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Deployahle Convex Generalized
Cylindrical Surfaces Using
Torsional Joints

The ability to deploy a planar surface to a desired convex profile with a simple actuation
can enhance foldable or morphing airfoils, deployable antennae and reflectors, and
other applications where a specific profile geometry is desired from a planar sheet. A
model using a system of rigid links joined by torsional springs of tailorable stiffness is
employed to create an approximate curved surface when two opposing tip loads are
applied. A system of equations describing the shape of the surface during deployment is
developed. The physical implementation of the model uses compliant torsion bars as the
torsion springs. A multidimensional optimization algorithm is presented to place joints to
minimize the error from the rigid-link approximation and account for additional manufac-
turing and stress considerations in the torsion bars. A proof'is presented to show that equal
torsion spring spacing along the horizontal axis of deployed parabolic profiles will result in
minimizing the area between the model’s rigid-link approximation and smooth curve. The
model is demonstrated through the physical construction of a deployable airfoil surface and
a metallic deployable parabolic reflector. [DOI: 10.1115/1.4049951]
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1 Introduction

The objective of this research is to present a model which can be
used to create a deployable surface with a simple actuation that
closely approximates a generalized cylindrical surface, such as
the one shown in Fig. 1, using torsional joints which can be manu-
factured as 2D geometries with thickness. The ability to transition
from a flat sheet to a predetermined shape can lead to advances in
applications such as stowable reflectors incorporated in space mech-
anisms, tunable optical devices, morphing aerodynamic or hydrody-
namic structures, and conforming components like circuit boards to
curved shapes. This research includes and expands on work pre-
sented at the Mechanisms and Robotics Conference at ASME
IDETC 2020 [1].

A generalized cylindrical surface is one of the three classes of
curved developable surfaces. A developable surface can be
formed from a planar surface through bending without any stretch-
ing or tearing [2]. A generalized cylinder is formed by translating a
straight line, called the generator line, along a path in a plane per-
pendicular to the generator line. The path is called the directrix of
the generalized cylinder. For example, a circular directrix would
give rise to the common right circular cylinder. The method
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presented in this research enables the design of deployable, approx-
imate generalized cylindrical surfaces where the directrix is a
convex curve that does not self-intersect. Furthermore, the determi-
nation of the joint placement is investigated through optimization
techniques to minimize error in the approximation of the surface
and to include constraints on various parameters to ensure the func-
tionality and manufacturability of the surface.

Part of the modeling presented in this research includes the char-
acterization of the stiffness of a deployable surface. While this

Fig. 1 A generalized cylinder with ruling lines (thin lines) and a
convex directrix (thick edge)
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research focuses on using compliant torsional joints to introduce
flexibility along straight lines in the surface (simulating the intro-
duction of pin joints with a stiffness), there is a substantial body
of work on modeling stiffness of structures and manipulators in
more general configurations and with joints exhibiting more
degrees-of-freedom. For example, work in characterizing the stiff-
ness of manipulators and soft robotic arms has been approached
through matrix structural analysis [3,4], finite element analysis
[5,6], and the virtual joint method [7-9].

Surfaces which can be controlled or predictably changed offer
advantages in situations where a change in occupied space or a
dynamic response to an environment is desired [10]. Varying geom-
etry of morphing elements can produce smooth curved surfaces
[11], while other techniques achieve morphing through approximat-
ing curved surfaces with discrete morphing elements [12]. Morph-
ing can also be used to provide locomotion as was accomplished
with printing liquid crystal elastomer bilayers [13] or transition
between stable states as was done with a compliant six-bar dwell
mechanism [14].

Origami and origami-inspired mechanisms provide examples of
surfaces where a change from one state, perhaps a tightly com-
pacted state, to another state, a deployed state, is desired. Examples
of these include bio-inspired wing structures [15], a diameter-
changing origami wheel [16], and an origami-based heart stent
[17]. Self-folding qualities can induce morphing with actuation
methods such as thermally activated shape memory alloys [18]. Kir-
igami has also been leveraged to create morphing structures in
response to temperature and light changes [19,20]. Origami and kir-
igami methods can enable simple manufacturing methods with
complex morphing motions.

Morphing surfaces have also been used to enhance the perfor-
mance through creating desirable geometries and profiles. Morph-
ing wings and flight surfaces have been investigated to create
structures which can be dynamically modified to achieve geome-
tries which perform well under varying environments or conditions
[21-25]. Deployable reflectors use the principle of morphing or
changing surfaces to create the desired collection shape while still
having the ability to stow compactly [26-30]. Optimization is com-
monly employed to assist in the determination of geometry for these
types of morphing geometries [31,32].

This work specifically looks at generalized cylindrical surfaces,
which are one of the four possible developable surfaces resulting
from curved folds or creases in a surface [2]. The results of this
work could possibly be incorporated into mechanisms and struc-
tures derived from curved-fold origami patterns to facilitate specific
panel shapes or further increase the propensity of a panel to take a
certain shape during deployment [33]. In comparison to the
methods presented in the previous paragraph, the method presented
here has characteristics of having an analytical model to create a
geometry to approximate a deployed profile (as opposed to
relying on finite element simulations or other numerical methods)
and being simple to actuate through a single contractile element.
Additionally, when torsion joints are used to form the flexible por-
tions of the surface, the entire deployable surface can be made with
planar-limited manufacturing techniques. The presentation of an
optimization method to determine the placement of joint locations
to minimize the error from approximating a continuous curved
surface as a series of rigid links could be applied to several of the
existing methods for creating morphing surfaces.

2 Method

2.1 Spring and Rigid-Link Model for Generalized
Cylindrical Deployable Surfaces. A model for creating general-
ized cylindrical deployable surfaces uses a system of rigid links
joined by torsional springs that is actuated from a flat state by
opposing tip loads to form a desired directrix in a deployed state.
The desired directrix is used to calculate the required stiffness of
the torsional springs between each rigid link.
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Let Ly, Ly, ..., Lyy; be the lengths of N+ 1 rigid links in the
system and N is the number of joints between the links. Let &,
k, ..., ky denote the equivalent stiffness of the torsion springs
between the rigid links as shown in Fig. 2(a). The rigid-link
system can be placed in the desired curved shape, represented by
the function Ygesirea(x), Where all of the endpoints of the rigid
links lie upon the curve. The deployed link angles 6, 6, ..., Oy,
the deployed heights y;, y», ..., yn, and the distance between the
tip loads r as shown in Fig. 2(b) can be determined from geometry.
This information can be found using vectors that represent each of
the links to calculate the angle between these vectors to obtain the
deployed link angles and using ygesiea(®) to find the deployed
heights for each x corresponding to a joint location.

With the system of rigid links in the desired curved shape, the
moment at the ith joint, M;, for joints i =1 to N can be expressed as

M,-=k,-(95 (])

The free-body diagram drawn for the ith joint in Fig. 3 with oppos-
ing tip loads, F, shows that the moment, M,, can also be expressed
as

M; = Fy; (@3

By equating Eqgs. (1) and (2), we can find an expression for the
stiffness of each torsion spring in terms of known geometry as
_Fyi
=

ki 3)

The lamina emergent torsion (LET) is a compliant joint that
allows for a twisting motion [34-36]. A full LET joint consists of
four torsion bars, a set of two parallel torsion bars (also called a tor-
sional parallel joint [37]) in series with another set of two parallel
torsion bars. LET joints can be chained together to form lines of
torsion bars [33,38]. The lines of parallel torsion bars can act as
the torsion springs in the model. An example of the geometry of
a LET joint chain with two torsion bars on each ruling line is
detailed in Fig. 4. The torsion bars of the LET joints are well
suited to the model for deployable surfaces as the joints can be
planar manufactured as part of a sheet, have a relatively stable
axis of rotation, and have geometry which can be modified to
change the stiffness of the joint in a predictable way using spring
models [34,39]. For example, the length, width, or thickness of
the torsion bars can be changed to specify a certain stiffness.

Fig. 2 Rigid-link and torsion spring model showing (a) a flat
position and (b) an actuated position for a rigid-link system of

Fig. 3 Free-body diagram of the structure cut at the ith joint
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Fig. 4 A chain of LET joints with important dimensions shown
with the corresponding model schematic. This chain has five
rigid links and four torsion springs.

Chen and Howell developed expressions for the stiffness of a rec-
tangular torsion bar, the basic torsional element of the LET joint,
that are symmetric (+ and w are interchangeable) [40]. This is
helpful for design situations where the geometry is not known a
priori. The stiffness expression of a single rectangular bar is
repeated here for reference [40]:

_GJ

k=—
L

4
where G is the shear modulus of the material, L, is the length of the
torsion bar, and in terms of the width w and thickness of the torsion
bar ¢

263w

- <7z2 + w2 ©)

1.172 + 2191w + 1.17w?
2 +2.6091w + w?

The second grouped term in the expression for J can be replaced
by a fifth degree polynomial divided by another fifth degree polyno-
mial for greater accuracy (see Ref. [40]) and this more accurate form
of the equation was used in the implementation sections of this
paper. These terms come from curve fits applied to a compensation
function that seeks to resolve the exact series solution with a sym-
metric approximate solution for the torsional stiffness of a rectangu-
lar bar.

Because the value for the stiffness can be determined from the
desired geometry with Eq. (3), this can be set equal to the expres-
sion for the stiffness of the torsion bar from Egs. (4) and (5). More-
over, the expression from Eq. (4) is multiplied by a factor m which
corresponds to the number of parallel torsion bars along the ruling
line of the torsional spring k;. Rearranging to move all terms to a
single side results for joint i

0
0; L,

©)
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There is some flexibility in determining which geometric param-
eter(s) are allowed to vary to satisfy this equation. For example, all
terms could be defined except for w and the equation can be solved
numerically to find the width of the torsion bar.

For more complex joint types or considering degrees-of-freedom
other than just twisting about a single axis, more in-depth stiffness
modeling techniques could be used to obtain a relationship between
the geometry, loading, and the stiffness [41].

2.2 Joint Placement Optimization. Multidimensional optimi-
zation can be used to determine joint locations for a specified
number of torsion joints, N, which will minimize the error in
approximating the desired profile with a series of rigid links and
allow for the introduction of additional constraints in the design
problem.

The distances between joint locations, J;, are the design variables
where i=1 to N. To simplify the optimization, problem constraints
are added such that the design variables must be positive and are
represented as

;>0 (7

These constraints ensure that the ordering of the torsion bars does
not change through the optimization process. The design variables,
§;, can be related to d; and the distances of the torsion springs from
one end of the deployed surface where i =1 to N as shown in Fig. 5.

The objective function for the optimization problem can be
defined as a minimization of the areal profile error, the area
between the desired directrix Ygesirea(X) and the actual deployed
shape’s directrix y,oy(x) where the subscript poly stands for poly-
line or polygonal chain. The objective function to be minimized
is thus written as

L
F(5) = Areal profile error = J (Vdesired®) = Ypory@))dx ~ (8)
0
where y,01,(x) is determined from the vector of design variables, 5;,
to create a piecewise function of straight lines representing the rigid
links. During implementation, numerical integration was used to
evaluate the areal profile error.
It is best to pair this objective function with a constraint on the
maximum deviation of the system from the desired curve, the
lineal profile error. The lineal profile error can be expressed as

Lineal profile error

(C)]

= max (shortest distance from Ygesired (Xarb) tO ypoly)

where x4, represents an arbitrary point along the desired curve. The
constraint on this error’s maximum allowable value is defined as

. . Allowable lineal
Lineal profile error < (10)

Profile error

Desired Directrix

Yiesied®)
Actual Surface

[ Areal Profile Error

) dz . *\{ Lineal Profile Error

8, 5, 5,

Fig. 5 The design variables, J;, are the distances between tor-
sional springs (three shown here). The objective to be minimized,
the areal profile error between the desired and actual surface, is
shown as the shaded region. The lineal profile error which can be
limited with a constraint is also shown.
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This prevents the shortest distance from an arbitrary point on
Ydesired 1O Ypoly from growing too large. If this constraint is not in
place, the optimization process tends to aggregate all of the areal
profile error to the location where the curvature of the desired func-
tion is the greatest, even if the distance from the desired curve to the
actual deployed surface becomes large.

By imposing a limit on the maximum lineal profile error, the
minimum areal profile error is increased, but distributed more
evenly throughout the system. To gain an appropriate understand-
ing of the range of this constraint, the optimization can be per-
formed with a large value for the allowable lineal profile error
such that the constraint is not binding. The value of the constraint
can then be reduced until it reaches the other extreme value
which will cause the optimization problem to have no feasible
solution.

In the implementation to evaluate this constraint, the lineal profile
error was found by locating the largest lineal profile error for each
segment described by &;. This was accomplished with another opti-
mization routine where a single free variable, the x coordinate on
Vdesired(X), Was determined to maximize the objective function of
the distance between the point (¥, Ygesirea(*)) and the line segment
(found using a form of the distance formula for the shortest
length between a point and a line).

In addition to the lineal profile error constraint, to maintain a fea-
sible geometry another constraint should limit the sum of the design
variables to a value smaller than the maximum value of x for ygesireas
that is

L)

N
Z 0i < Xmax
i=1

If desired, additional constraints can also be introduced such as
the maximum angular rotation of a torsional spring and the
minimum or maximum lengths of the rigid links. Once a mecha-
nism, such as a torsion bar, is decided upon to serve as the
torsion spring, further constraints can be imposed to limit stress
or size of the mechanism.

To illustrate these additional constraints, consider a rigid-link
system which uses N torsion springs, which corresponds to the
number of design variables. Let us assume a geometry similar to
the one shown in Fig. 4, where the number of torsion bars on
each ruling line is two (m=2) and the only geometric parameter
we are allowing to change is the torsion bar widths w;.

Several constraints can be added to ensure functionality and the
ability to be manufactured for the torsional joint system. Constraints
can be added to require each torsion bar width, w;, to be greater than
or equal to a minimum feasible width, Wyin anow. represented as

Wminallow < W; for i=1...N (12)

Constraints can be added to ensure the widths of the torsion bars
of the torsion joints, w;, fit into the dimensions for the link lengths,
L;, while accounting for the kerf from constructing the torsion
joints. These constraints can be expressed as

wy  kerf

WLt g <o

22 b=

W;_I+%+kerJ’—L,-§0 for i=2...N (13)
k

The highest stress in any torsional bar with a displacement angle,
0;, is a shear stress occurring in middle of the widest side of the
torsion bar when stress concentrations are ignored. The highest
shear stresses in each torsional bar, 7;, can be constrained to be
less than an allowable shear stress value, 7,jow:

(14)

Ti < Tallow

031101-4 / Vol. 13, JUNE 2021

To calculate the highest shear stresses in each torsion bar, a sym-
metric formula has been developed and can be used where ¢ and w
are once again interchangeable [42] as

_24M(w +1) (1.2719” +0.2829 +0.0498 15)
w2 v2 +0.27v + 0.0496

where v =llog #/wl. Similar to Eq. (5), a more accurate, higher order
term resulting from curve fits is available for the second grouped
term (see Ref. [42] for details) and this more accurate term was
used in the implementation sections of this paper.

Scaling of the desired profile and constraints was used to increase
the convergence rate for the optimization during implementation.
For example, the desired profile and allowable lineal profile error
were scaled by a factor such that the maximum x-axis length of
the desired profile was one, though care was taken to use the
full-scale geometry when calculating dimensions such as widths,
stresses, or the constraints in Eq. (13). Several constraints, such
as Egs. (10), (12), and (14), were scaled by their allowable values.

2.2.1 Joint Placemsent for Parabolic Profiles. During the
implementation of the optimization algorithm for parabolic profiles,
it was noted that when the additional constraints for lineal profile
error, stress, and manufacturing were not binding, the minimum
areal profile error was achieved through equal §; spacing of the
torsion springs. This can be shown mathematically as follows.

ProposiTiON 1. Let f(x) be a function whose graph is a parabola

on the interval [a, f]. Let P be the polyline consisting of n line seg-
ments  with  endpoints, (xo=a, f(x0), (1, f(x1)),
(2, fO2)), -+ s (nt, f0um1)), (6 = B, f(5n)). If P minimizes the
areal profile error between itself and the parabola, then x; 1 —
xi=((f—a)n) for i=0,1,...,n—1; ie., the points are equally
spaced along the x-axis.
Proof. Without loss of generality, we suppose that @ =0 and that
the parabola is above the x-axis on the interval [0, £]. The function
f(x) can be written as f(x) = ax” + bx + ¢ for some real numbers a, b,
and c. We give a proof by induction on n.

If n=2, then P consists of the points (0, f(0)), (x;, f(x1)), and
B, f(B)). Let T, denote the trapezoid formed from the points
(0, 0), (0, £(0)), (x1, f(x1)), and (x1, 0). Let T, denote the trapezoid
formed from the points (xy, 0), (x1, f(x1)), (B, f(B)), and (5, 0). Let
A(T)) and A(T>,) denote the areas of the two trapezoids, respectively.
The sum of these two areas can be expressed as function of x; as
follows:

1
AT +A(T) =5 (FO) +fCx1))xi

1
+ E(f(xl) + ()P —x1)

1
=E(C+ax%+bx1 + o)X

1
+§(axf+bxl +c+af+bf+ )P —x)

1
=5 (cx1 + ax] + bxi + cxy + Pax; + fbx

+pc+af +bp +cp
- ax? - bx% —cx) — aﬁle —bpx; — cxy)

=%(ﬁax% - BPaxi + fc+ fPa+ b + fc)

To maximize or minimize this function, we take a derivative with
respect to x; which results in (1/2)(2fa x; — > a). Setting this equal
to 0 gives x; =f/2. The second derivative of the function is fa.
Recall #>0. Thus if a is negative, then the area function above is
concave down and thus the function is maximized at x; =f/2.
When a is negative, the parabola given by f(x) is also concave
down. Thus, in this case, maximizing A(T})+A(T») is equivalent
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to minimizing the areal profile error between P and the parabola. If
a is positive, then the second derivative of the area function is pos-
itive and thus the area function is minimized at x; = $/2. In this case,
the parabola is concave up and minimizing A(T)) + A(T») is equiv-
alent to minimizing the areal profile error between P and the parab-
ola. Therefore, in either case, the areal profile error between the
parabola and P is minimized when x; is placed half way between
a and b. This completes the base case.

Suppose the result holds whenn =1, 2, 3, ..., k for some integer
k. Let P be a polyline consisting of k+ 1 line segments that mini-
mizes the areal profile error. Consider the first k line segments.
The x coordinates of the endpoints are 0, x, xp, ..., x¢. Note that
the polyline consisting of these k line segments, call it P;, must min-
imize the area profile error between P; and the parabola given by
f(x) on the interval [a, x;]. This is because if P, did not minimize
the areal profile error, then taking a polyline that did minimize
this error and attaching the k+1 line segment from P would
produce a polyline with a smaller areal profile error than P, a con-
tradiction. Thus by the inductive hypothesis, 0, x;, x2, ..., x; are
equally spaced along the x-axis.

Now consider the last two line segments of P, line segments k and
k+ 1. The x coordinates of the endpoints are x;_;, x; and x| =p.
By a similar argument as above, the polyline consisting of these
line segments minimizes the areal profile error between itself and
the parabola given by f(x) on the interval [x;_;, #]. Thus by the
inductive hypothesis, x;_1, x;, and § are equally spaced along the
X-axis.

Since the numbers in the overlapping lists (0, xi, x2, ..., xx) and
(X1, X p) are equally spaced, the numbers in the list
(x0, X1, X2, ..., X, p) are equally spaced. Therefore, x; 1 —x;=
B—-a)k+1)fori=0, 1,2, 3,..., k. This completes the inductive
step and thus the result holds for all positive integers n. u

2.3 Shape Throughout Deployment. The shape the surface
takes throughout deployment as a function of the deployment
force can be determined once joint placements have been selected
and the stiffness of each joint calculated that is required for the
desired profile and deployment force. That is, we assume k; and
L; are known for each joint from i=1 to N, and we want to solve
for the force—displacement behavior where F is the actuation
force with corresponding angles 6;, where i=0 to N to fully
define the position of the surface. A system of equations governing
the shape’s force—displacement behavior is setup in the following
way. A constraint is established by summing the vectors represent-
ing the links from Fig. 2(b) about a loop where the horizontal com-
ponents are

N i
L cos@0+Z<Li+1 COS(HO—ZHj)> —-r=0 (16)
i=1 j=1

where r is the distance between the actuation forces and the vertical
components

N i
Ly sin6 + Z(L,-+1 sin(eo - Ze,-)) =0 (17)
i=1 J=1

Using the free-body diagram from Fig. 3, N additional equations
can be written, where the moment—balance relationship for the first
joint k; is

F(L] sin90)=k191 (18)

and for the remaining joints for g=2 to N as

q-1 i
F|:L1 sin 6 + Z(L,-H sin(eo - Ze,))} =k, (19
i=1 j=1

Equations (17), (18), and (19) give N + 1 equations which can be
solved for the N+ 1 angles of 6;, where i =0 to N when subjected to

Journal of Mechanisms and Robotics

a force F. Equation (16) can then be used to find the distance
between r between the ends of the deployable surface.

This system of equations is amenable to solving numerically with
a single unknown and using substitutions. Let 6, be a single
unknown and use Eq. (18) to calculate 8,. The process can then
be continued to sequentially calculate each 8, for g=2 to N using
Eq. (19). These values can then be used in Eq. (17) as the single
equation to satisfy.

This set of equations can have multiple valid solutions corre-
sponding to stable and unstable equilibrium configurations of the
deployable surface. The stable configurations correspond with min-
imums in the potential energy of the system. Kinematic chains with
passive joints with stiffness can have multiple equilibrium positions
as demonstrated in Ref. [8]. For the deployable surfaces in this
research, an additional stable position is observed by reflecting a
convex deployable surface about the line of action of the actuation
force. Unstable equilibrium positions can be observed when links
create a zig-zag shape, where some joint angles are positive and
others are negative. Limiting the domain of the joint angles and pro-
viding an initial guess to the solver of a convex profile can help
ensure that the system of equations is solved for a stable equilibrium
position where a convex profile is formed. In-depth characterization
of all equilibrium states is left to future work.

3 Results

The methodology described above was used to create prototypes
of a deployable airfoil surface and deployable parabolic reflector.

3.1 Deployable Airfoil Surface. A deployable airfoil surface
was designed using torsion bars as the torsion springs in the
model with optimization to place the joint locations and ensure con-
straints for the lineal profile error and for manufacturing were met.
The desired directrix was chosen to be the top surface of a Clark Y
airfoil with a 10in. (25.4 cm) chord length [43]. The optimization
and constraint setup parameters are reported in Table 1.

The resulting joint positions after the optimization are shown by
the thick black line in Fig. 6(a). The stiffnesses required for the
desired profile and actuation force were calculated and the corre-
sponding LET joint geometry determined. With the stiffness
values for the joints, the shape throughout deployment was calcu-
lated as described in Sec. 2.3 and plotted in Fig. 6(a). The force-
deployment shape results were used to plot the maximum height
of the deployed shape against the deployment force as shown in
Fig. 6(b). This plot shows how small amounts of shape change
occur as the actuation force increases until a critical buckling
force where large amounts of deformation occur rapidly. This non-
linear shift in stiffness has been investigated for kinematic chains
containing joints with passive stiffness [8].

The resulting LET joint pattern was cut from a polypropylene
sheet using an abrasive waterjet. The pattern is shown in the flat
and deployed states in Fig. 7. The optimization results and

Table1 Optimization parameters for a deployable airfoil surface
made from polypropylene

Parameter Value

Number of torsion springs (V) 12

Tip load force (F) 0.51b (2.22N)
Shear modulus (G) 64.4ksi (444 MPa)
Thickness of panel (7) 0.063 in. (1.60 mm)
L, 1.3in. (3.3cm)

m 2

0.061in. (1.5 mm)
1/161n. (1.59 mm)
1590 psi (11.0 MPa)
0.041in. (1.0 mm)

Winin,allow

kerf

Tallow
Allowable lineal profile error
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Fig. 6 (a) The optimized joint locations on the desired airfoil
profile shown by the points on the thick black line while the
thin red lines show the shape for actuation tip loads up to and
beyond deployment to the desired profile. The thick blue line
represents the flat, undeployed surface. (b) The maximum
height of the deployed shape versus the actuation force with
points corresponding to the profiles is shown in part (a). (Color
version online.)

experimental measurements taken on the prototype are summarized
in Table 2. Basic photogrammetry was carried out using MATLAB to
measure approximate lineal profile error in the deployed shape. The
largest error occurred in the leading edge where some parasitic or
unwanted motion occurred due to compression of the LET joints
by the tip loads. A thin polyethylene terephthalate (PET) adhesive
film 2.5 mils (0.064 mm) thick was then applied to the top layer
of the pattern to decrease the parasitic motion while minimally
affecting the torsion performance, similar to a technique

‘ ;,J 10 inch chord

Fig. 7 Deployable top surface of a Clark Y airfoil made from
polypropylene using an abrasive water jet, where (a) is the flat
surface, (b) is the deployed surface, and (c) is the deployed
surface with a PET membrane to reduce parasitic motion
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Table 2 Optimization and experimental results for a deployable

airfoil surface made of polypropylene

Parameters Min value

Max value

Deployed spacing, §;
Link lengths, L; 0.298in. (7.57 mm)
Widths, w; 0.084in. (2.13 mm)
w;lt ratios 1.33

0.181in, (4.60 mm)

1.142in. (29.0 mm)
1.1551n. (29.3 mm)
1.081in. (27.5 mm)
17.16

Parameters from
optimization results

Value

Lineal profile error

Areal profile error

Tmax

Shear stress factor of safety

0.023 in. (0.584 mm)
0.046in.? (0.30 cm?)
795 psi (5.48 MPa)
2.004

Undeployed (flat) length 10.315in. (26.2 cm)

Experimentally measured

values Value

Lineal profile error

(photogrammetry)
Without PET covering ~0.0361in. (0.914 mm)
With PET covering ~0.057in. (1.45 mm)

Force to deploy to profile 0.35+0.11b
(from scale)

(1.56 £0.44N)

investigated by Chen et al. [44]. This appeared to reduce some of
the parasitic motion, yet increased the lineal profile error. The
pattern with the PET covering is shown in Fig. 7(c). Applying a
thin film with full bonded contact along a surface can impact the
neutral axis of bending and torsional axes and thus change the mod-
eling, and some options exist to minimize this impact. Specifically,
a sandwich structure where the thin film is applied between two
sheets of the same thickness can maintain the neutral axis of
bending and torsional axes locations. Another option is to adhere
the film to only the areas of the pattern that are not in torsion to
help maintain the torsional behavior of the joints, as is further dis-
cussed in Ref. [44].

The force to deploy the pattern to the profile was measured using
a small digital scale. Accurate, repeatable measurements were
limited with the current measurement setup and more rigorous
instrumentation is recommended for future work. There is some dis-
crepancy between the designed tip load force and the measured
force. This could be due to a number of factors including errors
in the shear modulus value used, manufactured kerf width, and
perhaps most importantly bending observed from compressive
forces in the structure that accompanied the torsional deflection.

3.2 Deployable Parabolic Reflector. The model was also
used to design a deployable parabolic reflector made of Aluminum
7075-T6. The target deployed shape has a focal point 4 in. from the
vertex. The flat, undeployed dimensions are 18.36 x 10.2 in. (46.6 x
25.9 cm). The parameters used to setup the optimization are shown
in Table 3. The optimized joint locations are shown on the thick
black line in Fig. 8(a). As was done with the airfoil from the previ-
ous section, the calculated stiffnesses of the joints were used with
the procedure in Sec. 2.3 to trace the shape through deployment
and beyond the desired deployment shape as shown by the red pro-
files in Fig. 8(a). The tip load force was plotted against the
maximum deployed surface height in Fig. 8(b) with points shown
corresponding to the profiles plotted in part (a) of the figure. The
presence of a critical load that results in buckling-like behavior is
present in the plot.

The optimized parabolic reflector was manufactured from the
aluminum using an abrasive water jet and is shown in the flat and
deployed states in Fig. 9. The same testing setup as for the airfoil
surface was used to experimentally determine a force at the
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Table 3 Optimization parameters for a deployable parabolic
surface made of aluminum

Parameter Value

Number of torsion springs (V) 22

Tip load force (F) 1.751b (7.78 N)
Shear modulus (G) 3,910ksi (26.96 GPa)
Thickness of panel (f) 0.0401in. (1.0 mm)

L, 0.91n. (2.29 cm)

m 6

0.11in. (2.54 mm)
1/16in. (1.59 mm)
38,800 psi (268 MPa)
0.0601n. (1.52 mm)

Wmin,a]low
kerf

Tallow
Allowable lineal profile error

desired deployed profile and photogrammetry was used to investi-
gate the error in the profile. The resulting values of the final geom-
etry and from experimental testing are described in Table 4. The
deployed profile and desired profile matched quite well with a
small observed lineal profile error. The required tip load force to
achieve the desired profile also matched with small error. Consider-
ably less bending was seen in this prototype than for the airfoil
surface and no covering was used.

4 Discussion

Certain tradeoffs from employing torsion bars to create deploy-
able surfaces can be illuminated by rearranging Eq. (6) as

)6)-)

From left to right, these terms are determined by the desired actu-
ation force, the material used, and the desired profile curve, and on

(20)

Shape Through Deployment

T T
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Fig.9 Deployable parabolic reflector made of aluminum, where
(a) is the flat state and (b) is the deployed state with light reflect-
ing off the surface

the right side of the equation all the factors in the term are functions
of the geometry of the torsion bar pattern. By grouping these terms,
we can see relationships such as if the geometry of a pattern is main-
tained (the right side of the equation), and changing the material will
scale the actuation force as long as the stresses do not exceed the
new material’s stress limit. Similarly, errors in estimating the
value used for the shear modulus of a material should not affect
the ability to achieve a desired profile shape as long as one is
willing to adjust the actuation force to compensate for the
modulus error.

It is also informative to look at an expression for the angular
deflection of a torsion bar in terms of shear stress. Since a prescribed
profile results in a displacement-limited design, rather than torque-
limited design, the maximum stress in the system can be lessened by
requiring smaller angular deflections and reducing the stiffness.

Table 4 Optimization and experimental results for a deployable
parabolic surface from aluminum

Parameters Min value Max value

Deployed spacing, §;
Link lengths, L;

0.6961n. (17.7 mm)
0.696in. (17.7 mm)

0.6961n. (17.7 mm)
0.963 in. (24.5 mm)

Widths, w; 0.158 in. (4.0 mm) 0.4601n. (11.7 mm)
w;/t ratios 3.94 11.49
Parameters from optimization results Value

Max Deployed Surface Height (in)
w

Q
[SI

0.5 1 1.5 2
Actuation Force (Ib)

Fig.8 (a) The optimized joint locations on the desired parabolic
profile are shown by the points on the thick black line while the
thin red lines show the shape for actuation tip loads up to and
even beyond deployment to the desired profile. The thick blue
line represents the flat, undeployed surface. (b) The maximum
height of the deployed shape versus the actuation force with
points corresponding to the profiles is shown in part (a). (Color
version online.)
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Lineal profile error
Areal profile error

0.008 in. (0.20 mm)
0.081in.% (0.52 cm?)
15.1kpsi (104 MPa)
257
18.361 in. (46.6 cm)

Value

Tmax
Shear stress factor of safety
Undeployed (flat) length

Experimentally measured values

Lineal profile error (photogrammetry)
Force to deploy to profile (from load cell)

~0.018in.(0.46 mm)
1.8+0.11b (8.0+0.44N)
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Using Egs. (1), (4), (5), and (15), we can write the angular deflection
for a torsion bar as

7Ly

0; ?f(l, w) 20

where f(#, w) is a function of # and w that depends on which form of
J in Eq. (15) is selected (the higher order more accurate expression
or expression presented in the equation). From this form, we can see
that there are several options to achieve the required deflections.
The first is to reduce the required deflections 6; themselves. This
can be accomplished by increasing the number of torsion joints N
which in turn lowers the 8; magnitudes. The maximum number of
joints N that can be introduced reaches a limit imposed by the man-
ufacturing constraints that the widths of the torsion bars must fit
within the link lengths. A second option to achieve required deflec-
tions is to choose a material with a high ratio of maximum shear
stress to shear modulus. Several materials and these ratios are
shown in Table 5 to provide a comparison of how amenable a mate-
rial is to large deflection of torsion bars with values coming from
supplier material data sheets and Ref. [45]. The third option to
obtain the required deflections is to increase the torsion bar
lengths, L,. This can be limited by space constraints and also the
introduction of unacceptable parasitic motions other than torsion
when the torsion bar lengths are extended. Finally,  and w can be
selected such that f(#, w) results in as large as values as possible.
Chen and Howell recommend a ratio of #w to be <0.35, =1, or
>2.86 to accomplish this [42].

Equation (20) implies that the number of torsion bars along a
ruling line m can be changed to affect the magnitude of the tip
load, yet m has no effect upon the stress, as m is not present and
does not affect any of the terms in Eq. (21).

Minimizing the areal profile error in the model pushed all of the
error between the desired and deployed directrix to the area of great-
est curvature of the desired directrix. This was corrected by placing
a constraint on the lineal profile error. The effect of minimizing the
lineal profile error with a constraint on the areal profile error was
also investigated with similar results, though the optimizer required
more iterations to converge. Further investigation of definitions of
profile error and suitable objective functions to minimize the error
for the model present possible directions for future work.

As seen in the results from the physical prototypes, it appeared
that bending accompanied the torsional deflection. Work can be
done to incorporate bending effects into the analytical modeling
for more accurate design estimates.

Both prototypes were deployed by moving two smooth barriers
towards one another to create a compressive force. Tension ele-
ments, such as cables or strings, could be used to pull the two
edges of the panel together to create an ultra-lightweight actuation
method, though the effects of the point loads caused from the ele-
ments should be considered.

Table 5 A small sample of possible materials for torsion bars

Material 1000 X 7yie1a/G
Polymethyl methacrylate (PMMA) 24.5%
Polypropylene 24
Titanium (Ti-6A1-4V) 11.7
Steel (4340) 11
Aluminum (7075-T6) 9.9

Note: Materials with high ratios of shear yield stress, 7y;c1q, to shear modulus,
G, are good candidates for maximizing deflection in deflection-limited
torsion bar geometries (property values from supplier data sheets and
Ref. [45], with approximations as required for shear modulus by G=
E/(2(1 +v)) and shear yield strength 7yjeiq & 0.5776yje1a, Where oyieiq is the
tensile yield strength).

*While PMMA has an excellent ratio, it is a brittle material and susceptible to
stress concentrations.
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The model constructed using chains of torsion joints results in a
deployable surface that can function as the final surface or as a
structure underneath a flexible skin. Further studies need to be con-
ducted to see how well the deployed surface would behave if used in
an application with multiple loading conditions, such as with a dis-
tributed pressure load from an aerodynamic loading. Because aero-
dynamic loads fluctuate, it poses a challenge to design a single
structure for multiple load cases where both the deployed structure’s
stability and aerodynamic stability are considered. One possible
path forward to address a more complex loading scenario would
be to use a support structure underneath the deployed surface
where hard stops align during deployment to resist compression
loads on the surface of the structure.

5 Conclusion

A model has been presented as a way to create generalized cylin-
drical deployable surfaces with convex directrices conducive to
being implemented with torsional compliant joints. The shape
during the deployment process is also described. The model is dem-
onstrated using the torsion bars of LET joints as torsion springs. A
multidimensional optimization model was used to efficiently locate
a given number of compliant joints along the directrix to minimize
the error between the desired and actual directrix. Constraints were
also enforced to ensure performance and a manufacturable geome-
try. The model was demonstrated through the physical creation of
several prototypes in various materials. While the methodology
shows potential for advancing the design of precise deployable sur-
faces, further investigation of the effects of bending accompanying
the torsion and the effects of various loading conditions upon the
deployed surfaces should be conducted. Actuation methods could
also be incorporated into the material itself to create a compact
package that can morph when a stimulus is applied.
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