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ARTICLE INFO ABSTRACT

Keywords: The capability of manganese dioxide (MnO3) supported on loofah-derived activated carbon (AC) in the elec-
Electrosorption trosorptive removal of common inert ions was studied in constant potential mode. Four MnO, polymorphs were
Pseudocapacitance

prepared by redox chemical precipitation and characterized by XRD, SEM, BET and XPS. The pseudocapacitance
property of the MnO2/AC electrode, significantly affected by the surface- and diffusion-controlled charge storage
mechanism, was assessed via voltammetry and modified Langmuir adsorption isotherm. Batch electrosorption
experiments were then performed at constant potential in the range of —1.5 V to + 1.5 V (vs. Ag/AgCl) using AC
and a-MnO2/AC electrodes in the presence of common simple electrolytes, including NaNOs, LiSO4, and Ca
(ClO4),. Consequently, the applied working potential (Eapp) positively affected the ion electrosorption rate and
capacity. Faradaic processes occurred on MnOy, i.e., Mn(III)/Mn(IV) transition, increased the diffusion capaci-
tance of AC, thus enhancing the first-order rate and monolayer capacity, mainly for the electrosorption of cat-
ions. Results showed that ion solvation, controlled by the ionic radius and valence of an ion, which impacted ion
intercalation in MnO and affected ion adsorption characteristics. The cation sorption capacity of a-MnOy/AC
followed the order of Na* (2.8 x 10 mol g™) > Ca®* (2.1 x 10*mol g!) > Li* (0.76 x 10 mol g™ ) at Eapp =
-1.5 V. The differential capacitance as affected by polarized potential and the shift of zero net charge or IEP
toward more positively charging potential further highlighted the contribution of pseudocapacitance to ion
adsorption on a-MnO»/AC electrode.

Differential capacitance
modified Langmuir adsorption isotherm
Isoelectric point

1. Introduction high capital and operational costs in membrane technology are primary

drawbacks, which has prompted the development of new desalination

There is a severe worldwide water scarcity, mostly in the Middle
East, continental Africa, and Southern Asia [1]. Desalination, specif-
ically, the removal of salts and unwanted ions from sea or brackish water
sources, has been commonly thought after as a means to extract fresh
water. Water reclamation and reuse programs have been implemented
in many regions of the world as to meet high water demands for public
drinking, agricultural, and industrial uses [2]. Currently, commercially
available technologies such as thermal distillation (multi-stage flash and
multiple effect distillation) and membrane separation (reverse osmosis)
are able to supplement global water demands by desalination to a great
extent [3]. However, high energy consumption in thermal treatment and
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technologies. Adsorption is a low-cost technique for the separation and
removal of salts and other ionic or molecular contaminants from waters
[4]. Adsorption has been examined for salt removal using carbon-based
materials, such as activated carbon, carbon nanotubes, graphene, of
which could be derived from natural, agricultural and industrial waste
biomass [5]. However chemical regeneration of spent adsorbents is
inevitable for reusing adsorbents, which can involve the further use of
regenerating chemicals such as concentrated strong acids or bases or
chelation agents.

Capacitive deionization (CDI) has been considered a potential
alternative to current water purification practices such as desalination
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[6], softening [7], and metal recovery [8], in the last decades. Carbon
materials, such as activated carbon and graphene are commonly used
CDI electrodes due to high specific surface area, porous structures, cost
effective, and electrochemically stable features [9]. Cations and anions
can be electrostatically trapped in the symmetrically porous and high
surface area electrodes, during cathodic and anodic charging, respec-
tively. Reverse charging readily releases the adsorbed ions and re-
generates the electrodes accordingly. Further, in energy field, some
redox promoters, normally transition-metal oxides, such as TiO2, SnO»,
MnO,, CoFe;0y4, have been employed as supercapacitors [10-13]. The
characteristics of metal oxide capacitance, i.e., pseudocapcitance, is
originated from the lattice spacing amenable to ion storage during
faradaic electron transfer in different metal states [14] (Eq. (1)):

Me" 0y +8(1 —nf)H' + 8¢ +8fM"" —H1_u)sMj5 Me}j' Mel” 0, @

MeV0O, and M™ denote the pseudocapacitive metal oxide and metal
ion, respectively. Among transition-metal oxides, MnO; is particularly
attractive because of its low cost and high theoretical specific capaci-
tance [15]. MnO3 has multiple crystallographic phases, namely, a-, -,
Y-, 8-, A-, and &-MnO,, which are characterized by the linkage of
MnOg octahedron unit. The efficiency of cations (M"") transporting
within the MnO; polymorph depends on the effective ion radius and the
size of charged Mn-O lattice spacing [16]. Ion adsorption capacity of
electrodes having intercalation with MnO, composites was typically
greater than that of porous carbon materials alone [17].

The effectiveness of electrode materials in deionization has been
investigated in numeral CDI studies, including the conductivity of the
solution, the voltage and current profiles, charge efficiency, and energy
consumption [18]. NaCl is normally the model salt to study the
adsorption capacity and rate of CDI systems [19]. A general CDI desa-
lination was performed at applied voltage of 1.2 V during ion removal
operation and at 0 or < 0 V for electrode regeneration [20-22]. The
surface chemistry of ideal polarizable electrodes (IPE), i.e., non-faradaic
charging materials, critically influences the ion storage. The specific and
selective adsorption among potential determining ions (pdi) may affect
the treatment efficiency of complex ion composition in wastewaters.
Dried Loofah is a typical agricultural waste product and has been pre-
viously applied as the biomass precursor for the synthesis of activated
carbon (AC). The porosity and disordering of carbon structure could be
manipulated via heating treatment; the surface area of AC from the one-
step activation (with ZnCly at 500 °C) was up to 1500 m? g’l. The
loofah-derived AC has high carbon purity with<1 wt% of ash content
and exhibited significant ammonium ion (NH) electrosorption capacity
at a negative polarity (E,pp = -1.0 V vs. Hg/HgO) [23]

At present, the electrical double-layer (EDL) and pseudocapacitive
CDI systems are developed for desalination. There are several CDI de-
signs, e.g., pseudocapacitive//EDL [24], pseudocapacitive//pseudoca-
pacitive [25], EDL//EDL [26], battery-type//EDL [27], desalination
batteries [28], and pseudocapacitive//battery-type deionization [29].
Among the above CDI systems, pseudocapacitive//EDL is the most
common design for water purification applications due to its robust ion
adsorption/desorption and storage functionalities. Although the prin-
ciple of pseudocapacitor is highly attractive for enhancing the perfor-
mance of CDI systems, little is known about the characteristics and
mechanism of electrosorption of common cations and anions with
respect to electrostatic interactions or intercalation of MnOs_ It is hy-
pothesized that the crystal structure of pseudocapacitors will affect the
ion separation capacity of carbon-based electrodes. In this work, a series
of MnO» nanoparticulates with different crystal phases and morphology
were synthesized and incorporated into a loofah-derived activated car-
bon electrode for studying the separation of selected simple ions. The
working potential (from —1.5 V to + 1.5 V vs. Ag/AgCl) was applied to
assess the ion adsorption characteristics of carbon and MnOy/carbon
composites. For an asymmetric sorption of ions, the electroneutrality
may cause pH fluctuation, i.e., H/OH™ concentration changes, during
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electrosortpion process. Note that H' has the highest equivalent ionic
conductivity, A (349.8 S—cmz/eq), among all ions, for instance, 50.11
and 76.34 S-cm?/eq for Na* and CI, respectively [30,31]. The mea-
surements of conductivity alone may not be sufficient for determining
CDI effectiveness when specific chemical adsorption of certain cations or
anions take place on the electrode surface. Therefore, ion adsorption
capacity was monitored by direct analytical determination and
described by a modified Langmuir adsorption isotherm instead of con-
ductivity measurements, an approach practiced by most CDI re-
searchers. Since the intrinsic chemical properties of target ions
determine their selectivity in separation and purification processes,
specifically by electrostatic force, such as adsorption and electro-
sorption. In order to demonstrate the effects of the type and charge of
ions on the electro-sorption capacity of MnOs/carbon composites, inert
ionic species such as Li*, Nat, Ca®*, NO3, ClO3, and SO7, or simple salts
i.e., NaNOs, LizSO4, and Ca(ClO4)2, were used as model electrolytes in
this study.

2. Materials and methods
2.1. Electrode materials

The synthesis of activated carbon (AC), derived from an agricultural
residue of dried ripened Luffa cylindrica, was reported previously
[23,32]. The biochar precursor was carbonized at 500 °C under N gas,
followed by pyrolsys at 800 °C and activation by ZnCl, (Sigma-Aldrich
Co., USA) to synthesize the AC.

Procedure for preparing different MnO, polymorphs was as the
following: (1) A mixture of 0.01 M of MnSO4 (Sigma-Aldrich Co.) and
0.01 M of KMnO4 (Nippon Shinyaku, Japan) was stirred to allow self-
redox reaction between Mn(II) and Mn(VII) and subsequent precipita-
tion of a-MnOy under 95 °C [33]; (2) y-MnO, was prepared from the
precipitation of solution containing 0.1 M of MnSO4 (Sigma-Aldrich Co.)
and 0.1 M of NayS»0g (PanReac AppliChem) as oxidizing agent [34]; (3)
8-MnO, was made by reducing 0.4 M of KMnO4 with 1.4 M of glucose
(CgH1206, PanReac AppliChem) at 85 °C followed by annealing at
450 °C for 2 h [28]; (4) e-MnO, was prepared the oxidation of 0.01 M of
MnSO4 (Sigma-Aldrich Co.) by 0.1 M of NaOCl (12 wt%, Nippon Shi-
nyaku) at pH 5.5 and 80 °C [35]. All chemical reactions were carried out
in 200 mL of solution. All prepared MnOy(s) samples were rinsed thor-
oughly in deionized (DI) water until the supernatant reached neutral pH.
A specific weight of AC was simultaneously being soaked in above
manganese solutions while redox reaction was taking place as to load
MnO; precipitates on AC. In this work, around 5% of MnO, were loaded
onto AC.

AC and MnO; were further ground in a pestle and mortar and then
sieved through ASTM #100 mesh (<74 pm). The MnO2/AC powders
were used for surface characterization and electrode preparation.
Graphite plate (2 mm thick), purchased from Great Carbon Co., Ltd.,
Taiwan, was used as the support for MnO,/AC electrodes. The electrode
paste composed of MnOy/AC, poly(vinylidene fluoride) (PVDF) as
binder (~5%), and N-Methyl-2-pyrrolidone (NMP) (Sigma-Aldrich Co.)
as solvent was mixed and degassed in a centrifugal mixer (at 1200 rpm).
The paste was evenly spread on the graphite surface with a paint brush,
and then dried at 105 °C for 24 h.

2.2. Experimental procedure

A potentostat (CHI611C, CH Instruments, Inc., USA) was used to
conduct electrochemical analyses in a three-electrode system with Ag/
AgCl/NaCl (3 M) (RE-1B, ALS Co. Ltd., JAPAN), MnO,/AC, and IrO,/Ti
as the reference, working, and counter electrodes, respectively. Batch
electrosorption was performed in a polymethyl methacrylate (PMMA)-
made electrochemical cell, consisting of two parallel plate electrodes. A
spacer at a distance of 0.5 cm was sandwiched between the two elec-
trodes (Fig. S1). The working electrode of MnO,/AC/graphite was cut
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into a dimension of 5 x 5 cm? (total area ~ 25 ¢cm?) and the counter
electrode was IrO/Ti mesh, having the same dimension as the MnOy/
AC/graphite. The polarity of working electrode was adjusted in the
constant potential range of —1.5 V to + 1.5 V vs. Ag/AgCl during elec-
trosorption experiments. The working solutions were prepared in syn-
thetic water containing NaNOs, LisSO4, and Ca(ClO4), electrolytes.
Water samples were taken at specific time intervals to analyze the
concentration of corresponding cations and anions.

2.3. Surface analysis

A scanning electron microscope (SEM, JSM-6700F, JEOL, Tokyo,
Japan), integrated with an energy dispersive spectroscopy (EDS,
INCA400, Oxford, UK), and a transmission electron microscope (FEG-
TEM, Tecnai F20 G2, USA) were used to observe the morphology of AC
and MnOs/AC electrodes. The crystallographic structure of MnOj
polymorphs was observed using X-ray diffraction (XRD, Bruker D2-
Phaser, Bruker, USA) under conditions of Cu Ka source (A = 1.5406
[D\), scan rate = 0.06° s’l, incidence angle = 10-80° (26). The oxidation
state of Mn was determined by X-ray photoelectron spectroscopy (XPS,
PHI 5000 VersaProbe, Physical Electronics, Inc., USA) with a mono-
chromatic Al Ka X-ray source (1487 eV). Specific surface area and
porosity were examined by a BET analyzer (ASAP 2020, Micromeritics,
USA). Ion concentrations were determined by ion chromatography (ECO
IC, Metrohm, Switzerland) using separation columns of Metrosep A supp
5 and Metrosep C — 4 for anions and cations, respectively.

3. Results and discussion
3.1. Surface characterization

Fig. la-d show the SEM micromorphology of MnO; polymorphs,
corresponding to a-, €-, 8-, and y-MnO,, respectively. The o-MnOy
appeared as one-dimensional (1-D) whisker-like crystallite with a par-
ticle size of few tens of nanometer in diameter and several pm in length
(Fig. 1a). The material prepared by the reduction of Mn"" has been
proven to be a-phase [36] based on the three major facets (211), (310),
and (200) at 20 of 37.5°, 28.8°, and 18.1°, respectively (#44-0141)
from X-ray diffractometer as shown in Fig. 2a. The main peaks at 26 of
37.3°, 56.2°, and 66.0° could be attributed to the (100), (102), and
(110) planes of hexagonal akhtenskite, e-MnOy (#30-0820) [37],
which were nanoplates, with 200 nm in diameter and 50 nm in thickness
(Fig. 1b). 8-MnO; exhibited porous 3-D porous balls in the size range of
100-500 nm which were built by interleaving nano-flaks (Fig. 1c). The
8-MnO, was characterized by the two basal planes of (001) and (002) at
20 of 12.5° and 25.2°, respectively, with layer spacing of around 7 A
(Birnessite, #80-1098) [38]. The randomly distributed nano-needles of
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y-MnO; as shown in Fig. 1d had peaks of (120), (131), and (300) at 20
of 22.4°, 37.1°, and 42.6°, respectively (#14-0644) [39]. The carbon-
ized and activated loofah sponge (AC) had a fiber texture of ~ 100 pm in
diameter (Fig. le), in which the tubular pore structure could be uni-
formly filled by MnO, nanoparticles to form the MnO5/AC composite
(Fig. 1f). TEM images revealed that the diameter of a-MnO, whiskers
was in the range of 10 — 50 nm, well distributed over the carbon surfaces
(Fig. 1g & h).

Fig. 2b presents the oxidation state of Mn in all MnO; samples via the
XPS analysis. The two binding energies (B.E.) at around 642 eV and 654
eV were ascribed to the 2p3,5 and 2p; /2 band of Mn orbitals, respectively
[40]. The B.E. in the 2p3,, region was deconvoluted to oxidation states
of Mn(III) (MnOOH, Mn,03) and Mn(IV) (MnO-) at 641.9 eV and 643.3
eV, respectively [41], and hence the atomic ratio of Mn(III/IV) was
quantified. Result showed that the percentage of Mn(IV) followed the
order of a-MnO3 (70%) > y-MnO; (59%) > §-MnOy (57%) > &-MnO,
(52%). The presence of Mn(IIl) indicated the presence of oxygen va-
cancies in MnOy [42]. Two implications rose. First, the net surface
charge, created from different oxidation state of Mn lattices (IV to III),
was balanced by the intercalated cations (i.e., Na™) during capacitive
charging. Second, Mn(IV), high Mn oxidation state, was active electro-
chemical feature of MnOo-based electrodes [43]. Both polymorph and
defect could play critical roles in electrochemical energy storage, which
in turn governed the ion sorption capacity. The specific surface area and
porosity of MnOy and MnO5/AC composite were characterized by BET
measurements shown in Fig. 2¢ & 2d. The specific surface area of MnO»
was generally low, around a few tens of an m? g~!; among all poly-
morphs, §-MnO, had the highest BET surface area of 193 m? g~!, which
could be ascribed to its 3-D morphology. By contrast, the carbon sub-
strate (AC), derived from an agricultural biomass, i.e., dried loofah [23],
exhibited a significantly high surface area of 752 m? g~!. Furthermore,
the hysteresis loop in the isotherm suggested capillary condensation in
mesopores [22]. Whereas, the BET surface area of AC improved slightly
after decoration with MnO, (5%) (801 m? g_l).

3.2. Electrochemical features of MnOz polymorph

Typically, an electrical-double-layer capacitor (EDLC) has a cyclic
voltammogram (CV) that is symmetrical and near rectangular in the
specific range of scanning potential. As shown in Fig. 3a, the loofah-
carbon electrode revealed a simple EDL capacitor character. A pseudo-
capacitor, such as MnOsy, is characterized by distinct charge transfer
peaks (resulted from specific faradaic redox reactions on the electrode
surface) that increase with increasing electrolyte concentration (Fig. 3b,
Fig. S2). The differential capacitance,Cg, defined as the change of charge
density (o, C g 1) per change of specific surface potential (¥) over the
electrode, could be obtained from voltammetry according to the

Fig. 1. SEM micromorphology of (a) a-, (b) &-, (¢) 8-, (d) y-MnO,, (e) AC, and (f) aMnO,/AC; TEM analysis of (g) a-MnO, and (h) aMnO,/AC.
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Fig. 2. (a) XRD, (b) XPS analyses, and (c) BET isotherms of AC and MnO, polymorphs. (d) Specific surface area and pore size of different electrodes.

following equation [44,45]:

V;
¢y do D —1)dE

d¥ mxvxAE (F/e) @

where E is the polarizable potential (V), v is the voltage scan rate (V s’l),
m is the active mass of the electrode (g), I, and I. are the anodic and the
cathodic current, respectively (A), V; and V, are the integration
boundary of the polarizable voltage (V), respectively. AE is the range of
applied voltage, = V,-V;. Note that charge is the product of current (I, A)
and time (t, sec), which equals the energy density (I x E) divided by scan
rate (v = dE/dt). Hence, Eq. (2) gives the total capacity of the differential
capacitance of the electrode as charging ions in the selected range of
working potential, AE [46,47].

Moreover, since the electrode potential (E) was swept reversely at a
given rate (v = dE/dt), the surface-controlled (i.e., EDL) capacitance is
linearly related to current, I, and scan rate, v [48]:

Cg = do/dE = Idt/dE = I/v 3)

Eq. (3) gives the intensity of differential capacitance at specific
polarizable potential, E.

For diffusion control redox reaction, i.e., typical pseudocapactors,
the diffusional current is defined by the Randles-Sevcik equation as
follows:

I = 0.4958nFAC x D'/?(anF/RT)"/?y!/2 4

where n is number of electron; F is Faraday constant (C mol™1); A is
effective area (cmz); C* is electrolyte concentration (mol cm’3); D=
diffusion coefficient of redox species (cm2 s’l); o = transfer coefficient.
That is, CV current of a typical pseudocapacitor is diffusion-controlled
and is positively proportional to the square root of v. In the presence
of pseudocapacitor, the total charging current density, i(E, v),is the sum
of that of EDL (non-Faradic) and diffusion [48,49]:

i(E,v) = ajv+av'/? )

Eq. (5) can be rearranged by dividing all terms byv'/2, which yields
the following equation:

i(E,v
( 1/2) = alvl/2+a2 (6)
v

A plot of ‘(v’f—/‘z') vs. v'/2 gives intercept and slope for a; and as,
respectively, at specific polarizing potential, E. The non-Faradaic cur-
rent from the charging of surface-controlled EDL is calculated from aj.
The I4if component can be calculated from the ay value at specific E.
Accordingly, the component capacitance of non-Faradaic (EDL) and

pseudocapacitive (diffusion) charging can be determined from Eq. (3).
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Fig. 3. Cyclic voltammetry of (a) AC, (b) a-MnO,, and (c) aMnO./AC electrodes (0.1 M NaNOg, scan rate = 10 mV s™1). (d) Electrical capacitance of MnO,

polymorphs in different electrolytes (I = 10"! M) estimated by CV analysis.

For example, at a scan rate of 10 mV s~} 5.7% and 67% of the total
charge were attributed to diffusive current (14, area marked in orange
color) for AC and a-MnOs, respectively (Fig. 3a and b). Results indicated
the contribution of redox reaction (pseudocapacitive) to activated car-
bon (AC) in the presence of a-MnO5 was 64% (Fig. 3c) due to Iy while
charging the aMnO2/AC composite electrode. The incorporation of
MnO; (about 5%) onto AC (a pure EDL capacitor having surface-
controlled current of 94.3%), readily converted MnOy/AC electrode to
a pseudocapacitor.

Fig. 3d summarizes the fraction of diffusive current and total
capacitance of MnO, polymorphs in the presence of different electro-
lytes (ionic strength = 10! M). The Cg value typically followed the
order: a-MnOz > y-MnO3 > 8-MnO; > e-MnOy_ Moreover, the type of
electrolyte also affected the total capacitance: NaNO3 > Ca(ClO4)y >
LisSO4. The contribution of redox process to Cg also differed; the
diffusive current was on average high in the presence of NaNOs,
implying that the intercalation mechanism may be limited by the ion
species. The diversity of MnOy states (II, III or IV) provides net charges in
crystal lattices during redox process and the resistance of ion transport is
then determined by the lattice shapes [50,51]. Based on the stacking of
MnOg octahedron (tunnel-shaped a-MnO; with [2 x 2] tunnels and
vy-MnO; with [1 x 2] tunnels, layered 5-MnO; with [1x ] planes, and
hierarchically porous e-MnO; with [1 x 1] or [1 x 2] tunnels, the
interstitial space of a-MnO,, y-MnOs,, §-MnO», and e-MnO, were 6, 2.3,
1.89, and 1.89 10\, respectively [52,53]. Meanwhile, several factors of
aqueous electrolytes, such as concentration, hydrated ion radius, con-
ductivity, and ion mobility affected the electrochemical capacitance
[54]. In the organic electrolyte system, Li" generally in forms of LiPFs
and LiClO4, was mostly used in batteries due to its smallest ionic size
among the alkali metals, which enables easy lattice intercalation.
However, ion solvation of cations alters the nature of ion transport in the
aqueous electrolyte. A significant difference in the specific capacitance

of graphene electrode was reported for different chloride salts: HCI >
KCl > NaCl > LiCl [55]. Moreover, pseudocapacitor stores charge not
only in form of EDL but also via reversible redox reactions. The fast
insertion of ions on the electrode surface thereby achieved high fraction
of diffusive capacitance.

3.3. Batch electrosorption of selective electrolytes

Fig. 4 demonstrates the electrosorption of NaNO3 on aMnO,/AC
electrode at different initial NaNO3 concentrations of 10 to 50 mg- L!
based on NO3-N. The adsorption of Na't and NO3 were recorded at
constant potentials of 0 to —1.5 V and 0 to + 1.5 V (vs. Ag/AgCD),
respectively, for 90 min, followed by desorption of both Na™ and NO3, at
0 V for 20 min. The removal of Na' and NOj3 increased with increasing
applied counter voltage was due to strong electrostatic field. The
decrease in removal efficiency of Na™ and NO3 with increase in initial
NaNOj3 concentration increases was ascribed to surface site saturation.
The first-order kinetics rate law better describe the removal of electro-
lyte, both cationic and anionic, as the following:

dc
—E—kl(C—Ce) (7a)
or
C,=C,+(Cy—C,e ™ (7b)

where Cy and C, stand for the initial and equilibrium ion concentrations
(mg LY, respectively. (Co was estimated by least-squares regression). In
order to assess the removal rate of different electrolytes, a series of
sorption/desorption experiments were run on AC and o-MnOy/AC
electrodes at —1.5 to + 1.5 V vs. Ag/AgCl. The rate constant, kj, for the
electrosorption of different electrolytes, namely, Li;SO4, NaNOg, and Ca
(ClO4),, obtained from the corresponding experimental data (Fig. S3 to
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potentials (+1.5 V vs. Ag/AgCl, NO3-N = 10 mg LY for () Na*, (d) NOs. Sorption isotherms of (e) Na* (E = -1.5 V) and (f) NO3 (E = +1.5 V) on MnO,/

AC electrodes.

Fig. S8, Supporting Information), are summarized in Table 1. Results
revealed relatively increasing adsorption rate constants with respect to
AC, for all cations and anions, due to the pseudocapacitive charging of
a-MnO, compared to EDL charging of AC. Note that incorporation of
MnOs, into AC, i.e., aMnOy/AC composite, did not change the pore size
and surface area of AC significantly (3.5 nm and 801 m?-g~! for «MnO,/
AC versus 4.1 nm and 752 mz-g’1 for AC) (Fig. 2d). The rate of ion
transport in the porous surface of activated carbon governs the ion
separation efficiency of a typical CDI process. A tunable ratio of meso to
micropore has been found to critically influence the CDI capacity of AC
electrodes due to solution conductivity [56,57]. This work, however,
showed that more reversible diffusion-controlled current accounting for
ion intercalation will aid in higher rate of ion uptake onto the pseudo-
capacitor regardless of pore properties.

Based on the equilibrium, C,, and given initial, C,, ion concentra-
tions, it is possible to calculate the ion adsorption capacity, ge, (mg g~ 1)
or I, (eq g~1) according to the following equations:

(CO - Ce)

ge=——=xV (8a)
m

Table 1

Rate constants k; of first-order modeling for electrosorption of Li»SO4 (3.5 x 10
4 M), NaNO3 (1 x 10 M), and Ca(ClO4); (3.5 x 10™* M) as affected by working
potentials on AC and «MnO,/AC electrodes.

Working potential E, V

-15 -1.0 -05 0 0 +0.5  +1.0 415
ky (102 min~?) for Li* k; (102 min™!) for SOF

AC 3.7 2.8 1.8 1.4 29 22 3.7 4.0

aMnO,/AC 4.1 3.4 2.6 65 39 25 3.9 4.7
k; (102 min~?) for Na* k; (102 min!) for NO3

AC 4.7 3.7 2.9 45 48 23 2.9 4.9

aMnO,/AC 6.0 5.2 3.1 66 52 29 3.7 6.2
ky (102 min™?) for Ca®* k; (102 min™Y) for ClO;

AC 2.5 2.1 0.9 1.7 25 1.3 1.6 1.9

oMnO,/AC 3.4 2.6 1.5 5.2 3.3 1.3 1.8 2.7

or

_x(G=G)

I, = (8b)

Mw m
where, V is the volume of reaction solution (250 mL); z represents the
ion valence; Mw is the molecular weight; m is the effective mass of active
materials on graphite as the current collector (g). Considering a multi-
layer adsorption, the total surface coverage (0) in subsequent layers is
[23,32]:
Kl Ce

=i KC)I+K-K)C) o

Then the equilibrium adsorption capacity, q. or I',, can be calculated
using the following equations:

K, C.q,
- (ob)
1= 1=K C)(1+(K—-K)C,)
or
K,C,T
r,— 1CIy (90)

(1- chg)(l-i-(Kl—Kz)Ce)

where C, is the equilibrium ion concentration (mg LY; Ky and K, are the
equilibrium constant for the first and the subsequent layer adsorption (L
mg 1Y), respectively; q; and I'y, represent the monolayer electrosorption
capacity in mg g~ and eq g~!, respectively. When the first layer
adsorption becomes predominated, Kj is negligible and Eq. (9b) evolves
to a type-I Langmuir equation (i.e., K3 = K, and q; = qn, monolayer
capacity). Fig. 4e & 4f compare adsorption isotherm of Na™ and NO3 (at
—1.5 Vand + 1.5V, respectively) on different MnO5 polymorphs. The
monolayer capacity, qm, and adsorption constant, K; as well as the
Gibbs free energy of adsorption calculated from the equilibrium con-
stant, i.e., AG® =—2.303 x RT x logK are listed in Table 2. Results
showed that the adsorption energy of Nat was slightly smaller than that
of NO3 and that the adsorption energy for second layer was one order of
magnitude smaller than that of the first layer. As predicted by the
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Monolayer capacities and Langmuir constants of MnO,/AC electrodes for electrosorption of NaNOs.

Na' (at -1.5V NOz (at +1.5V

vs. Ag/AgCl) vs. Ag/AgCl)

Qm mg-Na/g K; 102L/mg-Na  -AGYkJ/ K, 102L/mg -AG3kJ/  qm, mg-N/g (100 K; 102L/mg-N  -AGYkJ/ Kp102L/mg-N  -AGIkJ/

(10 mol/g) (10% L/mol) mol (10% L/mol mol 4 mol/g) (10° L/mol mol (102 L/mol) mol
o-MnO, 6.2 (2.70) 5.8 (1.33) 17.83 0.2 (0.46) 9.49 4.6 (2.00) 62 (8.68) 22.47 0.4 (0.56) 9.97
vY-MnO, 2.8 (1.22) 15 (3.45) 20.19 0.9 (2.07) 13.21 4.5 (1.96) 26 (3.64) 20.32 0.4 (0.56) 9.97
8-MnO,, 3.6 (1.57) 8.0 (1.84) 18.63 0.6 (1.38) 12.21 3.0 (1.30) 72 (10.10) 22.84 0.9 (1.26) 11.98
£-MnO, 2.2 (0.96) 7.0 (1.61) 18.30 0.9 (2.07) 13.21 3.8(1.65) 70 (9.80) 22.77 0.5 (0.70) 10.53

electrical capacitance, a-MnO3, has the highest total ion adsorption ca-
pacity (qm of Na* and NO3 = 6.2 and 4.6 mg g}, or 0.27 and 0.33
mmol/g, respectively) among the four crystal phases; notably, MnO,, a
pseudocapacitor, has rather different ion adsorption characteristics to-
ward cationic and anionic electrolyte. Na' adsorption belonged to the
type-II Langmuir adsorption isotherm (Fig. 4e), while that of NO3 was
nearly fitted by a monolayer equation (Fig. 4f). Further, the bonding
energy of NO3 was generally greater than that of Na™, i.e., larger K;
(Table 2). Since the surface charge originated from the redox reaction is
supposed to be balanced by intercalation, MnO, surface was endowed
with sites of different adsorption energy. Cations shall fill up the porous
surfaces and penetrate deeper into the reduced Mn(III) tunnels.

Fig. 5 and Fig. 6 show the electrosorption isotherms of cations and
anions of AC and aMnO5/AC electrodes, respectively, under different
working potentials. The Supporting Material (Fig. S3 to Fig. S8) gives the
concentration profile of ions as a function of adsorption time at different
applied potentials (-1.5 V to + 1.5V, vs. Ag/AgCl), in which the equi-
librium concentration, C. (mol L'1) was used to estimate the adsorption

capacity, I'. (mol g~1) and to construct the adsorption isotherm. As ex-
pected, the ion adsorption capacity increased with increasing working
potential. Table 3 collects the Langmuir constant, K;, and associated free
energy of adsorption, AGY, at different working potentials. The a-MnOy/
AC electrode exhibited relatively small K; value than that of AC elec-
trode. (Note: This is a fortuitous situation as it will be easier for dis-
charging the a-MnOy/AC electrode.) The Type-II adsorption isotherm
better described the ion adsorption characteristics of pseudocapacitor, i.
e., a-MnO5/AC electrode than that of EDL capacitor, particularly, at high
electrode potential, considering the heterogeneity of the composite
surface. The K; vale followed the order: Li* > Ca?* > Na™ for cations,
and SOF > NO3 > ClOj for anions. Results indicated the inertness
characteristics of Na™ and ClOj (or affinity toward the electrode) rela-
tive to Li*, Ca?*, NO3 and SO%. Obviously, the ion solvation energy
plays a role on it adsorption onto pseudocapacitor [58]. The hydration
enthalpy for cation are 409, 519, and 1,577 kJ/mole for Na™, Li" and
Ca2+, and for anions are 229, 314, and 1,059 kJ/mol, for ClO3, NO3 and
S07%, respectively [59]. Note that the hydration enthalpy is proportional
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Table 3

Langmuir constants K; of Li;SO4, NaNO3, and Ca(ClO4); on AC and aMnO,/AC electrodes as afunction of applied potential (V vs. Ag/AgCl).

Working potential E, V

-1.5 -1.0 —-0.5 0 0 +0.5 +1.0 +1.5
K; (L mmol1)/-AGY (kJ/mol) for Li* K; (L mmol 1)/-AGY¢ (kJ/mol) for SO

AC 4.50/12.5 1.89/5.29 1.73/4.56 0.51/-5.60 0.62/-3.98 1.31/2.25 1.62/4.01 4.0/11.5

oaMnO,/AC 1.22/1.65 1.55/3.64 1.62/4.01 0.42/-7.21 0.25/-11.5 1.29/2.21 1.21/1.59 1.8/4.89
K; (L mmol 1)/-AG? (kJ/mol) for Na* K; (L mmol 1)/-AGY¢ (kJ/mol) for NO3

AC 0.14/-16.6 0.13/-16.9 0.17/-14.7 0.38/-8.05 0.02/-33.4 0.27/-10.9 0.47/-6.28 0.72/-2.73

aMnO,/AC 0.05/-24.9 0.03/-28.6 0.06/-23.4 0.15/-15.8 0.12/-17.6 0.18/-14.3 0.38/-8.05 0.51/-5.6
K; (L mmol 1)/-AGY (kJ/mol) for Ca** K1 (L mmol 1)/-AGY (kJ/mol) for ClOj

AC 1.35/2.5 0.64/-3.71 0.85/-1.35 0.28/-10.6 0.42-7.21 0.93/-0.6 1.14/1.09 1.82/4.98

aMnO,/AC 0.68/-3.21 0.55/-4.97 0.42/-7.21 0.51/-5.6 0.55/-4.97 0.62/-3.98 1.05/0.41 1.07/0.56

to the square of ionic charge and reciprocally proportional to the Pauling
crystal radius [60]. Increasing hydration enthalpy tends to facilitate ion
adsorption on pseudocapacitive charging over that of activated carbon.

Results of the monolayer ion adsorption capacity (I'y, in eq. g 1) in
Figs. 5 & 6 were plotted as a function of applied potential as shown in
Fig. 7a to c. Contrast to the AC electrode, clearly, decoration of a-MnO,
on AC enhanced the adsorption of cations studied. The result affirmed
the beneficial effect of pseudocapacitance due to increase in surface ion
conductivity because of cation intercalation. That is, the presence of Mn
(III) on MnO, structure creates negatively charged surface sites that
promotes cation adsorption, but not anions. At —1.5 V, the adsorption
capacity of AC for Na™, Ca®", and Li™ were 2.8 x 10#, 2.1 x 10, and
0.76 x 10" mol g™, respectively, which were increased to 5.1 x 10#,
4.0 x 104, and 1.3 x 10 mol g’l, respectively, on a-MnOy/AC. At +
1.5 V. Whereas, there is not much difference between AC and a-MnOy/

AC on anion adsorption capacity; the adsorption capacity of AC for NOs3,
ClOg, and SO% were 3.5 x 10%, 1.5 x 10* and 1.3 x 10* mol g%,
respectively; and those of a-MnOy/AC were 3.0 x 10'4, 1.9 x 10'4, and
1.2 x 10* mol g1, respectively. The cation electrosorption capacity
followed the order: Na™ > Ca®" > Li*, which could be attributed to the
ion valence and effective radius (i.e., hydration energy). At the vicinity
of an electrical double layer, the hydration sphere surrounding an ion is
electrostatically adsorbed at the Stern plane, so that the columbic
interaction becomes stronger as the ions with higher charges and smaller
radius are stored [60]. Note that the size of hydrated cations are Ca*
(4.12 &) > Li* (3.82 A) > Na* (3.58 A) [21] and the enthalpy was Ca®"
(1,577 kJ/mol) > Li™ (519 kJ/mol) > Na™ (409 kJ/mol) [59]. For
smooth surface, divalent ions are much favored than monovalent ions;
whereas it is not completely true when the surface structure is porous
[61]. The adsorption capacity of oxyanions followed the order: NO3 >



Y.-J. Shih et al.

Chemical Engineering Journal 425 (2021) 130606

1 1 1 6 1 I I 6 1 1 1
2.0}l ®Li*-AC 0 s0>-AC ] ® Na*-AC O NO;-AC ® Ca®-AC O CIO,-AC
A Li*-MnO, A SO-MnO, 5 |- A Na"-MnO, A NO;-MnO; | 5 |- A ca*-MnO, A CIO,-MnO,_|

15} | ]

o

)

‘2:‘ - .

S 10

x

£ B -

-

0.5
0.0 E = -
-2 -2 -1 0 1 2
(@) E, Vs agiagc (b) E,V s agiager (€)  E, Vs agaga
20 T 1 1 50 T T T 50 T T 1
—— AC — AC — AC
6k — aMnO,/AC ] a0k — aMnO,/AC | a0k — aMnO,/AC |

- -C+

12| C. 1o 30| C. -

w -C. IEP w

i} Ih]

O 8 4© 20F -
4 - 10 _
0k ] ] ] - oL ] ] ] -

-2 -1 0 1 2 -2 -1 0 1 2
(d) E, Vs Ag/AgCl (e) E, Vs Ag/AgCI (f) E, Vs Ag/AgCl

Fig. 7. Monolayer capacities of AC and aMnO,/AC electrodes for electrosorption of (a) Li»SO4, (b) NaNO3, and (c) Ca(ClO4),; electrical capacitances in the presence
of (a) Li»SO4, (b) NaNO3, and (c) Ca(ClO,4), as a function of applied potentials (vs. Ag/AgCl).

ClO > SOF, which suggests that the hydrated radius and thus hydration
energy is determining factor, that is, ClO4 (3.8 /0\) ~ SO%’ (3.79 /0\) > NO3
(3.35 A) and ClO (229 kJ mol 1) < NO3 (314 kJ mol 1) < SOF (1,059
kJ mol™ 1) [53]. However, the large difference between sorption of ClO%
and SO can be attributed to the Pauling’s electronegativity that are in
descending order: ClO4 (5.43) > NO3 (4.32) > SO%’ (2.74), in the three
anion groups [62,63]. Effects of electronegativity significantly on the
selectivity at specific anode potentials of CDI have been reported; anions
of a larger electronegativity are preferentially removed [64].

Moreover, the monolayer surface excess of inert electrolyte, T, can be
related to surface charge, o, i.e., 6, = FI'; and 6. = FI'.. Hence, the
differential capacitance can be subdivided into that due to cations, Cg
and that due to anions, Cg. by defining:

do,  Fol,

Cov = =55 = = ow (10a)
and
do_ For,, _
Co-= =%~ " ow (10b)

where ¥ is the potential of the polarized electrode. The computed
componential capacitance, Cg, of AC and a-MnOy/AC electrode are
shown in Fig. 7d to f. Note that Cg, ;. and Cg,. are generally symmetrical
for the AC electrode. By comparison, as surface potential was rendered
more negative, the increase in Cg  of a-MnO2/AC was steeper than that
of AC, indicating that cations were more favorably adsorbed by MnO,
surface than anions. According to the Lipmann theory, at the potential of
isoelectric point (IEP), or the electrocapillary maximum, the capacitance
Cg,+ will be equal but opposite in sign to Cg,. and the surface carries zero

net electrical charge. For all electrolytes studied, the IEP of a-MnOy/AC
was around + 30 mV greater than that of AC. As a reversible surface,
such as MnO,, the surface potential can be modified also by the solution
pH; that is, H" and OH™ are the potential-determining ions. Ideally the
surface potential,¥,, is a function of pH and pHpc, ¥o= —0.059 x (pH-
PHpzc), according the Nernst equation, where pH,p is the pH at the zero-
point of charge. Upon charging or discharging the surface, the total
capacitance, Cg, is therefore the sum of reversible (pH controlled) and
polarizable (E controlled) capacitors in parallel. The distribution of
surface hydroxyl species, (S-O” or S-OH3) is dependent on the activity of
potential determining ions, i.e., H" and OH", and contributes to the
polarity of electrosorption. Fig. S9 (Supporting Materials) shows that the
PHp;c of all MnO; polymorphs (<4) were smaller than that of AC (pHp,c
= 6). Although the controlled solution pH slightly changed during
electrosorption, that is, based on electroneutrality pH would decrease
and increase via sorption of cation and anion, respectively. Fig. 8 il-
lustrates the mechanism of ions storage in pseudocapacitor in terms of
charge accumulation over reversible and polarizable surfaces at
different degrees of surface polarization, namely, zero (left), cathodic
(middle) and anodic (right) potentials, respectively. In summary, an
asymmetric electrode, a-MnOy/AC had more negative charge sites than
AC over a wide pH range. The nature of surface ionic group on the hy-
drous solid, therefore, led to a positive shift in IEP after loading with
MnO; on AC, which as a result, more positive potential shall be applied
as to reach a point of zero net charge where -Cg . = Cg .. Such an effect
must largely be related to CDI system capable of accommodating more
cations on pseudocapacitor, i.e., e-MnOy/AC than on EDL capacitor, i.e.,
AC.

In practical application, the CDI electrode can be repeatedly run for
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Fig. 8. Mechanism of ion storage in MnOy/AC electrode at different degrees of surface polarization.

sorption and desorption of ions in the waste stream by applying a spe-
cific voltage drop (charging) or zero (discharging) voltage, respectively.
We provided a cycle test for sorption of NaNO3 using aMnO»/AC elec-
trode as shown in Fig. S10. The electrode did not significantly degrade at
least in five sorption-desorption runs. Further management of salt
concentrate from CDI unit was determined by the quality of the
concentrated stream. Established technology, such as RO, IER, EDR, has
been suggested as post-treatment of desalination concentrate in terms of
thermal, crystallization or membrane processes [65,66].

Table 4 gathers salt and ion adsorption capacity (meq g ') of
biomass-derived CDI electrodes reported recently. The AC precursors
were waste cellulose [67], rice [68,69], fruit shell [70-73], and vege-
tables [74-77], in which the desalination efficiency and adsorption

capacity for NaCl were obtained at a constant voltage drop (AV =1.2 V).
The carbon-based pseudocapacitor for the removal of common ions
other than Na™ or salts other than NaCl was rarely investigated. The
present work provided the ion adsorption capacity of aMnO5/AC under
specific working potentials (E,pp); the loaded manganese oxide partic-
ularly enhanced the cation uptake compared to the carbon (EDL) elec-
trode. Note that most authors determined CDI capacity by integration of
the CV curve or conductivity measurement. These methods do not reflect
accurately the ion adsorption capacity. The CV curve method over-
estimates the deionization capacity, whereas the conductivity method
assumes equal sorption capacity toward Na™ and Cl ion in the case of
CDI removal of NaCl salt. Based on Table 4, the Na™ adsorption capacity
followed the order: coconut shell (1.47 meq-g’l) > bacterial cellulose

Table 4
Summary of biomass precursors for CDI electrodes in the removal of common ions.

Biomass Preparation Characteristics Electrochemical properties Ref.

Bacterial-cellulose Carbonized at 700 °C with N and He gas for ~ BET = 340 m?/g Cq = Capacity at AV = 1.2 V for NaCl = 1.88 meq-g ' [67]
rGO/AC 366F/g

Rice husk Activated at 800 °C with KOH BET = 1839 m?/g Pore size ~ Capacity at AV = 1.2 V for NH; = 0.09 meq-g—'; Mg?" = 0.13 [68]

= 3.8 nm G4 = 120.5F/g meq-g~'; Cu?" =0.02 meq-g "

Rice husk Carbonized at 750 °C;Activated at 800 °C BET = 1638 m?/g Pore size  Capacity at AV = 1.2 V for NaCl = 0.53 meq-g~* [69]
with NaOH =0.83 nm Cq = 91F/g

Almond shell Carbonized and activated at 900 °C with CO,  BET = 450 m?/g Pore size Capacity at AV = 1.2 V for NaCl = 0.66 meq-g " [70]

=3.8nm

Tamarind shell Carbonized at 350 °C;Activated at 800 °C BET = 410 m?/g Pore size Capacity at AV = 1.2 V for NaCl = 0.64 meq-g~* [71]
with KOH and urea for N-doped AC = 3.87 nm Cq = 174.5F/g

Peanut shell Activated at 500 °C with H3POy; BET = 525 mz/g Pore size Capacity at AV = 1.2 V for Cr(VI) = 2.83 meq-g’1 [72]
hydrothermal deposition of FeCl,/FeCl; for = 1.7 nm Cq = 307F/g
Fe304/PSAC

Coconut shell Carbonized at 500 °C; activated with KOH at ~ BET = 304 m?/g Cq = Capacity at AV = 1.2V for Na* = 1.47 meq-g~* [73]
675 °C; precipitation of KMnO, for synthesis 523F/g
of AB-MnO,/AC

Palm leaflets Carbonized at 500 °C;Activated at 700 °C BET = 604 m?/g Cq = Capacity at AV = 1.2 V for NaCl = 0.18 meq-g~* [74]
with NaOH 23.3F/g

Sorghum Carbonized at 800 °C; activated with KOH at ~ BET = 1347 m?/g Cq = Capacity at AV = 1.2 V for NaCl = 1.00 meq-g [75]
800 °C 257F/g

Watermelon rind Activated at 500 °C with H3POy; BET = 483 m2/g Pore size Capacity at AV = 1.2 V for NaCl = 1.02 meq-g’1 [76]
hydrothermal deposition of Mn(II)/Fe(III) for = 3.7 nm C4 = 425F/g
MnFe,0,/WMAC

Artocarpus Carbonized at 400 °C; activated with KOH at ~ BET = 607 m?/g Pore size Capacity at AV = 2V for NaCl = 0.20 meq-g [77]

heterophyllus 600 °C = 3.05nm Cq = 610F/g
peels

Loofah Activated at 800 °C with ZnCl,; precipitation =~ BET = 801 mz/g Pore size Capacity at Eqpp, = +1.5 V for SO% = 0.46 meq-g’l; NO3 = 0.3 This

of KMnO, for synthesis of «MnO5/AC =3.5nm Cyq = 75F/g meq-g 1; ClO; = 0.14 meq-g ; Li* = 0.12 meq-g }; Na* =0.45  work

meq-g '; Ca®" = 1.52 meq-g !

10
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(0.94 meq-g’l) > watermelon rind (0.51 meq-g’l) > sorghum (0.50
meq—g_l) > loofah (0.45 meq—g_l) > almond shell (0.33 meq—g_l) >
tamarins shell (0.32 meq-g 1) > rice husk (0.26 meq-g~1) > artocarpus
heterophyllus peels (0.10 meg-g~!) > palm leaflet (0.09 meq-g ).

4. Conclusion

The pseudocapacitance at the interface of MnO, supported on a
loofah-derived activated carbon in the presence of common water
electrolytes, including NaNOs, LisSO4, and Ca(ClO4)s, were investigated
in constant potential mode (vs. Ag/AgCl). Among all four polymorphs
studied, a-MnO, was the best pseudocapacitor with respect to ion
adsorption capacity readily described by the modified Langmuir
adsorption isotherm. Results indicated that there was insignificant dif-
ference in BET surface area between AC (752 m?> g’l) and aMnOy/AC
composite (801 m?> g’l). However, loading of MnO, on AC increased
significantly the first-order ion electrosorption rate constant and
monolayer ion adsorption capacity of AC in the presence of common
inert electrolytes due to improvement in diffusion-controlled capaci-
tance. The mechanism of ion intercalation mainly aided in cation
adsorption at negatively polarized electrode. Hence, the effective radius
and valence that influenced the ion solvation (i.e., energy of hydration)
of ions, played a significant role on the removal efficiency of ions. The
adsorption capacity of aMnOy/AC toward cations studied was in the
order of Na* (2.8 x 10% mol g™%) > Ca%* (2.1 x 10* mol g™) > Li*
(0.76 x 10* mol g™1), at a working potential of —1.5 V (vs. Ag/AgCl).
The isoelectric point (IEP) of the a-MnO»/AC electrode shifted toward
more positively polarized potential relative to that of the AC electrode.
At IEP, i.e., the point of zero net charge, the differential capacitance
contributed by cations and anions was equal.
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