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Abstract

Many techniques in modern computational linguistics and natural language processing (NLP) make the assump-
tion that approaches that work well on English and other widely used European (and sometimes Asian) languages
are “language agnostic” – that is that they will also work across the typologically diverse languages of the world.
In high-resource languages, especially those that are analytic rather than synthetic, a common approach is to treat
morphologically-distinct variants of a common root (such as dog and dogs) as completely independent word types.
Doing so relies on two main assumptions: that there exist a limited number of morphological inflections for any
given root, and that most or all of those variants will appear in a large enough corpus (conditioned on assump-
tions about domain, etc.) so that the model can adequately learn statistics about each variant. Approaches like
stemming, lemmatization, morphological analysis, subword segmentation, or other normalization techniques are
frequently used when either of those assumptions are likely to be violated, particularly in the case of synthetic
languages like Czech and Russian that have more inflectional morphology than English.

Within the NLP literature, agglutinative languages like Finnish and Turkish are commonly held up as extreme
examples of morphological complexity that challenge common modelling assumptions. Yet, when considering
all of the world’s languages, Finnish and Turkish are closer to the average case in terms of synthesis. When
we consider polysynthetic languages (those at the extreme of morphological complexity), even approaches like
stemming, lemmatization, or subword modelling may not suffice. These languages have very high numbers of
hapax legomena (words appearing only once in a corpus), underscoring the need for appropriate morphological
handling of words, without which there is no hope for a model to capture enough statistical information about
those words. Moreover, many of these languages have only very small text corpora, substantially magnifying
these challenges.

To this end, we examine the current state-of-the-art in language modelling, machine translation, and predic-
tive text completion in the context of four polysynthetic languages: Guaraní, St. Lawrence Island Yupik, Central
Alaskan Yup’ik, and Inuktitut. We have a particular focus on Inuit-Yupik, a highly challenging family of endan-
gered polysynthetic languages that ranges geographically from Greenland through northern Canada and Alaska to
far eastern Russia. The languages in this family are extraordinarily challenging from a computational perspective,
with pervasive use of derivational morphemes in addition to rich sets of inflectional suffixes and phonological
challenges at morpheme boundaries. Finally, we propose a novel framework for language modelling that com-
bines knowledge representations from finite-state morphological analyzers with Tensor Product Representations
(Smolensky, 1990) in order to enable successful neural language models capable of handling the full linguistic
variety of typologically variant languages.
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Chapter 1

Introduction

Many techniques in modern computational linguistics and natural language processing (NLP) make the assump-
tion that approaches that work well on English and other widely used European (and sometimes Asian) languages
are “language agnostic” – that is that they will also work across the typologically diverse languages of the world.1

In high-resource languages, especially those that are analytic rather than synthetic, a common approach is to treat
morphologically-distinct variants of a common root (such as dog and dogs) as completely independent word types.
Doing so relies on two main assumptions: that there exist a limited number of morphological inflections for any
given root, and that most or all of those variants will appear in a large enough corpus (conditioned on assump-
tions about domain, etc.) so that the model can adequately learn statistics about each variant. Approaches like
stemming, lemmatization, morphological analysis, subword segmentation, or other normalization techniques are
frequently used when either of those assumptions are likely to be violated, particularly in the case of synthetic
languages like Czech and Russian that have more inflectional morphology than English.

Within the NLP literature, agglutinative languages like Finnish and Turkish are commonly held up as extreme
examples of morphological complexity that challenge common modelling assumptions. Yet, when considering
all of the world’s languages, Finnish and Turkish are closer to the average case in terms of synthesis. When we
consider polysynthetic languages (those at the extreme of morphological complexity), approaches like stemming,
lemmatization, or subword modelling may not suffice. These languages have very high numbers of hapax legom-
ena (words appearing only once in a corpus), underscoring the need for appropriate morphological handling of
words, without which there is no hope for a model to capture enough statistical information about those words.
Moreover, many of these languages have only very small text corpora, substantially magnifying these challenges.
The remainder of this work is structured as follows.

In Chapter 2 we briefly review the relevant background literature in finite-state morphology, language mod-
elling, and machine translation. We review finite-state approaches to morphological analysis. We review the
major approaches to language modelling, including n-gram language models, feed-forward language models, and
recurrent neural language models.

In Chapter 3 we present a set of polysynthetic languages which we will consider throughout this work and
detail the resources available for each. We have a particular focus on Inuit-Yupik, a highly challenging family
of endangered polysynthetic languages that ranges geographically from Greenland through northern Canada and
Alaska to far eastern Russia. The languages in this family are extraordinarily challenging from a computational
perspective, with pervasive use of derivational morphemes in addition to rich sets of inflectional suffixes and
phonological challenges at morpheme boundaries.

In Chapters 4–6 we examine the current state-of-the-art in language modelling, machine translation, and pre-
dictive text completion in the context of four polysynthetic languages: Guaraní, St. Lawrence Island Yupik, Cen-
tral Alaskan Yup’ik, and Inuktitut. In Chapter 4 we present experiments and results on machine translation into,
out of, and between polysynthetic languages; we carry out experiments between various Inuit-Yupik languages
and English, as well as between Guaraní and Spanish, showing that multilingual approaches incorporating data
from higher-resource members of the language family can effectively improve translation into lower-resource lan-

1Emily Bender provides a thorough discussion of this problem in https://thegradient.pub/
the-benderrule-on-naming-the-languages-we-study-and-why-it-matters/.
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Figure 1.1: Overview of the tangible artefacts, models, and applications in this report. We start with all of the available
resources for a given language, including (bi-)texts, grammars, and dictionaries. These are used to create finite-state morpho-
logical analyzers and MT systems (§4) directly. The finite-state morphological analyzers are then applied to corpora to create
segmented or analyzed corpora (§2). These are used both to build language models (§5) and machine translation systems
(§4) based on the segmented morphemes and to create interpretable morpheme-based language models using tensor product
representations (§7). The final results are predictive keyboards that use morphemes as the unit of prediction (§6), with potential
future work (greyed out) including automatic speech recognition and morpheme-based machine translation.

guages. In Chapter 5, we present language modelling experiments across a range of languages and vocabularies.
In Chapter 6 we present practical applications which we anticipate will benefit from our language model and
multilingual approaches, along with preliminary experimental results and discussion of future work.

Finally in Chapter 7 we present a core theoretical contribution of this work: a feature-rich open-vocabulary
interpretable language model designed to support a wide range of typologically and morphologically diverse
languages. This approach uses a novel neural architecture that explicitly model characters and morphemes in
addition to words and sentences, making explicit use knowledge representations from finite-state morphological
analyzers, in combination with Tensor Product Representations (Smolensky, 1990) to enable successful neural
language models capable of handling the full linguistic variety of typologically variant languages. We present our
conclusions in Chapter 8.



Chapter 2

Background

In this chapter we provide a brief overview of the background technologies that underlie this report, namely finite-
state approaches to morphological analysis (§2.1), n-gram and neural language modelling techniques (§2.2), and
neural machine translation (§2.3).

2.1 Finite-state morphology

Initial approaches to modelling the morphology of natural languages in the mid-20th century tended to focus on
unidirectional algorithmic solutions to particular languages, implemented in general-purpose (rather than domain-
specific) programming languages. These included generators, which generated wordforms from an analysis speci-
fication, analyzers, which returned possible analyses for a given word, and lemmatizers or stemmers which aimed
to return a baseform, stem, or lemma given a wordform. These approaches had a number of downsides, the first
being that the same code could not be used for analysis and generation, so for each language, separate code had
to be written for these two tasks. In addition, descriptions could not be shared between related languages without
much difficulty and there was little formalization.

In the early 1980s this changed with the introduction of finite-state morphology. In this formalization of
morphology, the set of potential strings (wordform-analysis pairs) in a language is represented by a finite-state
transducer. A finite-state transducer is a special class of finite-state automaton where each arc has both an in-
put symbol and an output symbol. There are two main approaches to modelling morphophonological (or mor-
phographemic) rules using finite-state approaches. The first consists of applying a sequence of rewrite rules in the
form α → β / γ _ δ, where the alphabet symbol α is rewritten as β between γ and δ. The second approach
is referred to as two-level morphology (Koskenniemi, 1983). In this approach, phonological rules are unordered
constraints over possible symbol pairs. As Karttunen (1993) notes, the two approaches are formally equivalent
and all phonological phenomena that can be described with one can be described with the other.

Given a description, a finite-state morphological analyzer can produce both analyses of surface tokens (e.g.
sequences of tags and lemmas such as those found in interlinear glosses) and segmentations of surface tokens.
Consider the output of the analyzer for the Guaraní sentence Rehótapa che rendápe. ‘Will you come with me’ in
Example (1). The output includes the lemmas ho ‘come’, che ‘my’ and tenda ‘place’, person and number tags
such as <p2> ‘second person’, <sg> ‘singular’, tags indicating word class, <n> ‘noun’ and <v> ‘verb’ among
others.

(1) Input Rehótapa che rendápe.
Analysis re<prn><p2><sg>+ho<v><iv>+ta<fti>+pa<qst>

che<prn><pos><p1><sg>
r<det>+tenda<n>+pe<post>

Segmentation Rehó>ta>pa che r>endá>pe

This is especially important for polysynthetic languages, as words can be made up of many morphemes, for ex-
ample the word ñaha’arõ’ỹetéva ‘that we did not expect at all’ in the sentence Oiko peteı̃ mba’e ñaha’arõ’ỹetéva.

3
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“Something happened that we did not expect at all’ can be decomposed as in Example (2) below.

(2) Input ñaha’arõ’ỹetéva
Analysis ña<prn><p1><pl>+ha’arõ+ỹ<neg>+ete<emph>+va<subs>
Segmentation ña>ha’arõ>’ỹ>ete>va

The amount of time required to develop a finite-state description can vary widely, but can be anywhere from
two weeks, given a trained developer and a description of a related language — e.g. Kumyk in Washington et al.
(2014) — to a year for a developer completely unfamiliar with the tools and language. The speed is also affected
by the available resources such as grammatical descriptions and machine-readable lexicons.

One shortcoming of many finite-state morphological analyzers is an inability to assign probabilities to analy-
ses. Table 2.1 depicts six example English sentences which each contain the word wound; each of these six uses
is analyzed with a distinct linguistic analysis. When analyzing an English sentence that contains the word wound,
an unweighted English morphological analyzer would posit all of these analyses, and would be unable to suggest
which might be the most probable. Some finite-state morphological toolkits support the use of probabilities on

Analysis Example Frequency Rel. frequency

‘wind-PAST’ She wound the watch. 4 0.66
‘wind-PP’ She had wound the watch. 1 0.16
‘wound-N.SG’ The wound healed quickly. 1 0.16
‘wound-INF’ Therefore I will wound you. 0 0
‘wound-PRES’ They wound and they heal. 0 0
‘wound-IMPER’ You wound me sir! 0 0

Table 2.1: List of analyses for the wordform wound in English, along with example sentences and frequency according to the
English treebanks from the Universal Dependencies project (Nivre et al., 2016).

arcs in constructed finite-state transducers (Mohri, 2001). This means that it is possible to make analyzers and seg-
menters where the output is ranked, either by probability or by some other metric. Arc probability weights can be
obtained from corpus statistics or from other measures. This is especially important for polysynthetic languages,
where words may potential have many analyses. We describe the methods we used to weight our analyzers in
Section 3.4.

2.2 Language modelling

A language model is any model that describes natural language. By that description, the finite-state models
from the previous section could also be considered as a form of language model. In this section, however we use a
narrower definition of language model as being a model of a probability distribution over a sequence of vocabulary
items (characters, words).

Perhaps the simplest approximation to determine the probability of a sentence would be to use a unigram
model over words. In such a model, the probability of a sentence is defined as the product of the probabilities of
the individual words, which could be estimated by taking their relative frequency in a given corpus. While such
a model could reasonably discriminate between the relative probabilities of sentences such as (a) “have a great
trip” and (b) “have a superannuated tardigrade”, it would not be able to distinguish the relative probability of (c)
“great a have trip” and (a). A more accurate, but less tractable approximation would be to ask all speakers of a
given language to rank all of the possible sentences in that language by some metric of ‘goodness’. So the idea of
language modelling is to find a tractable way to model the distribution of probability for sequences of linguistic
symbols or tokens.

This simple model can be extended to n-gram language models (Shannon, 1948, 1951), whereby instead of
modelling single units (characters, words), what is modelled is sequences of units. Thus in a bigram word model,
the sequences modelled would be bigrams, e.g. {have a, a great, a trip} and {great a, a have, have trip} from
examples (a) and (c) respectively. For languages where large amounts of monolingual training data are available,
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language models of order 5–7 have been widely used in applications such as machine translation and automatic
speech recognition.

However, as the model is extended to cover longer sequences, the problem of out-of-vocabulary (OOV) items
becomes more severe. This happens when the sequence we are attempting to estimate the probability of does
not appear in our model. This can be illustrated with the example in (b) above. The sequence “superannuated
tardigrade” does not return any results with a search engine query on several major search engines. It is therefore
highly likely that a bigram language model trained using all English text available on the internet would estimate
the probability of this sequence to be zero, and therefore the probability of the entire sentence would also be zero.
There are two techniques that have been developed to deal with this problem. Smoothing techniques reserve a
small amount of the probability mass to distribute to unseen n-grams (Good, 1953; Jelineck and Mercer, 1980;
Katz, 1987; Witten and Bell, 1991; Church and Gale, 1991; Ney et al., 1994; Kneser and Ney, 1995), while backoff
techniques allow combinations of lower-order n-grams to be used to estimate the probability of higher-order ones.
In example (b) the probabilities of ‘superannuated’ and ‘tardigrade’ would be used to estimate the probability of
‘superannuated tardigrade’.

One of the issues with n-gram language models is that parameters are not shared between tokens and se-
quences. For example, the token ‘wonderful’ is as far from ‘great’ as is the token ‘superannuated’. So if we have
the sequence “have a wonderful trip”, the other shared contexts that ‘wonderful’ and ‘great’ appear in are not taken
into account. A way of dealing with this problem is to use distributional representations of individual tokens, as
in Bengio et al. (2000, 2003). Here each token is represented by a vector of real numbers, embedding each token
in a shared vector space. In these kind of language models it is still necessary to specify a fixed n-gram context,
which means that the amount of context that can be taken into account is limited to a fixed-sized window for each
token. Mikolov et al. (2010) describe using recurrent neural networks to model context to allow whole-sentence
context to be taken into account. In addition they introduce efficient methods of training the distributional vectors
such that corpora numbering in the billions of words can be used in training. In both the models proposed by
Bengio et al. (2000) and Mikolov et al. (2010) each token is represented by a single vector. As evidenced from the
examples above this is not always tenable, words in natural language are ambiguous (cf. wound and trip – ‘to trip
over something’ or ‘a nice trip’). In ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019), each word vector
is context dependent, both on external, sentence-level context, and on word-internal context, so even if a given
token has not been seen before, the model can generalize from forms that have similar surface forms and appear
in similar contexts. This would seem to be an ideal model for polysynthetic languages, however the downside is
that these models typically contain very large numbers of parameters which in turn require very large amounts of
training data, far more than is available for most endangered languages.

2.3 Machine Translation
In recent years, the machine translation community has gravitated toward neural approaches to machine trans-
lation. Midway through the 2010s, these began outperforming phrase-based statistical and other approaches in
large-scale evaluations (Bojar et al., 2016). This success has driven a rapid sequence of approaches to building
neural machine translation models, from sequence-to-sequence models (Sutskever et al., 2014), to models with
attention (Bahdanau et al., 2015), to models that primarily rely on attention (Vaswani et al., 2017). In preparation
for the workshop, we trained both statistical and neural machine translation models on the available training data.
During the workshop, we focused solely on neural approaches to machine translation, and report those experi-
ments in Chapter 4. As our experiments tended to examine variations of the input to the translation models rather
than modifications to the networks themselves, we do not provide a thorough overview of the techniques here; for
additional detail, please see the cited code and papers.

There does exist prior work on machine translation for polysynthetic languages, though it has generally been
limited by small data sizes. In their recent overview of corpus resources for indigenous languages of the Americas,
Mager et al. (2018a) note that most of the parallel corpora they found were quite small (less than 250,000 lines
of text). Homola (2012) proposed the use of rule-based systems for polysynthetic languages, but this approach is
still labor-intensive, as it requires the application of extensive linguistic knowledge or other tools. Monson et al.
(2006) report on Mapudungun and Quechua to Spanish machine translation systems. Mager et al. (2018b) discuss
challenges of translating between polysynthetic and fusional languages. This is not a complete account of all such
work.
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Of special note for the purposes of this work is existing research on two of the languages we worked on
this summer: Inuktitut and Guaraní. For translation between Guaraní and Spanish, we are aware of an online
gister (http://iguarani.com/) and Bible translations evaluated on stemmed output (Rudnick, 2018), and
a system for translators called Mainumby by Gasser (2018). Previous work on translation between Inuktitut
and English can be found in Micher (2018b), in which results of statistical machine translation for English and
Inuktitut are reported. Micher makes use of a morphologically analyzed previous version of the Nunavut Hansard
corpus to enhance SMT systems. Details on developing this corpus can be found in Micher (2018a). The FST-
based analyzer (Farley, 2009) in combination with the neural analyzer (Micher, 2017) are used to morphologically
analyze this data set. Klavans et al. (2018a) discuss some of the challenges of building such translation systems.

http://iguarani.com/


Chapter 3

Languages & Resources

A central issue that arises when conducting research on polysynthetic languages is the lack of resources: many
polysynthetic languages are very low resource. Due to the need for corpora for use in language modelling efforts,
an effort was directed towards locating existing corpora for polysynthetic languages and assessing their usability
for different experiments. While we used only a subset of what we collected for experiments, this chapter provides
an overview of all linguistic resources we gained access to in the process in order to offer a glimpse into available
polysynthetic language resources.

In what follows, we provide short descriptions of the language families and languages involved and the corpora
we collected. We briefly discuss the characteristics of polysynthetic languages based on descriptive statistics and
the texts we selected for subsequent experiments. Details regarding corpus preprocessing are described in the
context of experiments discussed in later chapters.

3.1 Language selection & data collection

We obtained corpora and resources for six languages: Chukchi, St. Lawrence Island Yupik, Central Alaskan
Yup’ik, Inuktitut, Crow, and Guaraní. These languages were chosen from four different families, all of which are
low-resource and polysynthetic. There was a focus in particular on the Inuit-Yupik-Unangan family, from which
three of the languages were selected. The Inuit-Yupik-Unangan languages, historically known as Eskimo-Aleut,
are a language family native to the Russian Far East, Alaska, Canada, and Greenland. The family is divided into
two branches: Inuit-Yupik and Unangan. St. Lawrence Island Yupik, Central Alaskan Yup’ik, and Inuktitut belong
to the Inuit-Yupik branch of the family.

In preparation for the workshop, we gathered spoken and written corpora for the selected polysynthetic lan-
guages. In addition to written and spoken corpora, where available, we also gathered dictionaries, reference
grammars, and finite-state morphological analyzers. Table 3.1 provides a summary of the resources we had in
each language. We refer to each language by name or by ISO 639-3 code.

Language Code Mono. text Para. text FST Audio

Chukchi ckt X X X
St. Lawrence Island Yupik ess X X X X
Central Alaskan Yup’ik esu X X
Inuktitut iku X X X
Crow cro X
Guaraní grn X X X

Table 3.1: Overview of languages and resources: monolingual text, parallel text, finite state transducers, and audio data.

7
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3.1.1 Chukchi
Chukchi (ckt) is the most widely spoken language in the Chukotko-Kamchatkan family, with approximately
5000 speakers. The Chukotko-Kamchatkan languages are native to the Russian Far East, and Chukchi is spoken
in the easternmost part, mainly on the Chukotka Peninsula.

We obtained audio data and transcripts for Chukchi from http://chuklang.ru, a website dedicated to
materials and research on Chukchi funded by the Russian Science Foundation. The audio data contains two books
of the Bible, the Book of Jonah and the Gospel of Luke, and short stories in the language. The stories represent a
valuable resource for the endangered language. The transcripts are in both Latin and Cyrillic scripts. There also
exists a prototype finite-state morphological analyzer for Chukchi (Andriyanets and Tyers, 2018). This analyzer
was expanded on during the workshop using the transcripts of the audio data.

3.1.2 St. Lawrence Island Yupik
St. Lawrence Island Yupik (ess) is an endangered language in the Inuit-Yupik family spoken on St. Lawrence
Island, Alaska and on the Chukokta Peninsula of the Russian Far East. We collected a corpus consisting primar-
ily of scanned and digitized books, including educational materials (Apassingok et al., 1993, 1994, 1995), oral
narratives (Nagai, 2001; Apassingok et al., 1985, 1987, 1989; Slwooko, 1977, 1979) and a reference grammar
(Jacobson, 2001). In addition, we made use of the Yupik translation of the New Testament1 (Wycliffe, 2018). We
made use of the Chen and Schwartz (2018) finite-state morphological analyzer, which was based on the Yupik
grammar of Jacobson (2001) and incorporated Yupik lexical entries from the Badten et al. (2008) dictionary.

3.1.3 Central Alaskan Yup’ik
Central Alaskan Yup’ik (esu) is an official language of Alaska that is spoken by about 10,000 speakers in the
western and southwestern parts of the state. There are five major dialects of Central Alaskan Yup’ik, of which
General Central Yup’ik (Yugtun) is the most widely spoken.

This workshop made use of a Yup’ik translation2 of the Bible. As one of our team members speaks the
language, we were able to align it with a corresponding English Bible (Good News Translation, Today’s English
Version, Second Edition). The parallel data were used for both machine translation and language modelling
experiments. Additionally, the Yup’ik Bible and a dictionary (Jacobson, 1984) were used to begin development
on a Yup’ik finite-state morphological analyzer.

3.1.4 Inuktitut
Inuktut (a term that includes the variants Inuktitut and Inuinnaqtun) is one of the official languages of Nunavut, the
largest territory of Canada, and is spoken by approximately 39,770 people in Canada (Statistics Canada, 2017). It
also has official recognition in several other areas and is part of the Inuit-Yupik-Unangan language family. Inuktut
can be written in syllabics or in roman orthography, and regional variations use different special characters and
spelling conventions.

As Inuktut is an official language of government in Nunavut, there exist some resources that are available in
this language at a much larger scale than most other languages in the same family, notably a parallel corpus with
English. Since its formation in 1999, the Legislative Assembly of Nunavut has been publishing its proceedings
(known as a Hansard) in both Inuktitut (iku) and English.3 In the subsequent 20 years, the collected Nunavut
Hansard has grown to be a substantial bilingual corpus (Martin et al., 2003, 2005; Farley, 2008; Joanis et al.,
2020), putting Inuktitut in the perhaps unique position of a polysynthetic language with a parallel corpus of more
than a million sentence pairs. We discuss the different versions of this data, and their preprocessing for machine
translation, in Section 4.2.

We also made use of a Inuktitut translation4 of the Bible for language modelling experiments. We decided
to exclude the Hansard in the language modelling experiments as including it would make the Inuktitut dataset

1https://live.bible.is/bible/ESSWYI
2bibles.org
3It should be noted that Legislative Assembly of Nunavut discourse takes place in several Inuktut varieties, as well as English; a more

detailed description of the construction and dialect situation of the Hansard will be available in Joanis et al. (2020).
4bible.com

http://chuklang.ru
https://live.bible.is/bible/ESSWYI
bibles.org
bible.com
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Language Code Corpus Sentences Tokens Types TTR MDN

Central Alaskan Yup’ik esu Bible 59575 566544 138320 0.244 3.86
English eng Bible 62049 1057713 22201 0.021 42.90
Chukchi ckt Transcripts 1015 5309 2387 0.450 2.22
Inuktitut iku Bible 31103 459571 126165 0.275 3.64
Inuktitut iku Hansard 1300148 10869995 1563883 0.144 6.95
English eng Hansard 1300148 20367595 59234 0.003 343.81
Guaraní grn Bible 30078 629099 45766 0.073 12.71
Spanish spa Bible 30078 822192 31625 0.038 23.75
St. Lawrence Island Yupik ess Books 24456 214090 60414 0.282 3.32
St. Lawrence Island Yupik ess New Testament 8002 119482 32532 0.272 3.45
English eng New Testament 8002 273064 9071 0.033 28.37

Table 3.2: Statistics of the written corpora, including type-token ratio (TTR) and mean distance to next novel type (MDN).

substantially different from other datasets and thus making it hard to compare it with other languages. How we
preprocessed the data for language modelling is discussed in Chapter 5.

3.1.5 Crow
Crow (Apsáalooke, language code cro) is one of the most widely spoken languages of the Siouan family, with
approximately 3500 speakers. The Siouan languages are native primarily to the Great Plains of North America,
and Crow specifically is spoken in southern Montana.

Our primary resource for Crow was a series of audio recordings for a dictionary developed by the Language
Conservancy, an organization that protects and revitalizes Native American languages. This corpus consists of 11.7
hours of recordings produced by 14 speakers. The data is entirely composed of single words and short phrases
from the online Crow Dictionary project (The Crow Language Conservancy, 2019). This data was obtained on
special permission from the Language Conservancy and is not publicly available.

3.1.6 Guaraní
Guaraní (grn) is a Tupian language native to South America. It is an official language of Paraguay and the most
widely spoken language in the country with almost 5 million speakers. It is also the only indigenous language of
the Americas with a large number of non-indigenous native speakers.

We were able to obtain Guaraní-Spanish parallel Bible translations. The Guaraní Bible was translated and pub-
lished by the Sociedad Bíblica Paraguaya. The parallel translations were used for language modelling and machine
translation experiments. A morphological analyser developed by Kuznetsova and Tyers (2019), apertium-grn,
was also used.

3.2 Descriptive statistics of the corpora
The polysynthetic languages described above differ significantly from languages such as English and Spanish.
One major point of difference is in the ratio of word types to word tokens; given the number of word tokens and
the number of unique word types, the type-token ratio is calculated as TTR = |types|

|tokens| . Another useful metric,
proposed by Hasegawa-Johnson et al. (2017a) and used for polysynthetic language by Schwartz et al. (2020),
calculates the mean distance to the next novel word type (MDN).

Table 3.2 displays these text metrics for all textual corpora used. Large differences exist between different
languages and between different corpora of the same language with respect to these metrics. The polysynthetic
languages examined display higher type-token ratios and lower average distances to the next novel word type in
comparison to the non-polysynthetic languages (English and Spanish). This is particularly poignant for parallel
corpora. The New Testament in English has a type-token ratio approximately nine times lower than St. Lawrence
Island Yupik. This is somewhat expected as the central focus of this work is determining effective strategies for
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Algorithm 1: Mean distance to next novel type metric
Result: Mean distance to next novel type
distances = list;
types = list;
current_distance = 0; for word in text do

if word in types then
current_distance++;

end
else

distances.append(current_distance);
current_distance = 0;

end
end
distance = avg(distances)

working with highly morphologically complex polysynthetic languages and previous research (Kettunen, 2014)
has indicated that morphological complexity is correlated with metrics like TTR.

The datasets utilized cover a large number of different domains as well, including religious texts, parlimentary
proceedings, audio transcriptions, and data scraped from internet resources. These domain differences contribute
to the differences in corpus properties as well. For example, both the English Bible and the English Nunavut
Hansard corpus have lower type token ratios and higher mean distances to the next novel type. However, the
formulaic language of parliamentary proceedings causes the English Hansard corpus to have a type-token ratio
seven times lower than the English Bible used. These domain differences were controlled for the language mod-
elling experiments described in Chapter 5 by using the New Testament for several different languages. For the
other tasks, comparisons between languages are used sparingly if similar genres of text are not available for both
languages.

3.3 Preprocessing
We preprocessed the corpora for 1) machine translation and 2) language modelling experiments. The general
principle and strategies we adapted for preprocessing for both experiments are very similar. We removed any
redundant lines and verse numbers to clean up the corpora. We made sure to normalize apostrophes so that they
remained as part of a word after we tokenized the data using Moses scripts (Koehn et al., 2007). As truecasing
is a common practice in machine translation, we truecased the text for machine translation experiments, but not
for language modelling experiments. Using the cleaned-up datasets, we explored different tokenization strategies.
FST and BPE segmentation methods were adapted for machine translation experiments, and character, BPE, Mor-
fessor and FST segmentation levels were used for language modelling experiments. Details about how we selected
and preprocessed the datasets for the two sets of experiments are discussed in Chapter 4 (Machine Translation)
and Chapter 5 (Language modelling), respectively.

3.4 Estimating weights for finite-state morphological analyzers
We used three approaches to estimate weights for our finite-state analysers, one supervised, one heuristic and
one unsupervised. The supervised method was the most simple. We had a small corpus of annotated (manually
disambiguated) text for Guaraní, the test corpus from Kuznetsova and Tyers (2019). We used this and assigned
a weight to all wordform:analyses pairs of 1. For the wordform-analysis pairs found in the corpus, a weight
was assigned equal to 1 − P (a|w), where P (a|w) is the number of times the analysis occurs with the particular
wordform over the total number of times the wordform appears. This is necessarily a number between zero and
one and thus for wordforms seen in the corpus, their analysis received a lower weight than unseen wordform-
analysis pairs. Given the size of the corpus, 2020 wordforms, the majority of the wordforms seen in the corpora
were unseen. For both the Yupik analyser and the Guaraní analyser we added an additional heuristic, for each
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morpheme boundary, we increased the weight by 1. The motivation behind this heuristic is that we wanted to
favor lexicalized forms and defavor forms with very many derivations when there was a lexicalized alternative. In
addition, we experimented with a novel unsupervised approach to weighting the transducers based on byte-pair
encoding (BPE; Sennrich et al., 2016).
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Chapter 4

Machine Translation

4.1 Introduction
This chapter discusses neural machine translation (NMT) experiments for translation into, out of, and between
polysynthetic languages. While polysynthetic and, more generally, morphologically complex languages are often
considered to pose a greater challenge for machine translation research than languages with relatively simple
morphology (Oflazer and Durgar El-Kahlout, 2007; Bojar et al., 2015), this challenge is often entangled with the
challenges of low-resource machine translation. What really causes this challenge? Is it the length and complexity
of the word forms? The type-token ratio and data sparsity? A lack of sufficient training data or a need for more
training data than morphologically simple languages? A matter of many evaluation metrics being ill-suited to
morphologically complex languages? Some combination of all of this?

In this work, we take steps towards answering two relevant questions through experiments on machine trans-
lation between English, Inuktitut, and Yupik as well as Guaraní and Spanish. First, can we untangle the influences
of small data and morphological complexity on the challenge of modelling these languages? Second, can we
make use of higher-resource languages in the same language family to improve machine translation of lower-
resource languages? We examine the first through translation of Inuktitut using a new, larger, pre-release version
of the Nunavut Hansard,1 as described in Sections 3.1.4, 4.2.1 and 4.3. We examine the second through a series
of experiments on low-resource machine translation (described in Section 4.4); our most promising experiments
incorporate Inuktitut data into the translation of Yupik data (Table 4.8).

We first discuss the data resources for machine translation, providing more detail about data size, prepro-
cessing, and the like (Section 4.2). This is followed by descriptions of our machine translation experiments.
Section 4.3.3 briefly covers challenges of machine translation evaluation for polysynthetic languages.

The main contributions of our machine translation work during this workshop are as follows.

• We achieved state-of-the-art performance on translation between Inuktitut and English (since surpassed by
Joanis et al. (2020)).

• With first access to the beta version 3.0 of the Nunavut Hansard (Joanis et al., 2020), we were able to pro-
vide feedback and best practices for preprocessing the dataset and contributed to knowledge about existing
character and spelling variations in the dataset.

• We collected empirical evidence on several well-known but unresolved challenges, such as best practices in
token segmentation for MT into and out of polysynthetic languages, as well as an examination of how to
evaluate MT into polysynthetic languages.

• We successfully used multilingual neural machine translation methods to improve translation quality into
low-resource languages using data from related languages. Notably, our “low-resource” languages were
lower resource than much of the literature, and we produced improvements without the use of large mono-
lingual corpora (which are unavailable for these languages and many other languages of interest). We
observed these improvements across both n-gram-oriented and semantic-oriented metrics.

1While this was a pre-release at the time of this workshop, the data has now been made available publicly; see Joanis et al. (2020).
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4.2 Parallel Data Resources
Chapter 3 describes the general data resources used throughout the workshop. Here we provide a more in-depth
look at the resources used for machine translation specifically, including some notes on preprocessing.

Train Dev. Test
iku-eng 1300148 3088 2780
ess-eng 5838 1142 1750
esu-eng 30724 1279 927
grn-spa 28050 1129 875

Table 4.1: Preprocessed lines of parallel training, development/validation, and test data for machine translation experiments.

The machine translation resources available to us ranged from moderate to extremely low resource, as shown
in Table 4.1.

4.2.1 Inuktitut–English Data
As described is Section 3.1.4, there have been several releases of the Nunavut Hansard. The first, version 1.0, was
released to the natural language processing community in Martin et al. (2003), and consisted of 3.4 million English
tokens and 1.6 million Inuktitut tokens of parallel data. A subsequent update, version 1.1, corrected some errors in
version 1.0 (Martin et al., 2005). Version 2.0 covered proceedings from 1999 through late 2007 (excluding 2003)
with about 5.5 million English tokens and 2.6 million Inuktitut tokens (Farley, 2008).

For the purposes of this workshop, we received pre-release access to a beta version of the Nunavut Hansard
Inuktitut–English parallel corpus version 3.0, which contains 17.3 million English tokens and 8.1 million Inuktitut
tokens, a huge increase over the original data. We refer to this pre-release version as 3.0 or 3.0 beta. We use
deduplicated development and test sets in our experiments. The final Nunavut Hansard Inuktitut–English parallel
corpus version 3.0 corpus is now available and is described in Joanis et al. (2020). Through our early access to this
corpus, we provided feedback on the corpus and on preprocessing best practices, which have been incorporated
into the data release.

The corpus contains 17.3 million English tokens and 8.1 million Inuktitut tokens, spanning 1999 to 2017, a
major increase over the version 1.0 and 2.0 releases (Martin et al., 2003, 2005; Farley, 2008). This is the largest
corpus we had access to for this workshop, and is arguably no longer truly “low-resource” for machine translation
research. It is, however very domain-specific, and differs in domain from the other parallel corpora we use in our
experiments.

As prior machine translation work performed translation on romanized Inuktitut (Micher, 2018b), we chose
to do the same. We converted Inuktitut data from syllabics as follows: we first applied uniconv,2 then repaired
errors (e.g., incorrectly handled accented French characters in the Inuktitut data) using iconv, then identified and
corrected other characters using a hand-built preprocessing script (including treating word-internal apostrophes as
non-breaking characters on the Inuktitut side of the data).3

We ran standard preprocessing scripts from Moses (Koehn et al., 2007): punctuation normalization, tokeniza-
tion, cleaning, and truecasing. We discuss subword segmentation in Section 4.3.

4.2.2 Yupik–English Data
We had access to parallel data for two Yupik languages: St. Lawrence Island Yupik (ess) and Central Alaskan
Yup’ik (esu). In both cases, all of the available data was verse-aligned data drawn from the Bible. For St. Lawrence
Island Yupik, we had access to New Testament data only. We used Luke for development and validation and used
John for testing. The remainder of the data was used for training. The data was preprocessed for machine transla-
tion experiments as follows: bracketed text was removed from the English data,4 apostrophes were normalized in

2uniconv is distributed with Yudit: www.yudit.org
3Joanis et al. (2020) provides slightly updated scripts; we note that neither those scripts nor the ones described here fully conform to spelling

and romanization conventions as described in the Nunavut Utilities (www.gov.nu.ca/culture-and-heritage/information/
computer-tools).

4This consisted of rephrasings of entire verses, and was not present in all verses.

www.yudit.org
www.gov.nu.ca/culture-and-heritage/information/computer-tools
www.gov.nu.ca/culture-and-heritage/information/computer-tools
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St. Lawrence Island Yupik, and then all data was punctuation-normalized, tokenized, cleaned, and truecased using
standard Moses scripts (Koehn et al., 2007) with English default settings.

For Central Alaskan Yup’ik, we had access to the full Bible. For consistency, we still used Luke for devel-
opment and validation and used John for testing. The remainder of the data was used for training. For Central
Alaskan Yup’ik, we normalize apostrophes and convert characters with certain diacritics that would otherwise
be split by the Moses tokenizer. Both Central Alaskan Yup’ik and its corresponding English translations were
punctuation-normalized, tokenized, cleaned, and truecased using standard Moses scripts (Koehn et al., 2007) with
English default settings. In the case of Central Alaskan Yup’ik, we performed tokenization without aggressive
hyphen-splitting.5

Table 4.1 shows the number of lines in the datasets; the Central Alaskan Yup’ik training data is more than 5
times larger than the St. Lawrence Island Yupik training data.

4.2.3 Guaraní–Spanish Data
As with the Yupik datasets, we had verse-aligned parallel Bible data available in Spanish and Guaraní. We used
Luke for development and validation and used John for testing, with the remaining data used for training. Guaraní
data was first preprocessed with quotation and apostrophe normalization, along with the removal of paragraph and
other symbols that were artifacts of the initial data creation. Guaraní and Spanish data were then punctuation-
normalized, tokenized, cleaned, and truecased using standard Moses scripts (Koehn et al., 2007) using Spanish
defaults.

4.3 Inuktitut Machine Translation Experiments
Our Inuktitut-English machine translation efforts were largely concerned with doing initial experiments on the
pre-release version of the Nunavut Hansard parallel corpus. Being substantially larger than previous releases –
to our knowledge, by far the largest aligned parallel corpus of a polysynthetic language to date – this corpus
offered a unique opportunity to try contemporary NMT methods on Inuktitut, and consider whether methods of
segmentation like byte-pair encoding (BPE; Sennrich et al., 2016) are sufficient to handle a language of this level
of complexity.

In the experiments that follow, our baseline systems – that is, conventional Transformer (Vaswani et al., 2017)
NMT systems, using BPE and standard hyperparameter settings – always outperformed the experimental systems
(which included special segmentation procedures and multi-source attention). This suggests that contemporary
methods are indeed adequate for processing Inuktitut, although we do not consider the case closed as there are
many interesting possibilities for principled segmentation that we have not yet explored.

4.3.1 Segmentation experiments
In this set of experiments, we contrast automatic segmentation (by byte-pair encoding) with more morpholog-
ical segmentations based on human knowledge of Inuktitut morphology, and also consider a simple method of
combining them. We perform our machine translation experiments contrasting these approaches in the Inuktitut-
to-English direction.

Byte-Pair Encoding

Byte-pair encoding (BPE; Sennrich et al., 2016) – broadly, the segmentation of text at the character-level into
larger chunks by compressing the text and using the resulting compression units as word segmentation – has
become a ubiquitous practice in current machine translation. While the units discovered are not guaranteed to
correspond to morphemes as such, the resulting systems do end up working at a more morpheme-like level, with
units larger than a character but smaller than a word.

Table 4.2 shows the segmentation of several words according to four BPE vocabulary sizes. The Inuktitut
loanword siipiisiikkut (meaning CBC or Canadian Broadcasting Corporation) is frequent enough in the corpus

5This keeps hyphenated suffixes attached, but has the downside of non-ideal interactions with subword segmentation, occasionally breaking
suffixed biblical names into two parts, with the latter attached to the hyphen and Central Alaskan Yup’ik suffix.
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that at 30000 merges it is represented as a single token. The word qimirruvita (meaning are we looking at,
as in the context Are we looking at trying to find out? or qimirruvita qaujimanittinnuk) can be split into the
morpheme qimirru- (to scan, to inspect6) and the verb ending -vita? (are we (3+) ...?7); we see that here BPE
successfully respects the morpheme boundary at all sizes, segmenting exactly and only along that boundary with
a vocabulary of 30000. For utaqqivita (meaning are we waiting for?, as in the context What are we waiting for?
or kisumik utaqqivita?), the story is somewhat different. Though the word contains the same suffix -vita? with
the verb root utaqqi- (to wait8), BPE does not segment the words along the expected morpheme boundaries; the
only segmentation that respects them (500) appears to oversegment. In these examples, we are able to see clear
morpheme splits in the surface form, but this is not always the case. In many cases, the underlying forms may
undergo phonological changes at the boundaries where two morphemes meet, making it impossible to segment
the word such that the resulting units have a uniform representation across all examples of that morpheme.

BPE vocab siipiisiikkut qimirruvita utaqqivita
500 si | i | pi | i | si | i | kkut qi |mi | r | ru | vi | ta uta | qq | i | vi | ta

5000 si | i | pii | si | i | kkut qimirru | vi | ta utaqq | ivi | ta
15000 siipii | si | ikkut qimirru | vi | ta utaqqivi | ta
30000 siipiisiikkut qimirru | vita utaqqivi | ta

Table 4.2: Segmentation of three words according to BPE at four different vocabulary sizes.

One of our topics of investigation was whether this procedure alone would be sufficient to pre-process Inuktitut
for machine translation, whether more sophisticated morphological processing would be necessary, or whether a
combination of the two (morphological processing where possible, BPE for the rest) might prevail.

Morphological Analysis

The Nunavut Hansard version 1.1 was the starting point for morphological analysis of the larger, later-released
corpus (version 3.0). As version 1.1 is a subset of the days of debate included in version 3.0, we made use of prior
morphological processing of version 1.1 when possible (processing described in Micher (2018a) and summarized
here). Every word type of the version 1.1 corpus was processed with the Uqailaut analyzer (Farley, 2009), which
provides morpheme segmentation and labeling (including deep representation and morphological category tags).
About 70% of the corpus was analyzable by this tool. The remaining 30% was subsequently processed using a
neural morphological analyzer, which is trained on a subset of the Uqailaut processed data (Micher, 2017). Filter-
ing out noise (concatenations of numbers and alphanumerics), we were left with approximately 413K processed
word types from version 1.1 of corpus.

We then extracted the word types from the larger corpus, using the same noise filtering script as with version
1.1 and omitting the word types that had been successfully processed already from version 1.1. We ended up
with ∼1.14M additional types. From these another ∼9K words were identified as English and removed, yield-
ing ∼1.13M types to process. However, we note a few differences between these corpora, which affected the
processing pipeline. First, the romanization scheme performed for version 1.1 of the Hansard is not identical to
the romanization we performed on version 3.0 beta. In many cases, the resulting romanizations of words match,
but in the cases that do not, the morphological analysis needed to be performed anew. For example, there are
differences in romanization between Hansard versions (e.g. “lh" vs. “&" for the lateral fricative) and between
dialects (e.g. “s" vs. “h" for a particular phoneme); since Uqailaut presumes “&" and “h", these are substituted
before re-processing. After all of the pre-processing, we followed the same procedure as with version 1.1 of the
corpus, first processing what the Uqailaut analyzer would process, and sending the remaining types through the
neural morphological analyzer. In total, we have 1,548,500 types, processed through one or the other analyzer.

For our work during the workshop, however, we are training and evaluating using only the Uqailaut segmenta-
tions (that is to say, without using the neural parser), as the neural parses were not yet finished at the time of these
experiments. We expect that the more complete analyses of the neural parser will have a more positive effect on
downstream performance in future experiments.

6https://uqausiit.ca/node/10333
7https://uqausiit.ca/verb-ending/vita
8https://uqausiit.ca/node/12189

https://uqausiit.ca/node/10333
https://uqausiit.ca/verb-ending/vita
https://uqausiit.ca/node/12189
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In the following experiments, the morphologically processed text uses “deep" forms, in the sense of Micher
(2017), rather than the surface forms. Since Uqailaut, and thus the neural generalization of it, only parse surface
words into deep forms (and do not generate surface words from deep forms), we present our experiments with
different segmentation approaches solely in the Inuktitut to English translation direction.

System configuration

The model uses a 3-layer encoder, a 3-layer decoder, a model dimension of 512 and 2048 hidden units in the
feed-forward networks. The network was optimized using Adam (Kingma and Ba, 2014), with an initial learning
rate of 1e−4, decreasing by a factor of 0.7 each time the development set BLEU did not improve for 8000 updates,
and stopping early when BLEU did not improve for 32, 000 updates.

In addition to the most common automatic MT evaluation metric, BLEU9 (Papineni et al., 2002), we also
evaluated our MT experiments using two recently proposed metrics, chrF10 (Popović, 2015) and YiSi (Lo, 2019),
which were shown to correlate better with human judgments on translation quality in English by Ma et al. (2019).

Results

iku segmentation eng segmentation BLEU chrF YiSi-0 YiSi-1
5000 BPE 5000 BPE 27.7 47.1 62.9 70.8

Morphological 5000 BPE 23.3 42.5 58.2 66.1
Morph + 5000 BPE 5000 BPE 26.6 46.8 62.6 70.5

Table 4.3: Results of Inuktitut-to-English NMT systems as evaluated by BLEU, chrF, YiSi-0 and YiSi-1 .

We compared BPE of various vocabulary sizes to the morphological analysis described above. In Table 4.3,
we observe that morphological analysis underperforms BPE across all metrics.

We think this is not due to a problem in the morphological analysis itself (e.g. identifying morphemes incor-
rectly), but that the process left unanalyzable words intact, whereas BPE manages to segment all words into more
manageable pieces. We therefore also performed a preliminary attempt to combine them, in hopes of combining
some of the benefits of true morphological analysis with the statistical advantages of BPE. First, we took the output
of morphological analysis (i.e., the input corpus to the “Morphological" system in Table 4.3), trained a new BPE
model on it, and segmented it according to this model. Manual inspection of the results of this process suggest
that morphemes identified in morphological analysis were typically left intact by BPE – that is to say, they were
identified as units by BPE as well – and only unanalyzed words were further segmented.

This system also underperformed the BPE-only system, but only by small margins. We think that this avenue
is still promising, as there are many possible ways to integrate BPE and morphology. Many questions remain:

• Does one resegment only the unanalyzed words, or all words?

• Does one train the BPE model on only unanalyzed words, or all words?

• Do we use surface morphemes or underlying morphemes?

• Do we rejoin underlying forms or keep them segmented?11

Also, as not all the corpus was fully analyzed, more development in neural analysis will probably lead to
improvements downstream.

9BLEU scores were computed using SacreBLEU (Post, 2018), compared to untokenized but punctuation-normalized references.
BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.4.2

10chrF scores were computed against untokenized but punctuation-normalized references using SacreBLEU with
chrF2+case.mixed+numchars.6+numrefs.1+space.False+version.1.4.2 settings.

11Joanis et al. (2020) finds that using underlying forms, but rejoining them before BPE segmentation, gives a performance improvement
over deep forms alone in corpus alignment.
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4.3.2 Single source and multi-source experiments
One experimental theme we pursued in this workshop was whether multi-source techniques (Zoph and Knight,
2016; Nishimura et al., 2018; Libovický and Helcl, 2017), typically used for training MT systems with multiple
source languages, could be of value when applied to multiple representations of the input text, as a potential way
to combine the benefits of two different kinds of analysis.

A recent result in multilingual machine translation (Littell et al., 2019) suggested that it can be valuable, when
training MT on a corpus that has undergone significant processing (in that case, machine translation of the original
source into Russian), to attend to both the original text and its processed version. That is to say, “attention" in
MT makes it possible to avoid having to choose between using the original text or a process that may have been
helpful (or may have destroyed useful information); rather, we can allow the model to attend to the results of any
stage in the pipeline, and learn for itself which representations to attend to the most. The above result concerned
a pre-processing step that was itself machine translation – that is to say, this was a “pivot" system in which L1
is translated to L2, and L2 is translated into L3. We were wondering whether the result might also apply for
processing steps that were not machine translation. Would, for example, it be fruitful to attend to two different
pre-processings: say, BPE and morphological, syllabics or romanized, etc.?

System configuration

The following experiments were performed using the architecture in Littell et al. (2019), a variant of Transformer
(Vaswani et al., 2017) with multi-source attention, implemented in the Sockeye framework (Hieber et al., 2017)
for machine translation.

The model uses two 3-layer encoders (one for each source type), a 3-layer decoder, a model dimension of 512
and 2048 hidden units in the feed-forward networks. The decoder attended to each decoder using “flat" attention
(that is, attending to each and combining the result by simple addition, rather than an additional, hierarchical
attention layer). The network was optimized using Adam (Kingma and Ba, 2014), with an initial learning rate of
1e−4, decreasing by a factor of 0.7 each time the development set BLEU did not improve for 8000 updates, and
stopping early when BLEU did not improve for 32, 000 updates.

Results

As an initial sanity check, we performed two tests of the idea:

1. Source 1: BPE vocab size 5000, source 2: BPE vocab size 30000

2. Source 1: Inuktitut in syllabics, BPE vocab size 5000; source 2: Inuktitut romanized, BPE vocab size 5000.

We did not expect these to show significant gains, but we wanted to make sure the systems did not experience
a serious drop in scores. Unfortunately, Table 4.4 indeed showed such a performance drop, with the multi-source
systems performing very poorly.

Source Target BLEU
Inuktitut, syllabics, BPE 5000 English, BPE 5000 30.3

Inuktitut, romanized, BPE 5000 English, BPE 5000 27.7
Inuktitut, syllabics, BPE 5000 + English, BPE 5000 6.3
Inuktitut, romanized, BPE 5000

Inuktitut, romanized, BPE 5000 + English, BPE 5000 2.5
Inuktitut, romanized, BPE 30000

Table 4.4: Preliminary multi-source iku→eng

We believe this is because the multi-source source system greatly increases the number of parameters without
an associated increase in information in the corpus. If we compare this to the positive results in Littell et al.
(2019), the difference is that there the introduction of a third language greatly increases the amount of information
available to the system: it is not just another view of the same data. So, rather than continue exploring additional
monolingual multi-source setups (e.g., BPE and morphology together), we instead moved on to the multilingual
multi-source experiments detailed in Section 4.4.2.
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4.3.3 Challenges in Evaluation of English-to-Inuktitut MT

For questions of segmentation, we primarily looked at the Inuktitut-to-English direction, since our morphological
analyzer was only able to parse, rather than generate. (That is to say, while we could output segmented, underlying
morphemes, we could not, at that time, rejoin them into fluent outputs.) For English-to-Inuktitut, we only looked
at BPE-based systems, since these can trivially be de-segmented. In this translation direction, we focused on
questions of evaluation because morphologically complex languages pose a challenge in terms of the choice of
automatic evaluation metric.

BLEU (Papineni et al., 2002) is a common metric for evaluation of machine translation output given refer-
ence translations. However, because BLEU score is (typically) computed at the word level, an error in a single
morpheme is penalized just as harshly as a completely incorrect choice of terminology. This can be expected to
have a particularly detrimental effect when evaluating translation output in morphologically complex languages;
even if the system chooses the correct lemma, any errors of morphological inflection will be counted as whole-
word errors, decreasing the count of correctly-predicted n-grams. BLEU score could also be computed over byte
pair encodings rather than words, but this poses challenges when trying to compare systems built with different
vocabularies.

chrF sidesteps the segmentation issue by first removing whitespace before counting character n-grams and
computes a precision/recall-balanced score over the character n-gram counts. On the other hand, YiSi-0 respects
the word boundaries in the MT output but uses the character-level longest common substring accuracy to evaluate
the word-level similarities and aggregates the word-level similarity scores into the sentence-level score. These
two automatic evaluation metrics based on character-level information would be more suitable for evaluating MT
output in morphological complex languages. In fact, Ma et al. (2018) showed that chrF correlates the best with
human in evaluating Finnish translation output and YiSi-0 correlates the best with human in evaluating Turkish
translation output. However, we think it important to point out that the complexity of Inuktitut morphology is
higher than that of Finnish or Turkish and there is no existing work on MT evaluation for polysynthetic languages.
This remains an area for future work.

System configuration

The English-to-Inuktitut MT system was built using the same architecture as that of the system mentioned in
Section 4.3.1. We evaluated the system at both word-level and 5k BPE-vocabulary segmentation using BLEU,12

chrF,13 and YiSi-0. Since YiSi-0 is a weighted harmonic mean of precision and recall, we also dissected YiSi-0
into pure precision and recall for further analysis.

Results

First and the foremost, we have to emphasize that MT system scores for different translation directions are not
directly comparable. Thus, one should not conclude from Table 4.5 that translating Inuktitut into English is an
easier task to the opposite direction, or the translation quality of a system in one direction is better than that in the
other direction.

Translation Evaluation YiSi-0
direction unit BLEU chrF weighted-F precision recall
iku→eng word 27.7 47.1 62.9 66.2 62.1
eng→iku word 17.8 46.7 48.0 49.9 47.9
iku→eng 5000 BPE 29.5 47.4 64.1 67.6 63.3
eng→iku 5000 BPE 13.7 46.4 56.4 59.0 56.0

Table 4.5: Results of English-to-Inuktitut NMT systems as evaluated by BLEU, chrF and YiSi-0 (with pure YiSi-0 precision,
i.e. α=0.0 and recall, i.e. α=1.0 for supplementary analysis).

12In this table and table 4.4, BLEU scores were computed against untokenized but punctuation-normalized references using SacreBLEU
with BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.4.2 settings.

13chrF scores were computed against untokenized but punctuation-normalized references using SacreBLEU with
chrF2+case.mixed+numchars.6+numrefs.1+space.False+version.1.4.2 settings.
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Instead, we would like to point out that there is a notable difference in word-level BLEU scores for the sys-
tems in two translation directions because BLEU penalizes systems on failing to correctly inflect a word form
equally harshly as choosing an entirely incorrect word; thus MT systems translating into morphological complex
languages are expected to achieve lower word-level BLEU scores. A huge difference can also be seen in YiSi-0
scores using word segmentation in evaluation. However, the chrF score difference between the two translation
directions is marginal.

When evaluating translation output at subword unit level, both BLEU and chrF showed a wider score difference
when the translation direction was flipped. However, YiSi-0 showed a smaller difference. The contradicting results
showed that evaluating translation output in polysynthetic languages itself is a challenging and unsolved research
problem.

Without human evaluation on translation output in polysynthetic languages, we could not conclude whether
the quality of the English-to-Inuktitut MT system is acceptable or not (or whether it is sufficient for some use
cases but not others). We hope that future human evaluation of machine translation into polysynthetic languages
will provide a basis for the examination of different evaluation approaches, allowing future researchers to select
the most appropriate evaluation metrics.

4.4 Low-Resource Experiments
In keeping with the theme of the workshop, our low-resource machine translation experiments involve neural
systems rather than phrase-based ones, despite the fact that they are built from extremely small datasets. While
we perform our experiments with fairly simple modern neural models and minimal hyperparameter tuning, recent
work (Sennrich and Zhang, 2019) suggests that careful tuning of hyperparameters can result in NMT systems
outperforming statistical machine translation systems even on datasets of around 5000 sentences (comparable to
our smaller datasets).

Most of the low-resource machine translation experiments were performed using Sockeye (Hieber et al., 2017),
and the multi-source generalization of Sockeye introduced in Littell et al. (2019).

4.4.1 Baselines and Vocabularies

RNN Transf. Transf. Transf. Transf.
BPE BPE Word FST FST+BPE

ess→eng 4.2 8.4 7.3
eng→ess 3.3 4.4 3.5
esu→eng 10.7 13.9 6.5
eng→esu 5.4 5.3 3.3
grn→spa 10.5 7.4 7.1 9.6
spa→grn 8.6 7.1 8.3 8.1

Table 4.6: BLEU scores of baseline and vocabulary experiments for Yupik–English and Guaraní–Spanish machine translation
experiments. All BPE vocabularies in this table are of size 5000, learned separately.

We first compare RNN and Transformer translation models using BPE vocabularies of 5000. The size of 5000
was selected for consistency with other experiments and because it was among the highest performing vocabulary
size on initial RNN experiments for several language pairs (not reported here). The RNN models were trained
using OpenNMT (Klein et al., 2017) with default settings, and the Transformer models were trained using Sockeye
(Hieber et al., 2017) with a 3 layer encoder, 3 layer decoder, batch size 2048, optimized toward perplexity, and the
remaining parameters set to defaults. As Table 4.6 shows, the Transformer system outperformed the RNN system
in all but one case (which was within 0.1 BLEU); we use the Transformer system for all remaining experiments.

We compare using a BPE vocabulary of 5000 symbols to using a whole word vocabulary. In all cases, the BPE
vocabulary outperforms the whole word vocabulary (by between 0.9 and 7.4 BLEU points). Using whole words,
English–St. Lawrence Island Yupik experiments were run with vocabulary sizes of 4787 and 26888 (respectively,
including special characters), while English–Central Alaskan Yup’ik whole word vocabularies consisted of 13501
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and 106736 types respectively. Given the small data sizes and large Yupik vocabulary sizes, it is unsurprising that
BPE outperforms whole words; there may simply not be enough examples of many types in the long tail for the
system to accurately translate them, and the word system includes a large number of out of vocabulary items in
the test set.

Following the results of the Yupik experiments, we omit the RNN experiments for Guaraní–Spanish and in-
stead start with a baseline of a Transformer model (3 layer encoder, 3 layer decoder, batch size 2048, optimized
toward perplexity, remaining parameters set to defaults), using separately learned BPE encodings for Spanish and
Guaraní with vocabularies of 5000 types each. There does exist other work on machine translation for Guaraní–
Spanish, notably an online gister14 and work in Rudnick (2018). Though Rudnick (2018) also performs experi-
ments on Bible translation, we do not compare directly, as those results are measured on stemmed output.

For Guaraní–Spanish, we also experiment with full-word vocabularies, FST-segmented vocabulary (Guaraní
side only; Spanish side BPE 5000), and an FST-segmented vocabulary with backoff to BPE (all Guaraní words
left unsegmented by the FST were segmented by a BPE model learned for a BPE 5000 vocabulary on Guaraní;
Spanish side BPE 5000). As shown in Table 4.6, the baseline BPE model outperforms all other experiments.15

4.4.2 Yupik Language Experiments
Our Yupik language experiments begin with baseline RNN and Transformer models. Finding that the Transformer
strongly outperforms the RNN (Table 4.6), we perform the remainder of the experiments with the Transformer
architecture only.

In addition to the baseline, we perform two experiments: multi-source experiments on a multi-parallel subset
of the data and multilingual NMT system experiments. BPE vocabularies of size 5000 were learned separately
on each language’s training data using subword-nmt (Sennrich et al., 2016). Our most promising low-resource
experiments, described in Section 4.4.2 involve the use of higher resource languages from the same language
family to build multilingual neural machine translation systems which can then be finetuned for specific low-
resource languages.

Multisource

In order to experiment with multisource machine translation, we build a multiparallel verse-aligned corpus from
the intersection of all available Yupik Bible data. The resulting New Testament corpus has 5449 lines for training,
1091 lines for development and validation, and 874 lines for testing. It contains data in St. Lawrence Island Yupik
and Central Alaskan Yup’ik, as well as data from two English Bibles. We call the English Bibles engess (for
the English Bible originally aligned to St. Lawrence Island Yupik) and engesu (for the English Bible originally
aligned to Central Alaskan Yup’ik). We preprocessed them identically to the baseline experiments, with one
change: we removed verse numbers from Central Alaskan Yup’ik and its corresponding English (engesu) as
those were not present in the St. Lawrence Island Yupik corpus.

We compared single-source (Sing.) and multi-source (Mult.) approaches, as described in §4.3.2, as well
as separately learned and jointly learned 5000 symbol BPE representations (the joint BPE representations were
learned across all 4 sides of the multiparallel corpus). For the multi-source experiments, we tried translating into
Central Alaskan Yup’ik using its corresponding English and St. Lawrence Island Yupik, as well as translating
into St. Lawrence Island Yupik using its corresponding English and Central Alaskan Yup’ik. Without any major
parameter search, we found that the joint BPE single-source systems performed the best.

As these BLEU scores are extremely low, it is quite difficult to draw any conclusions from this set of exper-
iments; the following notes should be understood in that context. We do observe that for single-source, using a
jointly trained BPE vocabulary performs better than separately trained BPE vocabularies. This may be due in part
to improved translation of copied terms (e.g., names). We do not observe the same consistency in multisource.
Perhaps unintuitively, in single-source experiments, we find that swapping the English Bibles (translating engesu
into ess and engess into esu) performs better than the “correct” pairs. This highlights several challenges of
performing machine translation using Bible corpora: we do not have a guarantee in our case that the “source”
English Bible is the version from which the Yupik Bibles were translated, Bible translations may rely on metaphor

14http://iguarani.com/
15BLEU scores were computed against untokenized but punctuation-normalized references using SacreBLEU with

BLEU+case.lc+numrefs.1+smooth.exp+tok.13.a+version.1.3.7 settings.

http://iguarani.com/
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Sing. Mult. Sing. Mult. Mult.
(joint) (joint) (joint+tied)

ess–esu 3.8 4.7
engess–esu 4.8 4.9
engesu–esu 3.6 3.2 3.9 2.8 3.1
engess–ess 4.0 3.1 4.4 3.4 3.4
engesu–ess 4.7 5.4
esu–ess 4.2 4.8

Table 4.7: BLEU score results for experiments on joint and separate BPE learning, along with multisource experiments. Tested
on the multiparallel subset of Yupik corpora.

or other non-literal phrases, and verse alignment provides additional challenges due to mismatches between sen-
tence and verse boundaries. In some cases, we observe that a sentence spans more than one verse, with a name
appearing in the first verse in English and in the second verse in Yupik or vice versa, an impossible challenge for
machine translation without extrasentential context to overcome; this is a known challenge in parallel Bible cor-
pora (Mayer and Cysouw, 2014). We also did not perform hyperparameter optimization due to time constraints;
more extensively tuned models may show different results.

Multilingual

Multilingual neural machine translation has been proposed as a means of improving neural machine translation of
low-resource languages, using a variety of distinct approaches. These approaches depend are split into approaches
to translate into or out of low-resource languages. Neubig and Hu (2018) explore the multilingual translation task
translating from multiple low-resource languages into a single high-resource language. Gu et al. (2018) also work
in the same translation direction, and incorporate large amounts of monolingual data and many closely-related
source languages.

Our interest is on translation into low-resource languages. In that direction, Ha et al. (2016) perform mul-
tilingual neural machine translation by tagging each subword with a language-specific tag, and then building a
system based on available training data. Johnson et al. (2017) use a single special token at the beginning of input
sentences to indicate the desired target language to translate into. Rikters et al. (2018) follow this approach to do
multilingual translation into and out of morphologically rich languages, though their low-resource setting consists
of more than 3 million sentence pairs.

St. Lawrence Island Yupik, Central Alaskan Yup’ik, and Inuktitut belong to the same language family. Despite
this, they have very limited vocabulary overlap in our parallel data (less than 1% type overlap between Inuktitut
and Yupik, and less than a 3% type overlap between St. Lawrence Island Yupik and Central Alaskan Yup’ik). This
is certainly due in part to the different domains we had available: legislative text (Inuktitut) and Bible (Yupik).
As described in Section 4.2.2 and Section 4.2.1, our data spans a wide range in terms of size, from approximately
5000 lines of text to approximately 1.3 million lines. We approximately follow the Johnson et al. (2017) approach
in our approach to translating from English into Inuktitut and Yupik languages.

Baseline Multilingual ess-Ad. Multi. esu-Ad. Multi.
eng–ess 4.4 5.8 6.5 1.3
eng–esu 5.3 5.7 1.9 6.0

Table 4.8: BLEU scores for experiments on multilingual neural machine translation. The baseline is the original Transformer
baseline for each language pair. Multilingual is the single multilingual system (trained on Inuktitut and Yupik data), and the
remaining two columns show that system fine-tuned on a particular variety of Yupik.

We train joint BPE (vocabulary 5000) on Inuktitut, St. Lawrence Island Yupik, and Central Alaskan Yup’ik,
downsampling the Inuktitut and upsampling St. Lawrence Island Yupik to match the size of Central Alaskan
Yup’ik. We prepend a language tag (e.g. “<ess>”) to each source and target sentence in the three sub-corpora.
Next we train a Transformer model (our “multilingual baseline”) on the concatenation of all available training
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Baseline Multilingual ess-Ad. Multi. esu-Ad. Multi.
eng–ess 26.9 28.0 30.1 10.5
eng–esu 31.0 32.5 16.7 33.2

Table 4.9: YiSi-1 scores (higher is better) computed using ess or esu BPE 5000 embeddings built by word2vec (Mikolov
et al., 2013) for experiments on multilingual neural machine translation. The baseline is the original Transformer baseline for
each language pair. Multilingual is the single multilingual system (trained on Inuktitut and Yupik data), and the remaining two
columns show that system fine-tuned on a particular variety of Yupik.

data (with no sampling, 3 layer encoder, 3 layer decoder, 512 embedding size, early stopping on perplexity of the
concatenated development data). For St. Lawrence Island Yupik and Central Alaskan Yup’ik, we then fine-tune
the multilingual baseline on all language-specific training data (with early stopping based on perplexity on the
language-specific development data). The BLEU score results are shown in Table 4.8. Table 4.9 reports YiSi
results, which follow the same trend as the BLEU score results. As expected, fine-tuning on language specific
data boosts performance on that particular language (while the output on the other language appears to exhibit
catastrophic forgetting (Kirkpatrick et al., 2017)), giving us our best performance. However, with BLEU scores in
the single digits, it is clear that there is still a long way to go before the MT output may be genuinely useful (e.g.
in post-editing or interactive translation) for these low-resource languages.
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Chapter 5

Language Modelling

In this chapter, we report on language modelling experiments, comparing different tokenization strategies for
polysynthetic languages. We trained a state-of-the-art RNN language model using the character, BPE, Morfessor
and FST as the unit for segmenting text data. In order to facilitate comparisons across the tokenization strategies,
we carefully selected datasets for two experimental settings: 1) A setting where all the data available for a lan-
guage is used and 2) a setting where only the New Testament in a language is used. The former setting provides
us an opportunity to utilize all the data we have in a language while the latter allows us to draw a more precise
comparison across languages. We use the average perplexity per character or the character-level perplexity as a
metric to compare different models. The results show that the linguistically-oriented, FST segmentation strategy
performed the best in modelling polysynthetic languages when it was available. In addition, difficulty of mod-
elling different languages is compared using the average perplexity per word or the word-level perplexity. The
potential of FST in aiding language modelling of polysynthetic languages and implications on comparing models
for different languages are discussed.

5.1 Data Preparation
After much consideration, we selected four low-resource, polysynthetic languages for our language modelling
experiments (hereafter referred to by ISO 639-3 code): St. Lawrence Island Yupik (ess), Central Alaskan Yup’ik
(esu), Inuktitut (iku) and Guaraní (grn). These languages were chosen because we had the most available text
data in them. We had at least the Bible, the Gospel books in New Testament in particular, in these languages,
and that allowed us to have a commonality among the datasets to facilitate comparison across the languages. In
addition to the polysynthetic languages, we included two well-researched, non-polysynthetic languages: English
(eng) and Spanish (spa). The eng and spa data were included to provide comparison between polysynthetic
languages and non-polysynthetic languages as esu and eng and grn and spa were parallel translations.

We designed two experimental settings to fully utilize available data while ensuring comparability across dif-
ferent languages. As for the 1) all data setting, we included any available monolingual data in a given language,
including but not limited to the New Testament. The second setting, the 2) New Testament only setting, focused
only on the New Testament data in order to further ensure comparability given the near-parallel data across differ-
ent languages. Regardless of the settings, Luke was used as the development set and John as the test set to further
facilitate fair comparison as we had the Gospel books in all languages. This ensured that different languages

Split Setting 1: All data Setting 2: New Testament

Train Rest of the data available Rest of New Testament
(e.g. Old Testament, transcripts, stories)

Dev Luke Luke
Test John John

Table 5.1: Train-dev-test split

25
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Language Sentences Words Types Type/Token Mean distance to unseen

ess 20,899 206,691 58,637 0.28 3.28
esu 33,102 474,499 106,381 0.22 4.15
iku 31,103 466,705 126,162 0.27 3.70
grn 30,078 622,999 38,944 0.06 14.63
eng 21,835 395,368 11,258 0.03 31.72
spa 30,078 840,937 24,829 0.03 30.39

Table 5.2: Descriptive statistics for setting 1 (all available data)

shared a development set and a test set and a part of the train set (the rest of the New Testament) in common
even though the exact train set available in each language may differ from one another. The train set in the 1) all
data setting included the New Testament, but may also include the Old Testament, transcripts and oral narratives
if available. This setting, therefore, fully utilizes the data we had in each language. In the 2) New Testament
setting, the development and test sets stayed the same, but the train set included the rest of the New Testament
only. It should be noted that we did not align the Bibles at the sentence level, and there was some variability
among different Bible translations as discussed in Chapter 4. However, esu and eng and grn and spa Bible
translations were assumed to be parallel, and we assume that the other Bible translations provide comparable texts
with similar intensions overall. While the 2) New Testament only setting may provide a more precise comparison,
the 1) all data setting may be more representative of the reality given the limited size of the data for the former
setting. Table 5.1 summarizes the two experimental settings and the dataset split.

Given the data split, we preprocessed the datasets systematically to further ensure comparability among sub-
sequent language models. We removed redundant, bracketed texts when applicable, and normalized apostrophes
as they were meaningful in some languages and should not be tokenized separately from their surrounding words.
Then, we normalized the punctuation and tokenized the texts using Moses scripts (Koehn et al., 2007) with default
settings. The overall preprocessing for language modelling experiments resembles that for machine translation
experiments discussed in Chapter 4 except that we did not truecase the data for langauge modelling experiments.

Tables 5.2 and 5.3 summarize descriptive statistics of the preprocessed data under each setting. Overall, it
seems that the characteristics of a language as captured by the statistics are quite similar under the two settings.
This may not be surprising given that the two settings concern very similar domains. While it remains to be seen if
these descriptive statistics would be similar under a different setting for the languages, we observed the followings
for the languages given our datasets: As discussed in Chapter 3, the languages seem different in the TTR and
mean distance to the next unseen word. ess, esu and iku consistently show a higher TTR and a lower mean
distance to the next unseen word than grn. While grn is considered as a polysynthetic language, it seems that
grn might be slightly different from the other polysynthetic languages spoken in Alaska (ess, esu, iku). Still,
grn is distinctive from spa and eng in that it still had a higher TTR and lower mean distance to the next unseen
word. While the spa data seems more complex under the New Testament setting, eng and spa are consistently
simpler than polysynthetic languages in terms of TTR and mean distance to the next unseen word.

It is noted that, across languages, the datasets are similar in terms of sentence counts within each experimental
setting. While esu-eng and grn-spa differed slightly in terms of the exact sentence count, they are aligned at
the verse level. The rest of the data are not aligned at the verse level, but they seem to contain similar number
of sentences under the respective data conditions. Note that we did not include the Hansard data for iku. We
exclude the data because including it would increase the amount of available data and genre variability for the
particular language too much to allow comparison across languages.

Given the similar number of sentences present in each dataset, it is noteworthy that the word count and type
count are distinct across the languages. Again, ess, esu and iku seem similar to each other in that they have
a smaller number of words and a large number of types than others. This reflects their typological characteristic,
that they tend to have longer words with more morphemes, which may lead to more unique tokens. grn still
seems distinct from the other polysynthetic languages in that the datasets in the language tend to have more words
and less unique words. In fact, grn seems to have similarity with spa in terms of the descriptive statistics even
though grn still has a lower mean distance to the next unseen word than spa. eng seems to be clearly more
analytic than the other languages as it has more word counts and less type counts.
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Language Sentences Words Types Type/Token Mean distance to unseen

ess 7,860 121,549 31,928 0.26 3.57
esu 8,464 108,757 30,980 0.28 3.32
iku 7,858 110,977 36,573 0.33 3.03
grn 7,896 171,350 12,779 0.07 12.20
eng 7,870 210,395 5,067 0.02 38.82
spa 7,896 206,707 11,371 0.06 16.01

Table 5.3: Descriptive statistics for Setting 2 (New Testament only)

5.2 Tokenization strategies

We considered five different tokenization strategies in modelling the languages: word, character, BPE, morfessor
and FST segmentation methods. In what follows, we briefly explain each tokenization strategy and why they
might be helpful in segmenting polysynthetic languages.

5.2.1 Word

A common tokenization strategy is to tokenize text by whitespace or by words. While it may be simple and seem
intuitive, this tokenization strategy faces data sparsity and out-of-vocabulary (OOV) issues. For example, if we
tokenize by words, dog and dogs will count as two separate tokens even though there is much shared information
between the two. If the train set includes only the singular form and the test set contains only the plural form, the
plural form in the test set will be considered as OOV.

(3) aghnaaguq
aghnagh -∼:(ng)u -∼f(g/t)u- -q
woman -to.be -INTR.IND -3SG

‘she is a woman’ (Jacobson, 2001, p.25-26)

This tokenization method is particularly problematic for polysynthetic languages given their rich morphology.
A word in polysynthetic languages may contain several morphemes to express a sentence-like intension. For ex-
ample, a word in ess, aghnaaguq, consists of four morphemes and is translated as ‘She is a woman’ as shown
in Example (3). Importantly, this results in a high rate of hapax legomena (words appearing only once), which
results in much higher OOV rates than observed in most non-polysynthetic languages. In modelling polysynthetic
languages, the word-level tokenization is too unrealistic to be useful in predicting the next word, and its perfor-
mance may be over-estimated or under-estimated depending on how we reward or penalize OOVs. For example,
if we do not penalize a model for predicting an OOV symbol for the next word, it may predict an OOV symbol
repeatedly for a polysynthetic language to falsely record a good performance. If we do want to penalize OOV, we
will have to come up with a metric that does that fairly given our data. Given that the model we adapted did not
penalize OOV, we opted to use language models that would not over-generate OOVs.

5.2.2 Character

One possible solution to such issues of word-level tokenization is to tokenize text by the character. The character-
level tokenization rarely has OOV issues because a text typically consists of a finite set of characters regardless
of its morphological complexity. However, this tokenization method, again, cannot fully utilize the linguistic
information present in a text as it reduces all words into a sequence of a finite set of characters. The relation-
ship between dog and dogs may be easily captured by a character-level model, but words with more complex
morphology like Example (3) may be hard to model using the character as the tokenization unit.

While we report our results for character-level models as the baseline to compare other results to, we note
that character-level models may not be meaningful for downstream applications for polysynthetic languages such



28 CHAPTER 5. LANGUAGE MODELLING

as keyboard prediction: Predicting a character at a time when a word consists of several morphemes and a long
sequence of characters may be too slow or too low-quality.

5.2.3 BPE
If word-level tokenization is too coarse-grained and character-level tokenization is too fine-grained, it may mean
that we need to utilize subword units to segment our data. As discussed in Section 4.3.1, byte pair encoding
(BPE; Sennrich et al., 2016) is a unsupervised segmentation method that uses subword units. Originally a data
compression algorithm (Gage, 1994), BPE has become one of the standard techniques in neural machine transla-
tion since Sennrich et al. (2016). Tokens segmented by BPE can represent texts with the minimum entropy by the
fixed vocabulary size, which should be chosen as the hyperparameter. BPE segmentation may look like morpheme
segmentation for some words, but it is data-driven rather than based on linguistic information. For example, with
enough support from a given data, BPE may segment ‘lower’ as ‘low@@ er’ (@@ represents a within-word mor-
pheme boundary), which may seem linguistically motivated, but it is also possible to get different segmentations
such as ‘l@@ ow@@ er’ with different hyperparameters and different data conditions. Refer to Table 4.2 for ex-
amples of BPE segmentations for machine translation of iku, some of which respect morphological boundaries
and some of which do not.

We trained a BPE model on the training data and applied the model to all data using subword-nmt1. We
experimented with different vocabulary sizes for BPE segmentation, and report results on two vocabulary sizes:
500 and 5,000. While BPE provides an off-the-shelf method to segment words into subword units, it remains
unclear whether the unsupervised method would prove useful in modelling polysynthetic languages.

5.2.4 Morfessor
We adopted another unsupervised segmentation method called Morfessor to compare with BPE. Morfessor is a tool
for unsupervised (and semi-supervised) morphological segmentation and has been utilized in speech recognition,
MT, and speech retrieval. While there is no literature on its efficiency in neural language modelling tasks for
polysynthetic languages, it is said to be useful in modelling languages with rich morphology such as Finnish,
Estonian, German and Turkish (Smit et al., 2014). Morfessor uses Maximum a Posteriori (MAP) estimation to
approximate morpheme segmentation assuming that a word consists of one or more “morph”, yet its results may
not be the same as linguistically motivated morpheme segmentation. We used Morfessor 2.0 with the default
settings for Morfessor segmentation.

5.2.5 FST segmentation
The last segmentation strategy we considered was segmentation based on FSTs. FST segmentation provides
knowledge-based, rule-based segmentation based on linguistic knowledge and analysis. Several FST-based mor-
phological analyzers or morphological segmenters have been developed for polysynthetic languages, and we were
able to experiment with two of them for our experiments: ess (Chen and Schwartz, 2018) and grn (Kuznetsova
and Tyers, 2019). The FST-based morphological analyzers produce zero or more morphological analyses for any
given word. When there are more than one analysis available for a word, we used heuristics (e.g. choose the
shortest analysis) to select one analysis to segment the given word. When there was no analysis available, we used
character (character backoff) or BPE (BPE backoff) segmentation for the word. The BPE backoff was performed
using the existing BPE segmentations with the vocabulary size of 500 and 5,000. While we were able to ob-
tain this segmentation results only for two polysynthetic languages, this provides a point of comparison between
supervised, linguistically motivated segmentation and unsupervised, data-driven segmentation.

5.3 RNN-LSTM
We used a state-of-the-art language model (Merity et al., 2017, 2018) for our language modelling experiments.
The RNN model with LSTM has shown to be competitive in modelling English benchmark datasets such as PTB
and WikiText-2. We adapted the hyperparameters for WikiText-2 (WT2) with LSTM for Morfessor and FST

1https://github.com/rsennrich/subword-nmt

https://github.com/rsennrich/subword-nmt
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Character & BPE Morfessor & FST

RNN Cell LSTM LSTM
Layers 3 3
RNN hidden size 1840 1150
Dropout (e/h/i/o) 0/0.1/0.1/0.4 0.1/0.2/0.65/0.4
Weight drop 0.2 0.5
Weight decay 1.2e-6 1.2e-6
BPTT length 200 70
Batch size 128 80
Input embedding size 400 400
Learning rate 1e-3 30
Epochs 50 200
Random seed 1111 1882
Optimizer Adam SGD
LR reduction (lr/10) [25, 35] NA

Table 5.4: Hyper-parameters for word- and character-level language modelling experiments

Language Morfessor BPE (V=500) BPE (V=5k) Character

ess 2.53 2.64 3.34 2.51
esu 2.72 2.82 2.84 2.64
iku 2.31 2.42 2.46 2.36
grn 2.93 3.07 3.49 3.03
eng 2.53 2.48 2.47 2.51
spa 8.97 2.72 2.60 2.69

Table 5.5: Character-level perplexity for setting 1 (all available data). V means the vocabulary size for BPE operation. Bold
numbers represent the best model for each language while underlined numbers show the best model for each tokenization.

models and the hyperparameters for character level enwik8 for character and BPE models. Table 5.4 summarizes
the hyperparameters.

We acknowledge that none of these models (nor any other models to our knowledge) have been specifically
designed to model polysynthetic languages or reported to be used to model polysynthetic languages. With a lack
of a language model designed to model polysynthetic languages, we chose a state-of-the-art model that has proven
competitive in modelling English instead.

5.4 Character-level perplexity

Perplexity is a measure of language modelling difficulty and calculated by taking the exponent of the average
negative log-likelihood per token. Because perplexity as it is depends on the tokenization strategy, we calculate
the character-level perplexity for each model to allow comparison among them. We define the character-level
perplexity as the exponent of the average negative log-likelihood per character and calculate it by adding up the
token-level loss for a given tokenization, multiplying the total loss by the number of tokens in the test set and
dividing the value by the number of characters in the test set. We count whitespace and the end of a sentence
symbol as separate tokens. This ensures a fair comparison among different tokenization strategies. The choice
of character as the common denominator is arbitrary, and it can be other tokenization methods such as the word.
Refer to Mielke (2019) for detailed explanations.
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Language Morfessor BPE (V=500) BPE (V=5k) Character

ess 2.77 3.14 3.23 2.64
esu 2.98 3.74 3.61 2.89
iku 2.59 3.02 2.96 2.61
grn 3.16 3.44 3.41 2.97
eng 2.40 2.81 2.59 2.56
spa 2.66 3.23 3.18 2.94

Table 5.6: Character-level perplexity for setting 2 (New Testament only).

5.5 Results & Discussion
Tables 5.5 and 5.6 summarize the language modelling experiment results excluding FST segmentation for the 1)
all data setting and 2) New Testament only setting, respectively. It is suggested that the character and Morfessor
models might work better than BPE models for polysynthetic languages. As for the 1) all data setting, tokenization
by character resulted in the best performance in modelling ess and esu while Morfessor models performed the
best for iku and grn. BPE models with the vocabulary size of 5k worked the best with eng and spa. The same
trend was observed for the 2) New Testament setting for ess, esu and iku: character models performed the best
for ess and esu while Morfessor led to the lowest perplexity measure for iku. However, the character-level
model resulted in the lowest character-level perplexity for grn while the Morfessor model was the best for eng
and spa for the 2) New Testament setting. While it is unclear why a certain tokenization method worked better
for a language, it is speculated that BPE might not be well-suited in segmenting polysynthetic languages given
their morphological richness. A word in a polysynthetic language might consists of several morphemes that are
not immediately retrievable based on the surface form. As shown in Example (3), a word in ess may contain
a root, a derivational suffix and inflexional suffixes, which may look different in the surface form depending on
the morphophonological rules that apply to the suffixation. For example, the derivational suffix (-∼:(ng)u) in
example (3) has two morphophonological symbols (∼ and :), the latter of which applies to delete the gh ending
of the root (for details see Jacobson, 2001). Given such characteristics of polysynthetic languages, the fact that
character models worked the best for ess and esu might mean that those languages were hard to segment with
unsupervised segmentation methods like Morfessor and BPE. Segmenting those languages might require getting
at the underlying form with linguistically motivated segmentation rather than segmenting the surface form only.
Even though Morfessor models worked the best for iku under both settings and for grn under the 1) all data
setting, the difference between the Morfessor models and character models are quite small.

It should be noted that the hyperparameters for Morfessor and BPE operations are not optimized. While the
BPE models with the two hyperparameters (V=500 and V=5k) did not result in the best model for any of the
polysynthetic languages, it is possible that different hyperparameters might result in better (or worse) perplexity
measures. In a similar note, different datasets in a language might work differently with Morfessor tokenization:
the Morfessor segmentation was the best in modelling spa under the 2) New Testament only setting, but it was
the very worst under the 1) all data setting.
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Language Morfessor BPE (V=500) BPE (V=5k) Character

ess 1903.37 2718.52 18157.32 1790.03
esu 2244.44 2969.89 3113.87 1783.40
iku 1469.02 2185.62 2503.41 1773.08
grn 287.71 372.84 725.33 348.70
eng 49.37 45.87 44.86 47.83
spa 13051.98 75.10 62.01 71.97

Table 5.9: Word-level perplexity for setting 1 (all available data). V denotes vocabulary size for BPE operation

Language Morfessor BPE (V=500) BPE (V=5k) Character

ess 3986.77 10993.00 13975.35 2689.34
esu 4562.23 26323.96 20053.28 3572.00
iku 3923.01 14970.43 12581.29 4231.44
grn 432.68 673.22 644.65 313.79
eng 39.62 77.30 55.01 52.03
spa 67.93 158.86 148.47 106.16

Table 5.10: Word-level perplexity for setting 2 (New Testament only). V denotes vocabulary size for BPE operation

As a way to utilize rich morphology in modelling polysynthetic languages, we trained FST-based models for
ess and grn. Table 5.7 summarizes the character-level perplexity values for all tokenization methods including
FST segmentation only and FST segmentation with character or BPE backoff strategy for ess and grn. For all
settings, FST-based segmentation resulted in the best model for the two languages. The clear difference between
FST-based models and non-FST-based models suggest that the Morfessor and BPE models failed to capture the
morphological information present in the data.

The fact that the FST segmentation only worked the best for ess might suggest that the FST segmentation
for the language might have been more robust than grn. Indeed, the FST segmentation only resulted in high
perplexity in modelling grn under the 2) New Testament setting. With the BPE and character backoff, grn FST
models still worked the best, but it is speculated that the FST morphological segmentation alone for grn might
not have been reliable or the coverage of the FST was not as good as the ess FST.

After comparing different tokenization methods per language, we compared different languages to see which
language is easier or harder to model. This line of inquiry has been pursued by several recent studies (Cotterell
et al., 2018; Mielke et al., 2019; Gerz et al., 2018), where various languages are modeled using a state-of-the-art
neural language model to compare relative difficulty of modelling a language with particular linguistic features.
It should be noted that our data per language were not parallel so the comparison has to be drawn with caution.
However, we still attempted the comparison here as comparing our models may provide insights for future studies
given that we used the same or very similar RNN language models as the previous literature and that polysynthetic
languages have not been discussed in this line of inquiry. If we compared the character-level perplexity, Table 5.5
and Table 5.6 show that iku was the easiest to model under the 1) all data setting and eng under the 2) New
Testament setting. However, character-level perplexity may not be the right metric to use to compare different lan-
guages. The problem with the character-level measure is that it does not tell us much about real-life applications,
where the difficulty of predicting an entire word might be more meaningful. More importantly, the character-level
perplexity underestimates the difficulty of modelling polysynthetic languages as they tend to have longer, morpho-
logically complex words. In fact, when we look at the word-level perplexity, the differences between polysynthetic
languages and others become clearer. Table 5.9 and Table 5.10 show the word-level perplexity measures for the
two experimental settings. When considering the difficulty of predicting the next word in the languages than the
next character, iku is no longer the easiest to model under any condition. The word-level measure clearly shows
that eng, followed by spa, was the easiest to model. Comparisons of the word-level perplexity values suggest
that ess, esu and iku are quite similarly hard to model while grn is less difficult even though it is still quite
harder to model than language like eng and spa. This observation agrees with our previous observation about
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Figure 5.1: Model comparison in sentence-level negative log-likelihood for ess

the descriptive statistics of the datasets.

Of course, it might be unrealistic to expect that a model for polysynthetic languages would result in a word-
level perplexity comparable to that for eng given the linguistic difference. Polysynthetic languages tend to have
longer and diverse word forms because of their richer morphology. Therefore, they are likely to be harder to model
than other languages. However, comparing the character-level perplexity only may result in mistakenly arguing
that iku is easier to model than eng.

While the relative performance of each tokenization method for a given language stays the same regardless, the
choice of the unit for the perplexity measure should be carefully made if we are to compare different languages.
As mentioned above, the datasets were not strictly parallel across the languages even under the 2) New Testament
setting. Parallel texts and different evaluation methods might facilitate comparison across languages. For example,
Mielke et al. (2019) uses the average surprisal (negative log-likelihood loss) per verse when comparing languages
models using data fully aligned at the verse level and also suggests a statistical method to estimate the difficulty
coefficient of a language given some missing verses. Aligning a parallel corpus of polysynthetic languages and
others at the verse or sentence level may lead to a more useful comparison in future research.
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Figure 5.2: Model comparison in sentence-level negative log-likelihood for grn
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5.6 Future Direction
The results clearly show that FST segmentation is helpful in modelling polysynthetic languages. While we had
only two languages to experiment with FST segmentation, FST segmentation with or without a backoff strategy re-
sulted in the best model by a large margin. Figure 5.1 and Figure 5.2 visualize the relative performance of the FST
model v. BPE or character models at the sentence level for ess and grn, respectively. For both figures, points un-
der the 45 degree line mean lower loss or better performance for the FST model than Morfessor, BPE or character
model. For both languages, it is clear that the FST models resulted in lower loss (negative log-likelihood) per sen-
tence overall as well as the entire text. This represents an opportunity to utilize an existing, linguistically-oriented
system in aiding neural language modelling. While FSTs might not be as helpful in modelling high-resource
languages with poor morphology, they will be essential in modelling low-resource polysynthetic languages.

Another line of inquiry we are currently pursuing is comparing polysynthetic languages with other languages
in terms of language modelling difficulty. In order to compare different languages more precisely, we are using
aligned Bible datasets and comparing a perplexity measure per verse. By modelling 149 Bibles in 94 languages,
covering 24 language families, we aim to answer if polysynthetic languages are indeed harder to model than other
languages and what kind of linguistic, typological features (if any) explain such difficulty.
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Chapter 6

Applications & Future Work

6.1 On-device Text Prediction

One of the goals of this workshop was to make progress in providing human language technologies that can
actually be used by native speakers. As smartphones become ubiquitous in native communities, text entry is
becoming an increasingly important use case.

In particular, users should have access to text entry methods, namely custom keyboards, that allow them
to enter text quickly and accurately. Currently, most of the languages we consider have no form of predictive
keyboard available.

Our goal was to develop a pipeline for constructing custom predictive keyboards for polysynthetic languages.
We wanted the keyboards to allow both automatic completion of the current unit of text being typed by the user
(where units could refer to morphemes or words) and prediction of the next unit when the user input reached a
boundary. Both completion and prediction rely on language models to work, so the bulk of our efforts focused on
adapting trained neural network language models for on-device use.

Ultimately, we successfully built functional prototype on-device keyboards for Guaraní (grn) and St. Lawrence
Island Yupik (ess). To our knowledge, these would be the first open-source predictive keyboards available for
these languages on the Android platform.

6.1.1 Open Source Stack

We chose to integrate our predictive LM models with the android branch of the open source Divvun toolkit1.
Divvun was chosen since it is actively developed, and the project has a stated goal of enabling text entry for low-
resource languages. The toolkit provides base IME front end source code that handles on-device keyboard display
and capturing of user input. We rewrote Divvun’s default back end to enable loading a trained neural LM that
could be used to make future predictions based on the text buffer content the user has already typed.

6.1.2 User Interface Considerations

Polysynthetic languages pose unique challenges for UI/UX design in the context of a predictive keyboard. A key
question concerns the level of granularity at which predictions should be presented.

Existing keyboards almost exclusively make predictions over whole words. For polysynthetic languages,
word-level prediction is problematic. For reasons introduced in Chapters 1 and 2, it isn’t feasible to train an effec-
tive language model over words in languages with extremely productive morphology. Most words are composed
on-the-fly, and so would not have been seen during training. Furthermore, polysynthetic morphology permits
extremely long words (e.g., “oñembohuguaipu’ã” in Guaraní). The small prediction strip present on device key-
boards would not be able to comfortably accommodate so many characters in a single prediction.

1https://github.com/divvun/giellakbd-android
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Figure 6.1: Sample mobile keyboard interface.

As a compromise, we chose to use morphemes as the unit of prediction for our keyboard prototypes. As
the user types, the prediction bar presents them with either completions of the current morpheme they are in the
middle of, or predictions for the next morpheme if the language model predicts they are at a morpheme boundary.

The use of morphemes as units of prediction implies that we have access to morphological analysis and seg-
mentation tools that can generate morpheme-level training data for our language models. These tools may not be
available for all languages, in which case different subword units may need to be used. One option is do modelling
and prediction over BPE word chunks. However, these would likely appear unnatural to most users, since BPE
segmentation is unsupervised and linguistically unaware, leading to segmentation that doesn’t correspond to any
natural boundaries. A better option would be to use syllables as units, since they can be extracted with a simple
model that looks for consonant/vowel alternations, and do correspond to cognitively ‘natural’ linguistic units.

6.1.3 Adapting Neural Language Models for Mobile Devices

As shown in Figure 6.1, we’d like to build an interface that uses the context typed into a buffer to present comple-
tions and predictions to the keyboard user. To do this, we need to feed the context data into a language model.

Initially, we attempted to use the SOTA PyTorch-based language models tested in Chapter 5 directly on-
device. However, this proved to be technically prohibitive. First, device resources are limited, and keyboards
should be lightweight — they only account for text entry and shouldn’t have a significant impact on other running
applications. We set a goal of keeping keeping our model size on the order of 10Mb. Second, there is little
built-in support in Android for loading and running PyTorch models. In contrast, Google provides the TensorFlow
Lite(TFLite) framework for loading models trained via TensorFlow and converted for on-device use.

We attempted to convert our PyTorch models to TensorFlow using the ONNX, toolkit2 but found that the
automatic converter did not support many of the operations used. Ultimately, we settled on training custom models
for keyboard operation building on TensorFlow sample code.3 We trained our models using the full desktop

2https://onnx.ai
3https://www.tensorflow.org/tutorials/sequences/recurrent

https://onnx.ai
https://www.tensorflow.org/tutorials/sequences/recurrent
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version of TensorFlow, and successfully exported the portion of the resulting computation graph responsible for
inference to TFLite.

For both Guaraní and Yupik, language models were trained on text from the Bible, that had been processed
via the FSTs described in Chapters 3 and 7 to include morpheme boundaries. The data was split as described in
Chapter 5 for consistency with the language modelling experiments described there. The training data covered all
available Bible verses except the gospel of Luke (which was reserved as development data), and John (which was
reserved as test data). The models were built at the character level, but with morpheme boundaries (@) marked
directly on predicted symbols, as shown in Figure 6.2. This modification enabled the model to guess when a
morpheme boundary was reached (i.e., a symbol with @ was predicted/typed).4

Figure 6.2: Language model training for keyboard.

The model consisted of the following architecture. A single LSTM with 2 layers, and 200 hidden units per
layer, read a 30-character context. The final hidden state of the LSTM was passed through a dense layer fol-
lowed by a softmax to assign probabilities to each possible next symbol. The LSTM was trained with dropout
(keep_prob=0.75) between layers, with dropout disabled during inference. Batches of 20 contexts were used for
training. Optimization was done via Adam, with initial learning rate 1.0 and learning rate decay 0.5.

When the model was loaded on the device, our custom Divvun back end sent the last 30 chars of the input
buffer the user had typed through the model, and used the greedy algorithm below to generate continuations and
predictions to display to the user in the keyboard’s prediction bar.

Algorithm 2: Greedy continuation/prediction generation
Result: N prediction candidates
predictions = list;
/* Get the LM’s ranked predictions for the next char */
nextFromLM = LM.predict(context[-X:];
/* Loop over top N continuation points */
for c in top N from nextFromLM do

/* Greedy unroll to fill out prediction candidate */
prediction = c;
tmp = (context + c)[-X:];
while boundary symbol (@,_) not yet reached do

nextFromLM = LM.predict(tmp);
c = top 1 char from nextFromLM;
prediction += c;
tmp = (tmp + c)[-X:];

end
predictions.append(prediction)

end

Currently, prediction stops when the model predicts a morpheme or word boundary. This stopping condition
can be altered as needed to, for example, avoid stopping if the current prediction is too small (e.g., a single char-
acter) or continue predicting until the total log probability of the predicted string drops below a given threshold.
Predictions can also be reached by a different, less greedy search algorithm, such as a depth first search start-
ing at the current context. However, this has a high chance of producing many candidates with the same prefix.
The method used here was chosen for its simplicity, and because it ensures candidates are diverse (no two can-

4Note that morpheme boundaries never appear in the user’s input buffer according to this scheme. This is different from a system based
entirely on words, as the relevant boundaries, spaces and punctuation symbols, are visible.
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didates can share the same initial character). User testing might be able to determine if this bias towards diverse
predictions is desirable.

6.1.4 Future Development
In Chapter 5, we evaluate our underlying language model quality via perplexity measures. Unfortunately, we
did not have access to native speakers during the workshop and so could not perform direct user testing with our
prototype keyboards.

Our ultimate goal would be to push our development back to the main Divvun project, so that it can receive
ongoing support, and make it into the hands of native speakers. However, there are a number of evaluation
measures that approximate the user experience related to prediction quality. Top-n prediction recall measures how
often the correct prediction would have been shown to the user in the keyboard’s prediction strip (assuming the
user was typing a fixed script). Similarly, we can measure how many keystrokes a user can save by selecting a
prediction (1 touch) versus typing it out (# touches corresponding to characters in the prediction unit).

Our prototype keyboards lack certain features that are standard on more mature offerings for languages like
English. First, we assume the users touch exactly the keys they intended, and that they don’t make spelling
mistakes. The reality of using a touch device is that input is noisy and prone to error, with touches often sensed
only in the vicinity of the intended key. A noisy channel model applied to the sequence of touch points received
by the keyboard can be used to auto-correct these mistakes.

Second, our keyboard’s predictions are at the mercy of the data used to train our language models. Without
a whitelist of acceptable units, or a blacklist of units that shouldn’t be predicted, there is nothing preventing the
model from generating offensive language. Similarly, predictions can be significantly biased towards the style of
the training data. In our case, the our LMs are noticeably ‘evangelical,’ being trained almost exclusively on text
from the Bible.

6.2 Speech Recognition
Within this section, we discuss two experiments with automatic speech recognition on polysynthetic languages:
preliminary experiments with Crow (cro) word prediction and experiments with Guaraní speech recognition. First,
we describe previous work on speech recognition for polysynthetic languages as well as some of the inherent
difficulties that arise when constructing speech corpora. Then, we discuss our baseline approach to end to end
neural speech recognition using the Deepspeech model (Hannun et al., 2014), the preliminary results obtained and
a discussion of future directions for polysynthetic speech recognition.

6.2.1 Related work
Speech recognition for polysynthetic languages is a relatively new area of research. Much of this is due to the
necessity of large transcribed speech corpora.

Klavans et al. (2018b) presents an overview of the challenges facing automatic speech recognition for polysyn-
thetic languages. They note that there is a dearth of resources for polysynthetic languages, particularly transcribed
speech corpora. These corpora require large volumes of data from skilled native language speakers. The size of the
corpora required and the linguistic, technological and language specific knowledge required make this an difficult
task for communities to accomplish on their own. Hasegawa-Johnson et al. (2017b) states that “transcribing even
one hour of speech may be beyond the reach of communities that lack large-scale government funding” (as cited
in Klavans et al. (2018b)).

For Seneca, Jimerson et al. (2018) investigated the application of different ASR models to a small spoken
corpus of Seneca (consisting of approximately 155 minutes of recordings). They found that GMM ASR models
from the Kaldi ASR toolkit Povey et al. (2011) yielded better results than neural approaches on this small dataset
size – requiring transfer learning from pretrained English ASR models and various augmentation procedures on
both the text data and audio data to even approach GMM performance.

For Guaraní, a relatively large speech corpus has been constructed as part of the IARPA Babel project.5 This

5Though as noted in Gales et al. (2017), the BABEL corpora are small in comparison to other corpora used in end to end neural ASR.
Hannun et al. (2014), for example, used 5,000 hours of data.
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Learning rate WER CER
10−3 97.07 87.11
10−4 98.97 85.76

Table 6.1: Crow speech recognition

dataset enabled the development of several existing speech recognition systems. Hartmann et al. (2016) experi-
mented with GMM and DNN models on several of the BABEL languages including Guaraní, finding overall better
performance for DNN models. Their main contribution was innovative data augmentation techniques. They sam-
pled noise from sections of the BABEL dataset without speech data.6 This noise was then injected into the regular
transcribed data at a signal to noise ratio between 0 and 20 db. An additional data augmentation method employed
by Hartmann et al. (2016) involved speed peturbation. Previous research Ko et al. (2015), found that sampling
the audio signal at different rates was an effective data augmentation technique. Using these two methods in
combination, Hartmann et al. (2016) see a reduction in word error rate from 46.7 to 45.2.

Gales et al. (2017) also worked with Guaraní. They use an end to end neural approach, as we do, but they
leverage stimulated network training. Stimulated network training aims to train networks where nodes with similar
activation properties are grouped together Gales et al. (2017). Their paper also discusses a number of optimization
methods for keyword search in speech data. They obtain a WER of 49.5 for their Guaraní ASR system using
stimulated network training.

6.2.2 Methodology

Deepspeech

Hannun et al. (2014) introduces the end to end neural speech recognition system used for the following experi-
ments. This system takes in short time fourier transform (STFT) features (referred to as ‘spectrogram‘ features in
the original work). These features go through three convolutional layers with ReLU activation, and then a single
bidirectional RNN. Lastly, a softmax layer is used to give a probability distribution over the possible characters in
the dataset.

We borrow from this original implementation with some modifications: instead of a simple recurrent layer,
we utilize gated-recurrent units, and instead of a single hidden recurrrent layer, we utilize a number of different
recurrent layers. Hannun et al. (2014) use a non-gated recurrent final layer as they were seeking to avoid computing
and storing the update, input and output gates used in Long-Short-Term-Memory (LSTM) recurrent units. As a
compromise between LSTMs and non-gated RNNs, we utilize Gated Recurrent Units (GRUs). Gated Recurrent
Units have an update gate but no output gate, thus saving some computation in comparison to an LSTM but
also allowing the neural network to be less susceptible to exploding/vanishing gradients. We also introduce more
recurrent layers after the convolutional layers with significant increases in performance at the cost of increased
runtime.

6.2.3 Decoding

Language models can help improve automatic speech recognition systems by imposing constraints on the possible
character co-occurances. We present results for greedy decoding, where no language model is utilized and the
network’s predicted character sequence is not explicitly constrained. In the future, we will incorporate language
models into the speech recognition system.

6.2.4 Preliminary results

Initial results for Crow word recognition and Guaraní speech recognition are shown in the following sections.

6These sections are denoted as <no-speech> in the transcription files
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Number of GRU layers WER CER
1 layer 92.98 52.75
2 layer 87.85 47.90
3 layer 86.00 46.96
4 layer 82.08 44.40
5 layer 82.00 44.50

Table 6.2: Guaraní results using greedy decoding

Number of GRU layers WER CER
1 layer 92.36 51.89
2 layer 86.44 47.18
3 layer 83.74 45.49
4 layer 82.73 44.46
5 layer 81.80 44.45

Table 6.3: Guaraní results using greedy decoding and data augmentation

6.2.5 Crow
As noted in 3.1.5, the data available for Crow consists only of recordings of single words and small phrases. In
addition, very little monolingual text data for Crow was available. Due to the lack of long phrases, as with the
Guaraní data, and the lack of large monolingual language resources, only a single recurrent layer was used in our
model, similar to the original DeepSpeech implementation. In addition, the language model created from a very
small collection of Crow monolingual stories was given very little weight due to the low coverage of the model.
Initial experiments at word prediction proved unsuccessful. The neural net simply produced all spaces for output.

A pretrained English model trained on the Librispeech corpus was leveraged in an attempt to get any output at
all from the Crow data. This pretrained model was then adapted to the available Crow data. The results from this
adapted speech recognition model are shown in Table 6.1. While the results produced are very poor, the network
was at least producing some output at this point.

6.2.6 Guaraní
For Guaraní, a number of different recurrent layers were used. Character and word error rates for the development
dataset from the IARPA corpus using greedy decoding are shown in Table 6.2. Both the development and training
dataset used only utterances between 1 and 15 seconds in length, thus the results shown are not directly comparable
to Hartmann et al. (2016). Future experiments will be conducted on all the data for more direct comparison. All
models were trained for 50 epochs with a starting learning rate of 10−4 and learning rate annealing each epoch.

6.2.7 Future directions
Moving forward, we will incorporate neural language models into the speech recognition systems. Currently,
the results displayed utilize simple greedy predictors with no explicit language modelling or conventional n-gram
based language models (Heafield, 2011) for decoding. Gales et al. (2017) use an RNN language model with
Pashto speech recognition and found that it had a minor effect on speech recognition but helped significantly with
keyword search. However, their approach seems to involve a neural language model during the decoding stage.
Incorporating a neural language model into the architecture using adversarial networks could enable still lower
error rates as the model



Chapter 7

Feature-rich Open-vocabulary
Interpretable Language Model

In this chapter, we present a novel general-purpose neural language modelling framework designed to be capable
of handling a broad variety of typologically diverse languages, including languages whose morphology includes
any or all of the following: prefixes, suffixes, infixes, circumfixes, templatic morphemes, derivational morphemes,
inflectional morphemes, and clitics. In this chapter we motivate our language modelling framework using ex-
amples drawn primarily from St. Lawrence Island Yupik. St. Lawrence Island Yupik is a polysynthetic suffixing
language in which words with 1 root, 0–3 derivational morphemes, and 1 inflectional are common, and words with
up to 7 derivational morphemes have been attested (de Reuse, 1994).

(4) Qikmighhaak neghtuk
qikmigh -ghhagh -k negh -tuk
dog -small -ABS.DU to.eat -INTR.IND.3DU

‘The two small dogs eat’

In Example (4) we observe a sample two-word sentence from St. Lawrence Island Yupik. The first word qikmi-
ghhaak is a noun composed of a noun root qikmigh, a derivational suffix -ghhagh that serves as a diminutive, and
an inflectional suffix -k that indicates the noun’s case (absolutive) and number (dual). The second word neghtuk is
a verb composed of a verb root negh and an inflectional suffix -tuk that indicates the verb’s mood (indicative) and
valence (intransitive), as well as the person (3rd person) and number (dual) of the verb’s subject. Note that it is
common for the form in which a morpheme surfaces in a word to differ from the underlying lexical form of that
morpheme. In the morphemes’ respective surface forms in this example, the final uvular fricative of qikmigh and
-ghhagh are each dropped, the vowel of -ghhagh is lengthened, and the final uvular fricative of negh devoices to
match the adjacent voiceless stop at the beginning of -tuk.

(5) Mangteghaghrugllangllaghyunghitunga
mangteghagh- -ghrugllag- -ngllagh- -yug- -nghite- -tu- -nga
house- -big- -build- -want.to- -to.not- -INTR.IND- -1SG
‘I didn’t want to make a huge house’ (Jacobson, 2001, pg. 43)

In Example (5), a single Yupik word represents an entire sentence. The word consists of a noun root mangteghagh,
a derivational suffix ghrugllag that serves as an augmentative, a verbalizing derivational suffix ngllagh, a verb-
elaborating derivational suffix yug, another verb-elaborating derivational suffix nghite, and inflectional suffixes
tu and nga that mark mood (indicative) and valence (intransitive), as well as the person (1st person) and number
(singular) of the verb’s subject.
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7.1 Language Model Desiderata
A language model capable of effectively modelling the full linguistic diversity found in human languages, includ-
ing St. Lawrence Island Yupik and similar endangered and polysynthetic languages, should have the following
desiderata.

7.1.1 Flexibility with respect to language typology
Typical methods of categorizing languages by morphological type include isolating, fusional, agglutinative and
polysynthetic. There are also morphological affix types such as prefixes, suffixes, circumfixes, infixes and tem-
platic morphology, and processes such as compounding and incorporation.

One can think of isolating languages as those (almost) without productive morphology, such as Chinese and
Vietnamese. These languages are well served by existing approaches to language modelling which treat the word
as the fundamental unit.

Fusional languages are those where a morpheme may represent multiple morphological or syntactic features.
Most well-known Indo-European languages are of this type. They may also have complicated, irregular, or lex-
icalised phonological processes occurring when morphemes are joined together. Consider for example Catalan
tener ‘to have’—tinc ‘I have’—tinga ‘I have’. The stem is ten-, -er is the formant of the infinitive, -c is the for-
mant of the first person singular present indicative and -nga is the formant of the first and third person present
subjective. A vowel change in the stem occurs when the suffixes are attached to the stem. This example has two
fusional features: multiple features per morpheme and stem-internal phonological changes caused by affixing.
These languages are fairly well dealt with in existing approaches, the number of forms that can be generated by
these processes may be larger than in isolating languages, but is essentially a finite-set.

As mentioned, current ad hoc methods work fairly well with isolating and fusional languages, where there are
a finite number of forms for a single word. Out of vocabulary items are a problem, but are typically related to
unseen new stems rather than forms of seen stems. Agglutinating and polysynthetic languages have this problem
too, but in addition they have the problem of unseen forms of previously seen stems.

In agglutinating languages — and in polysynthetic languages to an even greater extent — words are typically
made up of many morphemes concatenated together. These are typically with prefixes or suffixes, or a combina-
tion. The Yupik example in (4) is an example of suffixing, and indeed Yupik is an exclusively suffixing language.
Guaraní combines suffixes, which are primarily for tense, aspect, and mood (TAM) markers and subordination,
with prefixes for valency changing and agreement. This is illustrated in Example (6) where the ai- prefix indicates
first-person singular agreement, and the -se suffix indicates volitional mood, and in Example (7) where the ña-
prefix indicates agreement and the -va suffix indicates nominalisation.

(6) Aikosénte
Ai-ko-se-nte
SG1-live-VOL-JUST
‘I would just like to live’

(7) ñaha’arõ’ỹetéva
ña-ha’arõ-’ỹ-ete-va
PL1-wait-NEG-INTS-REL
‘that we did not expect at all’

The negative form of Guaraní verbs is formed by a circumfix of two morphemes, nd- and -i. These circumfixes
go around verbal derivations, agreement and (TAM) markers etc, as in (7.1.1).

(8) ndojuhumo’ãi
nd-o-juhu-mo’ã-i
NEG-3-find-FUT-NEG

In Chukchi the comitative case is made up of a circumfix of two morphemes, /γa/- and -/ma/. The noun /ławt/
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‘head’ forms the associative singular /γaławtăma/ by combining these and adding an epenthetic schwa.
Infixes are morphemes that break a given stem and appear inside it. For example in Seri, a language spoken in

the north-west of Mexico. It uses infixation after the first vowel in the root to create forms with number agreement.
For example, ic ‘to plant’, i{tí}c i ‘did she plant it?’ vs. i{tí}{tóo}c ‘did they plant it?’.

In languages with templatic morphology, the root is typically represented as a consonant template, e.g. in
Maltese, k-t-b ‘book’. Inflection takes place by “filling” the slots in the root with other templates, such that e.g.
ktieb ‘book’ (singular), kotba ‘books’, are formed by combining the root with the vowel templates {ø-ie, o-ø}, and
in the plural the suffix -a.

An ideal language model would be able to encode all of these types of morphology in a generic and composi-
tional manner without using language- or typology-specific tricks or assumptions (e.g. productive morphological
processes are exclusively suffixing).1

It should allow for arbitrary subsets of characters in a given string to form meaningful, compositional units.

7.1.2 Ability to incorporate external knowledge sources as features
In high-resource settings, neural networks commonly function as effective feature extractors (Goodfellow et al.,
2016). In very low-resource settings such as St. Lawrence Island Yupik, extreme data sparsity means that neural
models are likely to have insufficient data to effectively extract such reliable features. To alleviate this issue, our
language model should be capable of incorporating a rich array of features from supplementary knowledge sources
when insufficient data conditions prevent learning them.

Finite-state morphological analyzers (Beesley and Karttunen, 2003) in particular represent a mature technol-
ogy capable of serving as a reliable source of rich linguistic features. In the Yupik Example (4) above, we make
use of the finite-state morphological analyzer of Chen and Schwartz (2018). At a minimum, we expect such an
analyzer to decompose a Yupik word, providing morpheme boundary information and the associated constituent
morphemes. We expect that in most cases a morphological analyzer should also provide the underlying ortho-
graphic form of each root morpheme and each derivational morpheme, the set of linguistic features such as noun
case, verb mood, person, and number associated with each inflectional morpheme, and the underlying type of
each morpheme (such as noun, verb, nominalizing suffix, etc). In the some cases, an analyzer might also provide
information regarding the phonemes in each morpheme.

7.1.3 Open vocabulary
In high-resource languages, especially those that are analytic rather than synthetic, a common approach is to
treat morphologically-distinct variants (such as dog and dogs) as completely independent word types, rather than
inflected variants of a common root. In polysynthetic languages in general, and in Yupik in particular, encountering
previously unseen word forms is pervasive and should be considered the norm rather than the exception. In very
low-resource settings, it is especially important that our language model be able to robustly handle and predict
out-of-vocabulary tokens. Language models with a closed vocabulary are not viable in such settings. Instead, we
require an open vocabulary language model in which the probability of a token given a history can be robustly
calculated even when that token was not present in the training data.

7.1.4 Interpretability of predicted units
By definition, a language model provides a probabilistic model over a sequence of linguistic units. In other words,
a language model must be able to provide a probability distribution over the identity of the current linguistic unit
given a history representing the preceding linguistic units in the sequence. We use the term linguistic unit to refer
to an instance of any well-defined linguistic level of analysis, such as a word, a morpheme, a syllable, a phoneme,
or even a grapheme.

In our language model, we require that the computational mechanism that implements the linguistic unit be
interpretable. For example, consider the case of a trained instance of our language model randomly generating
a sequence of morphemes; when the model generates a morpheme, we should be able to recover whatever rich

1We would note that treating words as basic units can also be considered to be a language-specific trick designed for isolating and fusional
languages.
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features may be encoded therein (see §7.1.2), such as the underlying grapheme or phoneme sequence and the type
of morpheme (root, derivational, inflectional, etc). This should be the case regardless of whether the generated
unit was present in the training data or not (see §7.1.3).

7.2 Sub-word language models
The rich morphology and phonology of Yupik and typologically similar languages results in an extreme type-token
ratio. This fact coupled with a very small corpus size make the use of n-gram language models and recurrent neu-
ral language models over words highly unlikely to be effective. Schwartz et al. (2019) examined the number of
potential word forms word forms in St. Lawrence Island Yupik, and estimated approximately 1.27×1023 morpho-
tactically licensed word forms. This number is approximately equal to current estimates of the number of stars in
the observable universe.2 While this estimate does not take into account restrictions imposed by semantic felicity,
the polysynthetic nature of the language ensures an extremely high fraction of hapax legomenon in Yupik texts,
with Schwartz et al. (2020) reporting that approximately every other Yupik word token establishes a previously
unseen word type. In contrast to the astronomical number of potential Yupik word forms, the complete collection
of fully digitized St. Lawrence Island Yupik texts available at the time of the 2019 JSALT workshop consisted
of a corpus of slightly over 81,000 word tokens (see Chapter 3 for more details). In lieu of word-based language
models, we consider language models that utilize sub-word units.

Language models serve as an enabling technology for other downstream language technologies, including
mobile text prediction. These technologies are mature and widespread for many high-resource languages, but
relatively immature and rare for polysynthetic languages. In this section, we present several motivating use cases
of sub-word language models for polysynthetic language.

7.2.1 Prediction of next morpheme
The core operation of a language model is estimating the conditional probability of a predicted next linguistic unit
given a history of previous linguistic units. Figure 7.1 illustrates a recurrent neural network language model that
predicts the most likely next morpheme given a history of four immediately preceding morphemes, where each
morpheme is encoded as a vector.

Figure 7.1: A recurrent neural network language model over morphemes can be used to predict the next morpheme in a
sequence. In this figure, the light green boxes represent Yupik morphemes from Example (4), each encoded as a vector.

7.2.2 Prediction of next character
A closely related task applicable in the context of mobile text completion is the prediction of the next character
given a preceding sequence of characters. In the polysynthetic language setting, it may be beneficial to augment
such a model with a history of morphemes in situations where this information is available.

7.3 Neural morphological analysis
As discussed in §2.1, finite-state morphological analyzers provide a mechanism for encoding linguistic knowledge
in a finite-state transducer capable of analyzing a word and providing morpheme boundaries and other linguisti-
cally salient information about the underlying morphemes that comprise the word. Recent work has explored how
a finite-state morphological analyzer can be used to bootstrap a neural morphological analyzer (Micher, 2018b;
Schwartz et al., 2019; Silfverberg and Tyers, 2019). Building on that work, we propose a neural morphological

2https://www.skyandtelescope.com/astronomy-resources/how-many-stars-are-there

https://www.skyandtelescope.com/astronomy-resources/how-many-stars-are-there
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Figure 7.2: In a text completion setting, a more sophisticated recurrent neural network language model could predict the next
character given a history of preceding characters and a history of preceding morphemes from Example (4). In this figure, the
light green boxes represent Yupik morphemes while the light purple boxes represent characters.

analyzer that directly predicts morpheme vectors, rather than predicting a sequence of strings representing an
analyzed form.

Figure 7.3: In a morphological analysis setting, a sequence-to-sequence model predicts a sequence of morphemes from an
input sequence of Yupik characters from Example (4). In this figure, the light green boxes represent predicted Yupik morpheme
vectors.

7.4 Tensor Product Representation
To satisfy the language model desiderata specified in §7.1, we consider the Tensor Product Representation (TPR)
proposed by Smolensky (1990). The use of TPRs provides a principled way of representing hierarchical symbolic
information in vector spaces, such as those used as the input and output domains of neural networks. Developing
a tensor-product-based representational scheme begins by decomposing a symbolic structure into roles and fillers.
A symbolic structure can then be represented as the bindings of fillers to roles. Once decomposed, both roles and
fillers are embedded into a vector space such that all roles are linearly independent from one another. Let b be a
list of ordered pairs (i, j) representing filler i (with embedding vector f̂i) being bound to role j (with embedding
vector r̂j). The tensor product representation T of the information is then given by

T =
∑

(i,j)∈b

f̂i ⊗ r̂j ∈ Rd ⊗ Rn. (7.1)

This TPR may itself be used as a filler and subsequently be bound to another role vector. This process results in a
TPR that represents hierarchical compositional structure.

7.4.1 Unbinding
TPRs are useful because they embed arbitrary symbolic structure in a vector space in such a way that simple
linear algebra operations may be used to retrieve the form of the symbolic structure, including its compositional
structure. The core operation in retrieving this structure is called unbinding. We may use unbinding to query
a role for its filler. Unbinding may be accomplished by any of several exact or approximate strategies. Exact
unbinding requires linear independence of the roles; however, recent (unpublished) work points to the accuracy
of approximate unbinding even in densely packed TPRs. In this work, we use self-addressing unbinding, as it is
quick to compute and proved sufficiently accurate for our purposes. Self-addressing unbinding retrieves the filler
f̃i for the role r̂i by simply computing the inner product between the role vector and the TPR:

f̃i = T · r̂i (7.2)
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Figure 7.4: This sample word from Chukchi is composed of a root morpheme ławtă and a circumfix γa. . . ma. The individual
characters positions in the word comprise roles r1 through r9, while the characters at those respective positions comprise fillers
f1 through f9. Roles rm1 and rm2 represent morpheme positions within the word, and are respectively filled by fm1 (denoting
the identity of the circumfix morpheme marking associative case) and fm2 (denoting the identity of the root morpheme).

This unbinding is exact if the role vectors are orthogonal to one another. Otherwise, the intrusion of the filler of
role j, f̂j , into the unbound filler of the role i, f̃i, is given by

In our case, since we have a fixed filler vocabulary, we were able to snap our unbindings to the filler with the
highest cosine similarity to the unbound vector with sufficient accuracy to render this intrusion irrelevant. Other
unbinding strategies involve computing an inverse or pseudoinverse of a matrix of role vectors to perform a change
of basis and decrease the intrusion.

7.5 Morpheme vector representations from TPRs

We use TPRs (§7.4) to bridge the gap between the rich hierarchical symbolic information encoded in finite state
morphological transducers (such as Chen and Schwartz, 2018) and the morpheme vectors needed by the neural
models described in §7.2 and §7.3.

7.5.1 Morpheme TPRs

Given a language, a corpus of text in that language, and a finite-state morphological analyzer for that language,
we can use the finite-state analyzer to obtain a morphological analysis for each word in the corpus. For each
morpheme provided in an analysis, we extract a collection b of linguistically salient feature-value ordered pairs
(i, j). Each linguistic feature j serves as a TPR role; each value i serves as a TPR filler. For each such feature
j (such as noun case), we define r̂j to be a role vector representing that feature; for each value i (such as ABS)
associated with feature j, we define f̂i to be a filler vector representing that value. This use of TPRs enables us
to jointly encode latent structural information provided by a finite state transducer with surface information in a
principled manner. This process is depicted in Figure 7.5.

7.5.2 Learning morpheme vectors using an autoencoder

The morpheme tensors constructed in §7.5.1 are potentially very high dimensional. Depending on how much
linguistic information is encoded in each tensor, the morpheme tensors may consist of approximately 103 to 109

floating point values per tensor. Tensors of this size are far too large to be directly usable as morpheme representa-
tions in the neural models described in §7.2 and §7.3. To learn lower dimensional morpheme vectors, we make use
of an autoencoder. The autoencoder is trained using the dictionary of previously constructed morpheme tensors.
The trained autoencoder can be used to encode a low-dimensional morpheme vector from a high-dimensional
morpheme tensor by running the morpheme tensor through the first half of the autoencoder, and can be used to
obtain a high-dimensional morpheme tensor from a morpheme vector by running the morpheme vector though the
latter half of the autoencoder.
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Figure 7.5: (a) Each word in a corpus is processed by a morphological analyzer. (b) A tensor product representation of each
morpheme is calculated, resulting in one tensor per morpheme. (c) The morpheme tensors extracted from the corpus are stored
in a dictionary.

Figure 7.6: An autoencoder trained is on the dictionary of morpheme tensors.

7.6 Unbinding loss
In order to effectively train the autoencoder in §7.5.2, gold standard morpheme tensors must be compared against
predicted morpheme tensors outputted by the autoencoder. However, the morpheme tensors are very high dimen-
sional. In initial experiments, we used mean squared error as a loss function, but we found this was unable to
converge for auto-encoding sparse TPRs.

To enable effective training of the autoencoder, we therefore define a novel loss function that makes use of
the information encoded in the TPR. We define a loss function called unbinding loss that examines the unbinding
properties of a predicted morpheme tensor to answer the question, “What filler is closest to the unbinding of each
role in the TPR?” For simplicity, we assume the use of self-addressing unbinding in this section (which we also
used in the work presented here), but the computations are analogous with other unbinding strategies, relying only
on a fixed role and filler vocabulary and a fixed number of bindings. We call the output TPR T.

Given a predicted tensor, the first step to computing the unbinding loss is recursively unbind roles until the
leaves of the structure are reached – that is, unbind each role until the result of unbinding is a single vector (rather
than a higher-dimensional tensor). When this point is reached, we compute the cosine similarity between the result
of unbinding and all the fillers in the vocabulary. For example, assume a depth-3 structure is encoded in a TPR,
where the fillers are character embeddings, the second level is left-to-right positional roles, and the highest level
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is morpheme identity. If we want to see what is bound to the first position of the English cat morpheme in T , we
would first unbind from T as follows (assuming self-addressing unbinding):

fcat,1 = T · r̂cat · r̂1 (7.3)

We then get the vector of similarities ŝcat,1 between this filler and the each of character embedding vectors in
the vocabulary matrix V as follows:

ŝcat,1 =
fcat,1 ·V
||fcat,1||ViVi

(7.4)

where ViVi denotes the column-wise vector norm of the vocabulary matrix (using Einstein summation nota-
tion).

This similarity vector can be used to define a probability distribution over possible fillers through the use
of a softmax. We take the logarithm of the result of this computation to obtain log-probabilities. We call this
distribution P .

P = log
( eŝcat,1∑

eŝcat,1

)
(7.5)

We then treat each filler vocabulary word (in this case, each character) as a class, and compute the negative log-
likelihood loss over this probability distribution. The resulting loss for the first character of cat being c is then

loss(ŝcat,1, c) = −ŝcat,1,c + log(
∑
j

eŝcat,1,j ). (7.6)

In this example, we focus on the loss for a single filler; however, as we consider tree-structured representations,
the number of fillers needing to be checked is exponential with the depth of our representation. In practice, we
were able to overcome this difficulty by parallelizing the independent matrix computations for the loss of all the
position roles for a given morpheme, trading space for time. For more complex TPRs, a potential avenue would be
to exploit the fact that most roles will be empty (and their unbindings thus a matrix of zeros) by replacing the loss
computations for unbound roles with mean squared error (which need only push that part of the representation to
0).
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Conclusions

In motivating this JSALT workshop on neural polysynthetic language modelling, we observed the following major
assumptions (usually unstated) that are pervasive in most computational linguistics and natural language process-
ing research:

• If a technique works well on English, the technique is likely to be “language agnostic” and is likely to work
well on a large variety of other languages. Various other high-resource languages such as Spanish, French,
German, or Chinese are sometimes used in place of English.

• For any given word stem, there will be a relatively small number of morphological variants of that stem.

• Most or all of the morphological variants of any given word stem will appear in a sufficiently large corpus
to enable learning of robust statistics.

Our work was built around explicitly challenging all of these assumptions, using a variety of polysynthetic
languages and a variety of natural language tasks. The polysynthetic languages that we chose to work with
present numerous significant challenges. These languages are typologically very different from English and other
widely-used high-resource languages. There is pervasive use of derivational and inflectional morphology. For
most word stems, there are very large numbers of potential morphological variants, very few of which occur in
any given corpus. For all of the selected languages (with the exception of Inuktitut), the corpus sizes are very
small (less than 60, 000 sentences).

8.1 Contribution 1: Resources
One contributing factor to the dearth of prior work on computational research on endangered polysynthetic lan-
guages is the lack of easily available corpus resources. Nearly all endangered languages are very low resource.
Most CL and NLP researchers do not have the personal connections with members of endangered language com-
munities that are often critical for obtaining data for use in research. In preparation for this workshop, our team
gathered together text and speech data from various sources for a variety of polysynthetic languages. In cases
where we have connections with indigenous community stakeholders and rights-holders, we have begun the pro-
cess of discussions regarding community desires and possibilities for data distribution. For data that we have
obtained permission to distribute, we have initiated a process of public data hosting.

8.2 Contribution 2: Machine Translation
The main contributions of our machine translation work during this workshop are as follows. With first access
to the beta version 3.0 of the Nunavut Hansard (Joanis et al., 2020), we were able to provide feedback and best
practices for preprocessing the dataset and shared knowledge about existing character and spelling variations in
the dataset. This work contributed to the data release and publication of Joanis et al. (2020); that data is now being
used in the Fifth Conference on Machine Translation (WMT20) Inuktitut-English news translation shared task.
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Our work at the time constituted state-of-the-art performance on translation between Inuktitut and English. It has
since been surpassed by Joanis et al. (2020), and we anticipate future improvements through the WMT20 shared
task.

We collected empirical evidence on several well-known but unresolved challenges, such as best practices in
token segmentation for MT into and out of polysynthetic languages, as well as an examination of how to evalu-
ate MT into polysynthetic languages. We successfully used multilingual neural machine translation methods to
improve translation quality into low-resource languages (St. Lawrence Island Yupik and Central Alaskan Yup’ik)
using data from related languages (Inuktitut). Notably, our “low-resource” languages were lower resource than
much of the literature, and we produced improvements without the use of large monolingual corpora (which are
unavailable for these languages and many other languages of interest). We observed these improvements across
both n-gram-oriented and semantic-oriented metrics.

There remain a number of open challenges in this space. We encourage caution in interpreting the automatic
quality metrics, as we do not yet have human judgments of translation quality for the languages examined; human
judgements from the WMT20 shared task may prove particularly valuable. Our initial results, using fairly con-
ventional methods, for both multilingual and bilingual machine translation show promise, but we expect that there
remains much room for improvement.

8.3 Contribution 3: Language Models

To our best knowledge, this paper represents the first attempt at modeling polysynthetic languages using a state-
of-the-art RNN model and comparing their language modeling difficulty with that of other languages. We conduct
language modeling experiments on four low-resource, polysynthetic languages (St. Lawrence Island Yupik, Cen-
tral Alaskan Yup’ik, Inuktitut, Guaraní) and two high-resource, morphologically poor languages (English, Span-
ish), using four different segmentation methods: character, BPE, Morfessor and FST. By comparing the perplexity
measure at the character level, we show that the FST segmentation method worked the best for polysynthetic
languages when it was available. While the Morfessor segmentation method might improve language modeling
performance for some polysynthetic languages, all the other segmentation method we considered—character, BPE
and Morfessor—failed to capture the rich morphology of polysynthetic languages better than the FST segmenta-
tion that is based on linguistic knowledge of the languages. We also compared the perplexity measure at the word
level to illustrate how significantly difficult it is to model polysynthetic languages.

All in all, this presents an exciting starting point for a line of inquiries into modeling polysynthetic languages
and utilizing the linguistic knowledge realized in FST in modeling such languages that are morphological rich and
low resource. At the same time, we invite future research into linguistic characteristics that contribute to language
modeling difficulty as we continue to investigate the effect of morphological complexity in our ongoing study.

8.4 Contribution 4: Mobile & Speech Applications

As smartphones become ubiquitous in native communities, facilitating native-language communication through
better technology will become an important aspect of language conservation and revitalization efforts. Building
on freely available open source tools, we developed a pipeline for training neural language models that can run on-
device, and loading them as a predictive back-end for on-device keyboards. This effort lead to working keyboard
prototypes for Guaraní (grn) and St. Lawrence Island Yupik (grn) — the first ever input methods for these
language varieties to include intelligent next-unit prediction and completion. Building the prototypes highlighted
the unique requirements posed by polysynthetic languages. Their complex, productive morphology results in very
long words, many of which would never appear in the training data available for language modeling, and which
would be unwieldy to show to keyboard users as prediction candidates. We dealt with these problems by training
character-level models that were aware of morpheme boundaries, and using morphemes rather than words as units
of prediction.

The low-resource nature of most polysynthetic languages is particularly poignant for automatic speech recog-
nition. While transfer learning can help alleviate some of the issues with data poverty, neural approaches to ASR
are still not sufficient to enable usable systems.
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8.5 Contribution 5: Model Development
In this workshop we proposed a novel framework for language modelling that combines knowledge representa-
tions from finite-state morphological analyzers with Tensor Product Representations (Smolensky, 1990) in order
to enable successful neural language models capable of handling the full linguistic variety of typologically variant
languages. To support this framework, we also defined and implemented a novel loss function called unbind-
ing loss that enables gold standard morpheme tensors to be compared against predicted morpheme tensors. We
implemented a prototype TPR framework that we are continuing development of as part of ongoing future work.
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