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Abstract

Metaphors are a common way to express creative language, yet the cognitive basis of figurative language

production remains poorly understood. Previous studies found that higher creative individuals can better

comprehend novel metaphors, potentially due to a more flexible semantic memory network structure

conducive to remote conceptual combination. The present study extends this domain to creative metaphor

production and examined whether the ability to produce creative metaphors is related to variation in the

structure of semantic memory. Participants completed a creative metaphor production task and two verbal

fluency tasks. They were divided into two equal groups based on their creative metaphor production

score. The semantic networks of these two groups were estimated and analyzed based on their verbal

fluency responses using a computational network science approach. Results revealed that the semantic

networks of high-metaphor producing individuals were more flexible, clustered, and less rigid than that

of the low-metaphor producing individuals. Importantly, these results replicated across both semantic

categories. The findings provide the first evidence that a flexible, clustered, and less rigid semantic

memory structure relates to people’s ability to produce figurative language, extending the growing

literature on the role of semantic networks in creativity to the domain of metaphor production.

Keywords: semantic networks; creative metaphor production; semantic fluency
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1. Introduction

Metaphor is a form of higher-order linguistic expression that conveys an abstract idea using

nonliteral language (Faust, 2012; Mirous & Beeman, 2012). Producing a metaphor involves combining

seemingly unrelated concepts from memory (i.e., making a mental “leap”) to create a meaningful or

comprehensible linguistic expression (Bowdle & Gentner, 2005; Mednick, 1962). Metaphor is

considered a creative expression of language in conversational dialogue (Lakoff & Johnson, 1999), such

as when people express emotions and experiences in nonliteral terms (Beaty & Silvia, 2013). Ample

studies have investigated the cognitive basis of metaphor comprehension—how people passively process

metaphorical expressions (Chiappe & Chiappe, 2007; Gold, Faust, & Ben-Artzi, 2012; Kenett, Gold, &

Faust, 2018; Samur, Lai, Hagoort, & Willems, 2015; Shibata et al., 2012)—but few have focused on

metaphor production (Chiappe & Chiappe, 2007), especially creative metaphors—the self-generation of

a novel figurative expression (Beaty & Silvia, 2013; Silvia & Beaty, 2012). In the present research, we

explore one possible cognitive mechanism that has been linked to metaphor comprehension and creative

thinking—semantic memory structure—testing whether variation in people’s ability to produce creative

metaphors relates to variation in the organization of concepts in semantic memory networks.

1.1. The Cognitive Basis of Metaphor Production

Despite the paucity of work on metaphor production, theories of metaphor comprehension and

semantic processing may provide insight into how people produce such nonliteral language (Collins &

Loftus, 1975; Glucksberg, McGlone, & Manfredi, 1997; Kintsch, 2000; Quillian, 1967). The property

attribution model of metaphor comprehension provides a useful framework for conceptualizing metaphor

production, which holds that, to compose a metaphor, people needs to make an abstract link (or attributive
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category) between two concepts—a ‘topic’ and a ‘vehicle’—with the attributive category reflecting a

common feature between the two concepts (Glucksberg et al., 1997). Thus, when people process (or

produce) a metaphor, they need to search for and extract the similar features, establishing new

connections (or temporarily strengthening weaker connections) between the topic (e.g., music) and

vehicle (e.g., medicine) via the attributive category (e.g., “healing”).

The predication model (Kintsch, 2000) is another model of metaphor comprehension that can be

recast to conceptualize metaphor production. According to this model, once the common features of a

topic and vehicle are identified, they may be used to further search semantic memory for an apt vehicle.

Semantic memory is the cognitive system that stores facts and knowledge, avoid of time or context

(Kumar, 2020). Of relevance for creative metaphor production, semantic memory plays a central role in

creative thinking (Abraham, 2014; Kenett & Faust, 2019; Mednick, 1962). Amabile, Barsade, Mueller,

and Staw (2005) noted that, the more potentially relevant elements that can be retrieved from memory,

the higher the possibility that novel links between these elements will be established. This claim was

supported by computational work that highlight the role of retrieving remote associations in creative

problem-solving (Helie & Sun, 2010), consistent with the view that creative thinking is mediated by a

memory search-based mechanism (Friedman & Forster, 2002; Gruszka & Necka, 2002; Negka, 1999).

Past work suggests a relationship between semantic ability and individual differences in metaphor

production ability. Chiappe and Chiappe (2007) examined conventional metaphor production—the

ability to produce common figurative expressions based on stem-completion tasks (e.g., “Life is (fragile);

“glass”)—and showed a unique contribution of verbal knowledge to metaphor production ability,

suggesting that people with a broader knowledge base can more effectively produce common metaphors.

In subsequent research, Beaty and Silvia (2013) reported a dissociation between cognitive abilities
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that support conventional vs. creative metaphors (i.e., producing novel figurative expressions based on

open-ended prompts), finding that, while conventional metaphor benefited more from crystallized

intelligence (i.e., vocabulary knowledge), creative metaphor benefited more from broad retrieval abilities

(i.e., verbal fluency). These findings for conventional metaphor were consistent with Chiappe and

Chiappe (2007), indicating that a broader knowledge base is conducive to recalling established figurative

expressions. On the other hand, the findings for creative metaphor indicate that the process of

strategically retrieving items from semantic memory is conducive to creating new metaphoric

expressions. It remains unclear, however, whether the underlying structure of semantic memory

influences how people produce creative metaphors. While studying the structure of semantic memory is

challenging (Jones, Willits, & Dennis, 2015), advances in the application of network science have made

it possible to quantify and investigate it (Siew, Wulff, Beckage, & Kenett, 2019).

1.2. Mapping Semantic Memory Using Computational Network Methods

Network science tools have recently been used to investigate cognitive phenomena such as the

structure of language and memory (Baronchelli, Ferrer-i-Cancho, Pastor-Satorras, Chater, & Christiansen,

2013; Borge-Holthoefer & Arenas, 2010; Siew et al., 2019). Network science is based on graph theory,

providing quantitative methods to represent complex systems, such a semantic memory, as networks

(Siew et al., 2019). In semantic memory networks, nodes represent concepts or words in memory and

edges signify the relations between them (e.g. semantic similarity). By structuring language and memory

as a network, network science can quantitatively examine classic cognitive theory and the operations of

cognitive processes that take place in memory retrieval and associative thought (Baronchelli et al., 2013;

Siew et al.,, 2019). Cognitive networks, for example, have identified mechanisms of language
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development (Hills, Maouene, Maouene, Sheya, & Smith, 2009; Steyvers & Tenenbaum, 2005), shown

how specific network parameters influence memory retrieval (Kenett, Levi, Anaki, & Faust, 2017; Kumar,

Balota, & Steyvers, 2019), and provided new insight into the semantic structure of second languages in

bilinguals (Borodkin, Kenett, Faust, & Mashal, 2016).

A growing body of work has applied semantic network analysis to examine the role of knowledge

in creative thinking (Kenett & Faust, 2019). Kenett, Anaki, and Faust (2014) compared the semantic

memory structure in low and high creative individuals—people who scored low and high on creative

thinking tasks and scales assessing creative achievements—finding that higher creative individuals

presented a more flexible, clustered, and condensed semantic network compared to lower creative

individuals. These results support the associative theory of creativity (Mednick, 1962), which posits that

high creative individuals have a more condensed and flexible associative network than that of less

creative individuals; these results were partially replicated by the within subject design studies, thus

extending research on individual differences in creativity with individual-based semantic networks

(Benedek et al., 2017; Bernard et al., 2019; He et al., 2020). In a similar vein, Kenett and Austerweil

(2016) compared the difference in cognitive search between low and high creative individuals using a

random walk mode, showing that a random walk over the semantic network of high creative individuals

“finds” more novel words and moves further through the network for a given number of steps.

Regarding metaphors, in a recent study, Kenett, Gold, and Faust (2018) investigated how low and

high creative individuals performed on a novel metaphor comprehension task. Importantly, these groups

were the same groups analyzed by Kenett, Anaki, and Faust (2014), that found differences in the semantic

memory structure between these two groups. The authors found that the high creative group

comprehended novel metaphors better than the low creative group, potentially due to their more flexible
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semantic memory structure (Kenett et al., 2018). Although these findings indicate that semantic memory

structure supports metaphor comprehension, it remains unclear whether memory structure contribute to

the production of creative metaphors. To examine this issue, comparing the semantic networks of people

that are low and high in their ability to produce such creative metaphors is needed.

A popular way of estimating semantic memory networks is based on verbal fluency tasks (Ardila,

Ostrosky-Solis, & Bernal, 2006; Goiii et al., 2011; Kenett et al., 2013). Verbal fluency tasks present the

participant with a single category for which they generate as many category exemplars as they can

(Borodkin et al., 2016; Kenett et al., 2013) within a limited amount of time (usually 60 seconds). While

different semantic categories have been used for this task, the animal category is the most widely used,

as it has a universal taxonomy (i.e., the animal kingdom) and has shown only minor differences across

different languages and cultures (Ardila, Ostrosky-Solis, & Bernal, 2006).

Of the network models that have been developed in network science theory, the Small World

Network model (SWN; Watts & Strogatz, 1998) has been one of the most widely used to examine

complex systems. SWNs are defined by two main characteristics: the network’s average shortest path

length (ASPL) and its clustering coefficient (CC) measures. ASPL refers to the average shortest number

of steps (i.e., edges) needed to traverse between any pair of nodes. In semantic networks, short path

lengths indicate the faster diffusion of information and smaller distances between concepts with fewer

mediating associations (e.g., cat-fish-dolphin compared to cat-dog-fish-whale-dolphin), the shorter ASPL

are suggested to be effective for searching apt concepts in creative activity (He et al., 2020; Kenett et al.,

2014; Latora & Marchiori, 2001). CC refers to the extent that two neighbors of a node will themselves

be neighbors (i.e., a neighbor is a node that is connected through an edge to node), which indicates how

semantic information is organized at a local level (e.g. birds). A network with a higher CC suggests that
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there is high possibility for exemplars that are near-neighbors to each other (e.g. sparrow—hummingbird—

eagle—pigeon) to co-occur. (cf. Christensen, et al., 2018). Also, higher CC indicates a broader search

process through semantic space, thereby increasing the possibility to find unique ideas in divergent

thinking (Kenett et al., 2014; Marupaka, lyer, & Minai, 2012). A third network measure, commonly used

to quantify semantic networks, is modularity. Modularity identifies how a network breaks apart (or

partitions) into smaller sub-networks or communities (Fortunato, 2010; Newman, 2006). Higher

modularity indicates that there are more sub-communities, more dense connections between the nodes

within these sub-communities, and fewer connections between nodes across different sub-communities

(Newman, 2006). Higher Q has been related to rigidity of thought by blunting spreading activation within

sub-communities, evidenced by studies in phonological processing (Siew, 2013) and in clinical

populations, such as Asperger syndrome (Kenett, Gold, & Faust, 2016). Taken together, the shorter the

ASPL, the larger the CC, and the smaller the Q, the more flexible and efficient the semantic network

association is (Kenett et al., 2014; Kenett & Faust, 2019).

1.3. The Present Research

Computational network science methods have been used to study the role of semantic memory

structure in supporting complex cognitive processes such as creative thinking (Kenett, 2019; Kenett &

Faust, 2019). Relatedly, network science research has revealed how a more flexible network structure—

characterized by high connectivity and short path lengths between semantic concepts—contributes to

people’s ability to comprehend metaphors (Kenett et al., 2018). To date, however, whether and how

semantic memory structure impacts people’s ability to produce entirely new figurative language remains

unclear. Thus, the main aim of the current study is to use computational network science tools to capture,
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quantify, and compare the semantic memory structures of people with low and high creative metaphor

production abilities.

To measure creative metaphor production ability, participants completed two creative metaphor

tasks (Beaty & Silvia, 2013; Silvia & Beaty, 2012). They also completed two verbal fluency tasks

(animals and fruits/vegetables), which allowed us to construct group-based semantic networks of low-

and high-creative metaphor groups using computational network tools. Given previous work finding that

higher creative individuals tend to have a more flexible, clustered, and less rigid semantic memory

structure (low ASPL and Q, high CC)—a network structure conducive to efficient combination of weakly

connected concepts (Kenett & Faust, 2019)—we predicted that high-metaphor ability individuals will

show a similar semantic network profile (low ASPL and Q, high CC). Additionally, previous studies

typically use a single category to access the semantic network of a group (Christensen, et al., 2018; Kenett,

Beaty, Silvia, Anaki, & Faust, 2016), which limits the ability to examine the robustness and generality of

results beyond a single category. Here, we address this issue by examining two semantic categories (e.g.,

fruits/vegetables), hypothesizing that results would replicate across both categories.

2. Methods

2.1. Participants

Participants were recruited from the University of North Carolina at Greensboro (UNCG) and

surrounding community from a larger study on the psychology and neuroscience of creativity (see Beaty

et al., 2018). The total sample included 186 participants; only participants who completed both verbal

fluency tasks (animas and fruits/vegetables) were included in the semantic network analysis (n = 142;

Table 1). All participants were English speakers with normal or corrected to normal vision; they were
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paid for their participation. The study was approved by the UNCG Institutional Review Board and

participants completed informed consent prior to completing the study.

Participants were divided into two groups by the median of the Z-value of their creative metaphor

production score (cf. Christensen, et al., 2018; Kenett, Beaty, et al., 2016). We conducted an independent

samples ¢ test on the Z-score of low and high metaphor production groups. Results showed that the

creative metaphor score of the high metaphor production group was significantly larger than that of the

low metaphor production group, # (140)= 16.6, p <.001, which indicates that the grouping was appropriate.

Table 1. Descriptive statistics for demographics and creative metaphor scores.

Age Gender (n) Metaphor Score
Sample
M (SD) Range Male Female Z-value: M (SD)
Full (N = 142) 2191 (4.34) 18 -47 37 105 .04 (1.0)
Low N=71) 21.56 (4.46) 18 -47 18 53 -.79 (.50)
High N =71) 22.25(4.22) 18 -34 19 52 .87 (.68)
2.2. Behavioral Tasks

2.2.1. Creative Metaphor Production Task

A creative metaphor production task was used to assess participants’ ability to produce novel

metaphors (Beaty & Silvia, 2013; Silvia & Beaty, 2012). In this task, participants were asked to describe

two past experiences with a metaphor, which was self-paced (no time limit) (cf. Beaty & Silvia, 2013;

Silvia & Beaty, 2012). Instructions included definitions and examples of different types of metaphors.

Two prompts were presented to participants, which were taken from prior work on creative metaphors

(Beaty & Silvia, 2013; Silvia & Beaty, 2012). The first metaphor prompt was “Think of the most boring

high school or college class that you’ve ever had. What was it like to sit through?” Examples of

metaphoric stems were provided to help them get started (e.g., “Being in that class was. . .”). The second

prompt stated “Think about the most disgusting thing you ever ate or drank. What was it like to eat or
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drink?” Potential response stems were also provided for this prompt (e.g., “Eating that was. . .”).

Participants were instructed to “be creative” to emphasize the importance of originality; past work has

shown that this “be creative” instruction typically yields more unique responses on creativity tasks (Acar,

Runco, & Park, 2020; P. R. Christensen, Guilford, & Wilson, 1957; Harrington, 1975; Said-Metwaly,

Fernandez-Castilla, Kyndt, & Van den Noortgate, 2019). The task was administered on a desktop

computer running MediaLab.

Four trained raters scored the creative metaphor responses using the subjective scoring method

(Amabile, 1982; Silvia, 2011). This method was used in previous studies of metaphor (Beaty & Silvia,

2013; Silvia & Beaty, 2012) and it has been shown to be a reliable assessment of creative thinking (Silvia,

2011). Raters were trained to give a single score to each response, from 1 (not at all creative) to 5 (very

creative), on the basis of three criteria: remoteness (the conceptual distance of the metaphor), novelty

(the degree to which the response is original), and cleverness (how funny, witty, or interesting the

response is). An example of a metaphor response for the “gross food/drink” prompt from a participant in

the low metaphor group is “That drink was dirt.” An example metaphor from a participant in the high

metaphor group is “That broccoli was mushier than The Notebook.”

To derive a variable for analysis, we used structural equation modeling in Mplus 8 using creativity

ratings from all participants who completed the metaphor tasks (n = 165). The four raters were modeled

as indicators of two lower-order metaphor variables (“gross food” and “boring class” prompts), which

were in turn modeled as indicators of a higher-order metaphor variable metaphors (Figure 1) (Beaty &

Silvia, 2013; Silvia & Beaty, 2012). This measurement model fit the data well: y> (19) = 25.836, p <.135;

CFI. 988; RMSEA .047; SRMR .039. We formed high- and low-metaphor groups via median split of the

extracted latent factor, which was standardized via Z score (M = 0, SD = 1; see Participants).
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meta2
67 80 63 80 J2 80 65 B4
metal_r1 metal_r2 meta’l_r3 meta’1_rd meta2_r1 meta2_r2 meta2_r3 | | meta2_r4
56 36 60 18 45 35 57 30

Figure 1. Confirmatory factor analysis of creative metaphor. Factor scores were extracted to form high and low
metaphor groups for group-based semantic network analysis. metal = boring class metaphor; meta2 = gross food

metaphor; r1-r4 = raterl-rater4.

2.2.2. Semantic Fluency Tasks

Participants completed two category verbal fluency tasks: animals and fruits/vegetables. This task

provides an efficient means to investigate people’s ability to retrieve semantic information from long-

term memory (Ardila et al., 2006; Bousfield, Whitmarsh, & Berkowitz, 1960; Goni et al., 2011), and it

is widely used to model group-based semantic networks (Siew et al., 2019). According to standard

procedure (Ardila et al., 2006), for each category, participants were given 60 seconds to write down (type)

as many different examples as they could. Note that we included two categories (animals and

fruits/vegetables) to test whether results are robust to semantic category.

2.2.3. Analyses

Total and unique responses. We conducted a series of analyses to determine whether the high- and

low-metaphor groups differed in the total number of fluency responses and the number of unique
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responses per category. T-tests assessed potential group differences in the total number of responses. To

assess potential differences in unique responses, McNemar’s chi-squared test was used, which compares

differences in proportions of paired nominal dichotomous data (Agresti, 2003).”

2.3. Network Analysis

2.3.1. Network Estimation

The semantic fluency data of the two metaphor production groups were analyzed using a semantic

network approach (Borodkin et al., 2016; Kenett et al., 2013). In this approach, each node represents a

category exemplar (e.g., frog) and edges represent associations between two exemplars. These

associations are the tendency of the sample to generate exemplar b (e.g., foad) when they have also

generated exemplar a (e.g., frog). All network analyses were conducted in R using a pipeline to analyze

semantic fluency data as networks (Christensen & Kenett, 2019), with the following steps:

First, SemNetDictionaries (Christensen, 2019b) and SemNetCleaner (Christensen, 2019a) R

packages were used to preprocess participants’ verbal fluency data. Participant repetitions (responses

given by a participant more than once) and non-category members (e.g., animals: sugar, small tree, and

fictional character) were removed. Other potential errors were corrected, including spelling errors,

compound responses (i.e., responses where a space is missing between responses), variation on roots (e.g.

cats to cat), and continuous strings (i.e., multiple responses entered as a single response). Next, the data

were transferred into a binary response matrix, where the columns represent the different unique

exemplars given by the sample, rows represent participants, and the response matrix is filled out by 1 (if

an exemplar was generated by that participant) and 0 (if that exemplar was not).

The SemNetCleaner package (Christensen, 2019a) was used to further process the binary response
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matrix into a finalized format for network estimation. To control for confounding factors (such as
different nodes or edges in both groups), as in previous studies, the binary response matrices only include
responses that are given by at least two participants in each group (Christensen, et al., 2018; Kenett,
Beaty, et al., 2016; Kenett et al., 2013). Then, to avoid the two groups including different nodes (and
different numbers of nodes), which may bias comparison of network parameters (van Wijk, Stam, &
Daffertshofer, 2010), responses in the binary response matrices were equated, so that the networks of
both groups are compared using the same nodes. This matching allows us to examine differences in
network properties that are due to differences in the groups themselves (e.g., differences in metaphor
production abilities). During this process, 23 and 7 nodes were excluded from the low and high metaphor
groups, respectively, leaving 106 nodes in each group for the animals category and 62 nodes in each
group for the fruits/vegetables category for subsequent network analysis.

Next, the SemNeT package (Christensen, 2019b) was used to compute the association profiles of
verbal fluency responses. We used the function of cosine similarity in this package to estimate the edges
between nodes. The cosine similarity is commonly used in LSA (Landauer & Dumais, 1997) and is
related to Pearson’s correlation, which can be considered as the cosine between two normalized vectors.
Below, we present the formula used to compute the cosine similarity:

7.7.

-14;B;
[ [z p @

where 4; represents the column vector of response a and B; represents the column vector of response b.

CoS =

Unlike Pearson’s correlation, the cosine similarity ranges from O to 1 because it is based on the co-

occurrence of responses. If two responses do not co-occur, then the cosine similarity is 0. Therefore,

associations are all positively valued, which has the advantage of not assuming that the lack of co-
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occurrence suggests a negative association between two responses (whereas Pearson’s correlation carries

that potential).

The word similarity matrix is examined as an n x n adjacency matrix of a weighted, undirected

network, where each word represents a node (#;) in the network and the edges between two nodes

represent the similarity between them. Most of the edges will have small values or weak associations,

which represent noise in the network. To minimize the noise and possible spurious associations, we

applied the Triangulated Maximally Filtered Graph (TMFG; Christensen, et al., 2018; Massara, Di

Matteo, & Aste, 2016). The TMFG captures the most relevant information (i.e., removal of spurious

connections and retaining high correlations) within the original network (Kenett, Kenett, Ben-Jacob, &

Faust, 2011). This approach retains the same number of edges between the groups, which avoids the

confound of different network structures being due to a different number of edges (Christensen, et al.,

2018; van Wijk et al., 2010). Thus, the networks constructed by this approach can be directly compared

because they have an equivalent number of nodes and edges. The TMFG method was applied using the

NetworkToolbox package (Christensen, 2018) in R.

To examine the structure of the networks, the edges are binarized so that all edges are converted to

a uniform weight (i.e., 1). Although the networks could be analyzed using weighted edges (weights

equivalent to the correlation strength), this potentially adds noise to the interpretation of the structure of

the network. Moreover, Abbott, Austerweil, and Griffiths (2015) show that weighted and unweighted

semantic networks produce similar results. Thus, the networks are analyzed as unweighted (all weights

are treated as equal) and undirected (bidirectional relations between nodes) networks.

2.3.2. Network Analysis.

The NetworkToolbox package was used to analyze the network properties (CC, ASPL, and Q). We
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used two complementary approaches to statistically examine the validity of the results. First, we

simulated one set of random networks for both metaphor groups to statistically test whether the network

parameters did not result from a null hypothesis of a random network with the same nodes and edges

(Beckage, Smith, & Hills, 2011; Steyvers & Tenenbaum, 2005). To this end, for each semantic category,

we generated a large sample of Erdos-Rényi random networks with a fixed edge probability (Erdds &

Rényi, 1960) and compared the empirical network measures of both groups to this random distribution.

For each simulated random network, we computed its CC, ASPL, and Q. This procedure was simulated

with 1,000 realizations and resulted in a random reference distribution for each measure. The empirical

network measures were then compared to the reference distribution to evaluate its statistical significance.

This was achieved via a one-sample Z-test for each network parameter.

Second, we used a bootstrapping approach (Efron, 1979) to simulate and compare partial semantic

networks for both groups. Based on previous studies (Borodkin et al., 2016; Kenett, Beaty, et al., 2016),

the bootstrapping procedure involves random selection of a subset of the nodes of the semantic network.

Partial semantic networks were constructed for each group separately for these random nodes. This

approach makes it possible to generate many simulated partial semantic networks, allowing for statistical

examination of the difference between any two networks. Following the procedure of Epskamp,

Borsboom, and Fried (2018), we generated graded partial semantic networks for both groups that

involved 50%, 60%, 70%, 80%, and 90% of the nodes. For each partial network and for each group, the

CC, ASPL, and Q measures were computed. This procedure was estimated with 1,000 realizations for

each of the graded partial bootstrapping analyses and an independent ¢ test analysis was conducted to

compare the difference in the measures across the two groups. This bootstrapped approach was computed,

and its corresponding figures were generated using the SemNetCleaner package (Christensen, 2019a).
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3. Results

We compared the average and the unique responses of low and high creative metaphor groups in

both categories. The results showed no significant difference in the average response between the two

groups in both categories (ps > .05, see Table 2). For the unique responses, across the sample, there were

287 and 147 unique responses in total for the animals and fruit/vegetables categories, respectively. The

high creative metaphor producers generated 231 and 128 unique responses for animals and

fruit/vegetables categories, respectively (68 and 41 of which were not given by the low group), and the

low creative metaphor producers generated 219 and 106 unique responses for animals and

fruit/vegetables, respectively (56 and 19 of which were not given by the high group). McNemar’s chi-

square tests showed that the proportion of unique responses in the high creative metaphor producing

group (231/287 = .805 for animals and 128/147 = .871 for fruit/vegetables categories) was significantly

larger than that in the low creative metaphor producing group (219/287 = .763 for animals and 106/147

=721 for fruit/vegetables categories), [ X% an (1) =.98, p=.323, 9 = .274; x2yg (1) =7.35,p=.007,

@ = .240] (Table 2). Thus, the high creative metaphor producers reported more unique responses than

low creative metaphor producers, but only in the fruit/vegetables category.

Table 2. Average and unique verbal fluency responses for the four metaphor groups

n (average) n n x2

Grou t df d n
P M(SD) _ Range v (o) (unique) =1 P i

Low AN  19.56(3.97) 12-34 200 56
243 140 809 041 287 98 323 274

High AN 1939 (432)  10-28 231 68

Low FV  1563(337)  9-25 106 19
252 140 213 -210 147 735 007 240

High FV 1638 (3.72)  9-24 128 41

Notes: n (average) = the average number of responses in each group; n (total) = the total number of unique responses
in each category; n (unique) = the number of unique responses in each group; n = the number of unique responses
not given by the other group. X2 was from the McNemar’s chi-squared test; ¢ is the effect size of the McNemar’s

test. AN — animals; FV - fruit/vegetables.

Additionally, three #-test analyses were conducted to examine potential differences for the average
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number of responses between the animals and fruits/vegetables categories. The results showed that the

average responses for the animals category was significant high than that of the fruit/vegetables category

[M (SD) ax = 19.47 (4.12), M (SD) va = 16.02 (3.56), f141, = 10.94, p < .001, d = .896]. When separated

by group, the average number of responses of the animals category was higher than that of the

fruit/vegetables category in both groups [# jow 141y = 8.337, p <.001, d = 1.059; # pigh 141 = 7.154, p <.001,

d = .737]. These results indicate that, regardless of metaphor creativity, people have a higher rate of

associations with the animals category than the fruit/vegetables category.

Next, we estimated the animals and fruits/vegetables category semantic networks of the low and

high creative metaphor producing groups. We computed the network measures (CC, ASPL, and Q) for

these four networks (Table 3) and visualized the networks (Figure 2). To visualize the networks (Figure

2), we applied the force-directed layout (Fruchterman & Reingold, 1991) of the Cytoscape software

(Shannon et al., 2003). In these 2D visualizations, nodes are represented by the respective exemplars and

edges between them are represented by lines. Since these networks are undirected and weighted, the

edges convey symmetrical (i.e., bidirectional) similarities between two nodes. The network of the low-

metaphor producing group is visually more spread out than the network of the high-metaphor producing

group in both categories (Figure 2), consistent with the lower CC, higher ASPL, and higher Q of the low

metaphor networks (Table 3).

Table 3. Network measures of low and high metaphor networks for two semantic categories

AN-Low AN-High FV-Low FV-High

ASPL 3.30 2.73 2.59 2.36
CC 72 75 75 .76
Q .61 .59 52 48

Note: ASPL, average shortest path length; CC, clustering coefficient; Q, modularity. AN Low, low creative

metaphor producing group in category animals; AN High, high creative metaphor producing group in category
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animals; FV_Low, low creative metaphor producing group in category fruits/vegetables; FV_High, high creative

metaphor producing group in category fruits/vegetables.

Low Creative High Creative
Metaphor Producers Metaphor Producers

Animals

Fruits &
Vegetables

Figure 2. A 2D visualization of the semantic network of high and low creative metaphor producing

groups for two semantic categories

To verify that the network analysis results are not due to a null hypothesis, we conducted a simulated

random network analysis. This analysis revealed that all empirical network measures for the low- and

high- creative metaphor producing groups were significantly different from their simulated random

measures (all p’s <.001). Notably, this result replicated across both semantic categories.

To examine potential differences in network structure across the low and high metaphor producing

groups, we conducted bootstrapped partial networks analyses for both categories (Bertail, 1997; Kenett

et al., 2014). Here, five graded partial semantic networks were generated for both groups, constituting

50%, 60%, 70%, 80%, and 90% of the nodes.

Compared to the low metaphor producing group, the partial networks of the high creative metaphor

producing group had a significantly lower ASPL and Q, and higher CC across the bootstrapped samples

(Figure 3 and Table 4). The effect size ranged from moderate to very large (d = 0.72 to 1.66 for ASPL
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and d = 0.82 to 1.60 for Q), with effect size scaling with increasing number of nodes in the partial

networks (i.e., d increased as nodes increased from 50% to 90%). In contrast, the CC was significantly

larger for the partial networks of the high creative metaphor producing group compared to the low

metaphor producing group; again, the effect size ranged from large to very large (d = 1.02 to 3.32).

Importantly, these results replicated across the two categories (animals and fruits/vegetables). Thus, the

semantic networks of participants who produced more creative metaphors were characterized by shorter

paths between nodes (lower ASPL), more connectivity between nodes (higher CC), and lower modularity

(lower Q).
Table 4. Partial bootstrapped network results for two semantic categories
Network Measures
Group and
Notes Remaining ASPL cc Q
t D p t D p t d p
Animals
90%  (df=1998) 37.00 1.66 <.001 -74.17 332 <.001 3572 1.60 <.001
80%  (df~1998) 2574 1.15 <.001 -52.48 235  <.001 26.13 1.17 <.001
70%  (df=1998) 19.72 88 <.001 -39.78 1.78  <.001 2144 96 <.001
60% (df~1998) 19.37 87 <.001 -31.52 141  <.001 21.04 94 <.001
50% (df=1998) 16.18 .72 <.001 -22.69 1.02 <.001 1834 82 <.001
Fruits/vegetables
90%  (df=1998) 71.39 3.19 <.001 -62.00 2.77 <.001 5829 2.61 <.001
80%  (df~1998) 51.19 229 <.001 -45.44 2.03 <.001 4228 1.89 <.001
70%  (df=1998) 40.03 1.79 <.001 -34.86 1.56 <.001 33.57 1.50 <.001
60% (df~1998) 26.65 1.19 <.001 -25.38 1.14  <.001 23.80 1.06 <.001
50% (df=1998) 20.18 90 <.001 -19.37 87  <.001 1776 .79 <.001

Note: 1000 samples were bootstrapped for each percentage of nodes remaining. #-statistics and Cohen’s d values are
presented (Cohen, 1992). Negative ¢-statistics denote the high metaphor producing group having higher values than
the low metaphor producing group. All p’s < .001. Cohen’s d effect sizes: 0.50 - moderate; 0.80 - large; 1.10 - very
large. ASPL, average shortest path length; CC, clustering coefficient; Q, modularity.
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Figure 3. Plots of the bootstrapped partial network measures (1000 samples per nodes remaining percentage).
Density plots are above the scatterplots (individual dots depict a single sample), with a black dot representing the
mean. The y-axis denotes the percentage of nodes remaining (e.g., 90% = 90% nodes remaining in the bootstrapped

sample). The x-axis denotes the network measure values.

4. Discussion

In the current study, for the first time, we capture, quantify, and compare the semantic memory
structures of people with low and high creative metaphor production abilities using a computational
network science approach. Our main finding was that the semantic networks of the high creative
metaphor producing group are more flexible and less rigid (smaller ASPL and Q), and more clustered
(larger CC) than that of the low creative metaphor producing group. Critically, these results replicated
across two different semantic categories (animals and fruits/vegetables). The findings thus indicate that
semantic knowledge is represented differently in high creative metaphor producers, which may promote
their ability to search more remote and apt associations for vehicles to topics and in turn produce more
creative metaphors.

As predicted, the semantic network of people with higher creative metaphor production ability had
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a smaller ASPL and Q, and a larger CC value. This “small-world” network is flexibly and efficiently

structured (Kenett & Faust, 2019; Latora & Marchiori, 2001), characterized by high global/local

efficiency, higher clustering, and lower modularity. In the context of semantic networks, these network

properties relate to higher connectivity between weakly-related concepts and a more broadly connected

network (He et al., 2020; Latora & Marchiori, 2001). Such an efficient network organization may

facilitate establishing apt common properties for both “topics” and “vehicles,” thereby forming more

creative metaphors. The qualitative analysis of the networks was quantitatively confirmed by the partial

bootstrapped network results (Christensen & Kenett, 2019). Indeed, results from the partial bootstrapped

networks were consistent with that of full networks, which revealed that the partial networks of high

creative metaphor producers exhibited significantly smaller ASPL and Q, and larger CC, relative to the

partial networks of the low creative metaphor producers, supporting the findings for the full networks.

Additionally, the effect sizes ranged from moderate to very large, with the percentage of nodes remaining

increasing from 50% to 90%, suggesting these differences of semantic networks between low and high

creative metaphor groups are substantial.

Our results also highlight global differences in semantic memory network properties, regardless of

metaphor ability. We found no differences in the average responses of the low and high creative metaphor

groups for both categories. However, the number of unique responses within group differed in the

fruits/vegetables category (but not for the animal category), indicating that high creative metaphor

producers are able to retrieve more uncommon responses from their semantic memory structure,

especially in categories with less strong associations (e.g., fruits/vegetables). Notably, we did not

replicate previous work reporting differences in fluency between low and high creative groups

(Christensen et al., 2018; Kenett et al., 2014), but we did replicate past work showing more unique
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responses in more creative individuals. These findings speak to the ongoing debate regarding the relative

roles of semantic network structure vs. semantic retrieval processes. Future work should continue to

examine the extent to which creative metaphor production is driven by semantic structure or executive

retrieval abilities (cf. Benedek et al., 2013; Menashe et al., 2020).

4.1. Metaphor Production and Semantic Memory

How do such rich semantic networks facilitate the production of creative metaphors? Based on the

property attribution model, metaphor processing involves making an abstract link between two

concepts—a ‘topic’ and a ‘vehicle’ (Glucksberg et al., 1997). Extending this view, people whose semantic

network does not contain (or cannot establish) the necessary links between the ‘topic’ and ‘vehicle’ are

less able to produce a highly original metaphor. This contention is supported by previous studies showing

that print exposure (Chiappe & Chiappe, 2007) and crystallized intelligence/vocabulary knowledge

(Beaty & Silvia, 2013) are important predictors of metaphor quality, highlighting the importance of both

richer semantic networks and richer stores of general knowledge in establishing abstract links to produce

more creative metaphors.

In the context of the property attribution model, the spreading-activation theory of semantic

processing (Collins & Loftus, 1975) could provide insight into the process of creative metaphor

production. On this view, memory search is theorized as activation spreading from a concept in memory

to its directly connected concepts (or nodes) in a semantic network until an intersection is found. Thus,

people with a richer memory structure (smaller ASPL and Q, and bigger CC) are better at searching nodes

that are semantically distant (i.e., even located in the distinct regions of the network) or low-frequency

concepts (Gray et al., 2019; Gruszka & Necka, 2002; Kenett & Austerweil, 2016). Hence, they are more
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efficient at finding and establishing such abstract links (e.g., common features between ‘topic’ and

‘vehicle’). This view was supported by previous studies: people with a broader knowledge base can more

effectively produce conventional metaphors (Chiappe & Chiappe, 2007) and people with higher verbal

fluency (i.e., efficient knowledge retrieval) tend to produce more creative metaphors (Beaty & Silvia,

2013).

Additionally, the computational predication model of metaphor comprehension (Kintsch, 2000) has

been adapted to explain metaphor production (Chiappe & Chiappe, 2007). According to this theory, once

the potential common features of the topic and vehicle in the semantic neighborhoods of topic properties

are identified, they may be used to further search for an apt vehicle. Thus, individuals with more “rigid”

or less rich semantic networks likely have greater difficulties searching many features of topic properties

in the semantic neighborhoods, or they may “get stuck™ within strongly connected properties surrounding

the topic (Kenett, Gold, et al., 2016; Siew, 2013). This may increase the difficulty to further reach an apt

vehicle and thereby decreasing the possibility to product a creative metaphor. Thus, our results provide

important empirical support for classical linguistic theories of metaphor processing and semantic memory.

4.2. Metaphor, Creativity, and Semantic Networks

In similar research on creativity, the same flexible network pattern was found in higher creative

individuals (Kenett et al., 2014; Kenett & Faust, 2019). Regarding ASPL, short path lengths indicate

smaller distances and increased interconnectivity between concepts. According to the associative theory

of creativity, creative individuals tend to show a richer and more flexible associative network than less

creative individuals (Mednick, 1962). Several studies have found that higher creative individuals have a

smaller ASPL compared to lower creative individuals (Kenett et al., 2014; Kenett & Faust, 2019).
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Similarly, Gray et al. (2019) applied a computational corpus-based measure of semantic distance to

compute the semantic distance between pairs of associative responses in a chained free association task,

and related these distances to individual differences in creativity. The authors show that higher creative

individuals are able to search farther away through their memory and retrieve more remote chained free

associations (Gray et al., 2019). In the current study, the shorter ASPL of high metaphor producers may

similarly allow them to establish distant connections between topics and vehicles, which is important for

producing creative metaphor.

Regarding CC, our results revealed that the semantic networks of high creative metaphor producers

were more clustered and exhibited greater local organization. Theoretically, the possibility a particular

concept can be retrieved from the semantic network depends on the extent to which it is activated (Collins

& Loftus, 1975; Klimesch, 1987). Thus, our results suggest that high creative metaphor producers have

a higher likelihood of activating the near-neighbors of each node, thereby facilitating a broader search

process through semantic space (Kenett & Austerweil, 2016; Marupaka, lyer, & Minai, 2012). They thus

could reach more rich features of “topics” and find more apt “vehicles” for producing more creative

metaphors. High CC is consistently found in the semantic networks of high creative individuals (Kenett

& Faust, 2019) and people higher in the personality trait openness to experience (Christensen, et al.,

2018). Additionally, previous studies found that people who produced more original ideas also identified

word pairs as more related, especially for pairs of words being theoretically more distant (Bernard, Kenett,

Ovando-Tellez, & Benedek, 2019; Rossmann & Fink, 2010). Thus, for highly creative metaphor

producers, theoretically more distant concepts appear closer in their semantic networks. Therefore,

people who have higher local clustering and condensed semantic networks tend to have wider range of

associations—properties that tend to be conducive to creative thought (Gruszka & Necka, 2002)—
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thereby facilitating a broader search process through semantic space and increasing the possibility of

finding weak abstract links between “topics” and “vehicles.

We also found that the high metaphor producers had a less rigid network, corresponding to fewer

sub-networks (i.e., smaller Q). In semantic networks, Q reflects the extent to which a complex system

could break apart into smaller sub-networks (Fortunato, 2010; Newman, 2006). So, the high the Q is, the

more sub-networks the structure has. For example, people with Asperger syndrome have shown hyper-

modular semantic networks, which may hinder their ability to break apart from a specific module in the

network and spread into other modules, thus resulting in rigidity of thought (Kenett et al., 2016). Similarly,

the community structure of the phonological network found that the densely connected phonological

modules (high Q) could “trap” spreading activation of phonological processing (Siew, 2013). Thus, the

more modular the structure of the semantic network is, the less flexible it is.

In the present study, higher creative metaphor producers’ network structure had smaller Q.

Therefore, when searing for a creative metaphor, they may be better able to break from a specific module

in the network and spread into other modules. This flexibility may help high metaphor producers to find

more apt, novel, and interesting properties for both the “topics” and “vehicles,” thus producing a more

creative metaphor. MacCormac (1986) proposed that, when comprehending a metaphor, if the

organization of concepts are fixed and rigid in long-term memory, the semantic change necessary for

metaphor comprehension becomes difficult (if not impossible). It seems plausible that similar principles

underlie metaphor production, but future work is needed to examine the relation between metaphor

comprehension and metaphor production.

Additionally, several studies have documented the role of Q in flexible thinking, which relates to

inhibiting the restriction of the activation spread over semantic and phonological networks (Kenett, Gold,
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et al., 2016; Siew, 2013). However, these studies suggest that high and low Q are probably beneficial to

different cognitive processes. On the one hand, generally, higher modularity (usually in more structured

networks) relates to fluid intelligence and language (Borodkin et al., 2016; Kenett, Beaty, et al., 2016).

On the other hand, lower modularity is related to higher creative performance (Benedek et al., 2017;

Kenett et al., 2014). Our results extend this work to the domain of metaphor production, further

illustrating the need for higher flexibility in semantic memory to generate creative ideas.

In sum, our findings are consistent with previous studies using computational network science

methods to study creative thinking (Benedek et al., 2017; Kenett et al., 2014; Kenett & Faust, 2019),

providing quantitative evidence of differences in semantic networks associated with figurative language

production.

4.3. Summary, Limitations, and Future Directions

The present study contributes to our understanding of the role of semantic memory structure in

metaphor production. Notably, our findings replicated across two semantic categories—high metaphor

producers showed the same flexible network structure in two categories, which differed significantly

from low metaphor producers—pointing to the robustness and generalizability of the results. At the same

time, some potential limitations should be mentioned.

First, we used dichotomization to separate the groups. Dichotomizing a continuous variable (e.g.,

metaphor creativity) might cause potential issues, such as loss of information about individual differences,

overlooking nonlinear relationships, and decreasing the effect size and power (MacCallum et al., 2002).

Regarding individual differences, recently, some studies have developed a network approach to

investigate the relationship between semantic networks and individual cognitive abilities (Benedek et al.,
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2017; He et al., 2020; Morais, Olsson, & Schooler, 2013). Thus, future research is needed to expand our

approach to the analysis of individual semantic networks. As individual semantic networks are assumed

to be stable and consistent (Morais et al., 2013), we predict that extracting the semantic networks of

individuals with low and high metaphor production ability will replicate the group findings. Additionally,

as the relationship of semantic network measures (e.g., ASPL and CC) and verbal creativity was shown

to be linear (Benedek et al., 2017; He et al., 2020; Kenett, Beaty, et al., 2016), the potential nonlinear

issue of dichotomization in the present study may be minimal. Meanwhile, the large effect size found in

current study indicates that the dichotomization may not have exerted much influence.

Second, although we found group differences in the structure of semantic networks, the fluency

tasks used to construct these networks require selective retrieval processes. To address the process vs.

structure question, and to rule out the role of process in constructing semantic networks, future research

should employ semantic tasks that do not place strong demands on controlled retrieval processes (e.g.,

semantic similarity tasks; Kenett et al., 2017). Another potential limitation concerns the quantification of

metaphor quality via subjective human raters. Although this approach is common in creativity assessment,

the findings may be strengthened by employing objective assessments of creative quality, such as

computational measures of semantic distance (Beaty & Johnson, in press).

In summary, the current study quantitatively examined the differences in semantic memory network

organization between lower and higher creative metaphor producers. The findings provide the first

evidence that a flexible, clustered, and less rigid semantic memory structure relates to people’s ability to

produce figurative language (such as creative metaphors), extending the growing literature on the role of

semantic networks in creativity to the domain of metaphor production. Further, our results provide

important support for classic linguistic theories on metaphor and semantic memory.
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