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Abstract

We derive the thermodynamic limit of the empirical correlation and response functions in
the Langevin dynamics for spherical mixed p-spin disordered mean-field models, starting
uniformly within one of the spherical bands on which the Gibbs measure concentrates at low
temperature for the pure p-spin models and mixed perturbations of them. We further relate
the large time asymptotics of the resulting coupled non-linear integro-differential equations,
to the geometric structure of the Gibbs measures (at low temperature), and derive their FDT
solution (at high temperature).

Keywords Interacting random processes - Disordered systems - Statistical mechanics -
Langevin dynamics - Aging - Spin glass models
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1 Introduction

The thermodynamic limits of a wide class of Markovian dynamics with random interactions,
exhibit complex long time behavior, which is of much interest in out of equilibrium statistical
physics (c.f. the surveys [14,15,22] and the references therein). This work is about the ther-
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modynamic (N — 00), long time ( — 00), behavior of a certain class of systems composed
of N Langevin particles x, = (x/)1<j<y € R", interacting with each other through a random
potential. More precisely, one considers a diffusion of the form

dx; = — f'(IIx/||*/N)x,dt — BV Hy(x,)dt + dB;, (1.1)

where B, is an N -dimensional Brownian motion, ||x|| denotes the Euclidean norm of x € RV
and differentiable fast growing functions f = £ such that e=/2) approximates as L — oo
the indicator on r = 1, effectively restricting x; to the sphere Sy := SN-1(/N) of radius
VN In particular, the spherical, mixed p-spin model (with p < m), has a centered Gaussian
potential Hy : RY — R of non-negative definite covariance structure

m

Cov(Hy(x), Hy(y)) = Nv(N"Hx.y)) ., v() =Y b2rP (1.2)
p=2

(see Remark 1.8 on a possible extension to m = 00). Hereafter we shall realize this potential
as

m
Hyx) = "by, > Jiqpxooox? by #£0 (1.3)
p=2 I=i1<-<ip<N

for independent centered Gaussian coupling constants J = {J;,...;, }, such that

p!

oy = NPT
Var(Ui.iy) = N7 o (1.4)
where (I1, 12, ...) are the multiplicities of the different elements of the set {i,...,i,} (so
having iy # ip--- # i, yields variance larger by a factor p! from the variance in case

i1 =ly="---=1Ip)

Given a realization of the coupling constants, the dynamics of (1.1) is invariant (and
moreover, reversible), for the (random) Gibbs measure Mlzvﬁ jon RV, where ,ug 3 has the
density

duly _
B _ -1 —BHyx)-Nf(N~'|x|?)
2 - Zg e P (1.5)

(with respect to Lebesgue measure). The normalization factor Zg y = [ e~ BHIO—NF (N IxI%)
dx is finite if

igg{f/(r) — Ay S o (1.6)

for some A > 0 and k > m /4. Similar random measures have been extensively studied in
mathematics and physics over the last three decades (see e.g. [17,36], for the rigorous analysis
of the asymptotic of N~ log Z p,J for the hard spherical constraint of having ||x]| |2 = N).
Large dimensional Langevin or Glauber dynamics often exhibit very different behavior at
various time-scales (as functions of system size, c.f. [9] and references therein). Following
the physics literature (see [15,20,22,23]), we study (1.1) for the potential Hy(x) of (1.3) at
the shortest possible time-scale, where N — oo first, holding ¢ € [0, T']. While it is too
short to allow any escape from meta-stable states, considering the hard spherical constraint,
Cugliandolo-Kurchan have nevertheless predicted a rich picture for the limiting dynamics
when starting out of equilibrium, say at xg distributed uniformly over Sy. Such limiting
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dynamics involve the coupled integro-differential equations relating the non-random limits
C(s,t)and

X(s,t):/tR(s,u)du, (1.7)
0

of the empirical covariance function
1
CN(S,Z)—N X, X;) = Zx x,, s>t (1.8)

and the integrated response function

1
N (s, 1) = (%, By) = Zx B;, (1.9

respectively. Specifically, it is predicted that for large § the asymptotic of C (s, ¢) strongly
depends on the way ¢ and s tend to infinity, exhibiting aging behavior (where the older it gets,
the longer the system takes to forget its current state, see e.g. [23,28]). A detailed analysis of
such aging properties is given in [8] for the case of m = 2 in (1.3) (noting that {J;;} form the
GOE random matrix, whose semi-circle limiting spectral measure determines the asymptotic
of C(s, 1)). For m > 2, assuming hereafter that f is locally Lipschitz, satisfying (1.6) and
such that for some x < 00,

sup | f/(M|(1+7r)7" < o0, (1.10)

r>0
we have from [10, proof of Proposition 2.1] that for each N, any finite disorder J and initial
condition xg, there exists a unique strong solution in C(R™, RM) of (1.1) (for a.e. path
t — By). For such f the closed equations for C and R are rigorously derived in [10] when
X Is independent of J and satisfies the concentration of measure property of [10, Hypothesis
1.1], provided in addition N +— E[Cx (O, 0)¥] is uniformly bounded for each fixed k < oo,
the limit

lim ECy(0,0) =C(0,0), (1.11)
N—o0

exists and P(|Cy (0, 0) — C (0, 0)] > x) decay exponentially fast in N. Building on it, [24,
Proposition 1.1] proves that for integer k > m/4 and ¢ = 1, in the limit L — oo, the
resulting equations of [10] for

¢2k

fL)=Lo—-1)7%+ 7

(1.12)
coincide for the pure m-spin case v(r) = gr’" with the CKCHS-equations, derived indepen-
dently by Cugliandolo-Kurchan [23] (who consider instead C (2-, 2-) and R(2-,2-)), and by
Crisanti-Horner-Sommers [20].

The CKCHS-equations are for the Langevin dynamics of X; on the sphere Sy, reversible
with respect to the pure spherical m-spin Gibbs measure ﬁévﬂ j of density Z; ﬁl, Je—2/3HJ ) with
respect to the uniform measure on Sy. According to the Thouless-Anderson-Palmer (TAP)
approach [38], the local magnetizations of each pure state [31,37] approximately minimize
the mean-field TAP free energy. For the pure spherical m-spin models [21,29] and 8 in the
low temperature phase, the (stable) minimizers o of the TAP free energy roughly have radius
VNg, with qf = ¢gpa the Edwards-Anderson parameter, i.e. the right-most point in the
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support of the Parisi measure. As the TAP free energy only depends on |lo||, such o also
approximately minimize the energy

Hy(o) ~ min {Hj(c')}. (1.13)
0'€q.SN

More generally, it was recently rigorously proved [33] that for all spherical mixed p-spin
models and g in the low temperature phase, for any g, € (0, 1) such that g2 belongs to the
support of the Parisi measure, o € ¢,Sy satisfies (1.13) if and only if the probability under
the Gibbs measure ﬁg 5 of sampling many (slowly diverging with N) i.i.d. points ¢' from
the narrow band

{a’ €Sy : %(a’—a,a) ’NVO}

such that % (6! —0,0/—a) ~0fori # jisnotexponentially small. Moreover, any point &
in the ultrametric tree [30,32], and not only the barycenters of pure states, satisfies (1.13) with
g» = |lo || /~/N. In fact, even for models with Ising spins [18,19], the above holds if one adds
an appropriate deterministic correction depending on the empirical measure N ! > i<n So
to the Hamiltonian in both sides of (1.13). B

For the pure m-spin models [35] and their 1-RSB mixed perturbations [13] with 8 > 1
an explicit pure states decomposition was proved by an investigation of the local structure
around critical points. In particular, it was shown there that the Gibbs measure ﬁg g of the
complement of the bands of small macroscopic width around all critical points with energy
within small macroscopic distance from the minimal energy is exponentially small in N.
Hence, in steady state the path x; spends an exponentially small in N proportion of the time
outside of those bands, hinting that they play the role of meta-stable states in the conjectured
aging picture (see also [12,26] for spectral gap estimates and what they reveal about the
Langevin dynamical phase transition parameter). If the initial distribution is independent of
the disorder J, one may expect an exponentially in N long time to reach bands around deep
critical points and a plausible aging mechanism is having the path x; decompose to time
intervals spent in bands around deeper and deeper critical points, connected by excursions
of much shorter length, having typically x, within the deepest band it has yet reached by
time ¢ > 1. With initial distribution independent of the disorder J, the CKCHS-equations
discussed above concern (fixed) times not long enough (exponential in N) to be relevant
to such meta-stability induced aging. However, to investigate the short-time dynamics as x;
enters meta-stable states (of different levels) it is natural to consider initial conditions that
depend on J. Specifically, having a random starting point at a fixed distance on the sphere
from a critical point, which by itself is chosen randomly. Restricting to critical points at
which Hj is near a fixed deep energy level —FE, allows us to probe the different ‘layers’ of
wells in the landscape as we vary E,.

Provided that the number of such critical points is within a fixed factor off its mean
(currently proved only for pure m-spin [34] and small mixed perturbation of them [13]),
the Kac-Rice formula (see [1]), allows us to translate the study of dynamics under such
disorder dependent random initial distribution to an investigation of dynamics driven by a
modified, conditional Hamiltonian and deterministic initial distribution. To this end, our first
result extends [10, Theorem 1.2] to the latter initial measures and conditional potentials.1

! The conditioning on (1.16) is interpreted in the usual way: the conditional law of J has density given, up to
normalization, by the restriction of its original density to the appropriate affine subspace, and the conditional
law of the independent B is identical to the unconditional one.
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Specifically, fixing ¢, > 0 and ¢ € ¢,Sy (around which we center the law of xg), let
1 1 1
Hy (s) = = - Hy(xy) HORS SRS ;x;o' : (1.14)
For |g| < g, denote by 1 the uniform measure on the sub-sphere
1
Se (q) := {XGSN : N(x,o):q}, (1.15)

with IP’?{:’ denoting the joint law (on C(RT, R2N)), of the Brownian motion B and the
corresponding strong solution x of (1.1) for xo of law g and given J, o (see Proposition 3.8
for the existence of such a solution).

Theorem 1.1 For o € ¢Sy, ¢x > 0, consider J conditional upon the event®
CP(E., G4, 0) :={Hy(0) = —=NE,, VypHy(0) =0, 9, Hy(0) = —|lo[G.}, (1.16)

where Vg, and 9 denote, respectively, the gradient WRT the standard differential structure
on ¢Sy, and the directional derivative normal to q*SN.3 Setting q, € [—qx, q+] let Xo be
distributed according to ul°. Then, for fixed T < 0o, as N — oo the random functions
(Cn, xN»qy, HN) converge uniformly on [0, T1?, almost surely and in L , with respect to
(x0, J, B), to non-random functions C(s,t) = C(t,s), x(s,t) = fé R(s,u)du, q(s) and
H (s), such that g(0) = q,, C(0,0) =1, R(s,t) =0 fort > s, R(s,s) = 1, and for s > t
the absolutely continuous functions C, R, q(s), H(s) and K (s) = C(s, s) are the unique
solution in the space of bounded, continuous functions, of the integro-differential equations

R(s, 1) = —f(K(s)R(s, 1)+ B> /S R(u,t)R(s, u)v"(C (s, u))du, (1.17)
t

%C(s,0) = —f(K(s)C(s. 1)

) /s R(s,u)[u”(C(s,u))C(u,z) g0 (g)v (q(S))]du
0

V@)
t / /
+7 [ Rew[vesm - T dut 0o
0 V'(gf)
(1.18)
95q(s) = —f'(K (s))q(s)
+ g2 /0 Res. 04" (€ s, w)
2./ 7
_ 4z (q(b/t)); (q(S))]du + Ba2V.(q(s)), (1.19)
v'(q5)
8K (s) = 1 — 27" (K (s)K (s)
+ 282 /SR(s,u)
0
[vcis.0 - %;;;’(””]du L 2B (1.20)

2 In the pure case, i.e. having v(r) = b,znrm, one has that 9 Hy(o) = ”%‘HJ (o), hence necessarily G4 =
mE,/ q%, whereas in the mixed case the vector (E4, G,) can take any value.
3 Alternatively VHy(0) = —G40.
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H(s) = H(s) + vu(q(5)),
ﬁ@ﬁ=ﬂ/wﬂ&m
0

V’(q(S))V’(q(u))] du.

[V, - D

(1.21)
where ¥ (r) == rv”(r) +Vv'(r) and

" 20002y 220 a2\ T2
— 2 D — Q*v(q*) q*U (q*)i| |:q*i|
v(r): pzzz by (vp, (E,G))r", Vp I:qfv/(q,z) ¥(gd) N (1.22)

using v, () to denote the case of (E, G) = (E., G,).*

Remark 1.2 The conditional on CP(E, G, x,) solution of (1.1) at 8 > 0, is unchanged by
embedding B into the coefficients {b)} of (1.3) while taking (E, G) — B(E, G) and setting
B = 1 in the sDs. This modifies v — B2v, while v — Bv, preserving the stated limiting
dynamics of Theorem 1.1, apart from multiplying H (s) (and its derivatives) by B. It thus
suffices to establish Theorem 1.1 for g = 1.

Remark 1.3 From (1.2) we see that for any non-random orthogonal matrix O, the covariance
and hence the law of the Gaussian field x +— (Hj (07 'x), OVH 1 (0~ 'x)) matches that of
X — (Hj(x), VHj(x)). When combined with ¢ +— Og the same applies for the law of
this field conditional on CP(E,, G, ¢). By the rotational symmetry of the Brownian motion
t — B; and of the law ,uZ” of xg, the law of {0, x;, B, ¢ € [0, T]} in Theorem 1.1, matches
that of {Oo, Ox;, OB;, ¢ € [0, T]}. In particular, the joint law of (Cn, xn, ql‘\’,, Hy) is
invariant under the mapping 0 — Og, and so it suffices to prove Theorem 1.1 only for

0=x,=(/Ng.0,...,0).

Remark 1.4 Conditional on CP(E, G, 0), an easy Gaussian computation (see (3.33) in case
o =X,), yields

Hy(x) = Hy,(x) — Nv(N"'(x, 0)), (1.23)

for the centered Gaussian vector J, the corresponds to conditioning by CP(0, 0, o). Thus,
(E4, G,) only affects (1.1) by adding a deterministic drift, which gives rise to the terms
involving v, (+), or V, (+), in (1.17)—(1.21). The law of J, is, for N > 1, well approximated
by the Gaussian law of J conditional only on Vg, Hy(o') = 0. It is not hard to verify that the
latter law has the covariance

VINTHx, 6 )V (N "y, o))
V(N~He, a))
(c.f. (3.34) for essentially such computation when ¢ = x,). This change from (1.2) to (1.24)

is behind the modification WRT the CKCHS equations, in the square brackets within the integral
terms of (1.18)—(1.21).

Nv(N~Hx,y) = [(x,3) — o2 (x, o) (y, 0)]

(1.24)

4 1tis easy to verify that in the mixed case the matrix in (1.22) is positive definite for any ¢, > 0, while in
the pure case taking G = mE /2 yields b2, (vm, (E, G)) = g ME.
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For I, I' C R, denote by

U, 1) = [a € ¢Sy : VeHy(o) =0, Hy(o) € —N1I, 8, Hy(o) € —qu’]
(1.25)

the set of critical points of the Hamiltonian Hj(c) on the sphere of radius /N ¢ with value
in —N [ and with directional derivative normal to the sphere 9| Hy(o) in —V/NgI'. Our next
result relates the dynamics of the unconditional model with random initial measure centered
at such a critical point with the limiting dynamics of Theorem 1.1. Specifically, denoting by
IUN |l o the supremum of |Up (s, t)| over s,t € [0, T], we associate to ¢ € ¢,Sy around
which we center a ‘band’, the (random) error

Errn 7(0) := |ICN = Clloo A1+IIXN = Xlloo A1+1lgy — qlloc A1+IHy — Hlloo A1
(1.26)

for the non-random functions (C, R, ¢, H) from Theorem 1.1, which depend only on E,,
G+, g« 4o and the model parameters f(-),  and v(-).

Theorem 1.5 Let E,, G., T > 0 and suppose Iy = (ay,by) and Iy; = (ay, b)) with
ay ,by — E.anda) , by — G, > 2,/v"(q?). Then, for any € > 0,

1 N
lim —F P4 Erry (o) > € }:0. (1.27)
N—oo E#E 4, (In, 1) : O’E%N%Nsll/\/) 1o {Em. }

Further assuming that

Jim, 1Iiv11'gofP{#<gN,q* (In., Iy) > aE{#%n 4, (In. Iy)}} =1, (1.28)
we have that limpy _ oo P{G) 4, (IN, I,’V) # 0} = 1, and, for any € > 0, conditionally on
this event,

;, Y By By (o) > €] 500, inprob. (1.29)
#en g (N, Iy) Lo
0E€CN g (N, 1Y)

The asymptotics of the expected number of critical points E#%y 4, (In, I5) were com-
puted for the pure m-spin models in [5] and for general mixed models in [4]. However,
currently the concentration property of (1.28) is proved only for pure m-spin [34] with
G, > 2/V"(q?) (i.e. Ex > 2bpq™ /T — 1/m, see Footnote 2), or for mixed small perturba-
tion of them [13] with large enough E,, G, ¢, and for I, I I’V of length asymptotically larger
than 1/N. In both cases, for large B the model is 1-RSB and the Gibbs measure concentrates
on the set of spherical bands around the points in Gy ¢, (1 N, | ,(,), provided that qf is set to
be at the position of the non-zero atom of the Parisi measure, —E, is set for the minimal
normalized energy, and G, chosen appropriately.

For arbitrary o € ¢,Sy, conditional on CP(E,, G,, ) the eigenvalues of the spherical
covariant Hessian of Hj at o have the same distribution as those of a GOE matrix, scaled by
V(g2 (N — 1)/N and shifted by G,. The value 2,/v"(g2) is the threshold beyond which
the Hessian is typically positive definite, i.e., o is a local minimum. Consequently, as can
be checked by an application of the Kac-Rice formula, if G, > 2,/v”(g2) then the ratio
of the expected number of minima and the expected number of critical points of all indices
in Gy g, (IN, 1 1/\/) goes to 1. In the two situations mentioned above [13,34] where (1.28)
holds, the latter also occurs with high probability and not just in expectation. On the other
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472 A.Dembo, E. Subag

hand, if G, < 2,/v"(¢2) then the expected number of minima in €y q, (In, I};) decays
exponentially fast in N2.

Considering Theorem 1.5 with g, = ¢, = 1, corresponds to starting at a critical point
Xo = o. This is related to some of the results of [11], where qualitative information
about the limiting dynamics is gained from an approximate evolution for (only) the pair
(Hy (5), IVspHy(x)|/v/N).

Extending [24, Proposition 1.1] to our context, we next establish the “hard spherical
constraint” equations corresponding to the limit L — oo and f7,(-) of (1.12).

Proposition 1.6 For any T < oo the solutions (R\D), C D), g0 H L)Y of (1.17)~(1.21) for
potential fi (-)asin(1.12)withpositive ¢ = 14+2Bq,V.(q,), converge as L — oo, uniformly
in [0, T1?, towards (R, C,q,H), for H(-) of (1.21). Further, ¢(0) = g, € [—qx> ¢xl,
R(t,t) =C(t,t) = 1forallt > 0,R(s,t) = 0and C(s,t) = C(t,s) whens < t, while
(R,C,q)isforT > s >t > 0 the unique bounded solution of

AR(s, 1) = —pu(s)R(s, t) + B> /S R, )R (s, u)v"(C (s, u))du, (1.30)
'

0sC(s,t) = —pu(s)C(s,t)

e /SR(s,u)[v”(C(s,u))C(u,z) B IOLACIO)I (Q(S))]du
0

V' (q2)
t / /
8 [ R [y C - HEID kg o,
0 V'(qf)
(131)
05q (s) = —p(s)g(s)
+ B2 fo R(s, ) q v (€ (s, )
2./ 7
- o (q\(,f’()q);) WO 1 a2, (1.32)
1 S /
po) =5+ 8 [ R0 fwice.m - FLEOEID it g1, q))
2 0 v (q*)
(1.33)
In addition, C (s, t) := C(s, ) — q(s)q(z‘)/q*2 is a non-negative definite kernel, and
t
‘/2R(s,u)du‘2§zz—t1, 0<i<h<s<oo. (1.34)
n

Remark 1.7 Since v(0) = v/(0) = 0, taking ¢, = 0 yields the solution ¢(s) = 0 in both
(1.19) and (1.32). The values of (E,, G, q.) are then irrelevant, and the system of equations
(1.17)—(1.20), (1.30)—(1.33) reduces to the CKCHS-equations, as in [ 10, Theorem 1.2] and [24,
Proposition 1.1], respectively. All terms involving v, (-) disappear also when E, = G, = 0,
but for g, # 0 the equations (1.19) and (1.32) nevertheless yield non-zero solutions. Unlike
the special case of [24, Proposition 1.1], here (R, C, ¢) may take negative values, but with
C(s,s)=1and C(-, ") non-negative definite, necessarily |¢(-)| < ¢, and |C(-, )| < 1.

Remark 1.8 Any ¢ € (0, co) in (1.12) result with equations (1.30)—(1.33) when L — oo,
but since u(0) = ¢/2, taking ¢ = 1 + 28¢,V.(¢,) (when it is positive), simplifies our
derivation (otherwise, one merely has to use £(0") when s = 0). The representation (1.3)
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with m = oo applies for any real-analytic v(-) such that v(0) = v'(0) = 0, v (0) > 0,
p > 2, with a unique strong solution to (1.1) for locally Lipschitz f’(r) growing fast enough
as r — o0o. While not pursued here, we expect Theorem 1.1 to hold for any such f(-) and
upon considering fr (r) = L(r — 2+ f (r), to further arrive at the conclusions of Proposition
1.6.

Remark 1.9 Whenever v(-) is an even polynomial, so is v,(-), resulting with (1.17)—(1.21)
invariant under (C, R, q, H) — (C, R, —q, H). The same applies to (1.30)—(1.33) and in
such cases g, — —¢q, yields the same solution apart from a global sign change in ¢ (s). Indeed,
our realization is such that an even v(-) results with an even potential Hy(—x) = Hy(x) per
given J, hence also with CP(E, G, 0) = CP(E, G, —o) and thereby a sign change ¢, — —¢,
being equivalent to 0 > —o.

In Sect. 2 we study the large time asymptotic of the solution (R, C, ¢, u) of (1.30)—
(1.33), establishing the FDT regime at high temperature (ie 8 small), and further analyzing
the plausible FDT solutions for somewhat lower temperatures. While doing so, we observe a
sharp distinction between the m-pure case and the mixed case, in terms of the emergence of
aging. Such distinction was realized recently in [25], by a numerical solution of the CKCHS-
equations for initial conditions from the Gibbs measure at different temperatures, suggesting,
for example, more than one dynamical phase transition in the mixed case only. In Sect. 3
we prove Theorem 1.1 by adapting [10, Section 2] to our more challenging setting (where
Xq is related to J via (1.15)—(1.16)). The key to our derivation are Propositions 3.5 and 3.6,
whose proofs are deferred to Sects. 4.1 and 4.2 (adapting [10, Section 3] and [10, Section
4], respectively). From Proposition 3.5 one further has the limit dynamics (as N — 00), for
other functions of interest (such as those given in (3.3)—(3.4)). Section 5 is devoted to proving
our main result, Theorem 1.5, whereas Proposition 1.6 and Proposition 2.1 are established
in Sects. 6 and 7, respectively, by adapting [24, Section 2] and [24, Section 4], to our more
involved setting.

2 Large Time Asymptotic: The FDT Regime

At high enough temperature one has that ¢(s) — 0 for s — oc0. Our next proposition
(which is comparable to [24, Theorem 1.3]), shows that the FDT regime of the solution of
(1.30)—(1.33) then coincides with that of the CKCHS-equations.

Proposition 2.1 For 8 small gnough and o = 0, the solution of (1.30)—(1.33) is such that
lim{p(7)} >0, (R(t+7,1),C(t+71,1),q(t)) = (0,0, o ¢4) exponentially fast int — oo,
uniformly in t, and for any T > 0,

Il_ig}o(R(t +7,0),C(T +1,1),9@) = (Reat (), Crar (T), @ ga) - 2.1
In such case, necessarily Riq (1) = _2C£dt(t)- Further, setting y = 1/2 and
$(x) =y +287'(x), 22)

we have that u(t) — ¢ (1), and Ciq(+) is the unique [0, 1]-valued, continuously differentiable
solution of

D'(s) = — /S ¢ (DW))D'(s — v)dv — % , D@O)=1. (2.3)
0
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More generally, if the solution (R, C, q) of (1.30)—(1.33) is uniformly bounded, with {R (t +
-, ), t > To} uniformly integrable (WRT Lebesgue measure), lim{u(t)} > 0 and (2.1) holds
for some a € [—1, 1], then necessarily u(t) — n such that (Rgqi, Crat, £) satisfy [24,
(4.15)—(4.17)], with

2 2V (g )V (ags)

g, = a2V, (aqy) — g 2+ Bagu, ki = fo ROW'(C6))d8 .

V' (q2)
2.4)
L= faguv,aqe) — g LOL 00 g / T ROMO, w3 =0.
V'(qy) 0
(2.5)

One such solution is (=2D'(-), D(-), ¢ (1)) for (¢, D) of (2.2)—(2.3) and D, € [0, 1),
y € R such that

I=y— % +28%Docv' (Doo) 2.6)
Do = sup{x € [0, 1] : (y 4+ 282V (x))(1 —x) > 1/2}, Q@.7)

yielding in turn the values k1 = 2(v' (1) — V(D)) and k3 = 2(1 — D).

Remark 2.2 Our proof of (2.1) relies on W(-) of (7.2)—(7.4) being a contraction on a suitable
set A (and for uniqueness of (Rgqt, Crqr) wWe require that the induced map Weq;(-) be a con-
traction at the given «). In particular, a global contraction requires that « = 0 be the unique
solution of (2.4), which in turn depends not only on $ and ¢, but also on (E,, G,). Never-
theless, at least when by = 0 (so v//(0) = 0), we expect the FDT solution of Proposition 2.1
witha =0, y = 1/2, to apply for all B < B, of [24, (1.23)], provided g, = ¢, (B, Ex, G )
is small enough.

Remark 2.3 For pure m-spins, [6] consider the diffusion (1.1) starting at xo of law pfzvﬂ,’ 3
for various choices of g/ € [0, 00). Employing the mathematically non-rigorous replica
method (in particular, its 1RSB picture for the Gibbs measure), they predict the resulting limit
equations for (R, C) and their solution in the FDT regime. Building on it (and using again the
replica method), [7] considers in this setting also the limit dynamics of the overlap ¢ (z).

Remark 2.4 The limit « of g (¢)/g. provides information on the state X, in the limit N — oo,
at ¢ > 1 which does not scale with N. The case o« = 0 represents an escape from the energy
well about the critical point ¢ to a point which is orthogonal to o . In contrast, « = 1 implies
convergence to the projection q:la € Sy of the critical point around which the state was
initialized. Note also that for « = g, the eventual support Sy (¢2) of the state, is precisely
the sphere of co-dimension 1 and radius /N (1 — ¢2), centered at the critical point a.

While Proposition 2.1 is limited to small 8, we do expect (2.1) to hold at all 8, albeit
having a # 0 for some (E,, G,) and g, close enough to ¢,, as soon as 8 > B4 (G,), where
as we detail in the sequel, B4 is in general lower than B, of [24, (1.23)]. To this end, we
first briefly review the physics prediction for the (large time) asymptotic for the CKCHS-
equations, namely when g, = 0, or alternatively, when all terms involving ¢ (-) are omitted
from (1.30)—(1.33) (see Remark 1.7). Recall that for this limiting CKCHS dynamics, aging
amounts to having a non-identically constant Cqging(-) such that C(z + ¢, 1) — Caging(0)
as t — oo followed by T — 00, whereas C (s, As) — Caging(X) as s — 00. Now, in the
absence of aging, such prediction is given by the FDT solution from Proposition 2.1, fora = 0
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and parameters which solve (2.5)—(2.7) assuming the limit D, of Cgqi(t) as T — o0 is zero.
As explained before, doing so amounts to setting I = 0 and y = 1/2, whereas (2.7) holds
for such values iff 8 < B, of [24, (1.23)].

In contrast, when 8 > B, the limit D, of Cgg¢(t) must be strictly positive, which for
o = 0 indicates the onset of aging and in particular having R (t) — 0 at a sub-exponential
rate. Such slow decay is expected in turn to require the additional relation

y =2B°1V"(Doo)(1 = Do) = v/ (Doxo)] (2.8)

(see [24, (1.22)]), which together with (2.7) dictate the values of y > 1/2 and of Dy, =
D, (B) > 0, with

D,(B) :=sup{x € [0, 1]:4B%g(x) > 1}, for g(x):=1"()1—-x)* (2.9

(as in [24, (1.24)]). While (2.6) thereby determines I, our expressions for «; in (2.5) (and
in (2.4)), relied on the uniform in 7, integrability of ¢ +— R(¢ + t,t), which is no longer
expected. To rectify this, at 8 > . one adds to these formulas the contribution from the aging
regime, namely having A = u /s bounded away from zero and one, to the integrals on the RHS
of (1.31)—(1.33). As explained after [24, (1.24)], the physics ansatz of a single aging regime
with Ryging(A) = AC(’lgmg(A) starting at Cyging(1) = Doo and ending at Cyging (0) = o2 (ie,
having C aging (0) = 0), implies the increase

K1 < k1 + AW (Do) — V' (@),
k3 < k2 + A(Doo — &), (2.10)
K3 < K3 + A(DooV (Doo) — @' (@),

of the coefficients in the identity (2.5), which in turn determines the value of A. Finally,
should the self-consistency requirement of A > 0 and C aging(0) = 0 fail, one moves from
the latter ansatz into the richer hierarchy of multiple aging regimes.

Recall Remark 2.4, that for « = 0 and B > B, aging occurs for a state which is already
orthogonal to the critical point o around which we initialized the system, i.e. after the escape
from the energy well about it. Here we consider another alternative, of having a still localized
state, namely a solution with « 7 0 that in addition satisfies (2.4). Indeed, recall [24, Propo-
sition 6.1] that the FDT regime of the CKCHS-equations must be given by (2.3) as soon as a key
integral /(¢ 4 -, t) converges for 1 — oo (uniformly on compacts), to some constant (which
in terms of our notations, turns out to bel:= y — % — I+ B%k3). Assuming in addition that

such convergence to constants (I(q) I(q)) applies also for the integrals

19(s) = /Ox R(s, u)qg )" (C (s, u))du , L) = /Os R(s, u)v' (qu)du,

we have in (1.32), we can approximate the latter dynamics (at s 3> 1), by the much simpler
ODE

q'(9) = —u()q(s) + Qg(s)), for wu(s) =P(g(s),

Q) = Bg2V,(n) — B2~ (( 2))
2 Y @
V(g 2) 2

(q) 2 (q)
Lo+ AT 2.11)

P(x) = Bxv.(x) — B +p+1.
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Such an ODE has no limit sets beyond its finitely many limit points, which are at the isolated
solutions of

P)x =Qx), X € [—Gur Gx] - (2.12)

Hence our earlier prediction that (2.1) remains valid at all 8. Further, a convergence of
q(u) to some limit point x = aq, implies by self-consistency the values qu) = ag«k1 and
I;q) = v/ (@q,) k2, which upon substitution in (2.11)—(2.12) yield the requirements (2.4)—(2.5)
on« and I.

The analysis of the FDT regime in the presence of aging starts precisely as for CKCHS-
equations with 8 > B, Dooc = D4 (B8) > 0 of (2.9) and the corresponding values of (y, I) (as
determined by (2.6)—(2.8)). The only difference is that now we can try beyond the CKCHS-
solution = O and I = ,32K3, also any A > 0 and o = Caging(0) < Do which satisfy
(2.4)—(2.5) for k; of (2.10). Since D,(B) 1 1, taking B large provides access to all solutions
of (2.12) (but we do not expect a simple, explicit way to determine which interval of ¢,
values is attracted to each stable solution).

The most interesting case is that of a localized state with no-aging at o« # 0. Specifically,
seeking (Rqi(7), Crat(T), 1) as in Proposition 2.1 for y # 1/2 such that Crat(t) — 0, ie.
with Do = a®. Plugging such a solution in (2.4) gives

2 CI*V”(“‘I*)V/(‘X‘I*)
v'(g3)
Similarly, plugging it in (2.5) and comparing with (2.6) results with

ya = Bq.V, (agq,) — 28 (1 —a?) =28V (@?). (2.13)

1 DV (g
y — = = Bag.V.(ag.) — 2,32M(1 —a?) —2B%N (@),  (2.14)
2 v'(q2)
Recall (2.7), that having Do, = a? requires in addition to the preceding that
2 7,2 2 1 _ 2:82 Lo 2N g2 / 2 2y
(y +2v (@) —a’) — 5 = [V (@)v'(g) —vi(ag) 11 —a”) =0. (2.15)
2 Vg

In the pure case the RHS of (2.15) always holds, while otherwise it holds only” for & = g,.
Proceeding first with the m-pure case, utilizing Footnotes 2 and 4, we get that both (2.13)
and (2.14) hold for o # 0 iff

4%g@*) =y* and G, = V(@) +y ). (2.16)
In view of (2.7), only the smaller positive root y € (0, 1] for the RHS of (2.16) is relevant,
with the condition G, > 2./v"(¢2) for existence of such y € (0, 1) matching our assumption

in Theorem 1.5 (alternatively, the latter inequality amounts to E, > 2,/1— % where E, :=

E,/(bmql") denotes the given energy level, measured in standard deviations of Hj(o)).
Moreover, the LHS of (2.16) can not hold for some y < 1, unless

% > 21" (@2)(1 —a?), (2.17)

which is precisely the stability condition for TAP solutions on « Sy (see [29, Eq. (25)]). Fixing
E, as above, namely y € (0, 1) via the RHS of (2.16), here g(-) attains its maximum over

5 Except for « = —¢, equivalently holding whenever v(-) is an even polynomial
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[0,1]ata :==1— n%, and by the same reasoning as for the CKCHS-equations, one should
choose the larger solution o? in (2.16), namely take

Doo = D.(B/y)  provided B> By :=y/(2\/g(e})). (2.18)

where B+ < B, of [24, (1.23)], for any m > 2 and all E* as above.

Turning to the mixed case, first note that vi(qf) = G, (see (3.33) at x;, = x,). Upon
plugging the generic solution @ = ¢, of (2.15) into (2.13), it follows that no-aging with
o # 0 requires the RHS of (2.16) to hold for y < 1 and qf = D,(B/y) of (2.9). Taken
together, we see that (2.16) must hold at @ = ¢, yielding the relation

1
26(1—a?)’
where the restriction to y < 1 amounts to the inequality (2.17).

It is easy to check that having such (R4 (7), Ctqt(7), ) as in Proposition 2.1, except
for possibly y # 1/2, and with the no-aging condition Dss = o2 in place, implies the
convergence of H (s) of (1.21) as s — 00, to the limiting (macroscopic) energy

H(00) 1= Va(ags) +2B0(a?),  where  0(q) :=v(1) — v(g) — V' (¢)(1 — q)
(2.20)

G, =G, (a, B) :=28" (> (1 —a?) + (2.19)

(and to arrive at (2.20) we also use the RHS of (2.15)).

For 0 € Sy, similarly to the proof of Lemma 3.7, one can check that conditionally
on CP(E,, G, o) the Gaussian field Hy(x) has expectation —N E, and variance NO(@?) at
any X in the sub-sphere S, (e?) of (1.15). Using this conditional field, one has the spheri-
cal model WRT the uniform measure ,qu (x) on Sy (a?), its Gibbs measure ,ugo, J of density

(Zg0 J)_le_’s""’J ) and the corresponding free energy F (o) to which N ~og Zgo j con-

verges. If for any By near 28 this model is replica symmetric, then Fg,(0) = BoE.+ ’3—239(012)
and most of the mass of ,ugﬁJ is indeed typically carried at the energy E, + 2860(a?).
In the mixed case we know that « = ¢, hence the state x, is supported for # > 1 on
that same sub-sphere Sy (@qy) = Sy (a?) (see Remark 2.4). Further, in the m-pure case
CP(E,,G4,0) = CP(r"E,, rm2G,, ra) for any r > 0, with r = «/q, eliminating the
effect of ¢, and allowing us to take again WLOG ||¢|| = av/N = ¢g.+/N. Recall that
Ve(agy) = v*(qf) = E, (see (3.33) at x;, = X,), so the energy a’”l/::* +286(c?) carry-
ing most of the mass of the spherical model ,u‘z’ﬁ’ y is for such o precisely the limit H (c0)
of (2.20). Further, re-writing the conditional Gaussian field of ,ugﬂ’ j as a polynomial in the
re-centered coordinates X — o gives a new spherical mixed model, see [13, Lemma 7.1],
whose 2-spin interaction part is in the replica symmetric regime precisely when (2.17) holds
(c.f. [13, (7.6) and (8.8)]). Finally, in the m-pure case, the relation (2.19) determines from
the energy E, a limiting sub-sphere height « which is a local maximum of the free energy
F>p(0) plus the entropy % log(1 — a?).

2.1 Limiting Dynamics for Spherical SK-Model

While of less interest from the physics point of view, for the spherical SK-model, namely
m = 2, one can solve (1.30)—(1.33) and thereby confirm our predictions. Specifically, for

v(x) = % (hence ¥ (x) = 2v'(x) = 7,V"(x) = %, V. (x) = %x), starting at R(s, s) = 1,

C(s,s)=1— q(s)z/qf and ¢ (0) = ¢, these equations are for s > ¢,
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2
OsR(s, 1) = —pu()R(s, 1) + ﬂ*[ R(s,u)R(u,t)du,  q'(s) = —(u(s) — BGq(s),
t
(2.21)
132 _ t B
3,C(s, 1) = —pu()C(s, 1) + 7[/ R(s,u)C(u,t)du +/ R(t,u)C(u, s)du] ,
0 0
2
wis) = = +’3—/ R(s, )C (s, wydu + G, 1= (S) (2.22)
0 *
Further, in this case we get from (1.21) and (2.22) that
LB g*(5)] _pls) 1
H(s) = ﬁ[T/o R(s, w)C (s, w)du + BG, ] =% "1 0P
Setting A(s) := q*efox(“(“)_ﬂG*)d“ the solution of (2.21) must be
_ 940 A)
Q(s)_A(s)’ R(s,t) = A()EG (s—1),

where L (0) = e P90 £(9) for £©) = 2 [ P /T = x2dx (see [24, (4.9)]). Substitut-
ing this in (2.22), the symmetric M(s, t) := C(s, )A(s)A(r), is the positive, unique solution
of

osM(s,t) = —BG.M(s,1t)

ﬁQ
—[/ L6 (s — )M (u, du

+/ Lg,(t —M)M(u,s)du], Vs >t,
0

t
M'(t) = g2 + (1 —2BG, )M (1) + ,32/ L, (t —wM(t, uydu, M(r, 1) = M(t),
0
(2.24)

starting at M (0) = qf - qaz, and with A () = /g2 + M (¢). By the super-position principle
for this linear system

M(s, 1) = (g — q2)e POCFD My (s, 1) + 2 Mg, (s, 1), (2.25)

where Mk denotes the CKCHS-type solution of (2.24) with ¢, = G, = 0, starting at
M (0) = 1, while Mg, is the solution of (2.24) for qg = 1 and Mg, (0) = 0. The
spherical SK-model is somewhat degenerate, as in view of (2.25), having ¢(t) — « # 0, or
equivalently a finite limit for M (¢) as t — o0, does not depend on the value of 0 < |g,| < ¢«
and when such non-zero limit exists, the same invariance to ¢, applies to the issue of no-
aging (i.e. having M (1 + 7,¢) — 0 ast — oo followed by T — 00). The analog of M for
(1.17)—(1.20) at g(-) = 0 and linear f'(x) = cx, is studied in [8, Section 3]. A similar but
finer analysis shows that M .k (s, t) grows as s, t — 00, up to some polynomial pre-factors,
at the exponential rate 1, (s + ), where 1, = 8 for 8 > 1 and otherwise 11, = (1 + £2)/2.
Focusing on the case of a stable energy well around the critical point o, namely G, > 1 as
in Theorem 1.5, we have that G, > u, iff 8 > y, with y € (0, 1) as in the RHS of (2.16).
We thus have the dichotomy predicted earlier, that ¢, = 0 requires « = 0, with the onset
of aging at B, determined by the asymptotic of M cx (s, t)/~/M ¢k (s) M ck (¢), whereas for any
go #0,G, > 1and B > y we have a localized state, with « =2 — 1 given by the finite limit
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of Mg, (1), and Cgqi(7) being the limit as t — oo of (1 + Mg, (t + 7,1))/(1 + Mg, (1)).
We get these limits by replacing Mg, (s, t) with the stationary solution M 8? (s,t) of (2.24)

when all the integrals start at —oo (instead of at zero). By translation invariance, M(GS? (s, 1)
must be of the form I' (s — ¢) for symmetric I'(-) such that

o0

2 00
() = —BG,T(7) + /i[/ L, ) (u+ t)du +/ L, )T (u — t)du] ,
4 0 (2.26)

o0
0=1+(1-28G)T(0) + fﬂ/ Lo, )T w)du .
0
Next, recall that y € (0, 1) on the RHS of (2.16) satisfies

1-2G,y+y*=0, thatis y=G,—/G2—1 (2.27)

and hence (see [8, Page 16]), also

1 [? V4-x2 B [
=— | ——dx==[ L. (6)do. 2.28
v=5 [ oarrd=5 [ £e.® (2.28)
Further, utilizing (2.27), (2.28), with L, (0) = 1 and having
:32 00
Lg(t) =—BGLG(T) + T/ L6 W)L (t —u)du (2.29)
0

(compare with the LHS of (2.21)), one can verify that

F(t) = %/wﬁc*(u)du, ¢ ::2—/OOOLG*(u)du :2(1 —%)

satisfies (2.26). Consequently, in this case

2
2_1=r@O)==—-1, thatis o?=c=1-2 (2.30)
c 2 B
in agreement with our prediction on the LHS of (2.16), whereas
1+ T () 1 /’
C — =1 = L du , 2.31
fae(7) 110 2 ), 6. (w)du 2.31)

is precisely D(t) of (2.3) for ¢ (x) = BG.+ %2 (x — 1), and converges to Do, = o? (i.e. with
no- aglng) In addition, having here w(s) — G*,B we get from (2.23) that H (s) — H(o0) =
% — 4ﬂ (matching the expression H (00) = o? 2* s 7 (1= a?)? of (2.20)).

3 Proof of Theorem1.1atoc =x,, B =1

In view of Remarks 1.2-1.3, WLOG we fix throughout this section § = 1 and 0 = X, =
(v/Ngy,0, ...,0). Fixing also T and letting d(N, m) be the length of the coupling vector J,
following [10] we equip the product space Ey = RN x RV 5 C([0, T], RY) with the
norm

1(x0. J. B) |12 Z<x0> +Z S WNT )+ sup Z(B) 3.1)

p=2 I<ij<..<ip<N 0=t=T ;o
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and denote by P= U ® ylf,E’G’q') ® Py the product probability measure of (xg, J, B) on
En, where xq follows the law uz‘: (defined above (1.15)), yIS,E’G’q*) denotes the (Gaussian)

distribution of J conditional upon CP(E, G, x*)6 and Py stands for the distribution of N-
dimensional Brownian motion. Next, for Cy (s, t) of (1.8) and gy (s) = q,’f,* (s) of (1.14), we
let

‘]*xsl

N

Setting Gi(x) := —d,i Hy(x), the derivation of Theorem 1.1 builds on the proof of [10, Thm.
1.2], which utilizes beyond Cy and xy of (1.8)—(1.9), two auxiliary functions Ay and Fy
(see [10, (1.15)]). Having here a distinguished first coordinate, those four functions of [10]
are replaced by Z/{;(, ={Cn, XN, Cn, XN s Ay, Fy}, for Cy of (3.2) and

_ AR
Cov(s 1) = Cn5,1) = 4 2qn ()aw () = = Y il v =12 32
=2

N N N
_ 1 S 1 ‘ S 1 . .
AN (s, 1) == N E x¢B;, An(s, 1) = v E G'(xs)x;, Fn(s,1):= i E G'(xy)B; .
i=2 =2 i=2
3.3)

Beyond Z/{;,, our derivation clearly has to also involve gy of (3.2), the pre-limit of H from
(1.21), and the (centered) contribution of the first coordinate to Ay, given respectively by

qx
VN

where G (x) := —VH (x) and H (x) := E[Hy(x) | CP(E, G, x,)]. Analogously to D and Ey
[10, (1.16)], it is convenient to define in addition to Vy, Ay and Fy, also their contribution

~ 1 _ _
Hy(s) i= = IHy () = Hx)1, - Viv(s) o= G (x5) —Gl(xp)),  (3.4)

to the incremental changes in gy, Cy and XN, which for Ky (t) := Cy(t,t) are given
respectively by
On(s) == —f (Kn))an (s) + g2V (gn () + Vi (s) (3.5
Dn(s,t) == —f/(Kn()Cn(t,5) + An(t,5), En(s, 1) = — f/(Kn (D IN (S, 1) + Fn (s, ).
(3.6)

We shall establish limit equations fortdy = Uy, Ulqw, Hy, Vi, On, Dy, En, Ty, @y, L,
Yy, lIJII\,}, where

/ /
T (5. 1) 1= v(Coy s, ) — Gy (5, ) IV AN (D)
v(gi)
(s, 1) 1= v/ (Ciy (5, wy) — ANV (AN ) (3.7)
v(gi)
_ 2./ " L
Ol (5, 1) = gy WV (Cy (s, 1)) — Oy (s, 1) 22 <qu7(>;;) ey
Wy (s, 1) = v (Ciy (s, 1)) (D (5. ) + ‘”;;S) On @) - %WQWL
_ 2./ ” g
Wl (s, u) == Dy (s, [V (Ci (5, w)qy () — 2 ("Nv(f’();;) ("N(Y))] (3.8)
+ QN @Y (Cy (s, w) + TN (S;ZN W e (s, — 2C (5, 1 NI AN 0) (ifzsz)(‘“v @)y,

6 Which in the pure case is restricted to G = mE/ qf; see Footnote 2.
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The functions Yy, ®n, bl ~» YN and \IIN, which arise out of conditional covariances (see
(3.34), (4 20) and (4.26)), are used in approximating certain conditional expectations of H, N
VN and A N-

For convenience we refer hereafter to all elements of Uy as functions on [0, T']2, with
the obvious modification in force for gy, a, ~N, Vn and Qp. Adopting this convention, our
proof of Theorem 1.1 relies on pre-compactness and self-averaging of functions from Uy .
Specifically, in Sect. 3.1 we establish the following analog of [10, Prop. 2.3 and 2.4].

Proposition 3.1 For any Uy € Uy, fixed finite T and k,

sup supE[ sup |Un (s, )] < o0, (3.9)
|El,|G|<a N s,t<T

with the sequence of continuous functions Uy (s, t) being pre-compact almost surely and in
expectation, WRT the uniform topology on [0, T 1>. Moreover, for any Uy € Uy, T < oo and
p >0,

Z sup  P[sup |Un(s, 1) — EUy(s, 1)) > p] < 00 (3.10)
N |E|,|IG|<a  s,t<T

and hence by (3.9), also

lim  sup  sup [|UN(s,t)—IEUN(s,t)|2]:0. 3.11)
N—=0|E||G|<a s,i<T

In view of (3.9) and (3.11) we thus deduce the following, exactly as in [10, proof of
Corollary 2.8].

Corollary 3.2 Suppose ¥ : R — R is locally Lipschitz with |W(z)| < M’||z||£f0r some

M 0k <oo,andZy € R¢ is a random vector, wherefor j =1, ..., ¢, the j-th coordinate
of Ly is of the form Uy (s, t}), for some Uy € Uy and some (s, ;) € [0, T12. Then,
lim sup sup |IE\II(ZN) - lIJ(EZN)l =0. (3.12)

N—00|E| |G|<a st

As explained in Remark 1.4, the expectation E amounts to taking J = J, of the Gaussian
law y(o s , while adding to (1.1) the drift corresponding to (1.23), provided that we add
back to (Gl, Hy) the relevant constant shift (G',H).For B = 1, 0 = x,, this provides an

alternative representation via the diffusion

. . X s . N . S
xi=x§+ Bl - /0 f/(Ky @)xidu + fo G' (xy)du 4 1ji=1)v'N g /0 vV (gn (w)du
(3.13)

0

starting at xo of law use independently of B and J, while in studying Uy we re-adjust to
have (G, H) = (0, 0) in (3.4). Adopting hereafter the latter setting, it is more convenient to
consider the solution of (3.13) under the joint law P, of X, B and the disorder J conditional
only upon CP, := {Vi > 2 : 9,iHy(x,) = 0} (whose covariance is given by (1.24) at
o = Xx,). Indeed, our next proposition, whose proof is deferred to Sect. 3.2, relates PtoP,
and further extends the conclusions of Proposition 3.1 to P,.

Proposition 3.3 Proposition 3.1 applies for P, instead ofﬁ. Further, for V and Zy of Corol-
lary 3.2,

lim sup sup |EW(Zy)—E.¥(Zy) =0. (3.14)

N—=00|E||G|<as;,t;<T
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Setting hereafter for the filtration 7, = o (X, : v € [0, u]), Uy € Uy and T € [0, T],
Un (s, tlt) == EiUn (s, | F], (3.15)

Corollary 3.2 applies for E,, with coordinates of Ly taken fromUy, := Uy U{Upn (-|7), Uy €
Uy, Tt [0, T}

Our next result, whose proof is deferred to Sect. 3.3, shows that the limiting dynamics of
(1.17)—(1.21) admits at most one solution.

Proposition3.4 Let T < oo and At = {s,t € (]R"‘)2 0 <t <s < T} There exists at
most one solution (R, C, q, K, H) € CL(A1)? x CL([0, T1) to (1.17)~(1.21) at B = 1 with
C(s,t) = C(t, s) and boundary conditions

R(s,s) =1 Vs >0 (3.16)
C(s,8) =K(s) Vs=>0 (3.17)
K(©0) =1, q(0) =¢q, known. (3.18)

Our next proposition, whose proof is deferred to Sect. 4.1, plays here the role of [10, Prop.
1.3].

Proposition3.5 Let Uy, = E,Uy. Fixing T < oo, any limit point of the sequence
Uy = {Uy, Un € Uy} withrespect to uniform convergence on [0, T 12, satisfies the integral
equations in Cp([0, T]z),

Cis.t)=Cls, 1) + Q(Sq)g(t) x(s. ) = (s, 1), (3.19)

*

Q(s) = = (K()q(s) + ;v (q(s) + V (), q(s) = q(0) + /o‘ Qu)du,  (3.20)

D(s, 1) = —f'(K)C(t,5) + At,s), E(s, 1) = —f'(K(s)x (s, 1) + F(s, 1), (3.21)
V(g )V (g(1))

T(s,t) = v(C(s, 1) — C(s, 1) 5 , (3.22)
v'(gy)
(s, 1) =v'(C(s, 1) — M (3.23)
V'(qy)
2./ /"
®'(s, u) = gV (C (s, u)) — C (s, u) ¥ (qi’f();;) (@) (3.24)
W(s, 1) = " (Cls. u)(Ds. u) + "q(i) ow) - %};"”’”Q(m , (3.25)
2.7 7
W s, — Do) |:v”(C(s, D — @ (q(s))]
v(qy)
2.1 "
+0®W) |:v/(C(s, ) + q(S)Z(u) U//(C(S, ) — C(S, u)q*V (Q(f)); (Q(u))] ’
qs v (gy)
(3.26)

S

t
c'(s,r):c'(s,0)+x(s,t)+/ D(s,u)du,;z(s,t):mwr/ Eu, t)du, (3.27)
0 0

V(s):@l(s,s)—QI(S,O)—/S\IJI(s,u)du, (3.28)
0

A(t,s) = C(s, 1)@, 7) — C(s,0)D(z, 0)
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—/r {D(s,u)cb(r,u)+c'(s,u)\11(r,u)}du, (3.29)
0

NS
F(s,t) = )z(s,z)eb(s,s)—/ D (s, u)du

0

— /S E(u, D (s, u)du — /S X(u, t)¥(s,u)du (3.30)
0 0
Q( )

*

S
Aes) = T(s,s)—T(s,O)—/ {D(s WP, 5) + ol o (u ,s)]du, (3.31)
0
where T = t Vs, subject to the symmetry C(s,t) = C(t,s) and boundary conditions
q0) =¢q,, K0)=1,K(s) =C(s,s), E(s,0) =0 foralls,and E(s,t) = E(s, s) for all
t>s.

Our final ingredient for Theorem 1.1 is the following link between (3.19)—(3.31) and
(1.17)—(1.21), whose proof we defer to Sect. 4.2.

Proposition 3.6 Fixing T < oo, if (C, x.q. H) € Cp([0, T1%; R*) satisfies (3.19)~(3.31),
with v, (+) instead of v(-), subject to the symmetry and boundary conditions of Proposition
3.5, then x(s,t) = fot R(s, u)du where R(s,t) =0 fort > s, R(s,s) = 1 and on At the
bounded and absolutely continuous functions (C, R, q, H ) satisfy the integro-differential
equations (1.17)—(1.21) (at B = 1).

Proof of Theorem 1.1 Setting WLOG 8 = 1 and ¢ = X,, recall from Proposition 3.3 that all
conclusions of Proposition 3.1 apply for P,. In particular, we thus have pre-compactness
of (U,‘f,, Uy € Uy) : [0, T — R in the topology of uniform convergence on [0, T1?,
implying the existence of limit points of this sequence as N — o0o. By Proposition 3.5 any
such limit point must be a solution of the integral equations (3.19)—(3.31) with the stated
symmetry and boundary conditions. Further, by Proposition 3.6, for (E, G) = (E,, G,) any
such solution results with (C, R, ¢, q ) that satisfy the integro-differential equations (1.17)—
(1.21) (at B = 1). In view of Proposition 3.4 the latter system admits at most one solution
per given boundary conditions. Hence, we conclude that the sequence (xy,Cy, qj . 12t )
converges as N — oo, uniformly in [0, 71> to the unique solution determined by (1.17)-
(1.21) subject to the appropriate boundary conditions. Thanks to Proposition 3.3, the
same applies to ]E[(XN, CN,gN, HN)] Further by (3.10) of Proposition 3.1, almost surely
[(xn s CN,qN,HN) — ]E(XN CN,gnN, HN)| — 0 as N — oo, uniformly on [0, TP In
addition, Hy (s) = HN (s) + Vu(gn (s)) (see (1.23) and the LHS of (1.14), (3.4)). Thus, the
function (x, C, ¢, H) determined from (1.17)—(1.21) is also the unique almost sure uniform
(in s, t) limit of (xn, Cn, gn, Hy), as stated in Theorem 1.1. The L, convergence follows
by the uniform moments bounds of Proposition 3.1, thereby completing the proof of the
theorem. O

3.1 Proof of Proposition 3.1

We start by computing the covariances conditional on the event CP,, which replace here the
unconditional covariances of [10, Lemma 3.2].

Lemma3.7 Forv,, p > 2, of (1.22) one has the following conditional expectations

ELJ\ICP(E, G, x)] = —bpyN'" 3¢ (v, (E, G)) . (3.32)
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Letting Ey denote the expectation with respect to the Gaussian law Py of the disorder J,
it follows that for v(-) of (1.22), any x € C(Ry,RN) which is independent of J and all
s,t€[0,Ti,je{l,...,N},

H(x;) := Ey {Hy(x;) | CP(E, G,x,)} = —Nv(gn (1)),

_. . (3.33)
G'(x) :=Ey {G’(x,) |CP(E, G, x*)] = 1i=yvVNgV (gn (1)) -

Further, for CP, = {¥i > 2 : 9, Hy(x,) = 0}, we have that Ey {G'(x;) | CP,} = 0 for any
(t, i), while

K00 =By |G )G (x0) | CPL| = 050, (RO, )

~ (3.34)
k(xg,%;) == Ey {Hy(xg) Hy(x;) | CP.} = NYTpn (s, 1),
for Yn(s,t) of (3.7).
Proof Fix two points X, §y € RV, Recall that [1, Eq. (5.5.4)]
E{on H) ®H) 3] = 0:Cov (1) ®0H) 3))
=3VIN TR F).
(3.35)

E {0 1 (005, Y 3] = 05005, Cov (Hy G )
xNy V/(NTHR I + L= (VIR ).

Inparticular, w = (¢, Hy(X,) , \/ﬁaxl Hjy(x,))andz = \/ﬁ(ax,- Hj(x,));~1 are independent.
Therefore, from the well-known formula for conditional Gaussian distributions [1, pages 10-
11],

A ) = (Ex{Hyx)WHEs (W W)™, (=Ng.E. —Nq.G))

which by substitution yields the top line of (3.33). Recall that G = —VyH to complete the

derivation of (3.33). The formula (3.32) for the conditional expectations of J 1(,’? ‘)1 is similarly
verified from

E{Jl(,li)lH}V(x,,)} —bpq,,NZE{(J(p)) } —b qul—g
[J(p)l(a 1 Hy (X*))} —bpqu Iy E{(J(p)l) } b pqp IN e

Next, recall that any centered Gaussian field, conditional on a linear map being zero, remains
centered. In particular, Ey {Gi (x¢) | CP*} = 0 for any choice of x, and (¢, 7). Further, with

= /N9 |« Hy(x,) independent for different k, the formula for the conditional covariance
of Hj(-), simplifies to

N

K(xe. %) = By (Hy(x) Hy(x)} = Y Ey {Hy(x)ze) {Byz) ' By (Hy(xo)zi}
k=2

from which (3.34) follows by substitution (and comparison with the definition of Yy in
(3.7)). O
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Preparing to adapt [10, Section 2], reca}ll Kn(t) = Cn(t,t) and set hereafter By (¢) :=
% Z,N:l | B} 12 and Gy (1) 1= % ZlN:] |G (%) Using throughout the corresponding sup-
norms [|[Ky|lco := sup{Kn() : 0 <t < T}, ||Bylloo and ||Gpy|lco as well as the N-
dependent disorder-norms

—1 p—1
||J||f,vo = max sup VN Z N]TJil..‘,‘pul ceuf (3.36)

I<p=m HuiHEI,lfiﬁp 1<iy<N,1<k<p " '
of [10, (2.1)], we first mimic [10, Proposition 2.1] about the strong solution x; of (1.1).

Proposition 3.8 Assume that f' is locally Lipschitz, satisfying (1.6). Then, for any N € N,
X, J there exists a unique strong solution of (1.1) for a.e. Brownian path B. Denoting by
IP’S\{XO the (unique) law of (B, x;} as C(R™, R2NY-valued variable, we have that for some c,
K finite,all N, z > 0, J and X,

N
IPLXO(

In particular, for some D,(k, M) finite, any k, M and all N,

sup Ky (1) = Ky (0) + (1 + [JI1¥)° + z) <N (3.37)

teR+

sup [Ef [ sup Ky (4]} = Dok, ). (3.38)
{J.x0:K N 0+ TR <M} 1eR*
Further, for any finite positive ¢y, k and
sup  supE[ (IIIIY)F] < o0 (3.39)

|E], |G| N

and there exist finite ¥ > 1 such that for any t > 0,

sup  sup BIJIY, > % + ] < e NOE. (3.40)
|El,|G|<ae N

Consequently, for any |q,| < q« positive, finite k and o,

sup supﬁ[ sup Ky (1)F] < o0 (3.41)
|El,|G|<a N teR*

and for any finite L there exist z = z(L) finite such that

sup supﬁ[ sup Ky (1) > z] < 28e V. (3.42)
|El,|G|<a N teR*

Proof From [10, Proposition 2.1] we have the existence of a unique strong solution as well
as the bound (3.37) (while stated in [10] for a.e. J, xg, examining their proof we see that
it holds for all J and x¢). Clearly, (3.38) and (3.39) are immediate consequences of (3.37)
and (3.40), respectively. Further, taking Xo € Sy amounts to Ky (0) = 1, yielding (3.41)
and (3.42) upon combining (3.37) with (3.39) and (3.40), respectively. Turning to the only
remaining task, of proving (3.40), recall [10, (B.7)] that for some ¥ and all ¢ > 0,

sup P[ITIY, > % + 1] < Re NO/E. (3.43)
N

Since ||J||, is a symmetric, convex function of J, by Anderson’s inequality [2, Corollary 3],
the bound (3.43) holds when J is replaced by the centered Gaussian vector J, having the law
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ylf,o’o’q*). Further, conditionally on CP(E, G, x,), we have that J = J, + jE,G for the non-
random vector J e.c = E[J|CP(E, G, x,)]. The only non-zero entries of J E.G correspond
to {J;7 ?) 1} and are given by (3.32). Consequently,

13e.GlI% = 2<mpa§m{|bpq* (Vp, (E, G))}, (3.44)

is bounded, uniformly over |E|, |G| < a by some k(«, ¢,) finite. In conjunction with the
triangle inequality for || - ||, this yields (3.40) (upon adding ¥ to ¥). O

The same reasoning as in proving [10, Proposition 2.3], but with (3.39)—(3.42) of Propo—
sition 3.8 replacing [10, Eqn. (2.12), (B.7), (2.13), (2.3)], respectively, yields for Uy € L[N
both (3.9) and the stated pre-compactness. Along the way we also find that for some
M =M(L,T,a) < oo the subsets

Ly = {x0. 1. B) € &n : TN, + 1By lloo + IKnlloo + I1GNlloc <M} (3.45)
of &y are such that for any finite L, T, o and all N,

sup  P(LS ) < MeEV (3.46)
|E]IG|=a '
Next, similarly to [10, (2.10)],
1 - _ . TR N ~
——Hy(x) = Hy®| < c 1T 1+ OV IxP)) (T + (N THRID ) Ix =X, (3.47)
VN
forr = (m —1)/2,¢c = m+/v'(1) and any x, X € RN.In particular,
Ix; — x|
N
The uniform moment bound (3.9) then extends to all Uy since qN (s) < g; 2Cn (s, s) and
(s) < ¢2Gn(s) + ¢ (V' (gn(s5))?, with the locally Lipschitz f'(-), v”(-) and V'(-) hav1ng

at most a polynomial growth. In addition, from [10, (2.18)] adapted to our setting of IP’ we
have for any € > 0, some L'(8,€) — coas 8§ — 0, and all N,

sup B[ sup (lgn () — g (@)} > gui/e] < e KGN
|ELIG|<a  |1—t'|<8

[Hy (1) — Hy ()] < e ITN5 (0 + Ky () (1 + Ky @')) (3.48)

sup supE[ sup Ign() —gn ()] <L/
|E|,|G|<a N l1—t'|<8

The same holds also for A, N () (see (3.48)), and for Vi (+) (c.f. [10 display preceding (2.18)]).
Such bounds yield the equi-continuity of gn (-), Va (-) and i, N( ) (a.s. and in expectatlon)
from which we deduce the pre compactness, first of gy, Vy, 17} N, thenof Oy, Dy, Ex and
finally of Yy ,®pn @l NN lIJ (by the uniform moments control (3.9) and the Arzela-Ascoli
theorem). In particular, this way we have further established that for some L (8,€) — o0 as
8 — 0,any € > Oand Uy € Uy

sup P sup |[Un(s. 1) —Un(s', 1) > €| < e LGN,
|ELIG|<a |s—s'|+]t—t'|<8

sup sup  sup  |EUNGs, 1) —EUNG, ) <L, e "
|ELIG|<a N |s—s'|+|t—t'|<8

(3.49)

Turning to the self-averaging property (3.10), similarly to [10, Proposition 2.4] our proof
relies on the following pointwise Lipschitz estimate on Ly, y of (3.45).
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Lemma3.9 Ler x, X be the two strong solutiozls gf (1.1) constructed from (xo,J, B) and
(X0, J, B), respectively. If (xo,J, B) and (Xo,J,B) are both in Ly y, then we have the
Lipschitz estimate for each Uy € Uy,

- DM, T) e~
sup |[Un(s, 1) = Un(s, )| < ll(x0,J,B) — (X0, J,B)I|, (3.50)

s,t<T N \/N
where the constant D(M, T') depends only on M and T and not on N. ~
Further, for en(s) 1= N1 [[xs — §s||% any N and T, if B = B and Xo,J) — (x0,J),
then

E[1 A llenlloo |3, 3. %0, %0] — 0. (3.51)

Proof For Uy € Z/l;, the bound (3.50) is precisely the statement of [10, Lemma 2.7], while
for Uy = g it follows upon taking the square-root of the bound

DM, T ~ ~
lenlloo < %II(XO,J, B) — %0.J. B)|? (3.52)

from [10, Lemma 2.6]. Further, while proving [10, Lemma 2.7] it is shown that on Ly u
1G (%) — G&)ll2 < D2(M. T)|[(x0. J. B) — Go. J. B
(where 5(-) := —VHj(-), see [10, Page 636]). Utilizing (3.47) instead of [10, (2.10)] yields

the same bound for ﬁlHJ(xs)—Hj(is)LRecall (3.45)that ||gn oo < g«lIKN ||éé2 < g.vVM

on Ly, which thus in view of (3.33) for the locally Lipschitz v/ (), thus results with (3.50)
holding for Uy = Vy and Uy = Hy. Similarly, having f'(-), v (-) locally Lipschitz and
Knlloo < M on Ly, u, extends the validity of (3.50) first to Uy € {Qn, Dy, En}, then
alsoto Uy € {Tn, Oy, CDN, Wy, \I’N}

In case B = B we see from [10, Proof of Lemma 2.6] that (3.52) holds when TN +
KN lloo + ||KN||oo < M. With (NO,J) — (X0, J), the RHS of (3.52) decays to zero and
K N@O)+||J ||N is uniformly bounded. Such uniform boundedness implies in view of (3.38)
thatas M — oo,

PAIIS, + 1K lloo + 1K lloo > M [T, 3. %0, X0) = 0,
uniformly in (Xp, :f), from which we deduce by bounded convergence that (3.51) holds. O

We next verify that P satisfies the Lipschitz concentration of measure, as in [ 10, Hypothesis
1.1], uniformly over |E|, |G| < «.

Proposition 3.10 For some C > 0, any (E, G, q.), function V. : Exy +— R of Lipschitz
constant K and all p > 0,

P{|V —EV| > p} <C lexp(-Cp?/K?) . (3.53)
Proof Assume first that EV = 0. Recall that P = Ux, @ y(E G g Py . Denoting a generic

point in Ey by (Xo, J, B), let Ex, denote the expectation WRT ,ux‘: and the variable x¢ only,

and for fixed xg, let IP’J B = y(E G4

® Py . By conditioning on X,
P(V > p) < Ex,Pys(V —Ey sV > p/2) + Py, Ey sV > /2). (3.54)
For any fixed x, (J, B) — V (xo, J, B) has Lipschitz constant K WRT the norm

IBF=> > (Nzhw>+wp2w)

p=2 l<i\<..<ip<N 0=r=T ;-
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Next, set Py g := yy ® Py for the unconditional Gaussian law yy of J, and W (xo, J, B) :=
(X0, W(J), B), for the orthogonal projection W to the affine subspace of R defined
by CP(E, G, x,). The composition V o W necessarily has at most the Lipschitz constant K .
Hence, for some C > 0, any N, V (), p > 0 and all xq, by the concentration of measure of
the Gaussian measure (see, e.g. [3]),

Py(V —EygV > p/2) =Pyg(V oW —EjgV oW > p/2) < C~lexp(—Cp?/K?).

Further, by Jensen’s inequality, xo — E':J,BV has Lipschitz constant K WRT the Euclidean
norm on RN . Moreover, Ex,EyBV = EV = 0, so by the concentration of measure of the
uniform measure on the sphere [16, Theorem 1.7.9], for some C > Oandany N,V (-), p > O,

Py (Ey BV > p/2) < C™ exp(—Cp?/K?).

Combining the above we deduce from (3.54) that for some C > 0 any K -Lipschitz V' and
p >0,

P(V > p) < Clexp(—Cp?/K?).

Considering this bound for +(V — IEV) yields (3.53). ]

Equipped with Lemma 3.9 and Proposition 3.10 we establish (3.10) via the same reasoning
as in [10, proof of Proposition 2.4]. Specifically, fixing (s, ¢) € [0, T2, we use [10, Lemma
2.5] to extend (thanks to (3.46)), the tail control of Proposition 3.10 to V. = Uy (s, t) for
Uy satisfying only (3.9) and (3.50). With constants C, K, M(L), D = D(M(L),T) in
[10, (2.21)] which are independent of s, ¢, p, N (and uniform over |E|, |G| < «), we get
by the union bound that (3.10) holds whenever the supremum is restricted to s, ¢ in some
(arbitrary) finite subset A of [0, T']>. The preceding quantitative equi-continuity control of
(3.49), further allow for strengthening to the full summability result (3.10) by considering a
finite 8-net A of [0, T'1? (say with § > 0 small, so Z(Z(S, p/3) > 3/p).

3.2 Proof of Proposition 3.3

Under both P and P, the vector J has the Gaussian law Py of independent coordinates,
conditioned on CP,. Indeed, the only difference between P and P, is that P imposes on J an
additional conditioning via CP; := {Hy(X,) = 9,1 Hj(x,) = 0}. Having a conditional law
for J enters twice throughout the whole derivation of Proposition 3.1 (via Propositions 3.8
and 3.10): first in upgrading (3.43) from PP to IP via Andreson’s inequality, then in proving
Proposition 3.10 by representing the conditional disorder as W (J) (for some orthogonal
projection W). Both arguments are applicable also for P, (namely, without conditioning on
CP1), hence so are all the conclusions of Proposition 3.1 (and of Proposition 3.8).

~ —1
Turning to (3.14), weset J, := N b J{({f?. 1) noting that CP, is independent of the standard
Gaussian vectorz:: (J~p, 2 < p < m), whereas

m m
= {73 hnat = Y bpTat ™ =0). 359
p=2 p=2

Denoting by W the orthogonal projection sending i to the linear subspace determined by
(3.55), leaving the remainder of (xg, J, B) unchanged, we thus have that EV = E,V o W for
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any V : Ey — R. Further, with

IW (x0, J, B) — (x0, 3, B)|| < | ]]| < £ann{,Vo,

we deduce from (3.50) that when (xo, J, B) and W(xo, J,B) are both in Ly u

~ D’
sup sup [[Zy oW —Zy|2 < —, (3.56)
E.G Sj,l‘jfT N

where D' := +/tmD (M, T)M. With |¥(z)| < M’||z||]]§ and ¢, denoting the finite Lipschitz
constant of W(-) (with respect to || - [|2), on the compact set ', := {z : ||z||x < r}, we thus
have that forany £, G, M,r <ooandsj,t; <T,

EW(Zy) — E.W(Zy)| < E ¥ (Zy o W) — W(Zy)|
~ D’
k k
< M'EIIZy (g, ,, + Lizyi>r)] + MEZN I Az, + Ljzyjesr)] + ey
The last term on the RHS vanishes when N — o0. Recall (3.9), that both I~E||ZN ||%k and
}E,||ZN||%]‘ are bounded, uniformly over |E|, |G| < « and s;,t; < T. Thus, by Cauchy-
Schwartz, considering (3.46) for P and IP,, the contribution to the RHS from the pair of terms
with 55\,. » also vanishes as N — oo. Now, to arrive at (3.14), simply combine (3.9) with
Markov’s inequality, to deduce that ﬁ(HZNHk >r)+P.(|Zylx > 1) = Oasr — oo,
uniformlyin N, |E|, |G| < aands;, t; < T.Finally, combining (3.12) and (3.14) we deduce
that

lim sup sup |E,W(Zy) — V(EZy)| =0 (3.57)

N—00|E| |G|<a s).tj

whenever the coordinates of Zy are from Uy. Clearly, E,|Uy (:|7) — E,Un| < E,|Uy —
E,Un|and E, Uy (-|7) = E, Uy forany Uy € Uy, T € [0, T], thereby extending the validity
of (3.57) to coordinates of Zy from Uy;.

3.3 Proof of Proposition 3.4

Fixing T < oo note that H (-) does not affect (R, C, ¢, K). With H (-) uniquely determined
by (R, C, q) via (1.21), it suffices to prove the uniqueness of the solution (R, C, ¢, K) of the
reduced system (S):=(1.17,1.18,1.19,1.20). To this end, fixing two solutions (R, C, ¢, K),
(R,C,7,K),of (S)at B = 1 of the same boundary condition (BC):=(3.16,3.17,3.18), let

AU := (AR, AC, Aq, AK) = |(R,C,q,.K) — (R,C.3.K)|.

From (BC) we have that AC(s,s) = AK(s) and AR(s,s) = 0, AK(0) = Ag(0) = 0.
Denoting all constants by M (which may depend on 7 and the uniform bound on both
solutions), even though they may change from line to line, we arrive at AU = 0 by adapting
the Gronwall’s type argument leading to [10, Proposition 4.2]. To this end, (1.17) yields,
exactly as in [10, (4.9)] that for all (s, ¢) € Ar,

N
AR(s,t) < M/ AK (u)du +M AC(t1, )dtidty := Ir(s, t) + Ig(s, t) .
t 1<h<t<s

(3.58)
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Next, integrating (1.19) yields that

t t
Q(t)=q(0)—/0 f’(K(u))q(u)du+/O 2V, (q (w))du

v (q(v))V”(q(u))]d
"(gd) '
The same identity holds for (R, C, 7, K). With f/(-), V. (-) locally Lipschitz, considering

the difference between that identity for our two uniformly bounded on A7 solutions of (S),
yields that

t u
+/ du/ R(u,v)[q(v)v”(C(u,v))—
0 0

t t u
Aq(r) < M[/O Aq(u)du+/0 du/o AR(u, v)dv

t u t
+/ du/ AC(u,v)dv—i—/ AK(u)du].
0 0 0

By Gronwall’s lemma, upon suitably increasing the value of M we can eliminate the first
term on the RHS, whereas by (3.58) the second term on the RHS is controlled by the remaining
two terms. Hence,

Aq(t) < I(t,0)+ I3(¢,0), Vte[0,T]. (3.59)

Likewise, integrating (1.18) yields that each solution of (S) satisfies for s > ¢,
N N t
C(s,t)=K(t) — / F (K @))C (u, t)du +[ du/ dvv'(C(u, v))R(t, v)
13 t 0
s t
—I—/ du/ dvR (u, v)v"(C (u, v))C (¢, v)
0
IS u
+ / du/ dvR u, v)v"(C(u, v))C (v, t)

2.1
—q(z)[ f.r gl (Q( ) 0 "R, v ()

- fsdu”("(”)) dvv'(qW)R(, v) + (1) /Svi(q(u»du. (3.60)
t /(Q*) 0 t

By (3.59), the terms on the RHS which involve ¢ (-), contribute to AC (s, t) at most

[Aq(t)—k/s Aq(u)du—l—/ du/ Ag()dv

/ a’u/ dvAR(u, v)—l—/ du/ dvAR(t, v)

< Ir(s,0) + I3(s,0) + I7(s, 1) + Le(s, 1)

(see (3.61) for Ig and I7). Utilizing [10, (4.10)] to bound the effect on AC (s, ) from the rest
of (3.60), yields

AC(s,t) < M[AK(Z)—}—/ AK(u)du—l—/ AC (u, t)du+/ du/ dvAC (u, v)

/ du/ dvAC(t, v)—i—/ du/ dvAR(t, v)—i—/ du/ dvAR(u, v)
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N u N u S u
—l—/ du/ dvAC(u,v)—i—/ du/ dvAC(v,t)—l—/ du/ dvAR(u,v)]
0 0 t t t t

=115, 1) + I2(s,0) + [3(s, 1) +--- + [7(s, t) + I3(s,0) + Io(s, t) + [10(s, 1) .
(3.61)

Similarly, by (1.20) we have for each solution of (S) and any ¢ € [0, T'],

t t u
K@) — K@) —t= —2/ f (K @)K (u)du + 2/ du/ dvy (C (u, v))R(u, v)
0 0 0
2
v'(¢2)

t
+2/ gV, (qu))du . (3.62)
0

t u
/0 duy(q) /0 dv v’ (@ (W) R, v)

Clearly, the terms involving ¢ (-) on the RHS contribute to AK (¢) at most M f(; Aq(u)du +
L1o(¢, 0). Further, with AK (0) = 0, utilizing (3.59) and bounding the effect of the rest of
(3.62) as in [10, (4.11)], yields here

AK(t) < Ix(t,0) + 131, 0) + 110(, 0) . (3.63)
We follow the derivation of [10, (4.13)], by first plugging (3.58) into (3.63) to eliminate

I1o(t, 0), then by Gronwall’s lemma eliminating /5(¢, 0). Setting D(s) := fos AC (s, v)dv,
we thereby get, as in [10, (4.13)], that

t
AK(t) < Ig(t,0) = M/ D(u)du . (3.64)
0
Plugging (3.64) into (3.58) and (3.59), yields in turn that
S S
AR(s,t) < M/ D(u)du, Aq(s) < M/ D(u)du, V(s,t) € Ar. (3.65)
0 0

With (3.61) differing from [10, (4.10)] only in having /5 (s, 0) + Ig(s, 0) instead of I5(s, t) +
Ig(s, t), upon integrating both sides of (3.61) with respect to ¢ € [0, s], we deduce from
(3.64) to (3.65), exactly as in [10, Page 652], that

D(s) < M/s D(u)du, Vs €[0,T].
0

Recall that s — D(s) is non-negative and non-decreasing. Hence, by yet another Gronwall
argument we conclude that D = 0. In particular, AC (s, t) = O for almost every (s, t) € Ar,
while from (3.64)—(3.65)

AK =0, AR =0, Ag =0, on Ar.

Going back to (3.61), this suffices for its RHS to be zero at any ¢+ < s < T, thereby having
AC =0on Ar.
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4 Proof of Propositions 3.5 and 3.6
4.1 Proof of Proposition 3.5

Consider the limit N — oo of the P,-expectation of the identities

1
WO e = . + W

From (3.57) we see that any limit point (C, x, ¢, C, ¥) must satisfy (3.19) (with x = x as
both E, [‘112\/ (s)] and IE[|B,1 |2] are bounded uniformly in N and on [0, T']). The P,-expectation
of (3.13) ati = 1, amounts in view of (3.5), to g, (s) = g% (0) + fos Q¢ (w)du, from which,
by utilizing again (3.57) as N — oo, we deduce the validity of the RHS of (3.20). By the same
reasoning, each limit point of the P,-expectation of (3.5)—(3.8) must satisfy (3.20)—(3.26),
respectively. Observing that )_(1‘(, (0, ) = 0, and having as in [10, Eqn. (3.2)-(3.3)],

Cn(s,t) =Cn(s,t)+

t
CnGs.) = Cns,0)+ (5.0 + [ Dty
0
1M s _
InGs.0) = an .0+ 4 S BB+ [ Enendu 4.1)
N 0

(recall the definition (3.6) of Dy and Ey), we likewise deduce that (3.27) holds. Recall that
by the P,-independence of the standard Brownian increments

Up(s,00=0, Up(s,0) =Ug(s,t Ns), Uy € {Fn, v, EN} “4.2)

(c.f. [10, Page 638]), hence our stated boundary conditions on the limit point. The key to
the proof is Proposition 4.1, which approximates (V, Aj{,, 151‘\’,, ﬁﬁ,) for N — oo, by a
combination of functions from Uy, (where expressions involving v, v’ and v”” emerge via the
covariance kernels of Lemma 3.7). Indeed, with Proposition 4.1 replacing [10, Prop. 3.1],
we get (3.28)—(3.31) (and thereby establish Proposition 3.5), by following the derivation of
[10, Prop. 1.3], while utilizing (3.57) and the pre-compactness results of Proposition 3.1 (for
P,), instead of [10, Cor. 2.8] and [10, Prop. 2.3], respectively.

Proposition 4.1 Set ay >~ by when lay(-) —bn(-)| = 0 as N — oo, uniformly on [0, T1%.
Then, fort =t Vs,

N
Vi(s) = Dy (s,5) — @y (s, 0) —/0 WA (s, wydu, 4.3)
A (t,5) = C (s, T)P% (£, T) — C (s, 0) DY (2, 0)

_ /T [ 5. 104,100 + Cfy s, 10 W 1 0 4.4)
0

tAS
Fi(s, 1) :)Zl’f,(s,t)dD‘[(,(s,s)—/ D% (s, v)dv
0

— /0‘ I@?V (s, u)b:[‘{, (u, 1) + xp u, WY (s, u)]du , 4.5)
H(s) = Y& (s,5) — T (s, 0)
—/S [Bg 5. 1098 e, 9) + sz(u)cb}\;“(u,s)}du. 4.6)
0 *
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Towards proving Proposition 4.1 we fix a continuous path x satisfying (3.13). Then, for any
operator k; of kernel k), (x) on Lo({1, --- N} x [0,¢]) and f € Lo({1,--- N} x [0, ¢]), let

N oo
ke fT,, = Zf Ky fldv,  Gou)e{l,--- N} x 10,11, @7
j=17°
which is clearly in L ({1, - - - N’A} x [0, t]). Assuming that each k;/v (x) is the finite sum of
terms such as x;, - - -x,’j’xﬁl -+ x{" (for some non-random a, b and iy, . .., is, Jls--us jb)s We

further extend (4.7) to stochastic integrals of the form
. N ro .
[k 0odZ], = Z/ kilydZi (4.8)
; 0
j=1

where Z,, is a continuous F,-semi-martingale (composed for each j, of a squared-integrable
continuous martingale and a continuous, adapted, squared-integrable finite variation part).
Adopting the conventions of [10, Page 640] for interpreting fot k,%d 71 in terms of Itd inte-
grals, note that [k; o dZ]fl € Lo({1,---, N’} x [0, t]) (recall (3.41) that x, has uniformly

over time, bounded moments of all orders under P,, hence so does the kernel k;ﬁ (x)), with
the following extension of [10, Lemma 3.3].

Lemma 4.2 Fixing t € Ry there exist a version of V;;T = E,[G!(xy)|F;] and Z;;r =
E.[B|Fr] with
N
Zy, = —xp - /0 Q. cdu, QL =Vl — f(Kn)x; + Li=yVNa.V (gn(s) ,
4.9)

such thats — Zé. ; are continuous semi-martingales withrespect to the filtration (Fy, s < T),

composed of squared-integrable continuous martingales and finite variation parts. If {S' (x),
i < N'} are linear forms in J with covariance kernels

K100 =By [T )G (x0) | CPL | R0 = By {STx0)8" (x0) [ P
1<i,I<N,1<j<N, (4.10)
consisting of polynomials in X, then

Y., = B[S )| 7] = [ke 0 dZ] = [k; 0 dx]} — [k: Q1] .
V(@i,s)e{l,---,N'} x [0, t]. 4.11)

Further, there exist then a version of

i :=1E,[<S"(xs) — YL (x) - Y,{T)m], ile{l,--- N},

SIT

‘ , ‘ (4.12)
=BG ) = VIS ) = YIDIF ], sirel0rljell ),
such that

st;T ut;t

N oo

ri, =k => /k;:{,r” du, Vs,t€l0,7], i,le{l,---,N'}. (413)
; 0
j=1
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Proof ‘The right equality in (4.11) follows from the relation (4.9) between ]E,,[Bj: |Fz] and
E,[G' (x,)|F+], which in turn is a consequence of having in (3.13),

Ul = xi—xi+ / Ky @)xidu — 151V Na, / V(g ())du
0 0

- / "G (xa)du + B (4.14)
0

The latter relation implies the stated continuity and integrability properties of the semi-
martingales Ug and Z;, = U’ fo V’ ;du. By Girsanov formula (see [10, Eqn. (3.16)]),
the restriction to J; satisfies

N _ ANPDPN
PJ X0| AT IP)O,X()']'—Z’

AN = exp{Z/o G (x,)dU! — ;Z}:fo (G’(XS))st}, 4.15)

with U, I"a standard Brownian motion under ]P’N 0.x . Setting ]Pj for the law of J conditional on
CP,, we thus have (as in the proof of [10, Lemma 3. 3]), that
o EIS )AY]
ST E} [AIIV] s
Ej[(570x) = Y )8 x0) = Y A ]

ril . = ' . 4.16
St T E}[A{,V] ( )

The centered Gaussian law IF’} is not a product measure, but the arguments used in proving
[10, Propqsition C.1] still apply. Specifically, here Gl(x;) = D JO‘ZLA[ (o) and S'(x,) =
Z JIM| () for some independent centered Gaussian {J?} of positive variances vy, with

kY = =3, M (@)ve Ll (). Our Radon- -Nikodym derivative AN is given in terms of R =
{Ryy} of [10, (C4)] and J° := {JJ}, by the display followmg [10, (C.4)]. Under such
a change of measure the Gaussian law of J° has the covariance matrix (D~! + R)~! for
D =diag(vy) and the mean vector q = D! + R)~ 1 of [10, (C.5)]. From the LHS of
(4.16) we have that Y, = Y, M (e)qa and V). =¥, Li(@)qq. Further, by definition
kr 0dUT, =3, M’ (oz)vo,,ua and [k V], Za v M s (@)vy Ry qy (thanks to [10, (C.4)]),
with the 1dent1ty YS’; =lk;oZ ] of (4. 11) thus a direct consequence of [10, (C.5)]. Next,
note that Egi =y, M Ho) Vg M! ; (o), whereas from the RHS of (4.16) we have that

r =S Li@I®" + R o, M ().

oy
Fl =Y M@ +R) oy M/ (7).
oy
By [10, (C.4)] we thus get (4.13) out of (D' + R)™' = D — DRMD~! +R)~! (as in the
proof of [10, (C.3)]). ]

Proof of Proposition 4.1 In view of (3.3)—(3.6) and (3.15), one has as in [10, Pg. 642], for
anyt e[t vs,T],

N
_ . _ 1 . .
An(t,slt) = § VieXs DN<s,r|r):ﬁ'§2Qé;Tx;,
1=
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qx

VN

4%

N

Vn(slt) =

Vi, OnGslo) =

0., . 4.17)

Recall 1td’s formula for u +— 'l:(xs, Xu),

N T . ~ ~ T ~
S [ o Fenexadnd = Fosoxo) = Foxo) = 5 [ (8 Fox xld
j=1 0 u O
(4.18)

Thus, for the operator k; corresponding to S = G’ in Lemma 4.2, we get from the first
identity of (3.34) that

ke 0 dx)y =) / 0,10, (Kxs, x))dxi = @iy (5, 7) = ¢y (5, 0) = / 8iy (s u)du
j=179 0

(4.19)
forany (i,s) € [0, 7] x {1, ..., N}, where
i T i 1 >
oy (s, u) = 8,\‘§k(xs,xu) s Sy (s, u) = Ea_xlé{AXuk(XS’XM)} .

By the second identity of (3.34) we arrive at

N
1=y @) (s, 1), (4.20)

o (s, u) = axé;’/;(xs, X)) = X1 @u (s, u) + .

in terms of ®u (-, -) and d>11\,(-, -) of (3.7). Consequently,

3 . Wi
ksl =3XL{{<P}V(& u)} = %v”(czv (s, u)) + Lji—j21y PN (s, u)

2.1
+ imjm [V (Cov (5, 1)) = Cv (s, )

gz (gn ()" (gn (u))]
v (g2)

(4.21)

et lq*xsj V@@ @) g v a0 e )
{i=1}4{j#1} \/ﬁ V/(C]z) {j=11i#1} \/ﬁ V/((]z) .

@ Springer



496 A.Dembo, E. Subag

Similarly,

g2 (gn () y

A (s, %) = Ky ()" (Ci (5, 10)) — =— )

V(gn($)CN (s, ), (422)

resulting after some algebra with

y!

8 (s u) = atl ”(CN(S u)) + NKN(S)V”’(CN(S u))

q%v“/(cm () i XV (g (5)) V(g (s)) ~

1_
2v'(q2) N + {1_1} \/ﬁ

Next, with (p1<, (u,s) = 8{,- {z(xx, x,)} it follows from (3.34) and (4.7), that

CnGs,w)]. (423)

T N X N . .
ke Q1 = /0 Wi (s, ul)du Vi (5o ulT) = 3x;'[2¢1’v(“» s)Q-L’”] L (424
=1
Combining (4.17) and (4.20), we have
. . B N
DA 0], = NDNG.ulD®y ) + S OvwID ). @29
=1 *

which in view of (3.7), (3.8) and the symmetry of @y (-, -) yields that

¥iyle, 2 = {;;:pdi»iisublf))ﬂ Py (s, ulr). z;]l +20
In this case Y!._ = V/._, so by (4.11), (4.19) and (4.24) we get
L= ke o dx]l — [k QI
= g (5,T) — @i (s,0) — /(:[Ws, ult) + 8y (s.w)ldu Vs € [0, 7].
4.27)

S8\ (s, w)du, by (4.17), (4.20) and (4.26),

In particular, for ey (s) := jﬁ

Vi (s]s) 4+ en(s) = Dh (s, 5) — DA (s,0) — /x Wl (s, uls)du .
0

We now consider the E,-expected value of the preceding identity. From (4.23) we have that
ey > 0, so with U (s, 1) = E.Un(s, t|r) we arrive at (4.3). Turning to the derivation of
4.4), fort =t Vv s and

5 P A
Nt s) ::/0 {Ngx;a;v(t,u)}du

we have in view of (4.17), (4.20), (4.26) and (4.27), that

N N
. 5 1 : o ‘ .
ANt slt) +En (1, 9) = & 'EZ N DX = Ezwﬁv(t, 0)x;
1= 1=
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N
T . .
- — > Wit ulr)xl fdu
/0 [N i=2 }
=Cn(s, D)PN(t,7) — Cn(s, 00PN (2, 0)

- / [DN(S, Uu|T) Dy (6, 1) 4+ C (5, )Wy (¢, u|t)}du .
0

Since €5, ~ 0, we get (4.4) from the preceding identity (upon applying (3.57) for the function
Z122).

Moving to (4.5), by (4.2) it suffices to consider hereafter ¢ € [0, s]. Further, B{ = Uti -
f(; G (x,)dv with Uti measurable on F; (c.f. (4.14)). Hence, in view of (4.12),

EL(Vi, — G (%) B | 7] = B, [(V)., — G'(x,)) f (Ve — G (x0))dv| F]
/ ridv. (4.28)
0
In particular, setting

Ty (s, t]7) = Z/ i dv

we deduce that

T (s, 1]7) = Z o Zh = Fn(s,tlo) = ZQ” ie — EnGs,tl0),

(4.29)
AN(s, tT) = sz tHTe
From (4.20), (4.26) and (4.29) (at T = s), we also have that
1M A
ON (s, 1) = = > @h (s 0 Z, = In (. 1) D (s, 1),
=2
N _ (4.30)
My (s, u5.0) = = 3 Wi (s, ul9)Zp = [T, tls)
=2
+ En(u, t]5)] N (s, u) + X (u, ts)Wn (s, uls).
Further, from (4.27) we get
n l i i
T (s, 1) + Fi (s, 1ls) = Z vizi
N
= OnN(s,s;1) —On(s,0;1) —/ Ty (s, u; )du —€n(s, 1), (4.31)
0

where ey (s, t) := % Zzsz fos 85\/ (s, u)Z;_sdu is such that €5, =~ 0 (see (4.23)). Next, setting
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N

PN (s, v) 1= D (s, v) — ]1]22: == Z/ O (s, )i du, v elo,s],
(4.32)

we see that

A

t t
/ Oy (s, v)dv =Ty (s, t]s) +/ Oy (s, u)ly(u, t|s)du + én (s, v)dv,
0 0 0
so combining (4.30) and (4.31) results with

t t
/<I>N(s,v)dv+ﬁzv(s,t|s}=)ZN(s,IIS)@N(s,S)—)ZN(O,IIS)‘I>N(5,0)+/ o (s, v)dv
0 0

—?N(s,t)—/o‘ {EN(u,tls)GDN(s,u)+)ZN(u,t\s)\IJN(s,u|s)}du.
(4.33)

Recalling that (0, 1) = 0, we thus get (4.5) by employing (3.57) on the [E,-expectation of
the RHS of (4.33) and relying on the following analog of [10, Lemma 3.4].

Lemma4.3 For ¢n (s, v) of (4.32),

lim  sup |¢f(s,v)| =0.

=0 (s, v)eAT
ProofofLemma4.3 Recall that ' = I and EY = ky in our special case of Lemma 4.2. Thus,
setting

N

N
i 1 1
yn (U, vls) 1= V2 Z X5 ;F,ﬁ,s, V}%/(Ma vls) 1= fN Z ;inlv $?

i,j=2 i=2
we deduce from (4.13), (4.21) and (4.32) that for any v, u € [0, s],
N
0= 4 > [k - i, - Z/ KL du]
i=2

= gn(s.v) + %[V”(CN(S, W)C(s,v) = Oy (5, v)]

- /0 V(Cw (s, )Py (e, v]s)du
_/ [QN() " ~ V(g )V (gn (5))
0

v (Cn(s,u))

q} V'(g?)
Recalling Proposition 3.3 that the uniform moment bounds (3.9) apply for P, and any Uy €
Uy, it thus suffices to show that E*[()?N)z] ~ (0 and E*[(ylb)z] ~ 0. To this end, from the

definitions of Ay, r/ (see (3.3), (4.12)), and the LHS of (4.17), we find that

uv;s

]y]\l,(u, v|s)du .

N
1 CoL , 4 .
P (. vls) = B 15 D7 ¥ (67 ) = VG x0) = ViDIA

i,j=2

= E*I:(AN(W 5) — An(u, s19)(An (v, u) — An (v, uIS))Ifs] :
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In particular, by Cauchy-Schwarz

sup B [7w (e 019?]} = sup (E[(Ay .0 — Ay, uls)?]]

u,vel0,s] u,vel0,s]

which goes to zero as N — oo (apply Corollary 3.2 for W(z) = (z; — 27)? and Zy =
(AN(), Ay (-|s)) with W(E,Zy) = 0). Similarly, we get from (3.3), (4.12) and the right-
most identity in (4.17) that

7y vls) =B D (G ) — ) )—Zx (G (%) = Vi)IF]
= EL[ (Vi) = Vv @ls)) (Ax (0, 0) = An (o, uls)I .

Thus, as before, the uniform convergence to zero of [E, [( yAI, (u,v |s))2] follows by combining
Cauchy-Schwarz and Corollary 3.2 for P, (taking here Zy = (Vy (1), Vi (u]s))). O

Proceeding to establish (4.6), we compute H, N (s|s) by employlng Lernrna 42forH = H, N
(with N’ = 1). This corresponds to having covariance kernel k sii = N 8 k(xv, X, ). In view

of our definition of ‘/’N (u, s), we then get from the RHS of (4.11) at T = s, upon utilizing
(4.18) and (4.25), that

N ; ¢ N
~ 1 N ~ X s 1 . .
HyGls) =+ > /O 9, {k(xy, %)) — /O N[ 2o o . 9) Qi Jdu
j=1 j=1
1~ 1~
= Nk(xs»xs) - Nk(xs,XO)

- /0 [ D (s, uls) By, 5) + 42 On ls) Py (. ) |due = €], (s).

for eI, (s) := ﬁ fos {Ax, z(xs, X, ) }du such that (e}(,)“ >~ 0 (see (4.22)). In view of the second
identity of (3.34), considering E,J—? ~ (s]s) yields (4.6) (upon applying (3.57) for the function
z1z2), thereby completing the proof of Proposition 4.1. O

4.2 Proof of Proposition 3.6

We first show that t — x (s, t) = x (s, t) is continuously c_lifferentiable ons > f. Indeed, per
fixed ¢ we have from (3.30) and the RHS of (3.21) that E(s,t) = [kc E(-, t)](s) + h(s, 1),
with

tAS

h(s,t) :=[D(s,s) — fF(KE)]x(s, 1) — /S X, OV (s, u)du —/ O (s, u)du
0 0

in C,([0, T1%), and integral operator kc on C([0, T']) of uniformly bounded kernel ® (s, u)
on [0, T]?. As in the proof of [10, Lemma 4.1], Picard iterations yield that

E(s,t) = Z[kgh(-, D) = h(s, 1)+ /OS kc (s, v)h(v, H)dv, (4.34)

n>0
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with a uniformly bounded kernel xc. Plugging (4.34) into the RHS of (3.27), we find by
Fubini’s theorem that

s

s AV R
x(s, 1) :s/\t+/ [/ @(v,u)du]/q(s,v)dv—i-/ x (v, Hra(s, v)dv,
0 0 0

for some uniformly bounded k] and k7 (which depend only on @, ¥ and f/(K (-))). Applying
Picard’s iterations now with respect to the integral operator [k2g](s) = fOS k2(s, v)g(v)dv,
we deduce that

s AU
X(s,t):s/\t—}—/ [(u/\t)/cg(s,u)—i—[/ <I>(u,v)a’v]/<4(s,u)]du ,
0 0

for some uniformly bounded «3 and k4. With s At = ¢ continuously differentiable on s > ¢,
we conclude by Fubini’s theorem that x (s, 1) = f(; R(s, u)du, for the bounded continuous

R(s,0) =1+ /S[K,;(s, )+ D, Hials, w)ldu .
t

In particular, R(s,s) = 1 for all s. Next, having that E(s, 0) = O for all s and E(s, t) =
E(s,s) forall 1 > s, imply the same for x (s, t) (see the RHS of (3.27)), and in particular
R(s,t) = (dox)(s,t) = 0 when ¢t > s. From the LHS of (3.27) we see that 3C (s, ) =
R(s,t) + D(s, 1), hence also 9,C (s, 1) = %C(t,s) = D(t,s) + R(z, 5) (by the symmetry
of C). From the RHS of (3.20) we have Q(t) = 9¢q(t), so by the LHS of (3.19)

q()Q(1)
—_—

*

3C(s,t) =D(s,t) + R(s, 1) + (4.35)

These imply in turn that the symmetric Y (-, -) of (3.22) is differentiable and by (3.23), (3.24),
O(u)

DY (s, u) = D(s, u)®(u, s) + 2 o' (. s)
+R (s, u) [u’(C(s, ) — %{‘;})‘1("”] ,

with (1.21) aconsequence of (3.31). Similarly, the symmetric ® (-, -) of (3.23) is differentiable
and by (3.25),

(s, 1) = W(s, 1)+ V" (C(s,1))R(s, 1), (4.36)
H[C (s, )P, u)] = D(s, u)®(, u) + C(s, )V (z, u)
+ C(s, V" (Ct, u)R(t, u) + R(s, u)®(t, u).

Combining the latter with (3.29), then substituting into the LHS of (3.21) we get that for all
t,s €[0, TV,

Vs
D(s, 1) = —f’(K(t))C‘(t,s)+/ &, u)R (s, u)du
0

tVs
+/ R(t, u)" (C(t,u))C (s, u)du . (4.37)
0

Similarly, comparing (3.24) and (3.26) it is easy to check that

B qEv’(q(u))v”(q(s))]
V' (¢2) '

@ (s, u) — Wl(s,u) = R(s, u)[q(u)v”(C(s, u))
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which together with (3.28) and (3.20) (with v(-) = v, (-)), results with (1.19) (at 8 = 1).
Further, combining (1.19) at 8 = 1, (4.35) and (4.37) at ¢t > s leads to

t
9C(s, 1) =R(s, 1) — f/(K@®))C(t,s)+ / O(t,u)R(s, u)du
0
gV ()" (g (1))
v'(g2)

Jau+ Bav.a@.
(4.38)

t
+/ R(t,u)[v”(C(t,u))C(s,u)
0

Noting that R(s, u) = 0 when u > s, whereas 9;C (s, t) = 0»,C(t, s), interchanging ¢ and s
in (4.38) results for s > ¢ with (1.18) at 8 = 1.

Since K(s) = C(s,s), with C(s,t) = C(t,s) and 3C = D + R for D := D +
q(s)Q(t)/qf (see (4.35)), it follows that for all 4 > 0,

KG$)—K(s—h) = /S (D(s,u) + R(s,u))du + /S (D(s —h,u)+ R(s — h,u))du .
s—h s—h

Recall that R (s, u) = 0 for u > s, hence, dividing by % and taking # | 0, we thus get by the
continuity of D and that of R for s > ¢ that K () is differentiable, with

05K (s) =2D(s,s) + R(s,s) =2D(s,s)+ 1, (4.39)

resulting by (4.37) with (1.20) for 8 = 1. )
From the RHS of (3.27) we know that (31 x)(u, t) = E(u, t) + 1{, <), which together with
(4.35) results for s > ¢, with

X, )P (s, u) =/0 [(81x)(u,t)d>(s,u)+>2(u,t)(8zd>)(s,u)]du
t K
=/ cp(s,u)du+/ E(u,)®(s, u)du
0 0

+/ X, [ W (s, u) + 0" (C(s, u))R(s, u)]du .
0

It thus follows from (3.30) and the LHS of (3.21) that for any s € [¢, T],

N

E(s,t) = —f'(K()x(s, 1) + / X (u, OV (C (s, u))R (s, u)du (4.40)
0

(recall that x (0, t) = 0). Thus, setting as in [10, (4.4)],
N
g(s,t) = —f(K(s)R(s, 1) + / R(u, t)v"(C (s, u))R(s, u)du (4.41)
0
fors, s € [0, T1?, we get (1.17) (at B = 1), by following [10, Page 31] (now with (4.40) and
the RHS of (3.27) instead of [10, (4.3)] and [10, (1.18)], respectively).
5 Critical Points and the Conditional Model

In this section, using the Kac-Rice formula, we relate the dynamics of Theorem 1.5 corre-
sponding to initial conditions distributed according to &’ around a uniformly chosen critical
point ¢ from 6y 4, (In, 1) to those of Theorem 1.1 that correspond to initial conditions

distributed according to ,u?(f and the conditional disorder given CP(E, G, X,).
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Setting
2 N/2
- T(N/2)

for the surface area of the (N — 1)-dimensional unit sphere, we start with the following
consequence of the Kac-Rice formula (of [1, Theorem 12.1.1]).

WN

Proposition 5.1 Let (0, J) — gj(0) be a continuous mapping in J such that E[ gy (0)%] < 00
and the field

¢Sy 3 0 +— (Hy(o), 9. Hy(0), gy(0))

has a.s. continuous sample functions and a law invariant to rotations. We then have for
X = (VNgs,0,...,0), CP(E, G, x,) of (1.16), Gy 4, (I, I') of (1.25) and open intervals
1,1, Ip CR, that

E#{o € Cng (1. 1) : g3(0) € Io} = (WNg)" oy ov,,Hyx.) (0)

« /zxwdn(E’ G| |det (V2,Hy x0) )| 1{esx) € o} [cPE. 6. %0} G.1)

where Vg Hy (6) = {F;Hy (0)}}_" and Vi Hy (o) = {F;F;Hy (o)} ;| for an arbi-
trary piecewise smooth orthonormal frame field {Fi} on the sphere, with ¢y, Hyx,)(0)
denoting the Gaussian density of Vs Hy (X.) at 0, while n denotes the joint law of

(—Hy(x4)/N, =01 Hy(X,)/ |1 X4|) and 1o is the closure of Iy.

Remark 5.2 Under additional regularity conditions about gj(o'), the variant of the Kac-Rice
formula in [1,_Theorem 12.1.1] would have implied that (5.1) holds with equality and with
I instead of I on the RHS.

Proof Recall that in the pure case of v(r) = by, the value of 9, Hy(o) is determined by
Hjy(o), whereas in the mixed case (i.e. any other v(-)), the joint law of (Hy(0), d; Hy(0o)) is
non-degenerate (c.f. the statement of Theorem 1.1). We assume hereafter that v(-) corresponds
to a mixed case, leaving to the reader the modifications required for handling such degeneracy
in the pure case.

Specifically, fixing €, § > 0 define /s = {x+y: x €lo, |yl <3} and gj(o) =
gy(0) + €Z, where Z ~ N(0, 1) is independent of o and all other random variables.
Note that (J, gj (0)) has a continuous, strictly positive density (J, x) — pj(J) pz(é(x -
g3(0))), where py and pz are the densities of J and Z. By [13, Section 4.1] the
vector (Hy (o), 31 Hy (o), VspHy (0) , VsszJ (o)), which is measurable w.r.t J, has a non-

degenerate’ Gaussian joint density. Therefore, the vector
(Hy (o). 91Hy (o). VspHy (), V3, Hy (0) . g§(0))

has a non-degenerate, strictly positive, continuous density.

Combining this with the assumptions made on gj(a), the formula (1.3) for the Hamil-
tonian and its rotation-invariant law, we conclude that with f (o) = Vs, Hy(0), V f(0) =
Ve, Hy(0),

h(o) = (—Hy(0)/N, -3, Hy (0) /(V'Ng.), g5(0))

7 In the sense that the law of this array, when interpreting VSZP Hjy(o) as the corresponding upper triangular

matrix, is absolutely continuous w.r.t. the Lebesgue measure on R x R x RN-1 x RNN-D)/2
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and B = I x I’ x I all the conditions of [1, Theorem 12.1.1] hold, except maybe the bound
in condition (g) on the modulus of continuity of gj (o). However, in the current setting the
latter condition is not necessary in order to conclude only the upper bound of [1, Eq. (12.1.4)],
i.e., an inequality in the direction <, instead of an equality. Indeed, going through the proof
of the upper bound of [1, Theorem 12.1.1] — which is based on the Euclidean version [1,
Theorem 11.2.1]— one sees that the bound on the modulus of continuity of /(o) is only used
when invoking [1, Lemma 11.2.12] to conclude that a.s. there is no point o such that both
f(0) =0and k(o) € dB. However, the latter fact follows here directly from the definition
of gj(0) and the fact the number of points such that Vs, Hy(a') = 0 is a.s. finite. Thanks to
the assumed rotation-invariance, the upper bound of [1, Eq. (12.1.4)] that we have just stated
simplifies to

E#{o € Gy (1. 1) : g§(0) € Is} < (WNg)N ' on o, myx.) (0)

x E”det (VSPHJ (x,,))‘ 1{h(x,) € B ‘VSPHJ (x,) = o}' (5.2)

Recalling [13, Section 4.1] that (—Hy(x,)/N, —31 Hy (x+) /(+v/N¢.)) and Vg, Hy (x,) are
independent, by further conditioning on the former we obtain from (5.2) that

E#{o € Cng (1. 1'): g5(0) € Is} < (WNg)" " on ov,,yx.) (0)

X /,X,,d”(E’G)E”det (V2 Hs x| g5 e 15} [ Pz, 6. x0 ) ©3)

Let E1 (¢, A) and Eg (€, A), respectively, denote the left- and right-hand side of (5.3), with
general A C R instead of /5. Note that lim,_, o+ P{eZ < é} = 1 and

1
E#{o € Ong (I.1'): gy(0) € Ip} < W%(e,ls).

Consequently, denoting by /s the closure of I, it follows from (5.3) that

E#f{o e eni(1.1'): gyo) € Ip} < Jim, lim 8 (e.Is) < lim Tim Eg (e, Iy)
e—0 §—>0t e—0t
< alln(’)l ER (0 ]5) = Bg (0, Io)
where the last inequality holds since gj (0) ey gy (0), as € — 0 and the indicator function
of I5 is upper semi-continuous, while the equality holds due to monotone convergence. This
completes the proof. O

For G large enough, the determinant on the RHS of (5.1) is uniformly integrable in N and
the expectation of the determinant and the indicator can be separated, yielding the following
lemma.

Lemma 5.3 Assume that gy(o) satisfies (5.1). Let X, = (V'Ng4,0,...,0), In, I}, € Rbe a
pair of open intervals as in Theorem 1.5 and Iop C R a fixed open interval. If it holds that

lim sup sup {gJ(x*) c io)CP(E, G,X*)} —0, (5.4)
N—o00 Eely GEI/

then in addition

i E#{o € Cn.q (In. 1}) : g3(0) € Iy}

=0. 5.5
N—o0 E#Cg]\/ﬂ* (IN, IN) ( )
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Proof From (5.1) we have an upper bound for the numerator of (5.5). By an application of
the Kac-Rice formula [1, Theorem 12.1.1], the denominator of (5.5) is equal to the RHS of
(5.1) with the indicator omitted. Thus, to complete the proof it suffices to show that

' E Hdet (V2 (x*))‘ 1{g1x) € Io} ’CP(E, G.x)]
lim sup sup =0
NS pety Gery E{|det (V2,5 00) | [ P, G, %0

By (5.4) and the Cauchy-Schwarz inequality, it is therefore enough to show that

E “det (v2.Hy 00| [P, G,x,,)}
lim sup sup sup 5 < 00. (5.6)
N—oo Eely Gelj, (E { ’det (VsszJ (X,,))’ ‘ CP(E, G, X*)} )

To this end, recall [13, Section 4.1], that conditional on CP(E, G, X,),

N—1
VaHy (x) £\ ==V @M A G L,

where M is a normalized (N — 1)-dimensional GOE matrix, i.e., a real symmetric matrix with
independent centered Gaussian entries (up to symmetry), such that

» v -n, i=j
L LV IR

We have assumed that inf / ]’\, — G, > 2/v"(g2). Thus, the conditional distribution of
pr Hj (x,) is identical to that of a shifted (scaled) GOE matrix whose eigenvalues are bounded
away from 0, uniformly in G € 1 //v (and E € Iy). Considering [34, Corollary 23] (at k = 2),

this yields (5.6), thereby completing the proof. O

Recall the joint law P?f” on C(R*, R?N), of B, and the corresponding strong solution x;

of (1.1) for initial conditions xq distributed per ul® (see Proposition 3.8), denoting by E‘I]\/(,qu
the corresponding expectation.

Lemma 5.4 For Erry 1(0) of (1.26), the function

(0,.)) — gylo) := E’J‘f;,"O[ErrN,T(a)] (5.7)

satisfies the conditions of Proposition 5.1. Further, (5.4) then holds for any open intervals
Iy, I as in Theorem 1.5, and any fixed open interval Iy such that 0 ¢ Iy.

Proof Clearly gy € [0, 4], is uniformly bounded. The continuity of o — (Hy(o'), 31 Hy(0))
follows for example from the representation (1.3). The invariance of the law of
(Hj(o), 01 Hy(a), gj(0)) under rotations follows by the argument detailed in Remark 1.3.
Turning to show that (o, J) — gj(o) is a.s. continuous, upon fixing N and the driving
Brownian motion B we have by the triangle inequality and Cauchy-Schwarz, that

|Erry .7 (0 X0, J) — Erty 7(& [R0. DI < Lillo = &l + LallJ = T + Lay/I A llew lloo

_ ~ _ 1/2 ~ _ 2
where ey (s) == N7 %, — %[5, Ly := N2 Ky |22, Ly := EBNTV2(1 + | Ky |12/%)

and

1/2 ~ 1/2 1/2 =4 - ~ .
Ly =4+ |Kn IS+ IRV IS + 1By 1S+ eBITIY (1 + KN I5) (1 + IR N )
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for ¢ = 4/v(1), the finite constants ¢, r from (3.47) and with the Ly-norm || J|| which is
normalized as in (3.1). Next, fixing ¢ € .Sy, to jointly produce gy(o) and gy(o) for
arbitrary & € ¢,Sy, let O be an orthogonal matrix which only rotates the space spanned by
o and & (i.e., Ox = x if (x, ¢) = (x, &) = 0), such that Oc = &. Then,

~ ~ 1 -
sup [|Ox —x|2 = sup [0x —x|2 = —[lo —0]2.
xeSy xeSyNsplo,o) qx

Drawing xo from law wle we set Xy := 6x0 as the initial condition of laws M?;O, noting that
by design [|xg — Xpll2 < |l6 — &|2/¢x. Utilizing this coupling and Cauchy-Schwarz, yields
that

@0) = @ < [ {Ie - F1aBILIY. %0l + 13 - T BILoIY. 50

172

+ {EL1 A llew oo I3, T, x0l BIL31Y. T, x01} 72 s (x0)

From (3.41) we deduce that f E[L;|J, Xoldul* (x0), i = 1, 2, are a.s. finite. Further, fixing a
sequence (0, j) — (0, J), necessarily also (X, j) — (X0, J). In view of (3.38), this implies
a uniform, over (@, j), bound on IE[||1? N ||]§,O|:f, Xo]. Thereby, such uniform bound applies
also for f ]E[L%lJ, j xo]d e (xo), with (3.51) yielding the a.s. continuity of gj(c).

Next, setting gy(0') := ]E?{;q"[ Erry 7(0)1zy 1, we have in view of (3.46) and (5.7), that

lim sup sup E[[zy(x.) — 8 (x0)| [CP(E, G, x0)| = 0.

N=eoEely Gel,
We thus establish (5.4) whenever 0 ¢ Iy, once we show that in such a case

lim sup sup P [§J(x*) el ’ CP(E, G, x,,)] =0. (5.8)

N—oo gepy Gel},

To this end, recall from our proof of Proposition 3.8, that given CP(E, G, X,) one has J =
Jo + Je.G where the law of J, is independent of (£, G) and the only non-zero entries of
Je.c =E[J|CP(E, G, x,)] are given by (3.32). Hence,

lim sup sup {N|(x0,J, +J£.G,B) — X0, Jo + I, 6., B) I}

N=eoEely Gely,

m
= lim sup sup Z (b,,qf7 (Vp, (E —E,,G — G.,))? =0.
N=oopely Gery, 1,5
The Lipschitz property (3.50) then implies that

lim sup sup |9y .7 (X)) — 2y .7 (x| =0,
N— 00 Eely Ge[l’v J()‘FJE,G J()+JE,,,G$:

whereas from the L -convergence in Theorem 1.1 we deduce that
lim P [’gj(x*) eIy ‘ CP(E.. G., x*)} —0.
N—o0

Finally, note that combining the preceding two displays results with (5.8). O

Proof of Theorem 1.5 With gy € [0, 4], by Markov’s inequality, for any 8, € > 0,

sl Y BreEnwsesol=lm Y ae)

0€(€N<q,(1Nq1;\/) GE%NJ/*([N~11/V)
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) 4 _
< EE#{G € Eng (IN.IN)} + CE# {o € bng (In. Iy): 83(0) > 8}.
In addition, for any § > 0 it follows from Lemmas 5.3 and 5.4, that

g B {o € Cng (In, 1)) = g3(0) > 8}

=0.
s ER g, (I 1)

Combining the above and taking N — oo followed by § — 0 results with (1.27).
Next, denoting by Y, the indicator of the event that

#6n.q, (In, 1Y) > aB {#6n 4, (In, Iy)},

we have by Markov’s inequality, that for any § > O,

Y, N
P{m Z PJ’;’,qo(ErrN,T(U) > 6) > 8}
NN N 0€EN ¢ (U, 1))

1 N N—o00
< . Bl Y PrGEmre) = o] 0,
asE {#6n 4, (In. 1})} o) o
from which (1.29) follows. ]

6 Proof of Proposition 1.6

As x(s,t) = for R (s, u)du is the limit of xy (s, t), it follows from the definition (1.9) of xy
that

5]
I/ R(s,u)dul> < K(s)(t —t1), 0=t <t <s<oo. 6.1)
n

Likewise, the limit C(s, ) = C(s, 1) — q(s)q(t)/ qf of the empirical correlation functions
Cn (s, t) must be a non-negative definite kernel on Ry x R,. In particular, C (s, H? <
K (s)K (t), whereas by (3.41) we have that sup,. K () < oo. Unlike the special case
considered in [24, Proposition 1.1], here the functions (C, R) may take negative values.
Nevertheless, we next show thatif (RX), CD), g1 K (1)) are solutions of the system (1.17)—
(1.20) with K )(0) = 1 and potential f7 (-) asin (1.12) with @ = 1 +28¢,V.(¢,) > 0, then
K™ (s) - 1as L — oo, uniformly over s > 0.

Lemma 6.1 Assuming K(L)(O) = 1, there exist B < 00, such that for all L > B,

sup |[K D (s) — 1] < 5. (6.2)
5>0 2L

Proof First note that for some By = By (¢, k) finite and any B € [By, L],
L) :=1=2f )y =144Lr(1 —r) — @r¥ (6.3)

satisfies g7 (1 — B/(2L)) > B/2 and g1 (1 + B/(2L)) < —B/2. Further, from (4.39) and
the LHS of (3.19)—(3.21) we see that

WKD () =142DD(s,5) = g (KD (s)) +28AL) (s, 5), (6.4)
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where it is easy to verify that (in terms of V () and A(-, ) of (3.28) and (3.29)),

/ A T > i i
Als, 8) = q(OV,(q($) + BAG, D) + Ba(OV (9)/¢] = lim E[ ; G (x)x7]

Recall [10, (2.15)], that for some universal constant ¢ < co any s, J and N,

N
1 .
GN(s) = 5 D 1G" )P < TN + K ()" 1]

i=1
Hence, by Cauchy-Schwarz inequality and (3.39) (at k = 4), it follows that for some other
universal constant k < oo (which is independent of L),

AGs, ) < Tim E[Gy(5)Kn ()]
N—o0
< c lim E[(IT15)*(Kn ) + Ky ()")] < k(K () + K (5)")
(in the last step we relied also on Corollary 3.2). We thus have, similarly to [24, (2.3)], that
forall s and L,
0K (5) — gL (KD () * < 28)*k[K P (5) + K P (s)™].

Our claim (6.2) then follows as in [24, proof of Lemma 2.2] (employing the argument used
there for KX > 1, to handle now also the case K &) < 1). O

Adapting the proof of [24, Lemma 2.3], we next establish the equi-continuity and uniform
boundedness of (R L cw) g@), q(L) ), which thereby admit limit points (R, C, K, q).

Lemma 6.2 Ser n ™) (s) := £} (KD (5)) and h™ (s) := 3,K L) (s). Then (RV), ), ¢,
KL, /L(L), ﬁ(L)) and their derivatives are bounded uniformly in L > B (of Lemma 6.1) and
over Ar.

Proof With |C P (s, )| < VKD (s)K D (¢) and |¢P (5)| < /K L) (s), the bound (6.2) on
KL results for L > B with CL), ¢») e [—2, 2]. Further, then |u&)(s)| < 2B + |@|2¢!
(see [24, proof of Lemma 2.3]). In view of (6.4),

hB (s) =1 =2KB (s)n" () +28AH s, ), (6.5)
yielding in turn the uniform boundedness of ho (s).
Since (1.17) matches [24, (1.7)], it follows that for the function Hy (s, t) of [24, (2.2)],
S
RB (s, 1) = Ap(s,)HL(s, 1), Ap(s.1) = exp(— / AP wyduy,  V(s.1) € Ar.
t
(6.6)

Recall that v”(-) is uniformly bounded on the compact [—2, 2], hence H of [24, (2.2)] is
uniformly bounded over A7 and L > B, and thereby the same applies for R,

Upon replacing £, (K (s)) by u®(s) in (1.17)~(1.20), we deduce from our pre-
ceding statements the claimed uniform boundedness for 8sq(L), oK L), 0sC (L)(s, t) and
9, R (s, 1), whens > t. Following [24, proof of Lemma 2.3], the same applies for 0, Hy (s, t)
and consequently for 3, R'D) (s, t). Further, from (3.23), such uniform boundedness applies
to D@ (s, t) of (4.37), hence by (4.35) also to

aC B (s, =D" (s, 0) + RV (s, 1) + (¢ () /aDdg ™ ().
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Next, 3,4 1D) (s) = —4LAD) (s) + k. (s) for
Kk (s) := (g) (KB (s)) +4L)h™P (5) + 280,AP) (s, 5) .

In view of (6.3) we have that Ig’L (r)y+4L| <4B + k|(p|22k whenever [r — 1] < B/(2L) <
1/2, while |9;A) (s, 5)| is bounded uniformly in L > B and s < T (by (1.20) and the
uniform boundedness of (R, C), ¢y and 8, (RD), C 1), g))). In particular, «(T) :=
sup{|kz ()| : L > B, u < T}is finite. Next, recall (6.4) that K L) (0) = land g, (1) = 1 —¢
(see (6.3)), resulting for our choice of ¢ = 1+ 2B¢,V.(q,) = 1 + 2B8A%) (0, 0) with
A (0) = 0. Thus,

N
WA (s) = f e 6= (w)du
0
yielding that

A T
sup i) <D v, 6.7)
5€[0,T] 4L
from which the uniform boundedness of |9 AD | follows. Finally, by definition, for our choice
of fL(),

9 () = F(KD AP (s) = [ZL LGk - Do K(L)(s)Zk_z] W),

which by (6.7) provides the uniform boundedness of |9; ) |. o

Proof of Proposition 1.6 Recall Lemma 6.2 that (R, ¢ ¢ k@ @) jA)y [ > B
are equi-continuous and uniformly bounded on Ar. Hence, by the Arzela-Ascoli theorem,
this collection has a limit point (C, R, ¢, K, i, h) with respect to uniform convergence on
Ar.

By Lemma 6.1 we know that the limit K (s) = 1 on [0, T'], whereas by (6.7) we have that
h(s) = 0 on [0, T]. Considering L, — oo for which (REn), CEn) gLn) g Ln) (L),
fz(L")) converges to (R,C,q, K, 1, fz) we find that the latter must satisfy (1.33). Further,
since RO, 1) = 1, CD ¢, 1) = KD () and ¢ D (0) = q,, integrating (1.17)—(1.19)
we see that RV (s, 1) = 1+ [ A0, 0d6, C D (s, 1) = KD @) + [ AL (0, 1)d6 and

qP(s) = qo + [ AP (0)d, where

0
AL @6, 1) = —uPORD 6, 1) +/32f RO u, HRE (0, )" (€D (8, u))du,

t
AZ O, 1) = PO D@, 0) + AL @, 1),
AL ©0) = =P ©)g"©)
g @B "™ ®)
V'(q2)

0
+ / RE©. 0] "€ ® @) Jau+ Ba2via® o).
0
Note that (Lyp) : (Ln) (Ln) (Ly) :
wm (s) — u(s), while Ap™ (s, 1), A" (s, t) and A; ™ (s, t) converge, uniformly
on Ar, to the right-hand-sides of (1.30)—(1.32), respectively. We thus deduce that for each
limit point (C, R, g, 1), the functions C (s, t), R(s, t) and ¢ (s) are differentiable in s on A7
and all limit points satisfy (1.30)—(1.33). Further, C L) (s, t) are non-negative definite kernels
with C (¢, 1) — 1 as L — oo. Consequently, each of their limit points corresponds to a
[—1, 1]-valued non-negative kernel on [0, T]z. Similarly, as R(L)(t, t) =1 and R(L)(s, 1)
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satisfy (6.1), both constraints apply for any limit point R(s, ). We further extend R(:, -) to
a function on [0, T']? by setting R (s, t) = R™) (s, 1) = 0 whenever s < 1.

With H (+) a continuous functional of (R, C, g), it remains only to verify that the system
of equations (1.30)—(1.33) with ¢(0) = ¢,, C(s,t) = C(t,s), C(t,t) = R(t,t) = 1 and
R(s,t) = 0fors < r, admits at most one bounded solution (R, C, ¢) on [0, T]>. To this end
consider the difference between the integrated form of (1.30)—(1.32) for two such solutions
(C,R,q) and (C, R, g). Since v , V. are locally Lipschitz, we get as in [24, proof of
Prop. 1.1], that AR = |R — R|, and AC =1|C —C|+lq(s) — G| + |lgt) — G(t)| satisfy
on At

AR(s, 1) < ki S[AR(v,t)+AC(v,t)]dv+/sh(v)dv},
t t

AC(s, 1) < /q[/“ AC (v, D)dv + h(t) + / h()dv],
t t

where h(v) = fOU[AR(v, u) + AC (v, u)]du and k; < oo depends on T, B, v(-), V,(-) and
the maximum of |R|, |C], |¢|, IR|, |C| and |g| on [0, T2 Integrating these inequalities over
t € [0, s], since AR(v,u) = 0 foru > v and AC (v, u) = AC(u, v), we find similarly to
[24, Page 860], that

0<his) < 2K2/s h)dv., h(0) =0,
0

for some finite constant k» (of the same type of dependence as k). By Gronwall’s lemma we
deduce that # = 0 on [0, T], hence AR(s,t) = AC(s,t) = 0 for a.e. (s,7) € Ar. By the
continuity and symmetry of these functions, the same applies for all (s, ) € [0, T]?, yielding
the stated uniqueness and thereby completing the proof. O

7 Proof of Proposition 2.1

Consider the convex set AT of bounded continuous functions (R, C,q) € Cp(As) X
Cb(]Ri) x Cp(Ry) such that C(s,t) = C(¢,s), R(s,s) = C(s,s) = 1 and ¢(0) = q,,
equipped with the norm

I(R,C.)ll= sup [R(s,0)|+ sup [C(s,1)[+suplg(s)|. (7.1)
(s,1)EA (s,1)EA s>0
Analogously to [24, (4.1)-(4.3)], we recall from Proposition 1.6 that (R C, q) of (1.30)—
(1.33) is the unique fixed point of the mapping ¥ : (R, C, q) > (R C q) on AT such that
for any (s,1) € Ao

R (s, 1) = —pu(s)R(s, 1) + B2 / R(u, HR (s, u)" (C(s, u))du, (7.2)
t

3C(s, 1) = —pu()C (s, 1) + B211 (s, 1) + B2 Ia(s, 1), (7.3)

%G (s) = —u()q(s) + BAI3(s), (7.4)

with 11(s) = [(r.c.q)(s) = 5 + B*Io(s) of (1.33) and

0
Io(t) :=/ R(, 1+ 0[v (€t +uw)
—t
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B wq(r))v/(q(wu»] "
V' (¢2)
N R TOYACIOE

v
I1(t+v,1) ::/ R({t+v,t+u)

—t
[v”(C(t T+t +u)C 4, 1)

gV (g +w) (g + v))] du
V'(q3) ’

0

Lt +v.1) = / R(t. 1 + u)[v’(C(t +u.f+u)
t

V@)V (U + u»] i
V' (g2)
+ B g0V, (q(t +v)),

0
I5(6) := / R, ¢+ u)[q(t + " (C(t, t +u))
t

v (g +u>)v”(q<r>>] i
V(g2)
+B V@)

We next characterize the possible limits (Rgg¢, Crq) in (2.1) in case we have for g > 0,
|go] < g that:

(H1). There exists a closed set A C {(R,C,q) € A" : |(R,C,q)|| < p}, where the
functions {R(¢ + -, 7), t > Tp} are uniformly integrable WRT Lebesgue measure on R and

1 0

liminf inf {7/ HiR.C.q) (0 + wdu) > 0. (7.5)
V—>—00 t>—0 |v| v T

(H2). W is a contraction on (A, || - ||) and the subset S of A with property (2.1) for some

la| < 1, is non-empty.

Proposition 7.1 Assuming (H1)-(H2), the solution (R, C, q) of (1.30)—(1.33) is the unique
fixedpoint of ¥ in S and (Rggt, Crar) of (2.1) are a solution in B:= {(R,C) e BIR)xBR):
CO)=R0O)=1,C(r) =C(—1v)} of [24, (4.15)—(4.16)], with wu as in [24, (4.17)], but
now for (I, @) satisfying (2.4) and (2.5).

Proof We first verify that for the given 8 and ¢,, any S = (R,C,q) € S results with
W (S) € S. Tothis end, proceeding similarly to [24, proof of (4.7)], we have for (R, C,q) € S
that as t — oo the bounded integrands in the formulas for /; (-, -), i = 0, 1, 2, 3, converge
pointwise (per fixed u = v — 6), to the corresponding expression for (Rgqi, Crdar, @Gy)-
Further, thanks to the uniform integrability of the collection {R(t + -,¢),t > Tp} (when
(R, C, q) € A, see (H1)), the contributions of the integrals over [—¢, —m] decay to zero as
m — 00, uniformly in ¢. Thus, applying the bounded convergence theorem for the integrals
over [—m, v], then taking m — oo, we deduce that for each fixed v > 0, in analogy with
[24, (4.11)-(4.12)],

V(ag)v' (aq.) ]de

Ip := [lim Io() = /0 Rfdt(G)[W(Cfdt(Q)) - V@2
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+ 87 agq V. (aqy) (7.6)

N = lim [ +v,0) = /0 Riai(®)[ v (Crar(0) Crar (v = 6)

- aq*vﬂ(“q*)v/(aq*)] do, (7.7)
v'(q3)
7 = V' (ag.)?
L) := lim L(t+v, 1) = / Rt (0 — v)[v’(Cfdt(G)) - /72] do
—00 v v (q*)
+ B aquV,(@q.), (7.8)
00 2.7 "
Bi= fim 130 = [ Ria®)[agur” Coa0)) - 4V (0900
t—00 0 v’(qf)
+ B g V(g - (7.9)
Using the notation [;(-,t) := [;(¢t) for i = 0,3, we further know by the preceding

that sup,’v20{|1,- (t +v,1)]} < oo for 0 < i < 3, yielding in particular the finiteness

of Sup; > supve[o’ﬂ{A(r + t,t + v)} for A(-,-) of [24, (4.8)]. Recall from (7.2) that
R(s,t) = A(s,t)H (s, t) for H(, ) of [24, (4.9)], hence by bounded convergence (as in
[24]), we have for any 7 > 0,

AT —v):= Jim AG+T.0+0) = e~ TRy e 0, 1], (7.10)
—00
Crau() := lim C(t +7.1)
T T
=A(1) + ;32/ At — )1 (v)dv + ﬂZ/ At —v)Lwdv,  (7.11)
0 0

Hiqt(7) := Jim H(t+1,1)

=1+> " ) /

0<b1<---<bH, <
nzl geNC, =T ETEET

2n
[T v Crat6: =000 [ ] 0, (7.12)
iecr(o) j=1
Rear(v) = Jim R(t+1.,1) = A(t)Hia (1) . (7.13)

Unlike [24], here in principle /; (s, t) might take negative values. However, thanks to (7.5),

1 ~
we=lim {u(@)} = = + p*lH > 0. (7.14)
t—00 2

With A(f, x) = Az, 0)A(0, x), also

0
G@t) =A@, 00g0+ B> | A, 1+ v+ v)dv,

—t

where by (7.5) we have that A(#, 0) — 0 and the integral over [—¢, —m] decays to zero as
m — 0o, uniformly in . Applying bounded convergence for the integral over [—m, 0], then
taking m — 00, we see that

~ [ B2 ~
aq, ;= lim §(r) = ,8213/ Awydv = =—15. (7.15)
t—00 0 12
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Thus, ¥(S) C S, with ¥ mducmg on S the mapping Wq; : (Rsdt, Crar, @) — (Rfdt, Cfdt, a)
glven by (7.10)—(7.15), for I,, i =0,]1,2,3 as in the RHS of (7.6)— —(7.¢ 9). In partlcular tht
and Cfdt are differentiable on ]R+ and satisfy [24, (4.23)—(4.24)] for Rfdt(o) Cfdt 0 =1
and the preceding values of I,, 1=0,1,2.

Next, recall (H2) that W is a contraction on (A, || - ||), hence also on its non-empty
subset S. Thus, starting at any S©@ = (R@,C©® 4©) ¢ S yields a Cauchy sequence
S® = w(S*-Dy € 8§ k = 1,... for the norm | - || of (7.1), with S® — §() in the
closed subset A of (AT, || - ||). Further, fixing T > 0, with |(x, y, z)| := |x| + |y| + |z], since
S® e S we have that

lim sup [S©(t +1,0) =S +1,0) <25 — 5D

T—00; y>T

Taking k — oo we deduce that {t > S©) (¢ + 7, 1)} is a Cauchy mapping from R, to
[(x,y,2)] < p, hence SOt + 7,1) converges as t — oo. This applies for any 7 > 0,
hence $® € S is the unique fixed point of the contraction W on (S, | - ||). In particular,
as shown in (7.6) this implies also that u(t) — w of (7.14). Recall that any fixed point of
W must satisfy (1.30)=(1.33), hence the unique solution of the latter equations in A* must
coincide with §(>) and in particular be in S. As noted before, this yields the existence of
(Rgat, Crar) € B which for a suitable choice of o forms a fixed point of Wgy;. Considering
(7.14) and [24, (4.24)] for E(-), i =0,1,2,of (7.6)—(7.8) we arrive at [24, (4.15)—(4.17)],
now with the possibly non-zero I as given in (2.5). Finally, in view of (7.15) and (7.9), our
constraint (2.4) on « is merely the fixed point condition @ = «. O

Proof of Proposition 2.1 We start with our second claim, where we allow for arbitrary 8 > 0,
but assume that the unique fixed point (R, C, ¢) of ¥ in A" satisfies (2.1) as well as the
properties in (H1). While proving Proposition 7.1 we have showed that it results with (7.6)—
(7.9), and thereby with u(t) — u for (Rgar, Crar, ) a solution of [24, (4.15)—(4.17)] on
B with (I, o) satistying (2.4)—(2.5). To complete our claim, note that (2.7) amounts to [24,
(1.21)] holding for ¢(-) of (2.2) and b = 1/2, so by [24, Proposition 5.1] we have that
(Rtat, Crat, u) = (—=2D’, D, ¢ (1)) satisfies [24, (4.15)—(4.17)] for I of (2.6) and the unique
D(-) of (2.3).

Turning to our first claim, note that « = 0 satisfies (2.4) for any value of 8. Further, from
[24, (4.17)] and (2.5) we see that u — % when B8 | 0 and since the finite polynomials v’ (x)
and v/, (x) are both zero at x = 0, it is easy to check that & = 0 is the only solution of (2.4)
for small B > 0. In case g, = 0 it is also shown in [24, Section 4] that for small 8 our
assumptions (H1)—-(H2) hold for A consisting of e‘m_"(R, C,q)(s,t) € [0,p(r]s —t] +
1)’3/ 2] x [0, ¢] x {0} and suitably chosen parameters §, r, p, c. Leaving the details to the
reader, such analysis can be extended to yield (H1)-(H2) for any |¢go| < ¢« and B € [0, B1),
again with o = 0, but now for

A= {(R, C.q) e At |IRU+1,0)| < plrT + 1)~32e77,
Ct+.0] = e Jg@)] < ke

and certain positive é, r, p, ¢, k, n (that may depend on B and ¢,). The unique fixed point
of W in S one gets from Proposition 7.1 must then have I = o = 0, with (Rq;, Ctqi, 1) the
unique solution of [24, (4.15)—(4.17)] within a subset of BNanalogous to B(3,r, p, c) of [24,
Proposition 4.2], except for allowing here possible negative values of Ryq; or Crg;. Recall that
for all B up to B, of [24, (1.23)] both (2.6) and (2.7) hold for y = 1/2 and I = Dy, = 0.
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Thus, as we have seen before, for such g the unique solution of [24, (4.15)—(4.17)] alluded

to above corresponds to Cgqi(-) = D(-) for the [0, 1]-valued solution of (2.3). O
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