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Abstract
We derive the thermodynamic limit of the empirical correlation and response functions in
the Langevin dynamics for spherical mixed p-spin disordered mean-field models, starting
uniformly within one of the spherical bands on which the Gibbs measure concentrates at low
temperature for the pure p-spin models and mixed perturbations of them. We further relate
the large time asymptotics of the resulting coupled non-linear integro-differential equations,
to the geometric structure of the Gibbs measures (at low temperature), and derive their FDT
solution (at high temperature).

Keywords Interacting random processes · Disordered systems · Statistical mechanics ·
Langevin dynamics · Aging · Spin glass models
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1 Introduction

The thermodynamic limits of a wide class of Markovian dynamics with random interactions,
exhibit complex long time behavior, which is of much interest in out of equilibrium statistical
physics (c.f. the surveys [14,15,22] and the references therein). This work is about the ther-
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466 A. Dembo, E. Subag

modynamic (N → ∞), long time (t → ∞), behavior of a certain class of systems composed
of N Langevin particles xt = (xit )1≤i≤N ∈ R

N , interacting with each other through a random
potential. More precisely, one considers a diffusion of the form

dxt = − f ′(||xt ||2/N )xt dt − β∇HJ(xt )dt + dBt , (1.1)

whereBt is an N -dimensional Brownian motion, ||x|| denotes the Euclidean norm of x ∈ R
N

and differentiable fast growing functions f = fL such that e− fL (r) approximates as L → ∞
the indicator on r = 1, effectively restricting xt to the sphere SN := S

N−1(
√
N ) of radius√

N . In particular, the spherical, mixed p-spin model (with p ≤ m), has a centered Gaussian
potential HJ : R

N −→ R of non-negative definite covariance structure

Cov
(
HJ(x), HJ(y)

) = Nν
(
N−1〈x, y〉) , ν(r) :=

m∑

p=2

b2pr
p (1.2)

(see Remark 1.8 on a possible extension tom = ∞). Hereafter we shall realize this potential
as

HJ(x) =
m∑

p=2

bp
∑

1≤i1≤···≤i p≤N

Ji1···i p xi1 · · · xi p , bm �= 0 (1.3)

for independent centered Gaussian coupling constants J = {Ji1···i p }, such that

Var(Ji1...i p ) = N−p+1 p!
∏

k lk !
, (1.4)

where (l1, l2, . . .) are the multiplicities of the different elements of the set {i1, . . . , i p} (so
having i1 �= i2 · · · �= i p yields variance larger by a factor p! from the variance in case
i1 = i2 = · · · = i p).

Given a realization of the coupling constants, the dynamics of (1.1) is invariant (and
moreover, reversible), for the (random) Gibbs measure μN

2β,J on R
N , where μN

β,J has the
density

dμN
β,J

dx
= Z−1

β,Je
−βHJ(x)−N f (N−1‖x‖2) (1.5)

(with respect toLebesguemeasure). Thenormalization factor Zβ,J = ∫ e−βHJ(x)−N f (N−1‖x‖2)
dx is finite if

inf
r≥0

{ f ′(r)− Ar2k−1} > −∞ (1.6)

for some A > 0 and k > m/4. Similar random measures have been extensively studied in
mathematics and physics over the last three decades (see e.g. [17,36], for the rigorous analysis
of the asymptotic of N−1 log Zβ,J for the hard spherical constraint of having ||x||2 = N ).

Large dimensional Langevin or Glauber dynamics often exhibit very different behavior at
various time-scales (as functions of system size, c.f. [9] and references therein). Following
the physics literature (see [15,20,22,23]), we study (1.1) for the potential HJ(x) of (1.3) at
the shortest possible time-scale, where N → ∞ first, holding t ∈ [0, T ]. While it is too
short to allow any escape from meta-stable states, considering the hard spherical constraint,
Cugliandolo-Kurchan have nevertheless predicted a rich picture for the limiting dynamics
when starting out of equilibrium, say at x0 distributed uniformly over SN . Such limiting
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Spherical Spin Glass Dynamics 467

dynamics involve the coupled integro-differential equations relating the non-random limits
C(s, t) and

χ(s, t) =
∫ t

0
R(s, u)du , (1.7)

of the empirical covariance function

CN (s, t) = 1

N
〈xs, xt 〉 = 1

N

N∑

i=1

xis x
i
t , s ≥ t (1.8)

and the integrated response function

χN (s, t) = 1

N
〈xs,Bt 〉 = 1

N

N∑

i=1

xis B
i
t , (1.9)

respectively. Specifically, it is predicted that for large β the asymptotic of C(s, t) strongly
depends on the way t and s tend to infinity, exhibiting aging behavior (where the older it gets,
the longer the system takes to forget its current state, see e.g. [23,28]). A detailed analysis of
such aging properties is given in [8] for the case of m = 2 in (1.3) (noting that {Ji j } form the
goe random matrix, whose semi-circle limiting spectral measure determines the asymptotic
of C(s, t)). For m > 2, assuming hereafter that f ′ is locally Lipschitz, satisfying (1.6) and
such that for some κ < ∞,

sup
r≥0

| f ′(r)|(1 + r)−κ < ∞ , (1.10)

we have from [10, proof of Proposition 2.1] that for each N , any finite disorder J and initial
condition x0, there exists a unique strong solution in C(R+,RN ) of (1.1) (for a.e. path
t �→ Bt ). For such f the closed equations for C and R are rigorously derived in [10] when
x0 is independent of J and satisfies the concentration of measure property of [10, Hypothesis
1.1], provided in addition N �→ E[CN (0, 0)k] is uniformly bounded for each fixed k < ∞,
the limit

lim
N→∞ECN (0, 0) = C(0, 0) , (1.11)

exists and P(|CN (0, 0) − C(0, 0)| > x) decay exponentially fast in N . Building on it, [24,
Proposition 1.1] proves that for integer k > m/4 and ϕ = 1, in the limit L → ∞, the
resulting equations of [10] for

fL(r) := L(r − 1)2 + ϕ

4k
r2k , (1.12)

coincide for the pure m-spin case ν(r) = 1
8r

m with the ckchs-equations, derived indepen-
dently by Cugliandolo-Kurchan [23] (who consider instead C(2·, 2·) and R(2·, 2·)), and by
Crisanti-Horner-Sommers [20].

The ckchs-equations are for the Langevin dynamics of xt on the sphere SN , reversible
with respect to the pure sphericalm-spinGibbsmeasure μ̃N

2β,J of density Z̃
−1
2β,Je

−2βHJ(x) with
respect to the uniform measure on SN . According to the Thouless-Anderson-Palmer (tap)
approach [38], the local magnetizations of each pure state [31,37] approximately minimize
the mean-field tap free energy. For the pure spherical m-spin models [21,29] and β in the
low temperature phase, the (stable) minimizers σ of the tap free energy roughly have radius√
Nq� with q2� = qEA the Edwards-Anderson parameter, i.e. the right-most point in the
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468 A. Dembo, E. Subag

support of the Parisi measure. As the tap free energy only depends on ‖σ‖, such σ also
approximately minimize the energy

HJ(σ ) ≈ min
σ ′∈q�SN

{HJ(σ
′)} . (1.13)

More generally, it was recently rigorously proved [33] that for all spherical mixed p-spin
models and β in the low temperature phase, for any q� ∈ (0, 1) such that q2� belongs to the
support of the Parisi measure, σ ∈ q�SN satisfies (1.13) if and only if the probability under
the Gibbs measure μ̃N

β,J of sampling many (slowly diverging with N ) i.i.d. points σ i from
the narrow band

{
σ ′ ∈ SN : 1

N
〈σ ′ − σ , σ 〉 ≈ 0

}

such that 1
N 〈σ i −σ , σ j −σ 〉 ≈ 0 for i �= j is not exponentially small. Moreover, any point σ

in the ultrametric tree [30,32], and not only the barycenters of pure states, satisfies (1.13) with
q� = ‖σ‖/√N . In fact, even for models with Ising spins [18,19], the above holds if one adds
an appropriate deterministic correction depending on the empirical measure N−1∑

i≤N δσi
to the Hamiltonian in both sides of (1.13).

For the pure m-spin models [35] and their 1-rsb mixed perturbations [13] with β � 1
an explicit pure states decomposition was proved by an investigation of the local structure
around critical points. In particular, it was shown there that the Gibbs measure μ̃N

β,J of the
complement of the bands of small macroscopic width around all critical points with energy
within small macroscopic distance from the minimal energy is exponentially small in N .
Hence, in steady state the path xt spends an exponentially small in N proportion of the time
outside of those bands, hinting that they play the role of meta-stable states in the conjectured
aging picture (see also [12,26] for spectral gap estimates and what they reveal about the
Langevin dynamical phase transition parameter). If the initial distribution is independent of
the disorder J, one may expect an exponentially in N long time to reach bands around deep
critical points and a plausible aging mechanism is having the path xt decompose to time
intervals spent in bands around deeper and deeper critical points, connected by excursions
of much shorter length, having typically xt within the deepest band it has yet reached by
time t � 1. With initial distribution independent of the disorder J, the ckchs-equations
discussed above concern (fixed) times not long enough (exponential in N ) to be relevant
to such meta-stability induced aging. However, to investigate the short-time dynamics as xt
enters meta-stable states (of different levels) it is natural to consider initial conditions that
depend on J. Specifically, having a random starting point at a fixed distance on the sphere
from a critical point, which by itself is chosen randomly. Restricting to critical points at
which HJ is near a fixed deep energy level −E� allows us to probe the different ‘layers’ of
wells in the landscape as we vary E�.

Provided that the number of such critical points is within a fixed factor off its mean
(currently proved only for pure m-spin [34] and small mixed perturbation of them [13]),
the Kac-Rice formula (see [1]), allows us to translate the study of dynamics under such
disorder dependent random initial distribution to an investigation of dynamics driven by a
modified, conditional Hamiltonian and deterministic initial distribution. To this end, our first
result extends [10, Theorem 1.2] to the latter initial measures and conditional potentials.1

1 The conditioning on (1.16) is interpreted in the usual way: the conditional law of J has density given, up to
normalization, by the restriction of its original density to the appropriate affine subspace, and the conditional
law of the independent B is identical to the unconditional one.
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Spherical Spin Glass Dynamics 469

Specifically, fixing q� > 0 and σ ∈ q�SN (around which we center the law of x0), let

HN (s) = − 1

N
HJ(xs) , qσ

N (s) = 1

N
〈xs, σ 〉 = 1

N

N∑

i=1

xisσ
i . (1.14)

For |q| ≤ q� denote by μ
q
σ the uniform measure on the sub-sphere

Sσ (q) :=
{
x ∈ SN : 1

N
〈x, σ 〉 = q

}
, (1.15)

with P
N ,q
J,σ denoting the joint law (on C(R+,R2N )), of the Brownian motion B and the

corresponding strong solution x of (1.1) for x0 of law μ
q
σ and given J, σ (see Proposition 3.8

for the existence of such a solution).

Theorem 1.1 For σ ∈ q�SN , q� > 0, consider J conditional upon the event2

CP(E�,G�, σ ) := {HJ(σ ) = −NE� ,∇spHJ(σ ) = 0, ∂⊥HJ(σ ) = −‖σ‖G�} , (1.16)
where ∇sp and ∂⊥ denote, respectively, the gradient wrt the standard differential structure
on q�SN , and the directional derivative normal to q�SN .3 Setting qo ∈ [−q�, q�] let x0 be
distributed according to μqo

σ . Then, for fixed T < ∞, as N → ∞ the random functions
(CN , χN , qσ

N , HN ) converge uniformly on [0, T ]2, almost surely and in L p with respect to

(x0, J,B), to non-random functions C(s, t) = C(t, s), χ(s, t) = ∫ t
0 R(s, u)du, q(s) and

H(s), such that q(0) = qo, C(0, 0) = 1, R(s, t) = 0 for t > s, R(s, s) ≡ 1, and for s > t
the absolutely continuous functions C, R, q(s), H(s) and K (s) = C(s, s) are the unique
solution in the space of bounded, continuous functions, of the integro-differential equations

∂s R(s, t) = − f ′(K (s))R(s, t)+ β2
∫ s

t
R(u, t)R(s, u)ν′′(C(s, u))du, (1.17)

∂sC(s, t) = − f ′(K (s))C(s, t)

+ β2
∫ s

0
R(s, u)

[
ν′′(C(s, u))C(u, t)− q(t)ν′(q(u))ν′′(q(s))

ν′(q2� )

]
du

+ β2
∫ t

0
R(t, u)

[
ν′(C(s, u))− ν′(q(s))ν′(q(u))

ν′(q2� )

]
du + βq(t)v′

�(q(s)) ,

(1.18)

∂sq(s) = − f ′(K (s))q(s)

+ β2
∫ s

0
R(s, u)

[
q(u)ν′′(C(s, u))

− q2� ν
′(q(u))ν′′(q(s))
ν′(q2� )

]
du + βq2� v′

�(q(s)) , (1.19)

∂s K (s) = 1 − 2 f ′(K (s))K (s)

+ 2β2
∫ s

0
R(s, u)

[
ψ(C(s, u))− ψ(q(s))ν′(q(u))

ν′(q2� )

]
du + 2βq(s)v′

�(q(s)) , (1.20)

2 In the pure case, i.e. having ν(r) = b2mr
m , one has that ∂⊥HJ(σ ) = m

‖σ‖ HJ(σ ), hence necessarily G� =
mE�/q2� , whereas in the mixed case the vector (E�,G�) can take any value.
3 Alternatively ∇HJ(σ ) = −G�σ .
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470 A. Dembo, E. Subag

H(s) = Ĥ(s)+ v�(q(s)),

Ĥ(s) = β

∫ s

0
R(s, u)

[
ν′(C(s, u))− ν′(q(s))ν′(q(u))

ν′(q2� )

]
du , (1.21)

where ψ(r) := rν′′(r)+ ν′(r) and

v(r) :=
m∑

p=2

b2p〈vp, (E,G)〉 r p , vp :=
[
q2� ν(q

2
� ) q

2
� ν

′(q2� )
q2� ν

′(q2� ) ψ(q2� )

]−1 [
q2�
p

]
, (1.22)

using v�(·) to denote the case of (E,G) = (E�,G�).4

Remark 1.2 The conditional on CP(E,G, x�) solution of (1.1) at β > 0, is unchanged by
embedding β into the coefficients {bp} of (1.3) while taking (E,G) �→ β(E,G) and setting
β = 1 in the sds. This modifies ν �→ β2ν, while v �→ βv, preserving the stated limiting
dynamics of Theorem 1.1, apart from multiplying H(s) (and its derivatives) by β. It thus
suffices to establish Theorem 1.1 for β = 1.

Remark 1.3 From (1.2) we see that for any non-random orthogonal matrixO, the covariance
and hence the law of the Gaussian field x �→ (HJ(O−1x),O∇HJ(O−1x)) matches that of
x �→ (HJ(x),∇HJ(x)). When combined with σ �→ Oσ the same applies for the law of
this field conditional on CP(E�,G�, σ ). By the rotational symmetry of the Brownian motion
t �→ Bt and of the law μ

qo
σ of x0, the law of {σ , xt ,Bt , t ∈ [0, T ]} in Theorem 1.1, matches

that of {Oσ ,Oxt ,OBt , t ∈ [0, T ]}. In particular, the joint law of (CN , χN , qσ
N , HN ) is

invariant under the mapping σ �→ Oσ , and so it suffices to prove Theorem 1.1 only for
σ = x� = (

√
Nq�, 0, . . . , 0).

Remark 1.4 Conditional on CP(E,G, σ ), an easy Gaussian computation (see (3.33) in case
σ = x�), yields

HJ(x) = HJo(x)− Nv
(
N−1〈x, σ 〉) , (1.23)

for the centered Gaussian vector Jo the corresponds to conditioning by CP(0, 0, σ ). Thus,
(E�,G�) only affects (1.1) by adding a deterministic drift, which gives rise to the terms
involving v�(·), or v′

�(·), in (1.17)–(1.21). The law of Jo is, for N � 1, well approximated
by the Gaussian law of J conditional only on ∇spHJ(σ ) = 0. It is not hard to verify that the
latter law has the covariance

Nν(N−1〈x, y〉)− [〈x, y〉 − ‖σ‖−2〈x, σ 〉〈y, σ 〉]ν
′(N−1〈x, σ 〉)ν′(N−1〈y, σ 〉)

ν′(N−1〈σ , σ 〉) (1.24)

(c.f. (3.34) for essentially such computation when σ = x�). This change from (1.2) to (1.24)
is behind themodificationwrt the ckchs equations, in the square brackets within the integral
terms of (1.18)–(1.21).

4 It is easy to verify that in the mixed case the matrix in (1.22) is positive definite for any q� > 0, while in
the pure case taking G = mE/q2� yields b2m 〈vm , (E,G)〉 = q−2m

� E .
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Spherical Spin Glass Dynamics 471

For I , I ′ ⊂ R, denote by

CN ,q(I , I
′) =

{
σ ∈ qSN : ∇spHJ(σ ) = 0, HJ(σ ) ∈ −N I , ∂⊥HJ(σ ) ∈ −√

Nq I ′}

(1.25)

the set of critical points of the Hamiltonian HJ(σ ) on the sphere of radius
√
Nq with value

in−N I and with directional derivative normal to the sphere ∂⊥HJ(σ ) in−√
Nq I ′. Our next

result relates the dynamics of the unconditional model with random initial measure centered
at such a critical point with the limiting dynamics of Theorem 1.1. Specifically, denoting by
‖UN‖∞ the supremum of |UN (s, t)| over s, t ∈ [0, T ], we associate to σ ∈ q�SN around
which we center a ‘band’, the (random) error

ErrN ,T (σ ) := ‖CN − C‖∞ ∧ 1+‖χN − χ‖∞ ∧ 1+‖qσ
N − q‖∞ ∧ 1+‖HN − H‖∞ ∧ 1

(1.26)

for the non-random functions (C, R, q, H) from Theorem 1.1, which depend only on E�,
G�, q�, qo and the model parameters f (·), β and ν(·).
Theorem 1.5 Let E�, G�, T > 0 and suppose IN = (aN , bN ) and I ′

N = (a′
N , b

′
N ) with

aN , bN → E� and a′
N , b

′
N → G� > 2

√
ν′′(q2� ). Then, for any ε > 0,

lim
N→∞

1

E#CN ,q� (IN , I
′
N )

E

{ ∑

σ∈C N ,q� (IN , I
′
N )

P
N ,qo
J,σ

{
ErrN ,T (σ ) > ε

} } = 0. (1.27)

Further assuming that

lim
a→0+ lim inf

N→∞ P
{
#CN ,q�

(
IN , I

′
N

)
> aE

{
#CN ,q�

(
IN , I

′
N

)}} = 1, (1.28)

we have that limN→∞ P{CN ,q�

(
IN , I ′

N

) �= ∅} = 1, and, for any ε > 0, conditionally on
this event,

1

#CN ,q� (IN , I
′
N )

∑

σ∈C N ,q� (IN , I
′
N )

P
N ,qo
J,σ

{
ErrN ,T (σ ) > ε

} N→∞−→ 0 , in prob. (1.29)

The asymptotics of the expected number of critical points E#CN ,q� (IN , I
′
N ) were com-

puted for the pure m-spin models in [5] and for general mixed models in [4]. However,
currently the concentration property of (1.28) is proved only for pure m-spin [34] with
G� > 2

√
ν′′(q2� ) (i.e. E� > 2bmqm�

√
1 − 1/m, see Footnote 2), or for mixed small perturba-

tion of them [13] with large enough E�,G�, q�, and for IN , I ′
N of length asymptotically larger

than 1/N . In both cases, for large β the model is 1-RSB and the Gibbs measure concentrates
on the set of spherical bands around the points in CN ,q�

(
IN , I ′

N

)
, provided that q2� is set to

be at the position of the non-zero atom of the Parisi measure, −E� is set for the minimal
normalized energy, and G� chosen appropriately.

For arbitrary σ ∈ q�SN , conditional on CP(E�,G�, σ ) the eigenvalues of the spherical
covariant Hessian of HJ at σ have the same distribution as those of a GOE matrix, scaled by√
ν′′(q2� )(N − 1)/N and shifted by G�. The value 2

√
ν′′(q2� ) is the threshold beyond which

the Hessian is typically positive definite, i.e., σ is a local minimum. Consequently, as can
be checked by an application of the Kac-Rice formula, if G� > 2

√
ν′′(q2� ) then the ratio

of the expected number of minima and the expected number of critical points of all indices
in CN ,q�

(
IN , I ′

N

)
goes to 1. In the two situations mentioned above [13,34] where (1.28)

holds, the latter also occurs with high probability and not just in expectation. On the other
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472 A. Dembo, E. Subag

hand, if G� < 2
√
ν′′(q2� ) then the expected number of minima in CN ,q�

(
IN , I ′

N

)
decays

exponentially fast in N 2.
Considering Theorem 1.5 with qo = q� = 1, corresponds to starting at a critical point

x0 = σ . This is related to some of the results of [11], where qualitative information
about the limiting dynamics is gained from an approximate evolution for (only) the pair
(HN (s), |∇spHJ(xs)|/

√
N ).

Extending [24, Proposition 1.1] to our context, we next establish the “hard spherical
constraint” equations corresponding to the limit L → ∞ and fL(·) of (1.12).
Proposition 1.6 For any T < ∞ the solutions (R(L),C (L), q(L), H (L)) of (1.17)–(1.21) for
potential fL(·) as in (1.12)with positiveϕ = 1+2βqov′

�(qo), converge as L → ∞, uniformly
in [0, T ]2, towards (R,C, q, H), for H(·) of (1.21). Further, q(0) = qo ∈ [−q�, q�],
R(t, t) = C(t, t) = 1 for all t ≥ 0, R(s, t) = 0 and C(s, t) = C(t, s) when s < t , while
(R,C, q) is for T ≥ s ≥ t ≥ 0 the unique bounded solution of

∂s R(s, t) = −μ(s)R(s, t)+ β2
∫ s

t
R(u, t)R(s, u)ν′′(C(s, u))du, (1.30)

∂sC(s, t) = −μ(s)C(s, t)
+ β2

∫ s

0
R(s, u)

[
ν′′(C(s, u))C(u, t)− q(t)ν′(q(u))ν′′(q(s))

ν′(q2� )

]
du

+ β2
∫ t

0
R(t, u)

[
ν′(C(s, u))− ν′(q(s))ν′(q(u))

ν′(q2� )

]
du + βq(t)v′

�(q(s)) ,

(1.31)

∂sq(s) = −μ(s)q(s)
+ β2

∫ s

0
R(s, u)

[
q(u)ν′′(C(s, u))

− q2� ν
′(q(u))ν′′(q(s))
ν′(q2� )

]
du + βq2� v′

�(q(s)) , (1.32)

μ(s) = 1

2
+ β2

∫ s

0
R(s, u)

[
ψ(C(s, u))− ψ(q(s))ν′(q(u))

ν′(q2� )

]
du + βq(s)v′

�(q(s)) .

(1.33)

In addition, C̄(s, t) := C(s, t)− q(s)q(t)/q2� is a non-negative definite kernel, and

∣∣∣
∫ t2

t1
R(s, u)du

∣∣∣
2 ≤ t2 − t1 , 0 ≤ t1 ≤ t2 ≤ s < ∞ . (1.34)

Remark 1.7 Since v(0) = v′(0) = 0, taking qo = 0 yields the solution q(s) ≡ 0 in both
(1.19) and (1.32). The values of (E�,G�, q�) are then irrelevant, and the system of equations
(1.17)–(1.20), (1.30)–(1.33) reduces to the ckchs-equations, as in [10, Theorem 1.2] and [24,
Proposition 1.1], respectively. All terms involving v�(·) disappear also when E� = G� = 0,
but for qo �= 0 the equations (1.19) and (1.32) nevertheless yield non-zero solutions. Unlike
the special case of [24, Proposition 1.1], here (R,C, q) may take negative values, but with
C(s, s) = 1 and C̄(·, ·) non-negative definite, necessarily |q(·)| ≤ q� and |C(·, ·)| ≤ 1.

Remark 1.8 Any ϕ ∈ (0,∞) in (1.12) result with equations (1.30)–(1.33) when L → ∞,
but since μ(0) = ϕ/2, taking ϕ = 1 + 2βqov′

�(qo) (when it is positive), simplifies our
derivation (otherwise, one merely has to use μ(0+) when s = 0). The representation (1.3)
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with m = ∞ applies for any real-analytic ν(·) such that ν(0) = ν′(0) = 0, ν(p)(0) ≥ 0,
p ≥ 2, with a unique strong solution to (1.1) for locally Lipschitz f ′(r) growing fast enough
as r → ∞. While not pursued here, we expect Theorem 1.1 to hold for any such f (·) and
upon considering fL(r) = L(r−1)2+ f (r), to further arrive at the conclusions of Proposition
1.6.

Remark 1.9 Whenever ν(·) is an even polynomial, so is v�(·), resulting with (1.17)–(1.21)
invariant under (C, R, q, H) �→ (C, R,−q, H). The same applies to (1.30)–(1.33) and in
such casesqo �→ −qo yields the same solution apart fromaglobal sign change inq(s). Indeed,
our realization is such that an even ν(·) results with an even potential HJ(−x) = HJ(x) per
given J, hence alsowithCP(E,G, σ ) = CP(E,G,−σ ) and thereby a sign change qo �→ −qo
being equivalent to σ �→ −σ .

In Sect. 2 we study the large time asymptotic of the solution (R,C, q, μ) of (1.30)–
(1.33), establishing the fdt regime at high temperature (ie β small), and further analyzing
the plausible fdt solutions for somewhat lower temperatures. While doing so, we observe a
sharp distinction between the m-pure case and the mixed case, in terms of the emergence of
aging. Such distinction was realized recently in [25], by a numerical solution of the ckchs-
equations for initial conditions from the Gibbs measure at different temperatures, suggesting,
for example, more than one dynamical phase transition in the mixed case only. In Sect. 3
we prove Theorem 1.1 by adapting [10, Section 2] to our more challenging setting (where
x0 is related to J via (1.15)–(1.16)). The key to our derivation are Propositions 3.5 and 3.6,
whose proofs are deferred to Sects. 4.1 and 4.2 (adapting [10, Section 3] and [10, Section
4], respectively). From Proposition 3.5 one further has the limit dynamics (as N → ∞), for
other functions of interest (such as those given in (3.3)–(3.4)). Section 5 is devoted to proving
our main result, Theorem 1.5, whereas Proposition 1.6 and Proposition 2.1 are established
in Sects. 6 and 7, respectively, by adapting [24, Section 2] and [24, Section 4], to our more
involved setting.

2 Large Time Asymptotic: The fdt Regime

At high enough temperature one has that q(s) → 0 for s → ∞. Our next proposition
(which is comparable to [24, Theorem 1.3]), shows that the fdt regime of the solution of
(1.30)–(1.33) then coincides with that of the ckchs-equations.

Proposition 2.1 For β small enough and α = 0, the solution of (1.30)–(1.33) is such that
lim{μ(τ)} > 0, (R(t + τ, t), C̄(t + τ, t), q(τ )) → (0, 0, α q�) exponentially fast in τ → ∞,
uniformly in t, and for any τ ≥ 0,

lim
t→∞(R(t + τ, t),C(τ + t, t), q(t)) = (Rfdt(τ ),Cfdt(τ ), α q�) . (2.1)

In such case, necessarily Rfdt(τ ) = −2C ′
fdt(τ ). Further, setting γ = 1/2 and

φ(x) := γ + 2β2ν′(x) , (2.2)

we have thatμ(t) → φ(1), andCfdt(·) is the unique [0, 1]-valued, continuously differentiable
solution of

D′(s) = −
∫ s

0
φ(D(v))D′(s − v)dv − 1

2
, D(0) = 1 . (2.3)
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More generally, if the solution (R,C, q) of (1.30)–(1.33) is uniformly bounded, with {R(t +
·, t), t ≥ T0} uniformly integrable (wrt Lebesgue measure), lim{μ(τ)} > 0 and (2.1) holds
for some α ∈ [−1, 1], then necessarily μ(t) → μ such that (Rfdt,Cfdt, μ) satisfy [24,
(4.15)–(4.17)], with

μαq� = βq2� v
′
�(αq�)− β2q2�

ν′′(αq�)ν′(αq�)
ν′(q2� )

κ2 + β2αq�κ1 , κ1 :=
∫ ∞

0
R(θ)ν′′(C(θ))dθ ,

(2.4)

I = βαq�v
′
�(αq�)− β2

ψ(αq�)ν′(αq�)
ν′(q2� )

κ2 + β2κ3 , κ2 :=
∫ ∞

0
R(θ)dθ , κ3 := 0 .

(2.5)

One such solution is (−2D′(·), D(·), φ(1)) for (φ, D) of (2.2)–(2.3) and D∞ ∈ [0, 1),
γ ∈ R such that

I = γ − 1

2
+ 2β2D∞ν′(D∞) , (2.6)

D∞ = sup{x ∈ [0, 1] : (γ + 2β2ν′(x))(1 − x) ≥ 1/2} , (2.7)

yielding in turn the values κ1 = 2(ν′(1)− ν′(D∞)) and κ2 = 2(1 − D∞).

Remark 2.2 Our proof of (2.1) relies on�(·) of (7.2)–(7.4) being a contraction on a suitable
set A (and for uniqueness of (Rfdt,Cfdt) we require that the induced map �fdt(·) be a con-
traction at the given α). In particular, a global contraction requires that α = 0 be the unique
solution of (2.4), which in turn depends not only on β and q� but also on (E�,G�). Never-
theless, at least when b2 = 0 (so v′′

�(0) = 0), we expect the fdt solution of Proposition 2.1
with α = 0, γ = 1/2, to apply for all β < βc of [24, (1.23)], provided qo = qo(β, E�,G�)
is small enough.

Remark 2.3 For pure m-spins, [6] consider the diffusion (1.1) starting at x0 of law μN
2β ′,J

for various choices of β ′ ∈ [0,∞). Employing the mathematically non-rigorous replica
method (in particular, its 1rsb picture for the Gibbs measure), they predict the resulting limit
equations for (R,C) and their solution in the fdt regime. Building on it (and using again the
replica method), [7] considers in this setting also the limit dynamics of the overlap q(t).

Remark 2.4 The limit α of q(t)/q� provides information on the state xt in the limit N → ∞,
at t � 1 which does not scale with N . The case α = 0 represents an escape from the energy
well about the critical point σ to a point which is orthogonal to σ . In contrast, α = 1 implies
convergence to the projection q−1

� σ ∈ SN of the critical point around which the state was
initialized. Note also that for α = q� the eventual support Sσ (q2� ) of the state, is precisely
the sphere of co-dimension 1 and radius

√
N (1 − q2� ), centered at the critical point σ .

While Proposition 2.1 is limited to small β, we do expect (2.1) to hold at all β, albeit
having α �= 0 for some (E�,G�) and qo close enough to q�, as soon as β > β+(G�), where
as we detail in the sequel, β+ is in general lower than βc of [24, (1.23)]. To this end, we
first briefly review the physics prediction for the (large time) asymptotic for the ckchs-
equations, namely when qo = 0, or alternatively, when all terms involving q(·) are omitted
from (1.30)–(1.33) (see Remark 1.7). Recall that for this limiting ckchs dynamics, aging
amounts to having a non-identically constant Caging(·) such that C(τ + t, t) → Caging(0)
as t → ∞ followed by τ → ∞, whereas C(s, λs) → Caging(λ) as s → ∞. Now, in the
absence of aging, such prediction is given by the fdt solution from Proposition 2.1, for α = 0
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and parameters which solve (2.5)–(2.7) assuming the limit D∞ of Cfdt(τ ) as τ → ∞ is zero.
As explained before, doing so amounts to setting I = 0 and γ = 1/2, whereas (2.7) holds
for such values iff β < βc of [24, (1.23)].

In contrast, when β > βc the limit D∞ of Cfdt(τ ) must be strictly positive, which for
α = 0 indicates the onset of aging and in particular having Rfdt(τ ) → 0 at a sub-exponential
rate. Such slow decay is expected in turn to require the additional relation

γ = 2β2[ν′′(D∞)(1 − D∞)− ν′(D∞)] (2.8)

(see [24, (1.22)]), which together with (2.7) dictate the values of γ > 1/2 and of D∞ =
D�(β) > 0, with

D�(β) := sup{x ∈ [0, 1] : 4β2g(x) ≥ 1}, for g(x) := ν′′(x)(1 − x)2 (2.9)

(as in [24, (1.24)]). While (2.6) thereby determines I, our expressions for κi in (2.5) (and
in (2.4)), relied on the uniform in t , integrability of τ �→ R(t + τ, t), which is no longer
expected. To rectify this, at β ≥ βc one adds to these formulas the contribution from the aging
regime, namely having λ = u/s bounded away from zero and one, to the integrals on the rhs
of (1.31)–(1.33). As explained after [24, (1.24)], the physics ansatz of a single aging regime
with Raging(λ) = AC ′

aging(λ) starting at Caging(1) = D∞ and ending at Caging(0) = α2 (ie,

having C̄aging(0) = 0), implies the increase

κ1 ← κ1 + A(ν′(D∞)− ν′(α2)) ,
κ2 ← κ2 + A(D∞ − α2) ,
κ3 ← κ3 + A(D∞ν′(D∞)− α2ν′(α2)) ,

(2.10)

of the coefficients in the identity (2.5), which in turn determines the value of A. Finally,
should the self-consistency requirement of A > 0 and C̄aging(0) = 0 fail, one moves from
the latter ansatz into the richer hierarchy of multiple aging regimes.

Recall Remark 2.4, that for α = 0 and β > βc aging occurs for a state which is already
orthogonal to the critical point σ around which we initialized the system, i.e. after the escape
from the energy well about it. Here we consider another alternative, of having a still localized
state, namely a solution with α �= 0 that in addition satisfies (2.4). Indeed, recall [24, Propo-
sition 6.1] that the fdt regime of the ckchs-equations must be given by (2.3) as soon as a key
integral I (t + ·, t) converges for t → ∞ (uniformly on compacts), to some constant (which
in terms of our notations, turns out to be Î := γ − 1

2 − I+ β2κ3). Assuming in addition that

such convergence to constants (I(q)1 , I(q)2 ) applies also for the integrals

I (q)1 (s) :=
∫ s

0
R(s, u)q(u)ν′′(C(s, u))du , I (q)2 (s) :=

∫ s

0
R(s, u)ν′(q(u))du ,

we have in (1.32), we can approximate the latter dynamics (at s � 1), by the much simpler
ode

q ′(s) = −μ(s)q(s)+ Q(q(s)) , for μ(s) = P(q(s)) ,

Q(x) = βq2� v
′
�(x)− β2q2�

ν′′(x)
ν′(q2� )

I(q)2 + β2I(q)1 ,

P(x) = βxv′
�(x)− β2

ψ(x)

ν′(q2� )
I(q)2 + ρ + Î .

(2.11)
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Such an ode has no limit sets beyond its finitely many limit points, which are at the isolated
solutions of

P(x)x = Q(x) , x ∈ [−q�, q�] . (2.12)

Hence our earlier prediction that (2.1) remains valid at all β. Further, a convergence of
q(u) to some limit point x = αq� implies by self-consistency the values I(q)1 = αq�κ1 and

I(q)2 = ν′(αq�)κ2, which upon substitution in (2.11)–(2.12) yield the requirements (2.4)–(2.5)
on α and I.

The analysis of the fdt regime in the presence of aging starts precisely as for ckchs-
equations with β > βc, D∞ = D�(β) > 0 of (2.9) and the corresponding values of (γ, I) (as
determined by (2.6)–(2.8)). The only difference is that now we can try beyond the ckchs-
solution α = 0 and I = β2κ3, also any A > 0 and α2 = Caging(0) < D∞ which satisfy
(2.4)–(2.5) for κi of (2.10). Since D�(β) ↑ 1, taking β large provides access to all solutions
of (2.12) (but we do not expect a simple, explicit way to determine which interval of qo
values is attracted to each stable solution).

The most interesting case is that of a localized state with no-aging at α �= 0. Specifically,
seeking (Rfdt(τ ),Cfdt(τ ), μ) as in Proposition 2.1 for γ �= 1/2 such that C̄fdt(τ ) → 0, i.e.
with D∞ = α2. Plugging such a solution in (2.4) gives

γα = βq�v′
�(αq�)− 2β2

q�ν′′(αq�)ν′(αq�)
ν′(q2� )

(1 − α2)− 2β2αν′(α2) . (2.13)

Similarly, plugging it in (2.5) and comparing with (2.6) results with

γ − 1

2
= βαq�v′

�(αq�)− 2β2
ψ(αq�)ν′(αq�)

ν′(q2� )
(1 − α2)− 2β2α2ν′(α2) . (2.14)

Recall (2.7), that having D∞ = α2 requires in addition to the preceding that

(γ + 2β2ν′(α2))(1 − α2)− 1

2
= 2β2

ν′(q2� )
[ν′(α2)ν′(q2� )− ν′(αq�)2](1 − α2) = 0 . (2.15)

In the pure case the rhs of (2.15) always holds, while otherwise it holds only5 for α = q�.
Proceeding first with the m-pure case, utilizing Footnotes 2 and 4, we get that both (2.13)
and (2.14) hold for α �= 0 iff

4β2g(α2) = y2 and G� =
√
ν′′(q2� )(y + y−1) . (2.16)

In view of (2.7), only the smaller positive root y ∈ (0, 1] for the rhs of (2.16) is relevant,
with the conditionG� > 2

√
ν′′(q2� ) for existence of such y ∈ (0, 1)matching our assumption

in Theorem 1.5 (alternatively, the latter inequality amounts to Ê� > 2
√
1 − 1

m where Ê� :=
E�/(bmqm� ) denotes the given energy level, measured in standard deviations of HJ(σ )).
Moreover, the lhs of (2.16) can not hold for some y < 1, unless

1

β
> 2
√
ν′′(α2)(1 − α2) , (2.17)

which is precisely the stability condition for tap solutions onα SN (see [29, Eq. (25)]). Fixing
Ê� as above, namely y ∈ (0, 1) via the rhs of (2.16), here g(·) attains its maximum over

5 Except for α = −q� equivalently holding whenever ν(·) is an even polynomial
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[0, 1] at α2m := 1 − 2
m , and by the same reasoning as for the ckchs-equations, one should

choose the larger solution α2 in (2.16), namely take

D∞ = D�(β/y) provided β > β+ := y/(2
√
g(α2m)) , (2.18)

where β+ < βc of [24, (1.23)], for any m ≥ 2 and all Ê� as above.
Turning to the mixed case, first note that v′

�(q
2
� ) = G� (see (3.33) at xt = x�). Upon

plugging the generic solution α = q� of (2.15) into (2.13), it follows that no-aging with
α �= 0 requires the rhs of (2.16) to hold for y ≤ 1 and q2� = D�(β/y) of (2.9). Taken
together, we see that (2.16) must hold at α = q�, yielding the relation

G� = G�(α, β) := 2βν′′(α2)(1 − α2)+ 1

2β(1 − α2) , (2.19)

where the restriction to y < 1 amounts to the inequality (2.17).
It is easy to check that having such (Rfdt(τ ),Cfdt(τ ), μ) as in Proposition 2.1, except

for possibly γ �= 1/2, and with the no-aging condition D∞ = α2 in place, implies the
convergence of H(s) of (1.21) as s → ∞, to the limiting (macroscopic) energy

H(∞) := v�(αq�)+ 2βθ(α2) , where θ(q) := ν(1)− ν(q)− ν′(q)(1 − q)

(2.20)

(and to arrive at (2.20) we also use the rhs of (2.15)).
For σ ∈ αSN , similarly to the proof of Lemma 3.7, one can check that conditionally

on CP(E�,G�, σ ) the Gaussian field HJ(x) has expectation −NE� and variance Nθ(α2) at
any x in the sub-sphere Sσ (α

2) of (1.15). Using this conditional field, one has the spheri-
cal model wrt the uniform measure μα

2

σ (x) on Sσ (α
2), its Gibbs measure μσ

β0,J
of density

(Zσ
β0,J
)−1e−β0HJ(x) and the corresponding free energy Fβ0(σ ) to which N−1 log Zσ

β0,J
con-

verges. If for any β0 near 2β this model is replica symmetric, then Fβ0(σ ) = β0E�+ β20
2 θ(α

2)

and most of the mass of μσ
2β,J is indeed typically carried at the energy E� + 2βθ(α2).

In the mixed case we know that α = q� hence the state xt is supported for t � 1 on
that same sub-sphere Sσ (αq�) = Sσ (α

2) (see Remark 2.4). Further, in the m-pure case
CP(E�,G�, σ ) = CP(rm E�, rm−2G�, rσ ) for any r > 0, with r = α/q� eliminating the
effect of q� and allowing us to take again wlog ‖σ‖ = α

√
N = q�

√
N . Recall that

v�(αq�) = v�(q2� ) = E� (see (3.33) at xt = x�), so the energy αm Ê� + 2βθ(α2) carry-
ing most of the mass of the spherical model μσ

2β,J is for such σ precisely the limit H(∞)
of (2.20). Further, re-writing the conditional Gaussian field of μσ

2β,J as a polynomial in the
re-centered coordinates x − σ gives a new spherical mixed model, see [13, Lemma 7.1],
whose 2-spin interaction part is in the replica symmetric regime precisely when (2.17) holds
(c.f. [13, (7.6) and (8.8)]). Finally, in the m-pure case, the relation (2.19) determines from
the energy Ê� a limiting sub-sphere height α which is a local maximum of the free energy
F2β(σ ) plus the entropy 1

2 log(1 − α2).

2.1 Limiting Dynamics for Spherical SK-Model

While of less interest from the physics point of view, for the spherical SK-model, namely
m = 2, one can solve (1.30)–(1.33) and thereby confirm our predictions. Specifically, for

ν(x) = x2
8 (hence ψ(x) = 2ν′(x) = x

2 , ν
′′(x) = 1

4 , v
′
�(x) = G�

q2�
x), starting at R(s, s) = 1,

C̄(s, s) = 1 − q(s)2/q2� and q(0) = qo these equations are for s > t ,
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∂s R(s, t) = −μ(s)R(s, t)+ β2

4

∫ s

t
R(s, u)R(u, t)du , q ′(s) = −(μ(s)− βG�)q(s) ,

(2.21)

∂sC̄(s, t) = −μ(s)C̄(s, t)+ β2

4

[ ∫ s

0
R(s, u)C̄(u, t)du +

∫ t

0
R(t, u)C̄(u, s)du

]
,

μ(s) = 1

2
+ β2

2

∫ s

0
R(s, u)C̄(s, u)du + βG� q

2(s)

q2�
. (2.22)

Further, in this case we get from (1.21) and (2.22) that

H(s) = 1

2β

[β2

2

∫ s

0
R(s, u)C̄(s, u)du + βG� q

2(s)

q2�

]
= μ(s)

2β
− 1

4β
. (2.23)

Setting �(s) := q�e
∫ s
0 (μ(u)−βG�)du the solution of (2.21) must be

q(s) = q�qo
�(s)

, R(s, t) = �(t)

�(s)
LG� (s − t) ,

where LG(θ) = e−βGθL(θ) for L(θ) := 2
π

∫ 1
−1 e

βθx
√
1 − x2 dx (see [24, (4.9)]). Substitut-

ing this in (2.22), the symmetricM(s, t) := C̄(s, t)�(s)�(t), is the positive, unique solution
of

∂sM(s, t) = −βG�M(s, t)
+β

2

4

[ ∫ s

0
LG� (s − u)M(u, t)du

+
∫ t

0
LG� (t − u)M(u, s)du

]
, ∀s > t ,

M ′(t) = q2o + (1 − 2βG�)M(t)+ β2
∫ t

0
LG� (t − u)M(t, u)du , M(t, t) = M(t) ,

(2.24)

starting at M(0) = q2� − q2o , and with �(t) = √q2o + M(t). By the super-position principle
for this linear system

M(s, t) = (q2� − q2o )e
−βG�(s+t) Mck(s, t)+ q2o MG� (s, t) , (2.25)

where Mck denotes the ckchs-type solution of (2.24) with qo = G� = 0, starting at
Mck(0) = 1, while MG� is the solution of (2.24) for q2o = 1 and MG� (0) = 0. The
spherical SK-model is somewhat degenerate, as in view of (2.25), having q(t) → α �= 0, or
equivalently a finite limit for M(t) as t → ∞, does not depend on the value of 0 < |qo| < q�
and when such non-zero limit exists, the same invariance to qo applies to the issue of no-
aging (i.e. having M(t + τ, t) → 0 as t → ∞ followed by τ → ∞). The analog of Mck for
(1.17)–(1.20) at q(·) ≡ 0 and linear f ′(x) = cx , is studied in [8, Section 3]. A similar but
finer analysis shows that Mck(s, t) grows as s, t → ∞, up to some polynomial pre-factors,
at the exponential rate μ�(s + t), where μ� = β for β > 1 and otherwise μ� = (1 + β2)/2.
Focusing on the case of a stable energy well around the critical point σ , namely G� > 1 as
in Theorem 1.5, we have that βG� > μ� iff β > y, with y ∈ (0, 1) as in the rhs of (2.16).
We thus have the dichotomy predicted earlier, that qo = 0 requires α = 0, with the onset
of aging at βc determined by the asymptotic of Mck(s, t)/

√
Mck(s)Mck(t), whereas for any

qo �= 0, G� > 1 and β > y we have a localized state, with α−2 − 1 given by the finite limit
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of MG� (t), and Cfdt(τ ) being the limit as t → ∞ of (1 + MG� (t + τ, t))/(1 + MG� (t)).
We get these limits by replacing MG� (s, t) with the stationary solution M (st)

G�
(s, t) of (2.24)

when all the integrals start at −∞ (instead of at zero). By translation invariance, M(st)G�
(s, t)

must be of the form �(s − t) for symmetric �(·) such that

�′(τ ) = −βG��(τ)+ β2

4

[ ∫ ∞

0
LG� (u)�(u + τ)du +

∫ ∞

0
LG� (u)�(u − τ)du] ,

0 = 1 + (1 − 2βG�)�(0)+ β2
∫ ∞

0
LG� (u)�(u)du .

(2.26)

Next, recall that y ∈ (0, 1) on the rhs of (2.16) satisfies

1 − 2G�y + y2 = 0 , that is y = G� −
√
G2
� − 1 (2.27)

and hence (see [8, Page 16]), also

y = 1

2π

∫ 2

−2

√
4 − x2

(2G�)− x
dx = β

2

∫ ∞

0
LG� (θ)dθ . (2.28)

Further, utilizing (2.27), (2.28), with LG� (0) = 1 and having

L′
G(τ ) = −βGLG(τ )+ β2

4

∫ ∞

0
LG(u)LG(τ − u)du (2.29)

(compare with the lhs of (2.21)), one can verify that

�(τ) = 1

c

∫ ∞

τ

LG� (u)du , c := 2 −
∫ ∞

0
LG� (u)du = 2

(
1 − y

β

)
,

satisfies (2.26). Consequently, in this case

α−2 − 1 = �(0) = 2

c
− 1 , that is α2 = c

2
= 1 − y

β
(2.30)

in agreement with our prediction on the lhs of (2.16), whereas

Cfdt(τ ) = 1 + �(τ)
1 + �(0) = 1 − 1

2

∫ τ

0
LG� (u)du , (2.31)

is precisely D(τ ) of (2.3) for φ(x) = βG�+ β2

2 (x−1), and converges to D∞ = α2 (i.e. with
no-aging). In addition, having here μ(s) → G�β we get from (2.23) that H(s) → H(∞) =
G�
2 − 1

4β (matching the expression H(∞) = α2 G�
2 + β

4 (1 − α2)2 of (2.20)).

3 Proof of Theorem 1.1 at � = x�, ˇ = 1

In view of Remarks 1.2–1.3, wlog we fix throughout this section β = 1 and σ = x� =
(
√
Nq�, 0, . . . , 0). Fixing also T and letting d(N ,m) be the length of the coupling vector J,

following [10] we equip the product space EN = R
N × R

d(N ,m) × C([0, T ],RN ) with the
norm

‖(x0, J,B)‖2 =
N∑

i=1

(xi0)
2 +

m∑

p=2

∑

1≤i1≤...≤i p≤N

(N
p−1
2 Ji1···i p )2 + sup

0≤t≤T

N∑

i=1

(Bi
t )

2 (3.1)
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480 A. Dembo, E. Subag

and denote by P̃ = μ
qo
x� ⊗ γ (E,G,q�)N ⊗ PN the product probability measure of (x0, J,B) on

EN , where x0 follows the law μqo
x� (defined above (1.15)), γ (E,G,q�)N denotes the (Gaussian)

distribution of J conditional upon CP(E,G, x�)6 and PN stands for the distribution of N -
dimensional Brownian motion. Next, for CN (s, t) of (1.8) and qN (s) = qx�N (s) of (1.14), we
let

C̄N (s, t) := CN (s, t)− q−2
� qN (s)qN (t) = 1

N

N∑

i=2

xis x
i
t , qN (s) = q�x1s√

N
. (3.2)

Setting Gi (x) := −∂xi HJ(x), the derivation of Theorem 1.1 builds on the proof of [10, Thm.
1.2], which utilizes beyond CN and χN of (1.8)–(1.9), two auxiliary functions AN and FN

(see [10, (1.15)]). Having here a distinguished first coordinate, those four functions of [10]
are replaced by U†

N := {CN , χN , C̄N , χ̄N , ĀN , F̄N }, for C̄N of (3.2) and

χ̄N (s, t) := 1

N

N∑

i=2

xis B
i
t , ĀN (s, t) := 1

N

N∑

i=2

Gi (xs)xit , F̄N (s, t) := 1

N

N∑

i=2

Gi (xs)Bi
t .

(3.3)

Beyond U†
N , our derivation clearly has to also involve qN of (3.2), the pre-limit of Ĥ from

(1.21), and the (centered) contribution of the first coordinate to AN , given respectively by

ĤN (s) := − 1

N
[HJ(xs)− H̄(xs)] , VN (s) := q�√

N
(G1(xs)− Ḡ1(xs)) , (3.4)

where Ḡ(x) := −∇ H̄(x) and H̄(x) := E[HJ(x) |CP(E,G, x�)]. Analogously to DN and EN

[10, (1.16)], it is convenient to define in addition to VN , ĀN and F̄N , also their contribution
to the incremental changes in qN , C̄N and χ̄N , which for KN (t) := CN (t, t) are given
respectively by

QN (s) := − f ′(KN (s)))qN (s)+ q2� v
′(qN (s))+ VN (s) , (3.5)

D̄N (s, t) := − f ′(KN (t))C̄N (t, s)+ ĀN (t, s), ĒN (s, t) := − f ′(KN (s)))χ̄N (s, t)+ F̄N (s, t).
(3.6)

Weshall establish limit equations forUN = U†
N∪{qN , ĤN , VN , QN , D̄N , ĒN , ϒN ,�N ,�

1
N ,

�N , �
1
N }, where

ϒN (s, u) := ν(CN (s, u))− C̄N (s, u)
ν′(qN (s))ν′(qN (u))

ν′(q2� )
,

�N (s, u) := ν′(CN (s, u))− ν′(qN (u))ν′(qN (s))
ν′(q2� )

,

�1
N (s, u) := qN (u)ν

′(CN (s, u))− C̄N (s, u)
q2� ν

′(qN (u))ν′′(qN (s))
ν′(q2� )

,

(3.7)

�N (s, u) := ν′′(CN (s, u))
(
D̄N (s, u)+ qN (s)

q2�
QN (u)

)− ν′(qN (s))ν′′(qN (u))
ν′(q2� )

QN (u) ,

�1
N (s, u) := D̄N (s, u)

[
ν′′(CN (s, u))qN (u)− q2� ν

′(qN (u))ν′′(qN (s))
ν′(q2� )

]

+ QN (u)[ν′(CN (s, u))+ qN (s)qN (u)

q2�
ν′′(CN (s, u))− q2� C̄N (s, u)

ν′′(qN (s))ν′′(qN (u))
ν′(q2� )

]
.

(3.8)

6 Which in the pure case is restricted to G = mE/q2� ; see Footnote 2.
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The functions ϒN , �N , �1
N , �N and �1

N , which arise out of conditional covariances (see
(3.34), (4.20) and (4.26)), are used in approximating certain conditional expectations of ĤN ,
VN and ĀN .

For convenience we refer hereafter to all elements of UN as functions on [0, T ]2, with
the obvious modification in force for qN , ĤN , VN and QN . Adopting this convention, our
proof of Theorem 1.1 relies on pre-compactness and self-averaging of functions from UN .
Specifically, in Sect. 3.1 we establish the following analog of [10, Prop. 2.3 and 2.4].

Proposition 3.1 For any UN ∈ UN , fixed finite T and k,

sup
|E |,|G|≤α

sup
N

Ẽ
[
sup
s,t≤T

|UN (s, t)|k
]
< ∞ , (3.9)

with the sequence of continuous functions UN (s, t) being pre-compact almost surely and in
expectation,wrt the uniform topology on [0, T ]2. Moreover, for any UN ∈ UN , T < ∞ and
ρ > 0,

∑

N

sup
|E |,|G|≤α

P̃[ sup
s,t≤T

|UN (s, t)− ẼUN (s, t))| ≥ ρ] < ∞ (3.10)

and hence by (3.9), also

lim
N→∞ sup

|E |,|G|≤α
sup
s,t≤T

Ẽ

[
|UN (s, t)− ẼUN (s, t)|2

]
= 0 . (3.11)

In view of (3.9) and (3.11) we thus deduce the following, exactly as in [10, proof of
Corollary 2.8].

Corollary 3.2 Suppose � : R� → R is locally Lipschitz with |�(z)| ≤ M ′‖z‖kk for some
M ′, �, k < ∞, and ZN ∈ R

� is a random vector, where for j = 1, . . . , �, the j-th coordinate
of ZN is of the form UN (s j , t j ), for some UN ∈ UN and some (s j , t j ) ∈ [0, T ]2. Then,

lim
N→∞ sup

|E |,|G|≤α
sup
s j ,t j

|Ẽ�(ZN )−�(ẼZN )| = 0 . (3.12)

As explained in Remark 1.4, the expectation Ẽ amounts to taking J = Jo of the Gaussian
law γ (0,0,q�)N , while adding to (1.1) the drift corresponding to (1.23), provided that we add
back to (G1, HJ) the relevant constant shift (Ḡ1, H̄). For β = 1, σ = x�, this provides an
alternative representation via the diffusion

xis = xi0 + Bi
s −
∫ s

0
f ′(KN (u))x

i
udu +

∫ s

0
Gi (xu)du + 1{i=1}

√
Nq�

∫ s

0
v′(qN (u))du ,

(3.13)

starting at x0 of law μqo
x� independently of B and J, while in studying UN we re-adjust to

have (Ḡ1, H̄) ≡ (0, 0) in (3.4). Adopting hereafter the latter setting, it is more convenient to
consider the solution of (3.13) under the joint law P� of x0, B and the disorder J conditional
only upon CP� := {∀i ≥ 2 : ∂xi HJ(x�) = 0

}
(whose covariance is given by (1.24) at

σ = x�). Indeed, our next proposition, whose proof is deferred to Sect. 3.2, relates P̃ to P�

and further extends the conclusions of Proposition 3.1 to P�.

Proposition 3.3 Proposition 3.1 applies for P� instead of P̃. Further, for� and ZN of Corol-
lary 3.2,

lim
N→∞ sup

|E |,|G|≤α
sup

s j ,t j≤T
|Ẽ�(ZN )− E��(ZN )| = 0 . (3.14)
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Setting hereafter for the filtration Fu = σ(xv : v ∈ [0, u]), UN ∈ UN and τ ∈ [0, T ],
UN (s, t |τ) := E�[UN (s, t)|Fτ ] , (3.15)

Corollary 3.2 applies forE�, with coordinates ofZN taken fromU�N := UN ∪{UN (·|τ),UN ∈
UN , τ ∈ [0, T ]}.

Our next result, whose proof is deferred to Sect. 3.3, shows that the limiting dynamics of
(1.17)–(1.21) admits at most one solution.

Proposition 3.4 Let T < ∞ and �T = {s, t ∈ (R+)2 : 0 ≤ t ≤ s ≤ T }. There exists at
most one solution (R,C, q, K , H) ∈ C1b(�T )

2 × C1b([0, T ])3 to (1.17)–(1.21) at β = 1 with
C(s, t) = C(t, s) and boundary conditions

R(s, s) ≡ 1 ∀s ≥ 0 (3.16)

C(s, s) = K (s) ∀s ≥ 0 (3.17)

K (0) = 1, q(0) = qo known. (3.18)

Our next proposition, whose proof is deferred to Sect. 4.1, plays here the role of [10, Prop.
1.3].

Proposition 3.5 Let Ua
N := E�UN . Fixing T < ∞, any limit point of the sequence

Ua
N := {Ua

N ,UN ∈ UN }with respect to uniform convergence on [0, T ]2, satisfies the integral
equations in Cb([0, T ]2),

C(s, t) = C̄(s, t)+ q(s)q(t)

q2�
, χ(s, t) = χ̄(s, t), (3.19)

Q(s) = − f ′(K (s))q(s)+ q2� v
′(q(s))+ V (s), q(s) = q(0)+

∫ s

0
Q(u)du , (3.20)

D̄(s, t) = − f ′(K (t))C̄(t, s)+ Ā(t, s), Ē(s, t) = − f ′(K (s))χ̄(s, t)+ F̄(s, t) , (3.21)

ϒ(s, t) = ν(C(s, t))− C̄(s, t)
ν′(q(s))ν′(q(t))

ν′(q2� )
, (3.22)

�(s, t) = ν′(C(s, t))− ν′(q(s))ν′(q(t))
ν′(q2� )

(3.23)

�1(s, u) = q(u)ν′(C(s, u))− C̄(s, u)
q2� ν

′(q(u))ν′′(q(s))
ν′(q2� )

, (3.24)

�(s, u) = ν′′(C(s, u))
(
D̄(s, u)+ q(s)

q2�
Q(u)

)− ν′(q(s))ν′′(q(u))
ν′(q2� )

Q(u) , (3.25)

�1(s, u) = D̄(s, u)

[
ν′′(C(s, u))q(u)− q2� ν

′(q(u))ν′′(q(s))
ν′(q2� )

]

+ Q(u)

[
ν′(C(s, u))+ q(s)q(u)

q2�
ν′′(C(s, u))− C̄(s, u)

q2� ν
′′(q(s))ν′′(q(u))
ν′(q2� )

]
,

(3.26)

C̄(s, t) = C̄(s, 0)+ χ̄(s, t)+
∫ t

0
D̄(s, u)du, χ̄(s, t) = s ∧ t +

∫ s

0
Ē(u, t)du, (3.27)

V (s) = �1(s, s)−�1(s, 0)−
∫ s

0
�1(s, u)du , (3.28)

Ā(t, s) = C̄(s, τ )�(t, τ )− C̄(s, 0)�(t, 0)
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−
∫ τ

0

{
D̄(s, u)�(t, u)+ C̄(s, u)�(t, u)

}
du , (3.29)

F̄(s, t) = χ̄(s, t)�(s, s)−
∫ t∧s

0
�(s, u)du

−
∫ s

0
Ē(u, t)�(s, u)du −

∫ s

0
χ̄ (u, t)�(s, u)du , (3.30)

Ĥ(s) = ϒ(s, s)− ϒ(s, 0)−
∫ s

0

{
D̄(s, u)�(u, s)+ Q(u)

q2�
�1(u, s)

}
du , (3.31)

where τ = t ∨ s, subject to the symmetry C(s, t) = C(t, s) and boundary conditions
q(0) = qo, K (0) = 1, K (s) = C(s, s), Ē(s, 0) = 0 for all s, and Ē(s, t) = Ē(s, s) for all
t ≥ s.

Our final ingredient for Theorem 1.1 is the following link between (3.19)–(3.31) and
(1.17)–(1.21), whose proof we defer to Sect. 4.2.

Proposition 3.6 Fixing T < ∞, if (C, χ, q, Ĥ) ∈ Cb([0, T ]2;R4) satisfies (3.19)–(3.31),
with v�(·) instead of v(·), subject to the symmetry and boundary conditions of Proposition
3.5, then χ(s, t) = ∫ t0 R(s, u)du where R(s, t) = 0 for t > s, R(s, s) = 1 and on �T the
bounded and absolutely continuous functions (C, R, q, Ĥ) satisfy the integro-differential
equations (1.17)–(1.21) (at β = 1).

Proof of Theorem 1.1 Setting wlog β = 1 and σ = x�, recall from Proposition 3.3 that all
conclusions of Proposition 3.1 apply for P�. In particular, we thus have pre-compactness
of (Ua

N ,UN ∈ UN ) : [0, T ]2 → R
17 in the topology of uniform convergence on [0, T ]2,

implying the existence of limit points of this sequence as N → ∞. By Proposition 3.5 any
such limit point must be a solution of the integral equations (3.19)–(3.31) with the stated
symmetry and boundary conditions. Further, by Proposition 3.6, for (E,G) = (E�,G�) any
such solution results with (C, R, q, Ĥ) that satisfy the integro-differential equations (1.17)–
(1.21) (at β = 1). In view of Proposition 3.4 the latter system admits at most one solution
per given boundary conditions. Hence, we conclude that the sequence (χa

N ,C
a
N , q

a
N , Ĥ

a
N )

converges as N → ∞, uniformly in [0, T ]2 to the unique solution determined by (1.17)–
(1.21) subject to the appropriate boundary conditions. Thanks to Proposition 3.3, the
same applies to Ẽ[(χN ,CN , qN , ĤN )]. Further, by (3.10) of Proposition 3.1, almost surely
|(χN ,CN , qN , ĤN ) − Ẽ(χN ,CN , qN , ĤN )| → 0 as N → ∞, uniformly on [0, T ]2. In
addition, HN (s) = ĤN (s) + v�(qN (s)) (see (1.23) and the lhs of (1.14), (3.4)). Thus, the
function (χ,C, q, H) determined from (1.17)–(1.21) is also the unique almost sure uniform
(in s, t) limit of (χN ,CN , qN , HN ), as stated in Theorem 1.1. The L p convergence follows
by the uniform moments bounds of Proposition 3.1, thereby completing the proof of the
theorem. ��

3.1 Proof of Proposition 3.1

We start by computing the covariances conditional on the event CP�, which replace here the
unconditional covariances of [10, Lemma 3.2].

Lemma 3.7 For vp, p ≥ 2, of (1.22) one has the following conditional expectations

E[J (p)1···1|CP(E,G, x�)] = −bpN
1− p

2 q p
� 〈vp, (E,G)〉 . (3.32)
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Letting EJ denote the expectation with respect to the Gaussian law PJ of the disorder J,
it follows that for v(·) of (1.22), any x ∈ C(R+,RN ) which is independent of J and all
s, t ∈ [0, T ], i, j ∈ {1, . . . , N },

H̄(xt ) := EJ {HJ(xt ) | CP(E,G, x�)} = −Nv(qN (t)) ,

Ḡi (xt ) := EJ

{
Gi (xt ) | CP(E,G, x�)

}
= 1{i=1}

√
Nq�v

′(qN (t)) .
(3.33)

Further, for CP� = {∀i ≥ 2 : ∂xi HJ(x�) = 0
}
, we have that EJ

{
Gi (xt ) | CP�

} = 0 for any
(t, i), while

ki jts (x) : = EJ

{
Gi (xt )G j (xs) | CP�

}
= ∂xit

∂
x j
s
{̃k(xt , xs)} ,

k̃(xs, xt ) := EJ {HJ(xs)HJ(xt ) | CP�}= NϒN (s, t) ,
(3.34)

for ϒN (s, t) of (3.7).

Proof Fix two points x̄, ȳ ∈ R
N . Recall that [1, Eq. (5.5.4)]

E

{
∂x̄ i H

N
J (x̄)H

N
J (ȳ)

}
= ∂x̄ iCov

(
HN
J (x̄)H

N
J (ȳ)

)

= ȳiν′(N−1〈x̄, ȳ〉) ,
E

{
∂x̄ i H

N
J (x̄)∂ȳ j H N

J (ȳ)
}

= ∂x̄ i ∂ȳ jCov
(
HN
J (x̄)H

N
J (ȳ)

)

= x̄ j ȳi

N
ν′′(N−1〈x̄, ȳ〉)+ 1{i= j}ν′(N−1〈x̄, ȳ〉) .

(3.35)

In particular, w = (q�HJ(x�) ,
√
N∂x1HJ(x�)) and z = √

N (∂xi HJ(x�))i>1 are independent.
Therefore, from the well-known formula for conditional Gaussian distributions [1, pages 10-
11],

H̄(xt ) =
〈
EJ{HJ(xt )w}(EJ{wTw})−1, (−Nq�E,−Nq�G)

〉

which by substitution yields the top line of (3.33). Recall that Ḡ = −∇x H̄ to complete the
derivation of (3.33). The formula (3.32) for the conditional expectations of J (p)1···1 is similarly
verified from

E

{
J (p)1···1H

N
J (x�)

}
= bpq

p
� N

p
2 E

{
(J (p)1···1)

2
}

= bpq
p
� N

1− p
2

E

{
J (p)1···1(∂x1H

N
J (x�))

}
= bp pq

p−1
� N

p−1
2 E

{
(J (p)1···1)

2
}

= bp pq
p−1
� N

1−p
2 .

Next, recall that any centered Gaussian field, conditional on a linear map being zero, remains
centered. In particular, EJ

{
Gi (xt ) |CP�

} = 0 for any choice of x� and (t, i). Further, with
zk = √

N∂xk HJ(x�) independent for different k, the formula for the conditional covariance
of HJ(·), simplifies to

k̃(xt , xs) = EJ {HJ(xt )HJ(xs)} −
N∑

k=2

EJ {HJ(xt )zk}
{
EJz

2
k

}−1
EJ {HJ(xs)zk} ,

from which (3.34) follows by substitution (and comparison with the definition of ϒN in
(3.7)). ��
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Preparing to adapt [10, Section 2], recall KN (t) = CN (t, t) and set hereafter BN (t) :=
1
N

∑N
i=1 |Bi

t |2 and GN (t) := 1
N

∑N
i=1 |Gi (xt )|2. Using throughout the corresponding sup-

norms ‖KN‖∞ := sup{KN (t) : 0 ≤ t ≤ T }, ‖BN‖∞ and ‖GN‖∞ as well as the N -
dependent disorder-norms

‖J‖N∞ := max
1≤p≤m

sup
‖ui‖≤1,1≤i≤p

∣
∣∣
√
N

−1 ∑

1≤ik≤N ,1≤k≤p

N
p−1
2 Ji1···i p u1i1 · · · u p

i p

∣
∣∣ (3.36)

of [10, (2.1)], we first mimic [10, Proposition 2.1] about the strong solution xt of (1.1).

Proposition 3.8 Assume that f ′ is locally Lipschitz, satisfying (1.6). Then, for any N ∈ N,
x0, J there exists a unique strong solution of (1.1) for a.e. Brownian path B. Denoting by
P
N
J,x0

the (unique) law of {Bt , xt } as C(R+,R2N )-valued variable, we have that for some c,
κ finite, all N , z > 0, J and x0,

P
N
J,x0

(
sup
t∈R+

KN (t) ≥ KN (0)+ κ(1 + ‖J‖N∞)c + z
)

≤ e−zN . (3.37)

In particular, for some Do(k,M) finite, any k,M and all N ,

sup
{J,x0:KN (0)+‖J‖N∞≤M}

{
E
N
J,x0

[
sup
t∈R+

KN (t)
k]
}

≤ Do(k,M) . (3.38)

Further, for any finite positive q�, k and α

sup
|E |, |G|≤α

sup
N

Ẽ
[
(||J||N∞)k

]
< ∞ (3.39)

and there exist finite κ̃ ≥ 1 such that for any t ≥ 0,

sup
|E |, |G|≤α

sup
N

P̃
[‖J‖N∞ > κ̃ + t

] ≤ κ̃e−Nt2 /̃κ . (3.40)

Consequently, for any |qo| ≤ q� positive, finite k and α,

sup
|E |, |G|≤α

sup
N

Ẽ
[
sup
t∈R+

KN (t)
k] < ∞ (3.41)

and for any finite L there exist z = z(L) finite such that

sup
|E |, |G|≤α

sup
N

P̃
[
sup
t∈R+

KN (t) ≥ z
] ≤ 2̃κe−LN . (3.42)

Proof From [10, Proposition 2.1] we have the existence of a unique strong solution as well
as the bound (3.37) (while stated in [10] for a.e. J, x0, examining their proof we see that
it holds for all J and x0). Clearly, (3.38) and (3.39) are immediate consequences of (3.37)
and (3.40), respectively. Further, taking x0 ∈ SN amounts to KN (0) = 1, yielding (3.41)
and (3.42) upon combining (3.37) with (3.39) and (3.40), respectively. Turning to the only
remaining task, of proving (3.40), recall [10, (B.7)] that for some κ̃ and all t ≥ 0,

sup
N

P
[‖J‖N∞ > κ̃ + t

] ≤ κ̃e−Nt2 /̃κ . (3.43)

Since ‖J‖N∞ is a symmetric, convex function of J, by Anderson’s inequality [2, Corollary 3],
the bound (3.43) holds when J is replaced by the centered Gaussian vector Jo having the law
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γ
(0,0,q�)
N . Further, conditionally on CP(E,G, x�), we have that J = Jo + J̄E,G for the non-

random vector J̄E,G := E[J |CP(E,G, x�)]. The only non-zero entries of J̄E,G correspond

to {J (p)1···1} and are given by (3.32). Consequently,

‖J̄E,G‖N∞ = max
2≤p≤m

{|bpq p
� 〈vp, (E,G)〉|} , (3.44)

is bounded, uniformly over |E |, |G| ≤ α by some κ̂(α, q�) finite. In conjunction with the
triangle inequality for ‖ · ‖N∞, this yields (3.40) (upon adding κ̂ to κ̃). ��

The same reasoning as in proving [10, Proposition 2.3], but with (3.39)–(3.42) of Propo-
sition 3.8 replacing [10, Eqn. (2.12), (B.7), (2.13), (2.3)], respectively, yields for UN ∈ U†

N
both (3.9) and the stated pre-compactness. Along the way we also find that for some
M = M(L, T , α) < ∞ the subsets

LN ,M := {(x0, J,B) ∈ EN : ‖J‖N∞ + ‖BN‖∞ + ‖KN‖∞ + ‖GN‖∞ ≤ M } (3.45)

of EN are such that for any finite L, T , α and all N ,

sup
|E |,|G|≤α

P̃(Lc
N ,M ) ≤ Me−LN . (3.46)

Next, similarly to [10, (2.10)],

1√
N

|HJ(x)− HJ (̃x)| ≤ c ‖J‖N∞
(
1 + (N−1‖x‖2)r )(1 + (N−1‖̃x‖2)r )‖x − x̃‖ , (3.47)

for r = (m − 1)/2, c = m
√
ν′(1) and any x, x̃ ∈ R

N . In particular,

|HN (t)− HN (t
′)| ≤ c ‖J‖N∞(1 + KN (t)

r )(1 + KN (t
′)r )‖xt − xt ′ ‖√

N
. (3.48)

The uniform moment bound (3.9) then extends to all UN since q2N (s) ≤ q2�CN (s, s) and
V 2
N (s) ≤ q2�GN (s)+ q4� (v

′(qN (s))2, with the locally Lipschitz f ′(·), ν′′(·) and v′(·) having
at most a polynomial growth. In addition, from [10, (2.18)] adapted to our setting of P̃, we
have for any ε > 0, some L ′(δ, ε) → ∞ as δ → 0, and all N ,

sup
|E |,|G|≤α

P̃
[

sup
|t−t ′|<δ

{|qN (t)− qN (t
′)|} > q�

√
ε
] ≤ e−L ′(δ,ε)N

sup
|E |,|G|≤α

sup
N

Ẽ
[

sup
|t−t ′|<δ

|qN (t)− qN (t
′)|4 ] ≤ L ′(δ, ε)−1 .

The same holds also for ĤN (·) (see (3.48)), and for VN (·) (c.f. [10, display preceding (2.18)]).
Such bounds yield the equi-continuity of qN (·), VN (·) and ĤN (·) (a.s. and in expectation),
from which we deduce the pre-compactness, first of qN , VN , ĤN , then of QN , D̄N , ĒN and
finally ofϒN ,�N ,�1

N ,�N ,�1
N (by the uniformmoments control (3.9) and the Arzela-Ascoli

theorem). In particular, this way we have further established that for some L̃(δ, ε) → ∞ as
δ → 0, any ε > 0 and UN ∈ UN

sup
|E |,|G|≤α

P̃

(

sup
|s−s′|+|t−t ′|<δ

|UN (s, t)−UN (s
′, t ′)| > ε

)

≤ e−L̃(δ,ε)N ,

sup
|E |,|G|≤α

sup
N

sup
|s−s′|+|t−t ′|<δ

|ẼUN (s, t)− ẼUN (s
′, t ′)| ≤ L̃(δ, ε)−1 .

(3.49)

Turning to the self-averaging property (3.10), similarly to [10, Proposition 2.4] our proof
relies on the following pointwise Lipschitz estimate on LN ,M of (3.45).
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Lemma 3.9 Let x, x̃ be the two strong solutions of (1.1) constructed from (x0, J,B) and
(̃x0, J̃, B̃), respectively. If (x0, J,B) and (̃x0, J̃, B̃) are both in LN ,M, then we have the
Lipschitz estimate for each UN ∈ UN ,

sup
s,t≤T

|UN (s, t)− ŨN (s, t)| ≤ D(M, T )√
N

‖(x0, J,B)− (̃x0, J̃, B̃)‖ , (3.50)

where the constant D(M, T ) depends only on M and T and not on N.
Further, for eN (s) := N−1‖xs − x̃s‖22 any N and T , if B̃ = B and (̃x0, J̃) → (x0, J),

then

E
[
1 ∧ ‖eN‖∞ | J̃, J, x̃0, x0

]→ 0 . (3.51)

Proof For UN ∈ U†
N the bound (3.50) is precisely the statement of [10, Lemma 2.7], while

for UN = qN it follows upon taking the square-root of the bound

‖eN‖∞ ≤ D1(M, T )

N
‖(x0, J,B)− (̃x0, J̃, B̃)‖2 (3.52)

from [10, Lemma 2.6]. Further, while proving [10, Lemma 2.7] it is shown that on LN ,M

‖G(xs)− G̃ (̃xs)‖2 ≤ D2(M, T )‖(x0, J,B)− (̃x0, J̃, B̃)‖
(where G̃(·) := −∇ H̃J(·), see [10, Page 636]). Utilizing (3.47) instead of [10, (2.10)] yields
the same bound for 1√

N
|HJ(xs)−H̃J (̃xs)|. Recall (3.45) that ‖qN‖∞ ≤ q�‖KN‖1/2∞ ≤ q�

√
M

on LN ,M , which thus in view of (3.33) for the locally Lipschitz v′(·), thus results with (3.50)
holding for UN = VN and UN = ĤN . Similarly, having f ′(·), ν′′(·) locally Lipschitz and
‖KN‖∞ ≤ M on LN ,M , extends the validity of (3.50) first to UN ∈ {QN , D̄N , ĒN }, then
also to UN ∈ {ϒN ,�N ,�

1
N , �N , �

1
N }.

In case B̃ = B we see from [10, Proof of Lemma 2.6] that (3.52) holds when ‖J‖N∞ +
‖KN‖∞ + ‖K̃N‖∞ ≤ M . With (̃x0, J̃) → (x0, J), the rhs of (3.52) decays to zero and
K̃N (0)+ ‖̃J‖N∞ is uniformly bounded. Such uniform boundedness implies in view of (3.38)
that as M → ∞,

P(‖J‖N∞ + ‖KN‖∞ + ‖K̃N‖∞ > M | J̃, J, x̃0, x0) → 0 ,

uniformly in (̃x0, J̃), from which we deduce by bounded convergence that (3.51) holds. ��
Wenext verify that P̃ satisfies theLipschitz concentration ofmeasure, as in [10,Hypothesis

1.1], uniformly over |E |, |G| ≤ α.
Proposition 3.10 For some C > 0, any (E,G, q�), function V : EN �→ R of Lipschitz
constant K and all ρ > 0,

P̃
{|V − ẼV | ≥ ρ} ≤ C−1 exp

(−Cρ2/K 2) . (3.53)

Proof Assume first that ẼV = 0. Recall that P̃ = μ
qo
x� ⊗ γ (E,G,q�)N ⊗ PN . Denoting a generic

point in EN by (x0, J,B), let Ex0 denote the expectation wrt μqo
x� and the variable x0 only,

and for fixed x0, let P̃J,B = γ
(E,G,q�)
N ⊗ PN . By conditioning on x0,

P̃(V > ρ) ≤ Ex0 P̃J,B(V − ẼJ,BV > ρ/2)+ Px0(ẼJ,BV > ρ/2). (3.54)

For any fixed x0, (J,B) �→ V (x0, J,B) has Lipschitz constant K wrt the norm

‖(J,B)‖2 =
m∑

p=2

∑

1≤i1≤...≤i p≤N

(N
p−1
2 Ji1···i p )2 + sup

0≤t≤T

N∑

i=1

(Bi
t )

2.
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Next, set PJ,B := γN ⊗ PN for the unconditional Gaussian law γN of J, and W (x0, J,B) :=
(x0, W̄ (J),B), for the orthogonal projection W̄ to the affine subspace of Rd(N ,m) defined
by CP(E,G, x�). The composition V ◦ W necessarily has at most the Lipschitz constant K .
Hence, for some C > 0, any N , V (·), ρ > 0 and all x0, by the concentration of measure of
the Gaussian measure (see, e.g. [3]),

P̃J,B(V − ẼJ,BV > ρ/2) = PJ,B(V ◦ W − EJ,BV ◦ W > ρ/2) ≤ C−1 exp(−Cρ2/K 2) .

Further, by Jensen’s inequality, x0 �→ ẼJ,BV has Lipschitz constant K wrt the Euclidean
norm on R

N . Moreover, Ex0 ẼJ,BV = ẼV = 0, so by the concentration of measure of the
uniformmeasure on the sphere [16, Theorem 1.7.9], for someC > 0 and any N , V (·), ρ > 0,

Px0(ẼJ,BV > ρ/2) < C−1 exp(−Cρ2/K 2) .

Combining the above we deduce from (3.54) that for some C > 0 any K -Lipschitz V and
ρ > 0,

P̃(V > ρ) ≤ C−1 exp(−Cρ2/K 2) .

Considering this bound for ±(V − ẼV ) yields (3.53). ��

Equippedwith Lemma 3.9 and Proposition 3.10we establish (3.10) via the same reasoning
as in [10, proof of Proposition 2.4]. Specifically, fixing (s, t) ∈ [0, T ]2, we use [10, Lemma
2.5] to extend (thanks to (3.46)), the tail control of Proposition 3.10 to V = UN (s, t) for
UN satisfying only (3.9) and (3.50). With constants C , K , M(L), D = D(M(L), T ) in
[10, (2.21)] which are independent of s, t , ρ, N (and uniform over |E |, |G| ≤ α), we get
by the union bound that (3.10) holds whenever the supremum is restricted to s, t in some
(arbitrary) finite subset A of [0, T ]2. The preceding quantitative equi-continuity control of
(3.49), further allow for strengthening to the full summability result (3.10) by considering a
finite δ-net A of [0, T ]2 (say with δ > 0 small, so L̃(2δ, ρ/3) > 3/ρ).

3.2 Proof of Proposition 3.3

Under both P̃ and P� the vector J has the Gaussian law PJ of independent coordinates,
conditioned on CP�. Indeed, the only difference between P̃ and P� is that P̃ imposes on J an
additional conditioning via CP1 := {HJ(x�) = ∂x1HJ(x�) = 0}. Having a conditional law
for J enters twice throughout the whole derivation of Proposition 3.1 (via Propositions 3.8
and 3.10): first in upgrading (3.43) from P to P̃ via Andreson’s inequality, then in proving
Proposition 3.10 by representing the conditional disorder as W̄ (J) (for some orthogonal
projection W̄ ). Both arguments are applicable also for P� (namely, without conditioning on
CP1), hence so are all the conclusions of Proposition 3.1 (and of Proposition 3.8).

Turning to (3.14), we set J̃p := N
p−1
2 J (p){1···1}, noting thatCP� is independent of the standard

Gaussian vector J̃ := ( J̃p, 2 ≤ p ≤ m), whereas

CP1 =
{
J̃ :

m∑

p=2

bp J̃pq
p
� =

m∑

p=2

bp p J̃pq
p−1
� = 0

}
. (3.55)

Denoting by W̃ the orthogonal projection sending J̃ to the linear subspace determined by
(3.55), leaving the remainder of (x0, J,B) unchanged, we thus have that ẼV = E�V ◦ W̃ for
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any V : EN �→ R. Further, with

‖W̃ (x0, J,B)− (x0, J,B)‖ ≤ ‖ J̃‖ ≤
√
m√
N

‖J‖N∞ ,

we deduce from (3.50) that when (x0, J,B) and W̃ (x0, J,B) are both in LN ,M

sup
E,G

sup
s j ,t j≤T

‖ZN ◦ W̃ − ZN‖2 ≤ D′

N
, (3.56)

where D′ := √
�mD(M, T )M . With |�(z)| ≤ M ′‖z‖kk and cr denoting the finite Lipschitz

constant of �(·) (with respect to ‖ · ‖2), on the compact set �r := {z : ‖z‖k ≤ r}, we thus
have that for any E,G, M, r < ∞ and s j , t j ≤ T ,

|Ẽ�(ZN )− E��(ZN )| ≤ E�|�(ZN ◦ W̃ )−�(ZN )|
≤ M ′

Ẽ[‖ZN‖kk(1Lc
N ,M

+ 1‖ZN ‖k>r )] + M ′
E�[‖ZN‖kk(1Lc

N ,M
+ 1‖ZN ‖k>r )] + cr

D′

N
,

The last term on the rhs vanishes when N → ∞. Recall (3.9), that both Ẽ‖ZN‖2kk and
E�‖ZN‖2kk are bounded, uniformly over |E |, |G| ≤ α and s j , t j ≤ T . Thus, by Cauchy-
Schwartz, considering (3.46) for P̃ and P�, the contribution to the rhs from the pair of terms
with Lc

N ,M also vanishes as N → ∞. Now, to arrive at (3.14), simply combine (3.9) with

Markov’s inequality, to deduce that P̃(‖ZN‖k > r) + P�(‖ZN‖k > r) → 0 as r → ∞,
uniformly in N , |E |, |G| ≤ α and s j , t j ≤ T . Finally, combining (3.12) and (3.14) we deduce
that

lim
N→∞ sup

|E |,|G|≤α
sup
s j ,t j

|E��(ZN )−�(E�ZN )| = 0 (3.57)

whenever the coordinates of ZN are from UN . Clearly, E�|UN (·|τ) − E�UN | ≤ E�|UN −
E�UN | andE�UN (·|τ) = E�UN for anyUN ∈ UN , τ ∈ [0, T ], thereby extending the validity
of (3.57) to coordinates of ZN from U�N .

3.3 Proof of Proposition 3.4

Fixing T < ∞ note that H(·) does not affect (R,C, q, K ). With H(·) uniquely determined
by (R,C, q) via (1.21), it suffices to prove the uniqueness of the solution (R,C, q, K ) of the
reduced system (S):=(1.17,1.18,1.19,1.20). To this end, fixing two solutions (R,C, q, K ),
(R̃, C̃, q̃, K̃ ), of (S) at β = 1 of the same boundary condition (BC):=(3.16,3.17,3.18), let

�U := (�R,�C,�q,�K ) = |(R,C, q, K )− (R̃, C̃, q̃, K̃ )| .
From (BC) we have that �C(s, s) = �K (s) and �R(s, s) ≡ 0, �K (0) = �q(0) = 0.
Denoting all constants by M (which may depend on T and the uniform bound on both
solutions), even though they may change from line to line, we arrive at�U ≡ 0 by adapting
the Gronwall’s type argument leading to [10, Proposition 4.2]. To this end, (1.17) yields,
exactly as in [10, (4.9)] that for all (s, t) ∈ �T ,

�R(s, t) ≤ M
∫ s

t
�K (u)du + M

∫

t≤t2≤t1≤s
�C(t1, t2)dt1dt2 := I2(s, t)+ I8(s, t) .

(3.58)
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Next, integrating (1.19) yields that

q(t) = q(0)−
∫ t

0
f ′(K (u))q(u)du +

∫ t

0
q2� v

′
�(q(u))du

+
∫ t

0
du
∫ u

0
R(u, v)

[
q(v)ν′′(C(u, v))− q2� ν

′(q(v))ν′′(q(u))
ν′(q2� )

]
dv .

The same identity holds for (R̃, C̃, q̃, K̃ ). With f ′(·), v′
�(·) locally Lipschitz, considering

the difference between that identity for our two uniformly bounded on �T solutions of (S),
yields that

�q(t) ≤ M
[ ∫ t

0
�q(u)du +

∫ t

0
du
∫ u

0
�R(u, v)dv

+
∫ t

0
du
∫ u

0
�C(u, v)dv +

∫ t

0
�K (u)du

]
.

By Gronwall’s lemma, upon suitably increasing the value of M we can eliminate the first
term on the rhs, whereas by (3.58) the second term on the rhs is controlled by the remaining
two terms. Hence,

�q(t) ≤ I2(t, 0)+ I8(t, 0) , ∀t ∈ [0, T ] . (3.59)

Likewise, integrating (1.18) yields that each solution of (S) satisfies for s ≥ t ,

C(s, t) = K (t)−
∫ s

t
f ′(K (u))C(u, t)du +

∫ s

t
du
∫ t

0
dvν′(C(u, v))R(t, v)

+
∫ s

t
du
∫ t

0
dvR(u, v)ν′′(C(u, v))C(t, v)

+
∫ s

t
du
∫ u

t
dvR(u, v)ν′′(C(u, v))C(v, t)

− q(t)
∫ s

t
du

q2� ν
′′(q(u))
ν′(q2� )

∫ t

0
dvR(u, v)ν′(q(v))

−
∫ s

t
du
ν′(q(u))
ν′(q2� )

∫ t

0
dvν′(q(v))R(t, v)+ q(t)

∫ s

t
v′
�(q(u))du . (3.60)

By (3.59), the terms on the rhs which involve q(·), contribute to �C(s, t) at most

M
[
�q(t)+

∫ s

t
�q(u)du +

∫ s

t
du
∫ t

0
�q(v)dv

+
∫ s

t
du
∫ t

0
dv�R(u, v)+

∫ s

t
du
∫ t

0
dv�R(t, v)

]

≤ I2(s, 0)+ I8(s, 0)+ I7(s, t)+ I6(s, t)

(see (3.61) for I6 and I7). Utilizing [10, (4.10)] to bound the effect on�C(s, t) from the rest
of (3.60), yields

�C(s, t) ≤ M
[
�K (t)+

∫ s

0
�K (u)du +

∫ s

t
�C(u, t)du +

∫ s

t
du
∫ t

0
dv�C(u, v)

+
∫ s

t
du
∫ t

0
dv�C(t, v)+

∫ s

t
du
∫ t

0
dv�R(t, v)+

∫ s

t
du
∫ t

0
dv�R(u, v)
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+
∫ s

0
du
∫ u

0
dv�C(u, v)+

∫ s

t
du
∫ u

t
dv�C(v, t)+

∫ s

t
du
∫ u

t
dv�R(u, v)

]

:= I1(s, t)+ I2(s, 0)+ I3(s, t)+ · · · + I7(s, t)+ I8(s, 0)+ I9(s, t)+ I10(s, t) .
(3.61)

Similarly, by (1.20) we have for each solution of (S) and any t ∈ [0, T ],

K (t)− K (0)− t = −2
∫ t

0
f ′(K (u))K (u)du + 2

∫ t

0
du
∫ u

0
dvψ(C(u, v))R(u, v)

− 2

ν′(q2� )

∫ t

0
du ψ(q(u))

∫ u

0
dv ν′(q(v))R(u, v)

+ 2
∫ t

0
q(u)v′

�(q(u))du . (3.62)

Clearly, the terms involving q(·) on the rhs contribute to �K (t) at most M
∫ t
0 �q(u)du +

I10(t, 0). Further, with �K (0) = 0, utilizing (3.59) and bounding the effect of the rest of
(3.62) as in [10, (4.11)], yields here

�K (t) ≤ I2(t, 0)+ I8(t, 0)+ I10(t, 0) . (3.63)

We follow the derivation of [10, (4.13)], by first plugging (3.58) into (3.63) to eliminate
I10(t, 0), then by Gronwall’s lemma eliminating I2(t, 0). Setting D(s) := ∫ s

0 �C(s, v)dv,
we thereby get, as in [10, (4.13)], that

�K (t) ≤ I8(t, 0) = M
∫ t

0
D(u)du . (3.64)

Plugging (3.64) into (3.58) and (3.59), yields in turn that

�R(s, t) ≤ M
∫ s

0
D(u)du , �q(s) ≤ M

∫ s

0
D(u)du , ∀(s, t) ∈ �T . (3.65)

With (3.61) differing from [10, (4.10)] only in having I2(s, 0)+ I8(s, 0) instead of I2(s, t)+
I8(s, t), upon integrating both sides of (3.61) with respect to t ∈ [0, s], we deduce from
(3.64) to (3.65), exactly as in [10, Page 652], that

D(s) ≤ M
∫ s

0
D(u)du , ∀s ∈ [0, T ] .

Recall that s �→ D(s) is non-negative and non-decreasing. Hence, by yet another Gronwall
argument we conclude that D ≡ 0. In particular,�C(s, t) = 0 for almost every (s, t) ∈ �T ,
while from (3.64)–(3.65)

�K ≡ 0, �R ≡ 0, �q ≡ 0, on �T .

Going back to (3.61), this suffices for its rhs to be zero at any t ≤ s ≤ T , thereby having
�C ≡ 0 on �T .
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4 Proof of Propositions 3.5 and 3.6

4.1 Proof of Proposition 3.5

Consider the limit N → ∞ of the P�-expectation of the identities

CN (s, t) = C̄N (s, t)+ qN (s)qN (t)

q2�
, χN (s, t) = χ̄N (s, t)+ qN (s)

B1
t

q�
√
N
.

From (3.57) we see that any limit point (C, χ, q, C̄, χ̄) must satisfy (3.19) (with χ = χ̄ as
bothE�[q2N (s)] andE[|B1

t |2] are bounded uniformly in N and on [0, T ]). The P�-expectation
of (3.13) at i = 1, amounts in view of (3.5), to qaN (s) = qaN (0)+

∫ s
0 Qa

N (u)du, from which,
by utilizing again (3.57) as N → ∞, we deduce the validity of the rhs of (3.20). By the same
reasoning, each limit point of the P�-expectation of (3.5)–(3.8) must satisfy (3.20)–(3.26),
respectively. Observing that χ̄a

N (0, t) = 0, and having as in [10, Eqn. (3.2)–(3.3)],

C̄N (s, t) = C̄N (s, 0)+ χ̄N (s, t)+
∫ t

0
D̄N (u, s)du ,

χ̄N (s, t) = χ̄N (0, t)+ 1

N

N∑

i=2

Bi
s B

i
t +
∫ s

0
ĒN (u, t)du (4.1)

(recall the definition (3.6) of D̄N and ĒN ), we likewise deduce that (3.27) holds. Recall that
by the P�-independence of the standard Brownian increments

Ua
N (s, 0) = 0, Ua

N (s, t) = Ua
N (s, t ∧ s), UN ∈ {F̄N , χ̄N , EN } (4.2)

(c.f. [10, Page 638]), hence our stated boundary conditions on the limit point. The key to
the proof is Proposition 4.1, which approximates (V a

N , Ā
a
N , F̄

a
N , Ĥ

a
N ) for N → ∞, by a

combination of functions from Ua
N (where expressions involving ν, ν′ and ν′′ emerge via the

covariance kernels of Lemma 3.7). Indeed, with Proposition 4.1 replacing [10, Prop. 3.1],
we get (3.28)–(3.31) (and thereby establish Proposition 3.5), by following the derivation of
[10, Prop. 1.3], while utilizing (3.57) and the pre-compactness results of Proposition 3.1 (for
P�), instead of [10, Cor. 2.8] and [10, Prop. 2.3], respectively.

Proposition 4.1 Set aN � bN when |aN (·)− bN (·)| → 0 as N → ∞, uniformly on [0, T ]2.
Then, for τ = t ∨ s,

V a
N (s) � �

1,a
N (s, s)−�1,a

N (s, 0)−
∫ s

0
�

1,a
N (s, u)du , (4.3)

Āa
N (t, s) � C̄a

N (s, τ )�
a
N (t, τ )− C̄a

N (s, 0)�
a
N (t, 0)

−
∫ τ

0

{
D̄a

N (s, u)�
a
N (t, u)+ C̄a

N (s, u)�
a
N (t, u)

}
du , (4.4)

F̄a
N (s, t) � χ̄a

N (s, t)�
a
N (s, s)−

∫ t∧s

0
�a

N (s, v)dv

−
∫ s

0

{
�a

N (s, u)Ē
a
N (u, t)+ χ̄a

N (u, t)�
a
N (s, u)

}
du , (4.5)

Ĥa
N (s) � ϒa

N (s, s)− ϒa
N (s, 0)

−
∫ s

0

{
D̄a

N (s, u)�
a
N (u, s)+

Qa
N (u)

q2�
�

1,a
N (u, s)

}
du . (4.6)
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Towards proving Proposition 4.1 we fix a continuous path x satisfying (3.13). Then, for any
operator kt of kernel k

i j
uv(x) on L2({1, · · · N } × [0, t]) and f ∈ L2({1, · · · N } × [0, t]), let

[kt f ]iu :=
N∑

j=1

∫ t

0
ki juv f

j
v dv , (i, u) ∈ {1, · · · , N ′} × [0, t] , (4.7)

which is clearly in L2({1, · · · N ′} × [0, t]). Assuming that each ki juv(x) is the finite sum of
terms such as xi1u · · · xiau x j1

v · · · x jb
v (for some non-random a, b and i1, . . . , ia, j1, . . . , jb), we

further extend (4.7) to stochastic integrals of the form

[kt ◦ dZ ]iu =
N∑

j=1

∫ t

0
ki juvdZ

j
v , (4.8)

where Zv is a continuous Fv-semi-martingale (composed for each j , of a squared-integrable
continuous martingale and a continuous, adapted, squared-integrable finite variation part).
Adopting the conventions of [10, Page 640] for interpreting

∫ t
0 k

i j
uvdZ

j
v in terms of Itô inte-

grals, note that [kt ◦ dZ ]iu ∈ L2({1, · · · , N ′} × [0, t]) (recall (3.41) that xt has uniformly

over time, bounded moments of all orders under P�, hence so does the kernel ki jts (x)), with
the following extension of [10, Lemma 3.3].

Lemma 4.2 Fixing τ ∈ R+ there exist a version of V i
s;τ := E�[Gi (xs)|Fτ ] and Zi

s;τ :=
E�[Bi

s |Fτ ] with

Zi
s;τ = xis − xi0 −

∫ s

0
Qi

u;τdu , Qi
s;τ := V i

s;τ − f ′(KN (s))x
i
s + 1{i=1}

√
Nq�v

′(qN (s)) ,

(4.9)

such that s �→ Zi
s;τ are continuous semi-martingaleswith respect to the filtration (Fs , s ≤ τ),

composed of squared-integrable continuous martingales and finite variation parts. If {Si (x),
i ≤ N ′} are linear forms in J with covariance kernels

ki jst (x) := EJ

{
Si (xs)G j (xt ) | CP�

}
, k̃ilst (x) := EJ

{
Si (xs)Sl(xt ) | CP�

}
,

1 ≤ i, l ≤ N ′, 1 ≤ j ≤ N , (4.10)

consisting of polynomials in x, then

Y i
s;τ := E�[Si (xs)|Fτ ] = [kτ ◦ dZ ]is = [kτ ◦ dx]is − [kτQ]is ,
∀(i, s) ∈ {1, · · · , N ′} × [0, τ ] . (4.11)

Further, there exist then a version of

�̃il
st;τ :=E�

[
(Si (xs)− Y i

s;τ )(S
l(xt )− Y l

t;τ )|Fτ
]
, i, l ∈ {1, · · · , N ′},

�
jl
st;τ :=E�

[
(G j (xs)− V j

s;τ )(S
l(xt )− Y l

t;τ )|Fτ
]
, s, t ∈ [0, τ ], j ∈ {1, · · · , N },

(4.12)

such that

�̃il
st;τ = k̃ilst −

N∑

j=1

∫ τ

0
ki jsu�

jl
ut;τdu , ∀s, t ∈ [0, τ ], i, l ∈ {1, · · · , N ′} . (4.13)
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Proof The right equality in (4.11) follows from the relation (4.9) between E�[Bi
s |Fτ ] and

E�[Gi (xu)|Fτ ], which in turn is a consequence of having in (3.13),

Ui
s := xis − xi0 +

∫ s

0
f ′(KN (u))x

i
udu − 1{i=1}

√
Nq�

∫ s

0
v′(qN (u))du

=
∫ s

0
Gi (xu)du + Bi

s . (4.14)

The latter relation implies the stated continuity and integrability properties of the semi-
martingales Ui

s and Zi
s;τ = Ui

s − ∫ s0 V i
u;τdu. By Girsanov formula (see [10, Eqn. (3.16)]),

the restriction to Fτ satisfies
P
N
J,x0 |Fτ = �N

τ P
N
0,x0 |Fτ ,

�N
τ := exp

{ N∑

i=1

∫ τ

0
Gi (xs)dUi

s − 1

2

N∑

i=1

∫ τ

0
(Gi (xs))2ds

}
, (4.15)

with Ui
s a standard Brownian motion under PN

0,x0
. Setting P�J for the law of J conditional on

CP�, we thus have (as in the proof of [10, Lemma 3.3]), that

Y i
s;τ = E

�
J[Si (xs)�N

τ ]
E
�
J[�N

τ ] ,

�̃il
st;τ =

E
�
J

[
(Si (xs)− Y i

s;τ )(S
l(xt )− Y l

t;τ )�
N
τ

]

E
�
J[�N

τ ] . (4.16)

The centered Gaussian law P
�
J is not a product measure, but the arguments used in proving

[10, Proposition C.1] still apply. Specifically, here G j (xs) = ∑
α Joα L

j
s (α) and Si (xt ) =∑

α JoαM
i
t (α) for some independent centered Gaussian {Joα } of positive variances vα , with

ki jsu = ∑
α M

i
s (α)vαL

j
u(α). Our Radon-Nikodym derivative �N

τ is given in terms of R =
{Rαγ } of [10, (C.4)] and Jo := {Joα }, by the display following [10, (C.4)]. Under such
a change of measure the Gaussian law of Jo has the covariance matrix (D−1 + R)−1 for
D =diag(vα) and the mean vector q = (D−1 + R)−1μ of [10, (C.5)]. From the lhs of
(4.16) we have that Y i

s;τ = ∑
α M

i
s (α)qα and V j

u;τ = ∑
α L

j
u(α)qα . Further, by definition

[kτ ◦ dU ]is =∑α M
i
s (α)vαμα and [kτV ]is =∑α,γ Mi

s (α)vαRαγ qγ (thanks to [10, (C.4)]),

with the identity Y i
s;τ = [kτ ◦ Z ]is of (4.11) thus a direct consequence of [10, (C.5)]. Next,

note that k̃ilst =∑α M
i
s (α)vαM

l
t (α), whereas from the rhs of (4.16) we have that

�
jl
ut;τ =

∑

α,γ

L j
u(α)[(D−1 + R)−1]αγMl

t (γ ) ,

�̃il
st;τ =

∑

α,γ

Mi
s (α)[(D−1 + R)−1]αγMl

t (γ ).

By [10, (C.4)] we thus get (4.13) out of (D−1 + R)−1 = D − DR(D−1 + R)−1 (as in the
proof of [10, (C.3)]). ��
Proof of Proposition 4.1 In view of (3.3)–(3.6) and (3.15), one has as in [10, Pg. 642], for
any τ ∈ [t ∨ s, T ],

ĀN (t, s|τ) = 1

N

N∑

i=2

V i
t;τ x

i
s , D̄N (s, t |τ) = 1

N

N∑

i=2

Qi
t;τ x

i
s ,
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VN (s|τ) = q�√
N
V 1
s;τ , QN (s|τ) = q�√

N
Q1

s;τ . (4.17)

Recall Itô’s formula for u �→ k̃(xs, xu),

N∑

j=1

∫ τ

0
∂
x j
u
{̃k(xs, xu)}dx j

u = k̃(xs, xτ )− k̃(xs, x0)− 1

2

∫ τ

0
{�xu k̃(xs, xu)}du.

(4.18)

Thus, for the operator kτ corresponding to Si ≡ Gi in Lemma 4.2, we get from the first
identity of (3.34) that

[kτ ◦ dx]is =
N∑

j=1

∫ τ

0
∂xis
∂
x j
u
{̃k(xs, xu)}dx j

u = ϕiN (s, τ )− ϕiN (s, 0)−
∫ τ

0
δiN (s, u)du ,

(4.19)

for any (i, s) ∈ [0, τ ] × {1, . . . , N }, where

ϕiN (s, u) := ∂xis
k̃(xs, xu) , δiN (s, u) := 1

2
∂xis

{�xu k̃(xs, xu)} .

By the second identity of (3.34) we arrive at

ϕiN (s, u) = ∂xis
k̃(xs, xu) = xiu1{i �=1}�N (s, u)+

√
N

q�
1{i=1}�1

N (s, u) , (4.20)

in terms of �N (·, ·) and �1
N (·, ·) of (3.7). Consequently,

ki jsu =∂
x j
u
{ϕiN (s, u)} = x j

s xiu
N
ν′′(CN (s, u))+ 1{i= j �=1}�N (s, u)

+ 1{i= j=1}
[
ν′(CN (s, u))− C̄N (s, u)

q2� ν
′′(qN (s))ν′′(qN (u))

ν′(q2� )

]

− 1{i=1}1{ j �=1}
q�x

j
s√
N

ν′′(qN (s))ν′(qN (u))
ν′(q2� )

− 1{ j=1}1{i �=1}
q�xiu√

N

ν′′(qN (u))ν′(qN (s))
ν′(q2� )

.

(4.21)
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Similarly,

�xu k̃(xs, xu) = KN (s)ν
′′(CN (s, u))− q2� ν

′′′(qN (u))
ν′(q2� )

ν′(qN (s))C̄N (s, u) , (4.22)

resulting after some algebra with

δiN (s, u) = xis
N
ν′′(CN (s, u))+ xiu

2N
KN (s)ν

′′′(CN (s, u))

− q2� ν
′′′(qN (u))
2ν′(q2� )

[
1{i �=1}

xiuν
′(qN (s))
N

+ 1{i=1}
q�ν′′(qN (s))√

N
C̄N (s, u)

]
. (4.23)

Next, with ϕ j
N (u, s) = ∂

x j
u
{̃k(xs, xu)} it follows from (3.34) and (4.7), that

[kτQ]is =
∫ τ

0
ψ i
N (s, u|τ)du , ψ i

N (s, u|τ) := ∂xis

[ N∑

j=1

ϕ
j
N (u, s)Q

j
u;τ
]
. (4.24)

Combining (4.17) and (4.20), we have

N∑

j=1

ϕ
j
N (u, s)Q

j
u;τ = N D̄N (s, u|τ)�N (u, s)+ N

q2�
QN (u|τ)�1

N (u, s) , (4.25)

which in view of (3.7), (3.8) and the symmetry of �N (·, ·) yields that

ψ i
N (s, u|τ) =

{ √
N

q�
�1

N (s, u|τ) , i = 1 ,

Qi
u;τ�N (s, u)+ xiu�N (s, u|τ) , i �= 1 .

(4.26)

In this case Y i
s;τ = V i

s;τ , so by (4.11), (4.19) and (4.24) we get

V i
s;τ = [kτ ◦ dx]is − [kτQ]is

= ϕiN (s, τ )− ϕiN (s, 0)−
∫ τ

0
[ψ i

N (s, u|τ)+ δiN (s, u)]du ∀s ∈ [0, τ ] .
(4.27)

In particular, for εN (s) := q�√
N

∫ s
0 δ

1
N (s, u)du, by (4.17), (4.20) and (4.26),

VN (s|s)+ εN (s) = �1
N (s, s)−�1

N (s, 0)−
∫ s

0
�1

N (s, u|s)du .

We now consider the E�-expected value of the preceding identity. From (4.23) we have that
εaN � 0, so with Ua

N (s, t) = E�UN (s, t |τ) we arrive at (4.3). Turning to the derivation of
(4.4), for τ = t ∨ s and

ε̃N (t, s) :=
∫ τ

0

{ 1

N

N∑

i=2

xisδ
i
N (t, u)

}
du ,

we have in view of (4.17), (4.20), (4.26) and (4.27), that

ĀN (t, s|τ)+ ε̃N (t, s) = 1

N

N∑

i=2

ϕiN (t, τ )x
i
s − 1

N

N∑

i=2

ϕiN (t, 0)x
i
s
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−
∫ τ

0

{ 1

N

N∑

i=2

ψ i
N (t, u|τ)xis

}
du

= C̄N (s, τ )�N (t, τ )− C̄N (s, 0)�N (t, 0)

−
∫ τ

0

{
D̄N (s, u|τ)�N (t, u)+ C̄N (s, u)�N (t, u|τ)

}
du .

Since ε̃ aN � 0, we get (4.4) from the preceding identity (upon applying (3.57) for the function
z1z2).

Moving to (4.5), by (4.2) it suffices to consider hereafter t ∈ [0, s]. Further, Bi
t = Ui

t −∫ t
0 G

i (xv)dv with Ui
t measurable on Fτ (c.f. (4.14)). Hence, in view of (4.12),

E�[(V i
s;τ − Gi (xs))Bi

t |Fτ ] = E�[(V i
s;τ − Gi (xs))

∫ t

0
(V i
v;τ − Gi (xv))dv|Fτ ]

=
∫ t

0
�i i
sv;τdv . (4.28)

In particular, setting

�N (s, t |τ) := 1

N

N∑

i=2

∫ t

0
�i i
sv;τdv

we deduce that

�N (s, t |τ) = 1

N

N∑

i=2

V i
s;τ Z

i
t;τ − F̄N (s, t |τ) = 1

N

N∑

i=2

Qi
s;τ Z

i
t;τ − EN (s, t |τ),

χ̄N (s, t |τ) = 1

N

N∑

i=2

xis Z
i
t;τ .

(4.29)

From (4.20), (4.26) and (4.29) (at τ = s), we also have that

�N (s, u; t) := 1

N

N∑

i=2

ϕiN (s, u)Z
i
t;s = χ̄N (u, t |s)�N (s, u),

�N (s, u; t) := 1

N

N∑

i=2

ψ i
N (s, u|s)Zi

t;s = [�N (u, t |s)

+ ĒN (u, t |s)
]
�N (s, u)+ χ̄N (u, t |s)�N (s, u|s).

(4.30)

Further, from (4.27) we get

�N (s, t |s)+ F̄N (s, t |s) = 1

N

N∑

i=2

V i
s;s Z

i
t;s

= �N (s, s; t)−�N (s, 0; t)−
∫ s

0
�N (s, u; t)du − ε̂N (s, t) , (4.31)

where ε̂N (s, t) := 1
N

∑N
i=2

∫ s
0 δ

i
N (s, u)Z

i
t;sdu is such that ε̂ aN � 0 (see (4.23)). Next, setting
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φN (s, v) := �N (s, v)− 1

N

N∑

i=2

�i i
sv;s − 1

N

N∑

i=2

∫ s

0
�N (s, u)�

i i
uv;sdu , v ∈ [0, s],

(4.32)

we see that
∫ t

0
�N (s, v)dv = �N (s, t |s)+

∫ s

0
�N (s, u)�N (u, t |s)du +

∫ t

0
φN (s, v)dv ,

so combining (4.30) and (4.31) results with
∫ t

0
�N (s, v)dv + F̄N (s, t |s) = χ̄N (s, t |s)�N (s, s)− χ̄N (0, t |s)�N (s, 0)+

∫ t

0
φN (s, v)dv

− ε̂N (s, t)−
∫ s

0

{
ĒN (u, t |s)�N (s, u)+ χ̄N (u, t |s)�N (s, u|s)

}
du .

(4.33)

Recalling that χ̄a
N (0, t) = 0, we thus get (4.5) by employing (3.57) on the E�-expectation of

the rhs of (4.33) and relying on the following analog of [10, Lemma 3.4].

Lemma 4.3 For φN (s, v) of (4.32),

lim
N→∞ sup

(s,v)∈�T

|φaN (s, v)| = 0.

Proof of Lemma 4.3 Recall that �̃ = � and k̃s = ks in our special case of Lemma 4.2. Thus,
setting

γ̄N (u, v|s) := 1

N 2

N∑

i, j=2

x j
s x

i
u�

j i
uv;s , γ 1N (u, v|s) := q�√

N

1

N

N∑

i=2

xiu�
1i
uv;s,

we deduce from (4.13), (4.21) and (4.32) that for any v, u ∈ [0, s],

0 = 1

N

N∑

i=2

[
kiisv − �i i

sv;s −
N∑

j=1

∫ s

0
ki jsu�

j i
uv;sdu

]

= φN (s, v)+ 1

N

[
ν′′(CN (s, v))C̄N (s, v)−�N (s, v)

]

−
∫ s

0
ν′′(CN (s, u))γ̄N (u, v|s)du

−
∫ s

0

[qN (s)
q2�

ν′′(CN (s, u))− ν′′(qN (u))ν′(qN (s))
ν′(q2� )

]
γ 1N (u, v|s)du .

Recalling Proposition 3.3 that the uniform moment bounds (3.9) apply for P� and anyUN ∈
UN , it thus suffices to show that E�[(γ̄N )2] � 0 and E�[(γ 1N )2] � 0. To this end, from the

definitions of ĀN , �
j i
uv;s (see (3.3), (4.12)), and the lhs of (4.17), we find that

γ̄N (u, v|s) = E�

[ 1

N 2

N∑

i, j=2

x j
s x

i
u(G

j (xu)− V j
u;s)(G

i (xv)− V i
v;s)|Fs

]

= E�

[
( ĀN (u, s)− ĀN (u, s|s))( ĀN (v, u)− ĀN (v, u|s))|Fs

]
.
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In particular, by Cauchy-Schwarz

sup
u,v∈[0,s]

{
E�

[
γ̄N (u, v|s)2

]} ≤ sup
u,v∈[0,s]

{
E�

[
( ĀN (v, u)− ĀN (v, u|s))2

]}

which goes to zero as N → ∞ (apply Corollary 3.2 for �(z) = (z1 − z2)2 and ZN =
( ĀN (·), ĀN (·|s)) with �(E�ZN ) = 0). Similarly, we get from (3.3), (4.12) and the right-
most identity in (4.17) that

γ 1N (u, v|s) = E�

[ q�√
N
(G1(xu)− V 1

u;s)
1

N

N∑

i=2

xiu(G
i (xv)− V i

v;s)|Fs

]

= E�

[
(VN (u)− VN (u|s))( ĀN (v, u)− ĀN (v, u|s))|Fs

]
.

Thus, as before, the uniform convergence to zero of E�[(γ 1N (u, v|s))2] follows by combining
Cauchy-Schwarz and Corollary 3.2 for P� (taking here ZN = (VN (u), VN (u|s))). ��

Proceeding to establish (4.6), we compute ĤN (s|s) by employingLemma4.2 for H = ĤN

(with N ′ = 1). This corresponds to having covariance kernel k̂1 jsu = 1
N ∂x j

u
k̃(xs, xu). In view

of our definition of ϕ j
N (u, s), we then get from the rhs of (4.11) at τ = s, upon utilizing

(4.18) and (4.25), that

ĤN (s|s) = 1

N

N∑

j=1

∫ s

0
∂
x j
u
{̃k(xs, xu)}dx j

u −
∫ s

0

1

N

[ N∑

j=1

ϕ
j
N (u, s)Q

j
u:s
]
du

= 1

N
k̃(xs, xs)− 1

N
k̃(xs, x0)

−
∫ s

0

[
D̄N (s, u|s)�N (u, s)+ q−2

� QN (u|s)�1
N (u, s)

]
du − ε†N (s) ,

for ε†N (s) := 1
2N

∫ s
0 {�xu k̃(xs, xu)}du such that (ε†N )a � 0 (see (4.22)). In view of the second

identity of (3.34), considering E� ĤN (s|s) yields (4.6) (upon applying (3.57) for the function
z1z2), thereby completing the proof of Proposition 4.1. ��

4.2 Proof of Proposition 3.6

We first show that t �→ χ(s, t) = χ̄(s, t) is continuously differentiable on s ≥ t . Indeed, per
fixed t we have from (3.30) and the rhs of (3.21) that Ē(s, t) = [kC Ē(·, t)](s) + h(s, t),
with

h(s, t) := [�(s, s)− f ′(K (s))]χ(s, t)−
∫ s

0
χ(u, t)�(s, u)du −

∫ t∧s

0
�(s, u)du

in Cb([0, T ]2), and integral operator kC on C([0, T ]) of uniformly bounded kernel �(s, u)
on [0, T ]2. As in the proof of [10, Lemma 4.1], Picard iterations yield that

Ē(s, t) =
∑

n≥0

[knCh(·, t)](s) = h(s, t)+
∫ s

0
κC (s, v)h(v, t)dv , (4.34)
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with a uniformly bounded kernel κC . Plugging (4.34) into the rhs of (3.27), we find by
Fubini’s theorem that

χ(s, t) = s ∧ t +
∫ s

0
[
∫ t∧v

0
�(v, u)du]κ1(s, v)dv +

∫ s

0
χ(v, t)κ2(s, v)dv ,

for some uniformly bounded κ1 and κ2 (which depend only on�,� and f ′(K (·))). Applying
Picard’s iterations now with respect to the integral operator [κ2g](s) = ∫ s0 κ2(s, v)g(v)dv,
we deduce that

χ(s, t) = s ∧ t +
∫ s

0

[
(u ∧ t)κ3(s, u)+

[ ∫ t∧u

0
�(u, v)dv

]
κ4(s, u)

]
du ,

for some uniformly bounded κ3 and κ4. With s ∧ t = t continuously differentiable on s ≥ t ,
we conclude by Fubini’s theorem that χ(s, t) = ∫ t0 R(s, u)du, for the bounded continuous

R(s, t) = 1 +
∫ s

t
[κ3(s, u)+�(u, t)κ4(s, u)]du .

In particular, R(s, s) = 1 for all s. Next, having that Ē(s, 0) = 0 for all s and Ē(s, t) =
Ē(s, s) for all t ≥ s, imply the same for χ(s, t) (see the rhs of (3.27)), and in particular
R(s, t) = (∂2χ)(s, t) = 0 when t > s. From the lhs of (3.27) we see that ∂2C̄(s, t) =
R(s, t) + D̄(s, t), hence also ∂1C̄(s, t) = ∂2C̄(t, s) = D̄(t, s) + R(t, s) (by the symmetry
of C̄). From the rhs of (3.20) we have Q(t) = ∂q(t), so by the lhs of (3.19)

∂2C(s, t) = D̄(s, t)+ R(s, t)+ q(s)Q(t)

q2�
. (4.35)

These imply in turn that the symmetricϒ(·, ·) of (3.22) is differentiable and by (3.23), (3.24),

∂2ϒ(s, u) = D̄(s, u)�(u, s)+ Q(u)

q2�
�1(u, s)

+R(s, u)

[
ν′(C(s, u))− ν′(q(s))ν′(q(u))

ν′(q2� )

]
,

with (1.21) a consequence of (3.31). Similarly, the symmetric�(·, ·)of (3.23) is differentiable
and by (3.25),

∂2�(s, t) = �(s, t)+ ν′′(C(s, t))R(s, t) , (4.36)

∂2[C̄(s, u)�(t, u)] = D̄(s, u)�(t, u)+ C̄(s, u)�(t, u)

+ C̄(s, u)ν′′(C(t, u))R(t, u)+ R(s, u)�(t, u).

Combining the latter with (3.29), then substituting into the lhs of (3.21) we get that for all
t, s ∈ [0, T ]2,

D̄(s, t) = − f ′(K (t))C̄(t, s)+
∫ t∨s

0
�(t, u)R(s, u)du

+
∫ t∨s

0
R(t, u)ν′′(C(t, u))C̄(s, u)du . (4.37)

Similarly, comparing (3.24) and (3.26) it is easy to check that

∂2�
1(s, u)−�1(s, u) = R(s, u)

[
q(u)ν′′(C(s, u))− q2� ν

′(q(u))ν′′(q(s))
ν′(q2� )

]
,
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which together with (3.28) and (3.20) (with v(·) = v�(·)), results with (1.19) (at β = 1).
Further, combining (1.19) at β = 1, (4.35) and (4.37) at t > s leads to

∂2C(s, t) = R(s, t)− f ′(K (t))C(t, s)+
∫ t

0
�(t, u)R(s, u)du

+
∫ t

0
R(t, u)

[
ν′′(C(t, u))C(s, u)− q(s)ν′(q(u))ν′′(q(t))

ν′(q2� )

]
du + βq(s)v′

�(q(t)) .

(4.38)

Noting that R(s, u) = 0 when u > s, whereas ∂1C(s, t) = ∂2C(t, s), interchanging t and s
in (4.38) results for s > t with (1.18) at β = 1.

Since K (s) = C(s, s), with C(s, t) = C(t, s) and ∂2C = D + R for D := D̄ +
q(s)Q(t)/q2� (see (4.35)), it follows that for all h > 0,

K (s)− K (s − h) =
∫ s

s−h
(D(s, u)+ R(s, u))du +

∫ s

s−h
(D(s − h, u)+ R(s − h, u))du .

Recall that R(s, u) = 0 for u > s, hence, dividing by h and taking h ↓ 0, we thus get by the
continuity of D and that of R for s ≥ t that K (·) is differentiable, with

∂s K (s) = 2D(s, s)+ R(s, s) = 2D(s, s)+ 1 , (4.39)

resulting by (4.37) with (1.20) for β = 1.
From the rhs of (3.27) we know that (∂1χ̄)(u, t) = Ē(u, t)+1{u<t}, which together with

(4.35) results for s ≥ t , with

χ̄(u, t)�(s, u) |s0 =
∫ s

0

[
(∂1χ)(u, t)�(s, u)+ χ̄(u, t)(∂2�)(s, u)

]
du

=
∫ t

0
�(s, u)du +

∫ s

0
Ē(u, t)�(s, u)du

+
∫ s

0
χ̄(u, t)

[
�(s, u)+ ν′′(C(s, u))R(s, u)

]
du .

It thus follows from (3.30) and the lhs of (3.21) that for any s ∈ [t, T ],

Ē(s, t) = − f ′(K (s))χ̄(s, t)+
∫ s

0
χ̄(u, t)ν′′(C(s, u))R(s, u)du (4.40)

(recall that χ̄ (0, t) = 0). Thus, setting as in [10, (4.4)],

g(s, t) := − f ′(K (s))R(s, t)+
∫ s

0
R(u, t)ν′′(C(s, u))R(s, u)du (4.41)

for s, t ∈ [0, T ]2, we get (1.17) (at β = 1), by following [10, Page 31] (now with (4.40) and
the rhs of (3.27) instead of [10, (4.3)] and [10, (1.18)], respectively).

5 Critical Points and the Conditional Model

In this section, using the Kac-Rice formula, we relate the dynamics of Theorem 1.5 corre-
sponding to initial conditions distributed according toμqo

σ around a uniformly chosen critical
point σ from CN ,q� (IN , I

′
N ) to those of Theorem 1.1 that correspond to initial conditions

distributed according to μqo
x� and the conditional disorder given CP(E,G, x�).
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Setting

ωN := 2πN/2

� (N/2)

for the surface area of the (N − 1)-dimensional unit sphere, we start with the following
consequence of the Kac-Rice formula (of [1, Theorem 12.1.1]).

Proposition 5.1 Let (σ , J) �→ gJ(σ ) be a continuousmapping in J such thatE[gJ(σ )2] < ∞
and the field

q�SN # σ �→ (HJ(σ ), ∂⊥HJ(σ ), gJ(σ ))

has a.s. continuous sample functions and a law invariant to rotations. We then have for
x� = (

√
Nq�, 0, . . . , 0), CP(E,G, x�) of (1.16), CN ,q� (I , I

′) of (1.25) and open intervals
I , I ′, I0 ⊂ R, that

E#
{
σ ∈ CN ,q�

(
I , I ′) : gJ(σ ) ∈ I0

} ≤ (√Nq�)
N−1ωN ϕ∇spHJ(x�)(0)

×
∫

I×I ′
dη(E,G)E

{∣∣
∣det

(
∇2
spHJ (x�)

)∣∣
∣ 1
{
gJ(x�) ∈ Ī0

} ∣∣
∣ CP(E,G, x�)

}
,

(5.1)

where ∇spHJ (σ ) = {Fi HJ (σ )}N−1
i=1 and ∇2

spHJ (σ ) = {Fi Fj HJ (σ )}N−1
i, j=1 for an arbi-

trary piecewise smooth orthonormal frame field {Fi } on the sphere, with ϕ∇spHJ(x�)(0)
denoting the Gaussian density of ∇spHJ (x�) at 0, while η denotes the joint law of
(−HJ(x�)/N ,−∂⊥HJ(x�)/‖x�‖) and Ī0 is the closure of I0.

Remark 5.2 Under additional regularity conditions about gJ(σ ), the variant of the Kac-Rice
formula in [1, Theorem 12.1.1] would have implied that (5.1) holds with equality and with
I0 instead of Ī0 on the rhs.

Proof Recall that in the pure case of ν(r) = bmrm the value of ∂⊥HJ(σ ) is determined by
HJ(σ ), whereas in the mixed case (i.e. any other ν(·)), the joint law of (HJ(σ ), ∂⊥HJ(σ )) is
non-degenerate (c.f. the statement ofTheorem1.1).Weassumehereafter that ν(·) corresponds
to amixed case, leaving to the reader themodifications required for handling such degeneracy
in the pure case.

Specifically, fixing ε, δ > 0 define Iδ = {x + y : x ∈ I0, |y| < δ} and gεJ(σ ) =
gJ(σ ) + εZ , where Z ∼ N (0, 1) is independent of σ and all other random variables.
Note that (J, gεJ(σ )) has a continuous, strictly positive density (J , x) �→ pJ(J )pZ (

1
ε
(x −

gJ(σ ))), where pJ and pZ are the densities of J and Z . By [13, Section 4.1] the
vector (HJ (σ ) , ∂⊥HJ (σ ) ,∇spHJ (σ ) ,∇2

spHJ (σ )), which is measurable w.r.t J, has a non-
degenerate7 Gaussian joint density. Therefore, the vector

(HJ (σ ) , ∂⊥HJ (σ ) ,∇spHJ (σ ) ,∇2
spHJ (σ ) , g

ε
J(σ ))

has a non-degenerate, strictly positive, continuous density.
Combining this with the assumptions made on gJ(σ ), the formula (1.3) for the Hamil-

tonian and its rotation-invariant law, we conclude that with f (σ ) = ∇spHJ(σ ), ∇ f (σ ) =
∇2
spHJ(σ ),

h(σ ) = (−HJ(σ )/N ,−∂⊥HJ (σ ) /(
√
Nq�), g

ε
J(σ ))

7 In the sense that the law of this array, when interpreting ∇2
spHJ(σ ) as the corresponding upper triangular

matrix, is absolutely continuous w.r.t. the Lebesgue measure on R × R × R
N−1 × R

N (N−1)/2.
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and B = I × I ′ × Iδ all the conditions of [1, Theorem 12.1.1] hold, except maybe the bound
in condition (g) on the modulus of continuity of gεJ(σ ). However, in the current setting the
latter condition is not necessary in order to conclude only the upper bound of [1, Eq. (12.1.4)],
i.e., an inequality in the direction ≤, instead of an equality. Indeed, going through the proof
of the upper bound of [1, Theorem 12.1.1] — which is based on the Euclidean version [1,
Theorem 11.2.1]— one sees that the bound on the modulus of continuity of h(σ ) is only used
when invoking [1, Lemma 11.2.12] to conclude that a.s. there is no point σ such that both
f (σ ) = 0 and h(σ ) ∈ ∂B. However, the latter fact follows here directly from the definition
of gεJ(σ ) and the fact the number of points such that ∇spHJ(σ ) = 0 is a.s. finite. Thanks to
the assumed rotation-invariance, the upper bound of [1, Eq. (12.1.4)] that we have just stated
simplifies to

E#
{
σ ∈ CN ,q�

(
I , I ′) : gεJ(σ ) ∈ Iδ

} ≤ (√Nq�)
N−1ωN ϕ∇spHJ(x�)(0)

× E

{∣∣
∣det

(
∇2
spHJ (x�)

)∣∣
∣ 1
{
h(x�) ∈ B

} ∣∣
∣∇spHJ (x�) = 0

}
.

(5.2)

Recalling [13, Section 4.1] that (−HJ(x�)/N ,−∂⊥HJ (x�) /(
√
Nq�)) and ∇spHJ (x�) are

independent, by further conditioning on the former we obtain from (5.2) that

E#
{
σ ∈ CN ,q�

(
I , I ′) : gεJ(σ ) ∈ Iδ

} ≤ (√Nq�)
N−1ωN ϕ∇spHJ(x�)(0)

×
∫

I×I ′
dη(E,G)E

{∣∣∣det
(
∇2
spHJ (x�)

)∣∣∣ 1
{
gεJ(x�) ∈ Iδ

} ∣∣∣CP(E,G, x�)
}
.

(5.3)

Let  L(ε, A) and  R(ε, A), respectively, denote the left- and right-hand side of (5.3), with
general A ⊂ R instead of Iδ . Note that limε→0+ P{εZ < δ} = 1 and

E#
{
σ ∈ CN ,q�

(
I , I ′) : gJ(σ ) ∈ I0

} ≤ 1

P{εZ < δ} L (ε, Iδ) .

Consequently, denoting by Īδ the closure of Iδ , it follows from (5.3) that

E#
{
σ ∈ CN ,1

(
I , I ′) : gJ(σ ) ∈ I0

} ≤ lim
δ→0+ lim

ε→0+ L (ε, Iδ) ≤ lim
δ→0+ lim

ε→0+ R
(
ε, Īδ

)

≤ lim
δ→0+ R

(
0, Īδ

) =  R
(
0, Ī0

)

where the last inequality holds since gεJ(σ )
a.s.→ gJ (σ ), as ε → 0 and the indicator function

of Īδ is upper semi-continuous, while the equality holds due to monotone convergence. This
completes the proof. ��

For G large enough, the determinant on the rhs of (5.1) is uniformly integrable in N and
the expectation of the determinant and the indicator can be separated, yielding the following
lemma.

Lemma 5.3 Assume that gJ(σ ) satisfies (5.1). Let x� = (
√
Nq�, 0, . . . , 0), IN , I ′

N ∈ R be a
pair of open intervals as in Theorem 1.5 and I0 ⊂ R a fixed open interval. If it holds that

lim
N→∞ sup

E∈IN
sup
G∈I ′

N

P

{
gJ(x�) ∈ Ī0

∣∣∣ CP(E,G, x�)
}

= 0, (5.4)

then in addition

lim
N→∞

E#
{
σ ∈ CN ,q�

(
IN , I ′

N

) : gJ(σ ) ∈ I0
}

E#CN ,q�

(
IN , I ′

N

) = 0. (5.5)
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Proof From (5.1) we have an upper bound for the numerator of (5.5). By an application of
the Kac-Rice formula [1, Theorem 12.1.1], the denominator of (5.5) is equal to the rhs of
(5.1) with the indicator omitted. Thus, to complete the proof it suffices to show that

lim
N→∞ sup

E∈IN
sup
G∈I ′

N

E

{∣∣
∣det

(
∇2
spHJ (x�)

)∣∣
∣ 1
{
gJ(x�) ∈ Ī0

} ∣∣
∣CP(E,G, x�)

}

E

{∣∣
∣det

(
∇2
spHJ (x�)

)∣∣
∣
∣
∣
∣CP(E,G, x�)

} = 0.

By (5.4) and the Cauchy-Schwarz inequality, it is therefore enough to show that

lim sup
N→∞

sup
E∈IN

sup
G∈I ′

N

E

{∣
∣
∣det

(
∇2
spHJ (x�)

)∣∣
∣
2 ∣∣
∣CP(E,G, x�)

}

(
E

{∣∣
∣det

(
∇2
spHJ (x�)

)∣∣
∣
∣
∣
∣CP(E,G, x�)

} )2 < ∞. (5.6)

To this end, recall [13, Section 4.1], that conditional on CP(E,G, x�),

∇2
spHJ (x�)

d=
√

N − 1

N
ν′′(q2� )M + G I,

whereM is a normalized (N −1)-dimensional goematrix, i.e., a real symmetric matrix with
independent centered Gaussian entries (up to symmetry), such that

EM2
i j =

{
2/(N − 1), i = j

1/(N − 1), i �= j .

We have assumed that inf I ′
N → G� > 2

√
ν′′(q2� ). Thus, the conditional distribution of

∇2
spHJ (x�) is identical to that of a shifted (scaled)goematrix whose eigenvalues are bounded

away from 0, uniformly in G ∈ I ′
N (and E ∈ IN ). Considering [34, Corollary 23] (at k = 2),

this yields (5.6), thereby completing the proof. ��

Recall the joint law P
N ,qo
J,σ on C(R+,R2N ), of Bt and the corresponding strong solution xt

of (1.1) for initial conditions x0 distributed per μ
qo
σ (see Proposition 3.8), denoting by EN ,qo

J,σ
the corresponding expectation.

Lemma 5.4 For ErrN ,T (σ ) of (1.26), the function

(σ , J) �→ ḡJ(σ ) := E
N ,qo
J,σ

[
ErrN ,T (σ )

]
(5.7)

satisfies the conditions of Proposition 5.1. Further, (5.4) then holds for any open intervals
IN , I ′

N as in Theorem 1.5, and any fixed open interval I0 such that 0 /∈ Ī0.

Proof Clearly ḡJ ∈ [0, 4], is uniformly bounded. The continuity of σ �→ (HJ(σ ), ∂⊥HJ(σ ))

follows for example from the representation (1.3). The invariance of the law of
(HJ(σ ), ∂⊥HJ(σ ), ḡJ(σ )) under rotations follows by the argument detailed in Remark 1.3.
Turning to show that (σ , J) �→ ḡJ(σ ) is a.s. continuous, upon fixing N and the driving
Brownian motion B we have by the triangle inequality and Cauchy-Schwarz, that

| ErrN ,T (σ | x0, J)− ErrN ,T (σ̃ | x̃0, J̃)| ≤ L1‖σ − σ̃‖2 + L2‖J − J̃‖ + L3
√
1 ∧ ‖eN‖∞

where eN (s) := N−1‖xs − x̃s‖22, L1 := N−1/2‖KN‖1/2∞ , L2 := c̃βN−1/2(1 + ‖KN‖m/2∞ )

and

L3 := 4 + ‖KN‖1/2∞ + ‖K̃N‖1/2∞ + ‖BN‖1/2∞ + cβ‖̃J‖N∞(1 + ‖KN‖r∞)(1 + ‖K̃N‖r∞) ,
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for c̃ = √
ν(1), the finite constants c, r from (3.47) and with the L2-norm ‖J‖ which is

normalized as in (3.1). Next, fixing σ ∈ q�SN , to jointly produce ḡJ(σ ) and ḡJ(σ̃ ) for
arbitrary σ̃ ∈ q�SN , let Õ be an orthogonal matrix which only rotates the space spanned by
σ and σ̃ (i.e., Õx = x if 〈x, σ 〉 = 〈x, σ̃ 〉 = 0), such that Õσ = σ̃ . Then,

sup
x∈SN

‖Õx − x‖2 = sup
x∈SN∩sp{σ ,σ̃ }

‖Õx − x‖2 = 1

q�
‖σ − σ̃‖2 .

Drawing x0 from law μqo
σ , we set x̃0 := Õx0 as the initial condition of laws μ

qo
σ̃ , noting that

by design ‖x0 − x̃0‖2 ≤ ‖σ − σ̃‖2/q�. Utilizing this coupling and Cauchy-Schwarz, yields
that

|ḡJ(σ )− ḡ̃J(σ̃ )| ≤
∫ {

‖σ − σ̃‖2 E[L1|J, x0] + ‖J − J̃‖E[L2|J, x0]

+ {E[1 ∧ ‖eN‖∞|J, J̃, x0]E[L2
3|J, J̃, x0]

}1/2}
dμqo

σ (x0) .

From (3.41) we deduce that
∫
E[Li |J, x0]dμqo

σ (x0), i = 1, 2, are a.s. finite. Further, fixing a
sequence (σ̃ , J̃) → (σ , J), necessarily also (̃x0, J̃) → (x0, J). In view of (3.38), this implies
a uniform, over (σ̃ , J̃), bound on E[‖K̃N‖k∞|̃J, x0]. Thereby, such uniform bound applies
also for

∫
E[L2

3|J, J̃, x0]dμqo
σ (x0), with (3.51) yielding the a.s. continuity of ḡJ(σ ).

Next, setting g̃J(σ ) := E
N ,qo
J,σ [ ErrN ,T (σ )1LN ,M ], we have in view of (3.46) and (5.7), that

lim
N→∞ sup

E∈IN
sup
G∈I ′

N

E

[
|ḡJ(x�)− g̃J(x�)|

∣∣CP(E,G, x�)
]

= 0 .

We thus establish (5.4) whenever 0 /∈ Ī0, once we show that in such a case

lim
N→∞ sup

E∈IN
sup
G∈I ′

N

P

{
g̃J(x�) ∈ Ī0

∣∣∣CP(E,G, x�)
}

= 0. (5.8)

To this end, recall from our proof of Proposition 3.8, that given CP(E,G, x�) one has J =
Jo + J̄E,G where the law of Jo is independent of (E,G) and the only non-zero entries of
J̄E,G = E[J |CP(E,G, x�)] are given by (3.32). Hence,

lim
N→∞ sup

E∈IN
sup
G∈I ′

N

{N−1‖(x0, Jo + J̄E,G ,B)− (x0, Jo + J̄E�,G� ,B)‖2}

= lim
N→∞ sup

E∈IN
sup
G∈I ′

N

m∑

p=2

(bpq
p
� 〈vp, (E − E�,G − G�)〉)2 = 0.

The Lipschitz property (3.50) then implies that

lim
N→∞ sup

E∈IN
sup
G∈I ′

N

|̃gJo+J̄E,G (x�)− g̃Jo+J̄E�,G�
(x�)| = 0 ,

whereas from the L1-convergence in Theorem 1.1 we deduce that

lim
N→∞P

{
g̃J(x�) ∈ Ī0

∣∣∣CP(E�,G�, x�)
}

= 0.

Finally, note that combining the preceding two displays results with (5.8). ��
Proof of Theorem 1.5 With ḡJ ∈ [0, 4], by Markov’s inequality, for any δ, ε > 0,

E

{ ∑

σ∈C N ,q� (IN , I
′
N )

P
N ,qo
J,σ ( ErrN ,T (σ ) > ε)

}
≤ 1

ε
E

{ ∑

σ∈C N ,q� (IN , I
′
N )

ḡJ(σ )
}
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≤ δ

ε
E#
{
σ ∈ CN ,q�

(
IN , I

′
N

)}+ 4

ε
E#
{
σ ∈ CN ,q�

(
IN , I

′
N

) : ḡJ(σ ) > δ
}
.

In addition, for any δ > 0 it follows from Lemmas 5.3 and 5.4, that

lim
N→∞

E#
{
σ ∈ CN ,q�

(
IN , I ′

N

) : ḡJ(σ ) > δ
}

E#CN ,q�

(
IN , I ′

N

) = 0.

Combining the above and taking N → ∞ followed by δ → 0 results with (1.27).
Next, denoting by Ya the indicator of the event that

#CN ,q�

(
IN , I

′
N

)
> aE

{
#CN ,q�

(
IN , I

′
N

)}
,

we have by Markov’s inequality, that for any δ > 0,

P

{ Ya
#CN ,q� (IN , I

′
N )

∑

σ∈C N ,q� (IN , I
′
N )

P
N ,qo
J,σ ( ErrN ,T (σ ) > ε) > δ

}

≤ 1

aδE
{
#CN ,q�

(
IN , I ′

N

)}E
{ ∑

σ∈C N ,q� (IN , I
′
N )

P
N ,qo
J,σ ( ErrN ,T (σ ) > ε)

}
N→∞−→ 0,

from which (1.29) follows. ��

6 Proof of Proposition 1.6

As χ(s, t) = ∫ t0 R(s, u)du is the limit of χN (s, t), it follows from the definition (1.9) of χN
that

|
∫ t2

t1
R(s, u)du|2 ≤ K (s)(t2 − t1) , 0 ≤ t1 ≤ t2 ≤ s < ∞ . (6.1)

Likewise, the limit C̄(s, t) = C(s, t) − q(s)q(t)/q2� of the empirical correlation functions
C̄N (s, t) must be a non-negative definite kernel on R+ × R+. In particular, C(s, t)2 ≤
K (s)K (t), whereas by (3.41) we have that supt≥0 K (t) < ∞. Unlike the special case
considered in [24, Proposition 1.1], here the functions (C, R) may take negative values.
Nevertheless,we next show that if (R(L),C (L), q(L), K (L)) are solutions of the system (1.17)–
(1.20) with K (L)(0) = 1 and potential fL(·) as in (1.12) with ϕ = 1+2βqov′

�(qo) > 0, then
K (L)(s) → 1 as L → ∞, uniformly over s ≥ 0.

Lemma 6.1 Assuming K (L)(0) = 1, there exist B < ∞, such that for all L ≥ B,

sup
s≥0

|K (L)(s)− 1| ≤ B

2L
. (6.2)

Proof First note that for some B0 = B0(ϕ, k) finite and any B ∈ [B0, L],
gL(r) := 1 − 2 f ′

L(r)r = 1 + 4Lr(1 − r)− ϕr2k (6.3)

satisfies gL(1 − B/(2L)) ≥ B/2 and gL(1 + B/(2L)) ≤ −B/2. Further, from (4.39) and
the lhs of (3.19)–(3.21) we see that

∂s K
(L)(s) = 1 + 2D(L)(s, s) = gL(K

(L)(s))+ 2βA(L)(s, s) , (6.4)
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where it is easy to verify that (in terms of V (·) and Ā(·, ·) of (3.28) and (3.29)),

A(s, t) := q(t)v′
�(q(s))+ β Ā(s, t)+ βq(t)V (s)/q2� = lim

N→∞ Ẽ
[ 1
N

N∑

i=1

Gi (xs)xit
]
.

Recall [10, (2.15)], that for some universal constant c < ∞ any s, J and N ,

GN (s) := 1

N

N∑

i=1

|Gi (xs)|2 ≤ c(‖J‖N∞)2[1 + KN (s)
m−1] .

Hence, by Cauchy-Schwarz inequality and (3.39) (at k = 4), it follows that for some other
universal constant κ < ∞ (which is independent of L),

|A(s, s)|2 ≤ lim
N→∞ Ẽ[GN (s)KN (s)]

≤ c lim
N→∞ Ẽ

[
(‖J‖N∞)2(KN (s)+ KN (s)

m)] ≤ κ(K (s)+ K (s)m)

(in the last step we relied also on Corollary 3.2). We thus have, similarly to [24, (2.3)], that
for all s and L ,

|∂s K (L)(s)− gL(K
(L)(s))|2 ≤ (2β)2κ[K (L)(s)+ K (L)(s)m] .

Our claim (6.2) then follows as in [24, proof of Lemma 2.2] (employing the argument used
there for K (L) ≥ 1, to handle now also the case K (L) ≤ 1). ��

Adapting the proof of [24, Lemma 2.3], we next establish the equi-continuity and uniform
boundedness of (R(L),C (L), K (L), q(L)), which thereby admit limit points (R,C, K , q).

Lemma 6.2 Set μ(L)(s) := f ′
L(K

(L)(s)) and ĥ(L)(s) := ∂s K (L)(s). Then (R(L),C (L), q(L),

K (L), μ(L), ĥ(L)) and their derivatives are bounded uniformly in L ≥ B (of Lemma 6.1) and
over �T .

Proof With |C (L)(s, t)| ≤ √K (L)(s)K (L)(t) and |q(L)(s)| ≤ √K (L)(s), the bound (6.2) on
K (L) results for L ≥ B with C (L), q(L) ∈ [−2, 2]. Further, then |μ(L)(s)| ≤ 2B + |ϕ|2k−1

(see [24, proof of Lemma 2.3]). In view of (6.4),

ĥ(L)(s) = 1 − 2K (L)(s)μ(L)(s)+ 2βA(L)(s, s), (6.5)

yielding in turn the uniform boundedness of ĥ(L)(s).
Since (1.17) matches [24, (1.7)], it follows that for the function HL(s, t) of [24, (2.2)],

R(L)(s, t) = �L(s, t)HL (s, t) , �L(s, t) = exp(−
∫ s

t
μ̂(L)(u)du) , ∀(s, t) ∈ �T .

(6.6)

Recall that ν′′(·) is uniformly bounded on the compact [−2, 2], hence HL of [24, (2.2)] is
uniformly bounded over �T and L ≥ B, and thereby the same applies for R(L).

Upon replacing f ′
L(K

(L)(s)) by μ(L)(s) in (1.17)–(1.20), we deduce from our pre-
ceding statements the claimed uniform boundedness for ∂sq(L), ∂s K (L), ∂sC (L)(s, t) and
∂s R(L)(s, t), when s ≥ t . Following [24, proof ofLemma2.3], the same applies for ∂t HL(s, t)
and consequently for ∂t R(L)(s, t). Further, from (3.23), such uniform boundedness applies
to D̄(L)(s, t) of (4.37), hence by (4.35) also to

∂tC
(L)(s, t) = D̄(L)(s, t)+ R(L)(s, t)+ (q(L)(s)/q2� )∂t q(L)(t) .
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Next, ∂s ĥ(L)(s) = −4Lĥ(L)(s)+ κL(s) for
κL(s) := (g′

L(K
(L)(s))+ 4L)ĥ(L)(s)+ 2β∂sA(L)(s, s) .

In view of (6.3) we have that |g′
L(r)+ 4L| ≤ 4B + k|ϕ|22k whenever |r − 1| ≤ B/(2L) ≤

1/2, while |∂s A(L)(s, s)| is bounded uniformly in L ≥ B and s ≤ T (by (1.20) and the
uniform boundedness of (R(L),C (L), q(L)) and ∂s(R(L),C (L), q(L))). In particular, α(T ) :=
sup{|κL(u)| : L ≥ B, u ≤ T } is finite. Next, recall (6.4) that K (L)(0) = 1 and gL(1) = 1−ϕ

(see (6.3)), resulting for our choice of ϕ = 1 + 2βqov′
�(qo) = 1 + 2βA(L)(0, 0) with

ĥ(L)(0) = 0. Thus,

ĥ(L)(s) =
∫ s

0
e−4L(s−u)κL (u)du

yielding that

sup
s∈[0,T ]

|ĥ(L)(s)| ≤ α(T )

4L
, ∀L ≥ B , (6.7)

fromwhich the uniform boundedness of |∂s ĥ(L)| follows. Finally, by definition, for our choice
of fL(·),

∂sμ
(L)(s) = f ′′

L (K
(L)(s))ĥ(L)(s) =

[
2L + (2k − 1)ϕ

2
K (L)(s)2k−2

]
ĥ(L)(s) ,

which by (6.7) provides the uniform boundedness of |∂sμ(L)|. ��
Proof of Proposition 1.6 Recall Lemma 6.2 that (R(L),C (L), q(L), K (L), μ(L), ĥ(L)), L ≥ B
are equi-continuous and uniformly bounded on �T . Hence, by the Arzela-Ascoli theorem,
this collection has a limit point (C, R, q, K , μ, ĥ) with respect to uniform convergence on
�T .

By Lemma 6.1 we know that the limit K (s) ≡ 1 on [0, T ], whereas by (6.7) we have that
ĥ(s) ≡ 0 on [0, T ]. Considering Ln → ∞ for which (R(Ln),C (Ln), q(Ln), K (Ln), μ(Ln),

ĥ(Ln)) converges to (R,C, q, K , μ, ĥ) we find that the latter must satisfy (1.33). Further,
since R(L)(t, t) = 1, C (L)(t, t) = K (L)(t) and q(L)(0) = qo, integrating (1.17)–(1.19)
we see that R(L)(s, t) = 1 + ∫ st A(L)R (θ, t)dθ , C (L)(s, t) = K (L)(t) + ∫ st A(L)C (θ, t)dθ and

q(L)(s) = qo + ∫ s0 A(L)q (θ)dθ , where

A(L)R (θ, t) := −μ(L)(θ)R(L)(θ, t)+ β2
∫ θ

t
R(L)(u, t)R(L)(θ, u)ν′′(C (L)(θ, u))du,

A(L)C (θ, t) := −μ(L)(θ)C (L)(θ, t)+ βA(L)(θ, t) ,
A(L)q (θ) := −μ(L)(θ)q(L)(θ)

+ β2
∫ θ

0
R(L)(θ, u)

[
q(L)(u)ν′′(C (L)(θ, u))− q2� ν

′(q(L)(u))ν′′(q(L)(θ))
ν′(q2� )

]
du + βq2� v′

�(q
(L)(θ)) .

Note thatμ(Ln)(s) → μ(s), whileA(Ln)
R (s, t),A(Ln)

C (s, t) andA(Ln)
q (s, t) converge, uniformly

on �T , to the right-hand-sides of (1.30)–(1.32), respectively. We thus deduce that for each
limit point (C, R, q, μ), the functions C(s, t), R(s, t) and q(s) are differentiable in s on�T

and all limit points satisfy (1.30)–(1.33). Further,C (L)(s, t) are non-negative definite kernels
with C (L)(t, t) → 1 as L → ∞. Consequently, each of their limit points corresponds to a
[−1, 1]-valued non-negative kernel on [0, T ]2. Similarly, as R(L)(t, t) = 1 and R(L)(s, t)
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satisfy (6.1), both constraints apply for any limit point R(s, t). We further extend R(·, ·) to
a function on [0, T ]2 by setting R(s, t) = R(L)(s, t) = 0 whenever s < t .

With Ĥ(·) a continuous functional of (R,C, q), it remains only to verify that the system
of equations (1.30)–(1.33) with q(0) = qo, C(s, t) = C(t, s), C(t, t) = R(t, t) = 1 and
R(s, t) = 0 for s < t , admits at most one bounded solution (R,C, q) on [0, T ]2. To this end
consider the difference between the integrated form of (1.30)–(1.32) for two such solutions
(C, R, q) and (C̄, R̄, q̄). Since ν′′, ν′, v′

� are locally Lipschitz, we get as in [24, proof of
Prop. 1.1], that �R = |R − R̄|, and �C = |C − C̄ | + |q(s)− q̄(s)| + |q(t)− q̄(t)| satisfy
on �T

�R(s, t) ≤ κ1
{ ∫ s

t
[�R(v, t)+�C(v, t)]dv +

∫ s

t
h(v)dv

}
,

�C(s, t) ≤ κ1
[ ∫ s

t
�C(v, t)dv + h(t)+

∫ s

t
h(v)dv

]
,

where h(v) := ∫ v0 [�R(v, u)+�C(v, u)]du and κ1 < ∞ depends on T , β, ν(·), v′
�(·) and

the maximum of |R|, |C |, |q|, |R̄|, |C̄ | and |q̄| on [0, T ]2. Integrating these inequalities over
t ∈ [0, s], since �R(v, u) = 0 for u ≥ v and �C(v, u) = �C(u, v), we find similarly to
[24, Page 860], that

0 ≤ h(s) ≤ 2κ2

∫ s

0
h(v)dv , h(0) = 0 ,

for some finite constant κ2 (of the same type of dependence as κ1). By Gronwall’s lemma we
deduce that h ≡ 0 on [0, T ], hence �R(s, t) = �C(s, t) = 0 for a.e. (s, t) ∈ �T . By the
continuity and symmetry of these functions, the same applies for all (s, t) ∈ [0, T ]2, yielding
the stated uniqueness and thereby completing the proof. ��

7 Proof of Proposition 2.1

Consider the convex set A+ of bounded continuous functions (R,C, q) ∈ Cb(�∞) ×
Cb(R2+) × Cb(R+) such that C(s, t) = C(t, s), R(s, s) = C(s, s) = 1 and q(0) = qo,
equipped with the norm

‖(R,C, q)‖ = sup
(s,t)∈�∞

|R(s, t)| + sup
(s,t)∈�∞

|C(s, t)| + sup
s≥0

|q(s)| . (7.1)

Analogously to [24, (4.1)–(4.3)], we recall from Proposition 1.6 that (R,C, q) of (1.30)–
(1.33) is the unique fixed point of the mapping � : (R,C, q) �→ (R̃, C̃, q̃) on A+ such that
for any (s, t) ∈ �∞

∂s R̃(s, t) = −μ(s)R̃(s, t)+ β2
∫ s

t
R̃(u, t)R̃(s, u)ν′′(C(s, u))du, (7.2)

∂sC̃(s, t) = −μ(s)C̃(s, t)+ β2 I1(s, t)+ β2 I2(s, t), (7.3)

∂s q̃(s) = −μ(s )̃q(s)+ β2 I3(s), (7.4)

with μ(s) = μ(R,C,q)(s) = 1
2 + β2 I0(s) of (1.33) and

I0(t) :=
∫ 0

−t
R(t, t + u)

[
ψ(C(t, t + u))
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− ψ(q(t))ν′(q(t + u))

ν′(q2� )

]
du

+ β−1q(t)v′
�(q(t)) ,

I1(t + v, t) :=
∫ v

−t
R(t + v, t + u)

[
ν′′(C(t + v, t + u))C(t + u, t)

− q(t)ν′(q(t + u))ν′′(q(t + v))
ν′(q2� )

]
du ,

I2(t + v, t) :=
∫ 0

−t
R(t, t + u)

[
ν′(C(t + v, t + u))

− ν′(q(t + v))ν′(q(t + u))

ν′(q2� )

]
du

+ β−1q(t)v′
�(q(t + v)) ,

I3(t) :=
∫ 0

−t
R(t, t + u)

[
q(t + u)ν′′(C(t, t + u))

− q2� ν
′(q(t + u))ν′′(q(t))

ν′(q2� )

]
du

+ β−1q2� v
′
�(q(t)) .

We next characterize the possible limits (Rfdt,Cfdt) in (2.1) in case we have for β > 0,
|qo| ≤ q� that:

(H1). There exists a closed set A ⊂ {(R,C, q) ∈ A+ : ‖(R,C, q)‖ ≤ ρ}, where the
functions {R(t + ·, t), t ≥ T0} are uniformly integrable wrt Lebesgue measure on R and

lim inf
v→−∞ inf

t≥−v
{ 1

|v|
∫ 0

v

μ(R,C,q)(t + u)du
}
> 0 . (7.5)

(H2). � is a contraction on (A, ‖ · ‖) and the subset S of A with property (2.1) for some
|α| ≤ 1, is non-empty.

Proposition 7.1 Assuming (H1)–(H2), the solution (R,C, q) of (1.30)–(1.33) is the unique
fixed point of� inS and (Rfdt,Cfdt)of (2.1)are a solution in B̃ := {(R,C) ∈ B(R+)×B(R) :
C(0) = R(0) = 1, C(τ ) = C(−τ)} of [24, (4.15)–(4.16)], with μ as in [24, (4.17)], but
now for (I, α) satisfying (2.4) and (2.5).

Proof We first verify that for the given β and qo, any S = (R,C, q) ∈ S results with
�(S) ∈ S. To this end, proceeding similarly to [24, proof of (4.7)], we have for (R,C, q) ∈ S
that as t → ∞ the bounded integrands in the formulas for Ii (·, ·), i = 0, 1, 2, 3, converge
pointwise (per fixed u = v − θ ), to the corresponding expression for (Rfdt,Cfdt, αq�).
Further, thanks to the uniform integrability of the collection {R(t + ·, t), t ≥ T0} (when
(R,C, q) ∈ A, see (H1)), the contributions of the integrals over [−t,−m] decay to zero as
m → ∞, uniformly in t . Thus, applying the bounded convergence theorem for the integrals
over [−m, v], then taking m → ∞, we deduce that for each fixed v ≥ 0, in analogy with
[24, (4.11)–(4.12)],

Î0 := lim
t→∞ I0(t) =

∫ ∞

0
Rfdt(θ)

[
ψ(Cfdt(θ))− ψ(αq�)ν′(αq�)

ν′(q2� )

]
dθ
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+ β−1αq�v′
�(αq�) , (7.6)

Î1(v) := lim
t→∞ I1(t + v, t) =

∫ ∞

0
Rfdt(θ)

[
ν′′(Cfdt(θ))Cfdt(v − θ)

− αq�ν′′(αq�)ν′(αq�)
ν′(q2� )

]
dθ , (7.7)

Î2(v) := lim
t→∞ I2(t + v, t) =

∫ ∞

v

Rfdt(θ − v)
[
ν′(Cfdt(θ))− ν′(αq�)2

ν′(q2� )

]
dθ

+ β−1αq�v′
�(αq�) , (7.8)

Î3 := lim
t→∞ I3(t) =

∫ ∞

0
Rfdt(θ)

[
αq�ν

′′(Cfdt(θ))− q2� ν
′(αq�)ν′′(αq�)
ν′(q2� )

]
dθ

+ β−1q2� v
′
�(αq�) . (7.9)

Using the notation Ii (·, t) := Ii (t) for i = 0, 3, we further know by the preceding
that supt,v≥0{|Ii (t + v, t)|} < ∞ for 0 ≤ i ≤ 3, yielding in particular the finiteness
of supt≥0 supv∈[0,τ ]{�(t + τ, t + v)} for �(·, ·) of [24, (4.8)]. Recall from (7.2) that
R̃(s, t) = �(s, t)H̃(s, t) for H̃(·, ·) of [24, (4.9)], hence by bounded convergence (as in
[24]), we have for any τ ≥ 0,

�̂(τ − v) := lim
t→∞�(t + τ, t + v) = e−(τ−v)μ , ∀v ∈ [0, τ ], (7.10)

C̃fdt(τ ) := lim
t→∞ C̃(t + τ, t)

= �̂(τ )+ β2
∫ τ

0
�̂(τ − v) Î1(v)dv + β2

∫ τ

0
�̂(τ − v) Î2(v)dv , (7.11)

H̃fdt(τ ) := lim
t→∞ H̃(t + τ, t)

= 1 +
∑

n≥1

β2n
∑

σ∈NCn

∫

0≤θ1≤···≤θ2n≤τ

∏

i∈cr(σ )
ν′′(Cfdt(θi − θσ(i)))

2n∏

j=1

dθ j , (7.12)

R̃fdt(τ ) := lim
t→∞ R̃(t + τ, t) = �̂(τ )H̃fdt(τ ) . (7.13)

Unlike [24], here in principle Ii (s, t) might take negative values. However, thanks to (7.5),

μ := lim
t→∞{μ(t)} = 1

2
+ β2 Î0 > 0 . (7.14)

With �(t, x) = �(t, 0)�(0, x), also

q̃(t) = �(t, 0)q0 + β2
∫ 0

−t
�(t, t + v)I3(t + v)dv ,

where by (7.5) we have that �(t, 0) → 0 and the integral over [−t,−m] decays to zero as
m → ∞, uniformly in t . Applying bounded convergence for the integral over [−m, 0], then
taking m → ∞, we see that

α̃q� := lim
t→∞ q̃(t) = β2 Î3

∫ ∞

0
�̂(v)dv = β2

μ
Î3 . (7.15)
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Thus,�(S) ⊂ S, with� inducing on S the mapping�fdt : (Rfdt,Cfdt, α) → (R̃fdt, C̃fdt, α̃)

given by (7.10)–(7.15), for Îi , i = 0, 1, 2, 3 as in the rhs of (7.6)–(7.9). In particular, R̃fdt

and C̃fdt are differentiable on R+ and satisfy [24, (4.23)–(4.24)] for R̃fdt(0) = C̃fdt(0) = 1
and the preceding values of Îi , i = 0, 1, 2.

Next, recall (H2) that � is a contraction on (A, ‖ · ‖), hence also on its non-empty
subset S. Thus, starting at any S(0) = (R(0),C (0), q(0)) ∈ S yields a Cauchy sequence
S(k) = �(S(k−1)) ∈ S, k = 1, . . . for the norm ‖ · ‖ of (7.1), with S(k) → S(∞) in the
closed subsetA of (A+, ‖ · ‖). Further, fixing τ ≥ 0, with |(x, y, z)| := |x |+ |y|+ |z|, since
S(k) ∈ S we have that

lim
T→∞ sup

t,t ′≥T
|S(∞)(t + τ, t)− S(∞)(t ′ + τ, t ′)| ≤ 2‖S(∞) − S(k)‖ .

Taking k → ∞ we deduce that {t �→ S(∞)(t + τ, t)} is a Cauchy mapping from R+ to
|(x, y, z)| ≤ ρ, hence S(∞)(t + τ, t) converges as t → ∞. This applies for any τ ≥ 0,
hence S(∞) ∈ S is the unique fixed point of the contraction � on (S, ‖ · ‖). In particular,
as shown in (7.6) this implies also that μ(t) → μ of (7.14). Recall that any fixed point of
� must satisfy (1.30)–(1.33), hence the unique solution of the latter equations in A+ must
coincide with S(∞) and in particular be in S. As noted before, this yields the existence of
(Rfdt,Cfdt) ∈ B̃ which for a suitable choice of α forms a fixed point of �fdt. Considering
(7.14) and [24, (4.24)] for Îi (·), i = 0, 1, 2, of (7.6)–(7.8) we arrive at [24, (4.15)–(4.17)],
now with the possibly non-zero I as given in (2.5). Finally, in view of (7.15) and (7.9), our
constraint (2.4) on α is merely the fixed point condition α̃ = α. ��

Proof of Proposition 2.1 We start with our second claim, where we allow for arbitrary β > 0,
but assume that the unique fixed point (R,C, q) of � in A+ satisfies (2.1) as well as the
properties in (H1). While proving Proposition 7.1 we have showed that it results with (7.6)–
(7.9), and thereby with μ(t) → μ for (Rfdt,Cfdt, μ) a solution of [24, (4.15)–(4.17)] on
B̃ with (I, α) satisfying (2.4)–(2.5). To complete our claim, note that (2.7) amounts to [24,
(1.21)] holding for φ(·) of (2.2) and b = 1/2, so by [24, Proposition 5.1] we have that
(Rfdt,Cfdt, μ) = (−2D′, D, φ(1)) satisfies [24, (4.15)–(4.17)] for I of (2.6) and the unique
D(·) of (2.3).

Turning to our first claim, note that α = 0 satisfies (2.4) for any value of β. Further, from
[24, (4.17)] and (2.5) we see that μ → 1

2 when β ↓ 0 and since the finite polynomials ν′(x)
and v′

�(x) are both zero at x = 0, it is easy to check that α = 0 is the only solution of (2.4)
for small β > 0. In case qo = 0 it is also shown in [24, Section 4] that for small β our
assumptions (H1)–(H2) hold for A consisting of eδ|s−t |(R,C, q)(s, t) ∈ [0, ρ(r |s − t | +
1)−3/2] × [0, c] × {0} and suitably chosen parameters δ, r , ρ, c. Leaving the details to the
reader, such analysis can be extended to yield (H1)–(H2) for any |q0| ≤ q� and β ∈ [0, β1),
again with α = 0, but now for

A :=
{
(R,C, q) ∈ A+ : |R(t + τ, t)| ≤ ρ(rτ + 1)−3/2e−δτ ,

|C(t + τ, t)| ≤ ce−δτ , |q(τ )| ≤ κe−ητ}

and certain positive δ, r , ρ, c, κ, η (that may depend on β and qo). The unique fixed point
of � in S one gets from Proposition 7.1 must then have I = α = 0, with (Rfdt,Cfdt, μ) the
unique solution of [24, (4.15)–(4.17)] within a subset of B̃ analogous to B(δ, r , ρ, c) of [24,
Proposition 4.2], except for allowing here possible negative values of Rfdt orCfdt. Recall that
for all β up to βc of [24, (1.23)] both (2.6) and (2.7) hold for γ = 1/2 and I = D∞ = 0.
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Thus, as we have seen before, for such β the unique solution of [24, (4.15)–(4.17)] alluded
to above corresponds to Cfdt(·) = D(·) for the [0, 1]-valued solution of (2.3). ��
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