
was defined at the DataSet level, the values array for this series and an array
which keeps track of quality flags resulting from tests. The TimeSeries object
tracks what tests were run on it and other related metadata like its label in the
DataSet and flag codes which were originally defined over the DataSet object.

Site Name: Rockland Summit|Rockland Summit
Deployment: Air temperature |Air temperature
Monitored System: Climate Climate
Measured Property: Temperature Temperature
Vertical Offset from Surface:

Units: degC degC
Measurement Type: Maximum Minimum
Measurement Interval: 00:01:00 00:01:00

Time Stamp (UTC-08:00)

2019-04-01T16:41:00.0000000-08:00 {-9999 5.235
2019-04-01T16:42:00.0000000-08:00 [5.124 4.97
2019-04-01T16:44:00.0000000-08:00 [5.165 5.046

Table 1. An example of a tabular dataset, downloaded from the Nevada Research
Data Center. Materia was designed for datasets like this one.

3.2 Managing Flag Codes

Contrary to some popular conceptions of the purpose of Quality Control, the
main output of the initial phases of a quality control process is not repaired
data. Instead, it is only metadata. This metadata comes in the form of “flags”
— codes that indicate to a data user what the quality of particular values in a
dataset may be. Flags are typically stored in an array. They are aligned alongside
values in a tabular format making them easy to cross-reference when managing
data.



N

6 Connor Scully-Allison

While flags are a simple concept they can sometimes be difficult to work with
in practice. This difficulty is due to the general standardization problem in sci-
entific organizations. Like many other aspects of data, flags are not standardized
across organizations, with some orgs using string values to convey the quality of
their data (“bad,” “good,” “suspect”) while others use integers (0,1,2) [3]. This
diversity of flag codes requires that Materia support flag standards which have
differing numbers of flags, datatypes and names. In order to accommodate this
plurality, Materia provides a function which allows users to affix a dictionary of
their own flags to a DataSet object, visible in listing 1.2.

DataSet.flagcodes ()

.are ({

"None":"0K",

"Repeat Value":"Repeat Value",
"Missing Value": "Missing",
"Range": "Exceeds Range",

"SI": "Incosistent (Spatial)",
"LI": "Inconsistent (Logical)",
"Sp": "Spike"

b

Listing 1.2. How to define flag codes on a Materia DataSet.

After setting this dict on our dataset, subsequently extracted TimeSeries
objects keep track of these key-value pairs so that users need only provide the
key when executing a quality control test. An example of this can be seen in
listing 1.5. By mapping the flag codes to strings in this way, Materia allows
users to define their own keys for flags which enables them to access them in a
more succinct way. Users can use ”SI” instead of ”Inconsistent (Spatial).”

3.3 Defining Tests

def rv_test(value):
n =3
if not value.isnan():
if value == value.prior(m):
return True
return False

Listing 1.3. A QC test definition to check for multiple repeat values in a row using
the Materia language.

The Materia language itself was designed around a functional paradigm,
whereby users can define tests which operate on an abstract datapoint. Instead
of developing functions which operate on specific arrays of values or contain in-
ternal iterations, users instead define Python functions with a single argument:
“value.” This argument represents a single datapoint in an arbitrary time series.
This abstraction enables users to define tests in fundamental terms which mirror




Title Suppressed Due to Excessive Length 7

real test specifications. An example of a test definition using this syntax can be
seen in Listing 1.3.

In this example, we can see how a series agnostic test definition syntax sup-
ports natural expression of a data quality control test. Instead of working with
whole vectors or iterating over a vector passed in as an argument, we are instead
expressing our repeat value test as “If a value is equal to the prior 3 values in
this series, return that it failed the test (true).” We also see how the “value”
argument provides significant functionality to support fluent test definitions.

def spatial_inconsistency(value):

comp_val = series_max_10.value().at(value)
diff = value - comp_val
avg = (value + comp_val) / 2

threshold_p = 75
exceeds_threshold = (abs(diff/avg) * 100.0 >
threshold_p)
if exceeds_threshold:
return True
return False

Listing 1.4. A QC test definition in Materia which checks if the values within two
related time series diverge beyond a specific threshold. series_max_10 refers to a time
series pulled from the dataset prior to this function definition.

“Value” is itself an object which contains a scalar by default but can contain
a vector of values. In order to support comparisons between vectors and scalars
and maintain fluent test definition syntax it overloads the following binary con-
ditional operators: “==," “l =7 “<=" “>=" “>=7" “>7” “<” Ag can be seen
with the “value.prior(n)” call, this object also keeps track of the context of the
time series from which it was called. As many tests need to support comparisons
between values preceding or following individual data points in a time series, its
essential that Materia’s test definition function provide an interface for retrieving
contextually relevant data points.

series.datapoint ()
.flag(’Repeat Value’)
.when(rv_test)

Listing 1.5. How to execute a test on a time series object in Materia.

One further example of Materia’s test definition syntax can be seen in Listing
1.4. In this test definition, we can see that our “value” abstraction also overloads
mathematical operators to support binary operations between our value object,
numeric constants, and other value objects. In order to support a diverse array
of mathematical operations on various data types, these overloaded binary oper-
ators support standard operations between individual scalars and heterogeneous
operations between vectors and scalars. Finally, we also see in Listing 1.4, that




8 Connor Scully-Allison

a method is provided by time series objects which allows us to pass in a partic-
ular value and get out a temporally aligned value from that series. This method
enables enables users to define tests between related series of values within the
same temporal range.

3.4 Calling Tests and the when() function

In order to execute these tests within the context of a particular set of values,
each TimeSeries object provides several methods which are chained together.
These methods execute the test which is passed to “when()” as an argument
and affix flags depending on the results of the provided tests. The syntax of
these methods can be seen in listing 1.5.

This part of Materia implements a fluent syntax through chained method
calls. This is done so that a test execution can mirror a natural language state-
ment: “Flag a datapoint in [this] series with 'repeat value’ when the repeat value
test fails.” This syntax for calling tests in Materia further reinforces the mental
model that tests are being called on singular data points in our TimeSeries.

In listing 1.5, we can see how the when() method operates from a user
perspective; specifically, it is just a higher-order function which executes the
“rv_test” argument passed to it. Internally, this when() function performs sev-
eral tasks to execute passed tests and manage their results.

Immediately upon being called, the “when” function uses the Python library,
inspect, for method reflection. Using getsource(), it stores the source code of the
passed function so that this information can be later used to provide additional
context to our flags. Second, it uses getargspec() to determine if an optional it-
erator argument was declared as part of our test definition. If there was, “when”
will invoke the function with two parameters and not one. This secondary ar-
gument can be used for debugging or checking specific errors in the provided
dataset.

After performing these reflective operations, “when” then declares a loop over
the internal values array. At each iteration of this loop, a new “Value” object is
created and passed in as an argument to the provided test function. This Value
object is constructed with the contextual information of its surrounding values in
the calling TimeSeries, its offset from the beginning of the array and its datetime
index. By managing our loop inside of the “when” function and providing users
with a robust object for testing values this simplifies test definitions significantly.

4 Evaluation and Discussion

Materia was formally evaluated within the scope of two categories which are
commonly used to evaluate EDSLs: productivity and performance. The first,
productivity, encompasses measures of how a language may improve a users
ability to write effective programs in their domain. For Materia we first exam-
ined how closely a test definition in a language conforms to a natural language
description of a test found in earth science handbooks and literature. Second, we
compared specific implementations of QC tests in Pandas against functionally



Title Suppressed Due to Excessive Length 9

equivalent definitions in Materia. This enabled us to compare ease of mapping
the domain problem space to the language of implementation. For performance,
we compared the runtimes of test definitions in Materia against implementations
in Pandas. For these tests we used 6 commonly found quality control tests as
our benchmarks

4.1 Benchmark Tests

The six tests used as our benchmarks and foundations of syntactic comparison
come from Campbell et al. missing-measurements, range, persistence, spatial in-
consistency, internal inconsistency and change in slope [2]. Missing-measurements
checks the difference between two date-times in chronological order, if they ex-
ceed a specified time interval that means a measurement is missing and a row
must be inserted. Range tests seek to identify if a value exceeds some normal
range in values. Persistence checks if a given value in a dataset is a repeat of one
or more data points preceding it. With spatial inconsistency, two or more time
series measuring the same data type in close proximity to one-another are com-
pared. If one diverges it usually indicates a logging error. Internal consistency
evaluates a break in a logical condition between two time series. For example: a
minimum variable measurement at a certain time index cannot exceed a maxi-
mum reading from the same sensor for the same variable at the same time index.
Finally, a change in slope describes a dramatic upward or downward change in
our time series’ slope over a short time period.

4.2 Productivity

For the first metric of productivity, natural-language similarity, we selected the
following five descriptions of individual quality control tests:

— “No values less than a minimum value or greater than the maximum value
the sensor can output are acceptable” — Range Test [6]

— “This test compares the present observation n to a number . . of previous
observations.” — Persistence [6]

— “A sharp increase or decrease [in slope] over a very short time interval (i.e.,
a spike or step function)” — Change in slope [2]

— “ensuring that the minimum air temperature is less than maximum air tem-
perature 7 — Internal Inconsistency [2]

— “ .. data from one location are compared with data from nearby identical
sensors” — Spatial Inconsistency [2]

These particular tests were chosen because they reflect the six cardinal tests
enumerated by Cambell et al [2], with the exception of “missing measurements.”
“Missing measurements” was omitted from this examination because it was im-
plemented as static method in the TimeSeries class. These descriptions were
compared by the developers of Materia, through and informal side-by-side com-
parison. (These implementations are not included here for space reasons however
they can be found at [10].)



10 Connor Scully-Allison

From this examination, no clear consensus was found. Quantifying similar-
ity on a four step range, from “very similar” to “similiar” to “dissimilar” to
“very dissimilar” we determined that a Materia-based implementation of a per-
sistence test, visible in Listing 1.3, was “very similar.” We considered the very
complex “Change in slope” test to be, by contrast, “very dissimilar”. We found
internal inconsistency and range tests “similar” and spatial inconsistency to be
“dissimilar.”

Overall, the results of similarity or dissimilarity seem to be most significantly
related to how simple the mathematical or boolean operation used in a test may
be. For the persistence test, syntactical similarity is bolstered by the fact that
an natural language description explicitly mentions a comparison and and that
Materia provides a “prior” function which was designed to mimic natural lan-
guage comparisons like this. On the other end of the spectrum, a Materia-based
implementation of a slope test is over 30 lines of code and reflects the multiple
calculations required to compare two slopes. The natural language description
of this does not capture the complexity of these operations at all.

For the second metric gauging productivity, we compared Materia-based im-
plementations of code against Pandas-based implementations. For Spatial In-
consistency, Spike and Range Tests, the details of implementation were approxi-
mately the same; although Pandas based implementations occasionally required
the use of helper functions like np.logical_and to support vector-wise Boolean op-
erations. With a logical inconsistency test we see more deviation with Materia’s
more simple definition where a user can simply declare “return max_value <
min_value”. In Pandas we require the use of a helper function, “np.where” to
return an array of boolean values. Although not a significant addition, this does
introduce some visual noise which can be hard to parse. Finally, we see significant
divergence between implementations of a persistence test in Pandas and Mate-
ria. As can be seen in Figure 1.1, Pandas requires several different statements
to identify and filter a time series down to identified repeat values. It requires
further statements to express the result as a Boolean array. Without knowing
what the code does, it’s hard to understand even with a few minutes of exposure.
By comparison, it takes mere seconds to understand what the persistence test
in Materia (Listing 1.3) is doing.

4.3 Performance

Due to space limitations we cannot include a comprehensive breakdown of our
performance measurements. It should be noted however, that across all tests,
Materia did perform more poorly than the highly optimized Pandas. In general,
Pandas, ran it’s operations faster by an order of magnitude compared to Materia.
We argue that this is not a fatal mark against this EDSL as the absolute runtimes
of Materia never exceeded 2.5 seconds for more than 200,000 data points. When
this represents 6 months of data and Quality Control is often done on a month
by month basis or as part of prepossessing steps we deemed this an acceptably
low runtime for practical use.



Title Suppressed Due to Excessive Length 11

4.4 Additional Considerations

In addition to the above evaluation metrics, it should also be noted that Mate-
ria provides several features which support productivity but were not formally
evaluated and are not found in more general purpose languages like Pandas.
Specifically, Materia provides to users the automatic binding of flags to data,
the automatic detection of column datatypes, alignment with a time series in-
dex, the graceful management of multivariate data stored in a tabular format,
and the ability to handle nonstandard, highly variable header metadata.

In addition to these features, Materia also uniquely supports tracking Quality
Control methods by storing the specific functions which were used to generate
flags. This level of provenance is extremely important to creating comprehensive
data products. With this feature, data producers are able to not only express
that a datapoint may be suspect or bad but also under what conditions it was
found to be suspect or bad.

5 Conclusions and Future Work

Over the course of this paper we introduced a topology of modern data quality
control, existing solutions and the limitations of those solutions which moti-
vate this work. We further introduced our embedded domain specific language:
Materia, and detailed the design and implementation of it. This language was
not shown to be superior in terms of performance compared to its most similar
counterpart on the Python platform: Pandas. However, it was argued that it
should be sufficiently performant for most typical quality control use-cases. In
terms of productivity, Materia was developed to be more usable than Pandas for
defining quality control specific tests and functions. Additionally, it was shown
that Materia aggregates many features into one language which can positively
impact the quality of life for developers building quality control applications and
scripts.

There are many opportunities for future development of Materia. First and
foremost, with the functional structure that was implemented for this prototype,
its evident that many quality control tests are embarrassingly parallel. Accord-
ingly, this language would significantly benefit from a deep embedding which
could be exported to a GPU computing language. Many of these functions map
1 to 1 with a kernel that could be deployed to individual threads on a GPU
architecture. In addition to this, with a deep embedding, Materia could support
a deeper and richer syntax than is currently provided in this implementation.

Acknowledgements

We thank Michelle Strout for her invaluable input throughout the development
of this project and editing provided for this paper. We would also like to thank
Kate Isaacs for her input editing this paper and Chase Carthen for his input on
the design of this language.



12 Connor Scully-Allison

References

[1] Lars Brabyn et al. “Accuracy assessment of land surface temperature re-
trievals from Landsat 7 ETM + in the Dry Valleys of Antarctica using
iButton temperature loggers and weather station data”. In: Environmen-
tal Monitoring and Assessment 186.4 (Apr. 2014), pp. 2619-2628. 1SSN:
1573-2959. DOI: 10.1007/s10661-013-3565-9. URL: https://doi.org/
10.1007/s10661-013-3565-9.

[2] John L. Campbell et al. “Quantity is Nothing without Quality: Automated
QA/QC for Streaming Environmental Sensor Data”. In: BioScience 63.7
(July 2013), pp. 574-585. 1SSN: 1525-3244. DOL: 10 . 1525 /bio . 2013 .
63.7.10. URL: https://academic.oup.com/bioscience/article-
lookup/doi/10.1525/bio.2013.63.7.10.

[3] ESIP Envirosensing Cluster. Sensor Data Quality. Last Accessed on 05/28/20.
2019. URL: http://wiki . esipfed . org/index . php/Sensor _Data_
Quality.

[4] ESRI. ArcGIS. http://resources.arcgis.com/en/communities/data-
reviewer/. Oct. 2017.

[5] Andy Gill. “Domain-specific languages and code synthesis using Haskell”.
In: Communications of the ACM 57.6 (2014), pp. 42—49.

[6] Carl C. Gouldman, Kathleen Bailey, and Julianna O. Thomas. “Manual for
Real-Time Oceanographic Data Quality Control Flags”. In: IO0S (2017).

[7] Georgia Coastal Ecosystems LTER. GCE Data Toolbox for MATLAB.
http://gce-1lter.marsci.uga.edu/public/im/tools/data_toolbox.
htm. 2017.

[8] Wes Mckinney. “pandas: a Foundational Python Library for Data Analysis
and Statistics”. In: Python High Performance Science Computer (Jan.
2011).

[9] Campbell Scientific. LoggerNET. https://www.campbellsci.com/loggernet.
Dec. 2017.

[10] Connor Scully-Allison. Materia. Version 0.11. May 2020. poI: 10.5281/
zenodo.3870396. URL: https://github.com/cscully-allison/Materia.

[11] Connor Francis Scully-Allison. “Keystone: A Streaming Data Management
Model for the Environmental Sciences”. PhD thesis. 2019.

[12] Connor Scully-Allison et al. “Near real-time autonomous quality control
for streaming environmental sensor data”. In: Procedia Computer Science
126 (2018), pp. 1656-1665.

[13] Wade M Sheldon. “Dynamic, Rule-based Quality Control Framework for
Real-time Sensor Data”. In: Proceedings of the Environmental Information
Management Conference (2008), pp. 145-150. URL: https://lternet.
edu/wp-content/uploads/2010/12/eim-2008-proceedingssmall . pdf.

[14] Mark D. Wilkinson et al. “The FAIR Guiding Principles for scientific data
management and stewardship”. In: Scientific Data (2016). DOL: 10.1038/
sdata.2016.18.



