This CVPR 2020 paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

End-to-End Pseudo-LiDAR for Image-Based 3D Object Detection

Rui Qian*!?

Serge Belongie!? Bharath Hariharan!

Divyansh Garg*!
Mark Campbell*

Yan Wang*! Yurong You*!

Kilian Q. Weinberger! = Wei-Lun Chao?

! Cornell Univeristy 2 Cornell Tech 2 The Ohio State University

{rq49, dg595, yw763, yy785, sjb344, bh497, mc288, kqwd}@cornell.edu

Abstract

Reliable and accurate 3D object detection is a neces-
sity for safe autonomous driving. Although LiDAR sensors
can provide accurate 3D point cloud estimates of the en-
vironment, they are also prohibitively expensive for many
settings. Recently, the introduction of pseudo-LiDAR (PL)
has led to a drastic reduction in the accuracy gap between
methods based on LiDAR sensors and those based on cheap
stereo cameras. PL combines state-of-the-art deep neu-
ral networks for 3D depth estimation with those for 3D
object detection by converting 2D depth map outputs to
3D point cloud inputs. However, so far these two net-
works have to be trained separately. In this paper, we in-
troduce a new framework based on differentiable Change
of Representation (CoR) modules that allow the entire PL
pipeline to be trained end-to-end. The resulting framework
is compatible with most state-of-the-art networks for both
tasks and in combination with PointRCNN improves over
PL consistently across all benchmarks — yielding the high-
est entry on the KITTI image-based 3D object detection
leaderboard at the time of submission. Our code will be
made available at https://github.com/mileyan/
pseudo-LiDAR _ele.

1. Introduction

One of the most critical components in autonomous driv-
ing is 3D object detection: a self-driving car must accu-
rately detect and localize objects such as cars and pedes-
trians in order to plan the path safely and avoid collisions.
To this end, existing algorithms primarily rely on LiDAR
(Light Detection and Ranging) as the input signal, which
provides precise 3D point clouds of the surrounding envi-
ronment. LiDAR, however, is very expensive. A 64-beam
model can easily cost more than the car alone, making self-
driving cars prohibitively expensive for the general public.

One solution is to explore alternative sensors like com-

* Equal contributions

chao.209@osu.edu

Figure 1: An illustration of the effectiveness of our end-to-end
pipeline. The green bounding box is the ground truth detection of
a car. The yellow points are points from LiDAR. The pink point
cloud is generated from an independently trained depth estimator,
which is inaccurate and lies out of the green box. By making depth
estimation and 3D object detection end-to-end, we obtain a better
blue point cloud. Upon this, the object detector could yield the
state-of-the-art performance.

modity (stereo) cameras. Although there is still a notice-
able gap to LiDAR, it is an area with exceptional progress
in the past year [14, 20, 29, 36, 46, 45]. For example,
pseudo-LiDAR (PL) [36, 45] converts a depth map esti-
mated from stereo images into a 3D point cloud, followed
by applying (any) existing LiDAR-based detectors. Tak-
ing advantage of the state-of-the-art algorithms from both
ends [2, 15, 30, 34, 45], pseudo-LiDAR achieves the high-
est image-based 3D detection accuracy (34.1% and 42.4%
at the moderate case) on the KITTI leaderboard [10, 11].
While the modularity of pseudo-LiDAR is conceptual
appealing, the combination of two independently trained
components can yield an undesired performance hit. In
particular, pseudo-LiDAR requires two systems: a depth
estimator, typically trained on a generic depth estimation
(stereo) image corpus, and an object detector trained on the
point cloud data converted from the resulting depth esti-
mates. It is unlikely that the two training objectives are
optimally aligned for the ultimate goal, to maximize final
detection accuracy. For example, depth estimators are typi-

5881

cally trained with a loss that penalizes errors across all pix-
els equally, instead of focusing on objects of interest. Con-
sequently, it may over-emphasize nearby or non-object pix-
els as they are over-represented in the data. Further, if the
depth network is trained to estimate disparity, its intrinsic
error will be exacerbated for far-away objects [45].

To address these issues, we propose to design a 3D object
detection framework that is trained end-to-end, while pre-
serving the modularity and compatibility of pseudo-LiDAR
with newly developed depth estimation and object detec-
tion algorithms. To enable back-propagation based end-to-
end training on the final loss, the change of representation
(CoR) between the depth estimator and the object detector
must be differentiable with respect to the estimated depth.
We focus on two types of CoR modules — subsampling
and quantization — which are compatible with different
LiDAR-based object detector types. We study in detail on
how to enable effective back-propagation with each mod-
ule. Specifically, for quantization, we introduce a novel
differentiable soft quantization CoR module to overcome
its inherent non-differentiability. The resulting framework
is readily compatible with most existing (and hopefully fu-
ture) LiDAR-based detectors and 3D depth estimators.

We validate our proposed end-to-end pseudo-LiDAR
(E2E-PL) approach with two representative object detec-
tors — PIXOR [43] (quantized input) and PointRCNN [34]
(subsampled point input) — on the widely-used KITTI ob-
ject detection dataset [10, 11]. Our results are promising:
we improve over the baseline pseudo-LiDAR pipeline and
the improved PL++ pipeline [45] in all the evaluation set-
tings and significantly outperform other image-based 3D
object detectors. At the time of submission our E2E-PL
with PointRCNN holds the best results on the KITTI image-
based 3D object detection leaderboard. Our qualitative re-
sults further confirm that end-to-end training can effectively
guide the depth estimator to refine its estimates around ob-
ject boundaries, which are crucial for accurately localizing
objects (see Figure 1 for an illustration).

2. Related Work

3D Object Detection. Most works on 3D object detection
are based on 3D LiDAR point clouds [7, 8, 9, 16, 17, 19,
26, 34,35, 41,42, 44]. Among these, there are two streams
in terms of point cloud processing: 1) directly operating on
the unordered point clouds in 3D [16, 30, 34, 47], mostly
by applying PointNet [3 1, 32] or/and applying 3D convolu-
tion over neighbors; 2) operating on quantized 3D/4D ten-
sor data, which are generated from discretizing the locations
of point clouds into some fixed grids [0, 15, 22, 43]. Images
can be included in both types of approaches, but primarily
to supplement LiDAR signal [6, 8, 15, 21, 22, 25, 30, 40].
Besides LiDAR-based models, there are solely image-
based models, which are mostly developed from the 2D

)]
o

mmm Car Pixel Occupancies

U
o

D
o

) @ Cars & People
® Background

w
o

N
o

Car pixel percentage

=
o

0 20 40 60 80
Z (in meters)
Figure 2: Pixel distribution: 90% of all pixels correspond to
background. The 10% pixels associated with cars and people (<
1% people) are primarily within a depth of 20m.

frontal-view detection pipeline [12, 23, 33], but most of
them are no longer competitive with the state of the art in
localizing objects in 3D [1, 4, 5, 3, 27, 18, 28, 37, 38, 39].
Pseudo-LiDAR. This gap has been greatly reduced by the
recently proposed pseudo-LiDAR framework [36, 45]. Dif-
ferent from previous image-based 3D object detection mod-
els, pseudo-LiDAR first utilizes an image-based depth es-
timation model to obtain predicted depth Z(u,v) of each
image pixel (u, v). The resulting depth Z (u, v) is then pro-
jected to a “pseudo-LiDAR” point (z, y, z) in 3D by

o= Z(uv), 7= (u—cU)-z’ Y- (v—cv)~z7 0

fu fv

where (cy, ¢y) is the camera center and fi; and fy are the
horizontal and vertical focal lengths. The “pseudo-LiDAR”
points are then treated as if they were LiDAR signals, over
which any LiDAR-based 3D object detector can be applied.
By making use of the separately trained state-of-the-art al-
gorithms from both ends [2, 15, 30, 34, 45], pseudo-LiDAR
achieved the highest image-based performance on KITTI
benchmark [10, 11]. Our work builds upon this framework.

3. End-to-End Pseudo-LiDAR

One key advantage of the pseudo-LiDAR pipeline [36,
45] is its plug-and-play modularity, which allows it to in-
corporate any advances in 3D depth estimation or LiDAR-
based 3D object detection. However, it also lacks the no-
tion of end-to-end training of both components to ultimately
maximize the detection accuracy. In particular, the pseudo-
LiDAR pipeline is trained in two steps, with different objec-
tives. First, a depth estimator is learned to estimate generic
depths for all pixels in a stereo image; then a LIDAR-based
detector is trained to predict object bounding boxes from
depth estimates, generated by the frozen depth network.

As mentioned in section 1, learning pseudo-LiDAR in
this fashion does not align the two components well. On one

5882

Depth loss
f 1
= ¥ - 'f“‘
Left Image Depth — v
- estimation s
54 / Depth map
A 1
1

-

. Right Image

. . Change of
Object detection Representation
Iolss ‘
: N
e < 4
- a
PES 3D object
detection

-—
-—

P .
Detection results

Point cloud/Voxel

Figure 3: End-to-end image-based 3D object detection: We
introduce a change of representation (CoR) layer to connect the
output of the depth estimation network as the input to the 3D ob-
ject detection network. The result is an end-to-end pipeline that
yields object bounding boxes directly from stereo images and al-
lows back-propagation throughout all layers. Black solid arrows
represent the forward pass; Blue and red dashed arrows represent
the backward pass for the object detection loss and depth loss, re-
spectively. The * denotes that our CoR layer is able to back pro-
pogate the gradients between different representations.

end, a LIDAR-based object detector heavily relies on accu-
rate 3D points on or in the proximity of the object surfaces
to detect and localize objects. Especially, for far-away ob-
jects that are rendered by relatively few points. On the other
end, a depth estimator learned to predict all the pixel depths
may place over-emphasis on the background and nearby
objects since they occupy most of the pixels in an image.
For example, in the KITTI dataset [13] only about 10% of
all pixels correspond to cars and pedestrians/cyclists (Fig-
ure 2). Such a misalignment is aggravated with fixing the
depth estimator in training the object detector: the object
detector is unaware of the intrinsic depth error in the input
and thus can hardly detect the far-away objects correctly.

Figure 3 illustrates our proposed end-to-end pipeline to
resolve these shortcomings. Here, the error signal from mis-
detecting or mislocalizing an object can “softly attend” to
pixels which affect the prediction most (likely those on or
around objects in 2D), instructing the depth estimator where
to improve for the subsequent detector. To enable back-
propagating the error signal from the final detection loss,
the change of representation (CoR) between the depth es-
timator and the object detector must be differentiable with
respect to the estimated depth. In the following, we identify
two major types of CoR — subsampling and quantization
— in incorporating existing LIDAR-based detectors into the
pseudo-LiDAR pipeline.

3.1. Quantization

Several LiDAR-based object detectors take voxelized 3D
or 4D tensors as inputs [0, 15, 22, 43]. The 3D point loca-

tions are discretized into a fixed grid, and only the occupa-
tion (i.e., {0, 1}) or densities (i.e., [0, 1]) are recorded in the
resulting tensor!. The advantage of this kind of approaches
is that 2D and 3D convolutions can be directly applied to ex-
tract features from the tensor. Such a discretization process,
however, makes the back-propagation difficult.

Let us consider an example where we are given a point
cloud P = {p;,...,pn} with the goal to generate a 3D
occupation tensor T' of M bins, where each bin m €
{1,---, M} is associated with a fixed center location p,y,.
The resulting tensor 7" is defined as follows,

1, if Ipe P s.t. m=argmin||p — Pu |2
T(m) = m/
0, otherwise.

In other words, if a point p € P falls into bin m, then
T(m) = 1; otherwise, 0. The forward pass of generating
T is as straightforward. The backward pass to obtain the
gradient signal of the detection loss L4 With respectto p €
P or the depth map Z (Equation 1), however, is non-trivial.

Concretely, we can obtain VL4 by taking the gradi-

ents of Lge With respect to T'. Intuitively, if 6‘?‘,15(% 5 < 0,

it means that T'(m) should increase; i.e., there should be
points falling into bin m. In contrast, if 8‘35(‘1‘%) > 0, it
means that T'(m) should decrease by pushing points out
from bin m. But how can we pass these messages back
to the input point cloud P? More specifically, how can we
translate the single digit ag“ﬁ(‘:;; 3 of each bin to be useful in-
formation in 3D in order to adjust the point cloud P?

As a remedy, we propose to modify the forward pass by
introducing a differentiable soft quantization module (see
Figure 4). We introduce a radial basis function (RBF)
around the center p,, of a given bin m. Instead of binary
occupancy counters’, we keep a “soft” count of the points
inside the bin, weighted by the RBF. Further, we allow any
given bin m to be influenced by a local neighborhood N,
of close bins. We then modify the definition of T" accord-
ingly. Let P, denote the set of points that fall into bin m,

P, ={pec P,st. m=argmin||p — P2}
We define T'(m,m') to denote the average RBF weight of

points in bin m’ w.r.t. bin m (more specifically, p.,,),

0 if | Pps| = 0
T(m,m')=< 1 3 o=t 1P| >0 @
P,

P,
| m|pe]

The final value of the tensor T at bin m is the combination

IFor LiDAR data the reflection intensity is often also recorded.
2We note that the issue of back-propagation cannot be resolved simply
by computing real-value densities in Equation 2.

5883

' @ Pseudo-LiDAR point cloud '
- O LiDAR point cloud [

o

Point cloud

Hard quantization

| ===+ Voxel push : @ Positive gradient

¥ e Viomel pull I @ Negative gradient

Soft quantization

Voxel gradients

Figure 4: Quantization: We voxelize an input pseudo-LiDAR (PL) point cloud using soft or hard quantization. Green voxels are those
influenced by the PL points. A blue voxel having a positive gradient of the detection loss Lge exerts a force to push points away from its
center to other voxels, whereas a red voxel having a negative gradient exerts a force to pull points of other voxels to its center. These forces
at the red and blue voxles can only affect PL points if PL points influence those voxels. Soft quantization increases the area of influence of
the PL points and therefore the forces, allowing points from other voxels to be pushed away or pulled towards. The updated PL points thus

can become closer to the ground truth LiDAR point cloud.

of soft occupation from its own and neighboring bins,

T(m) =T (m,m) T(m,m'). (@)

1

We note that, when 02 >>0 and \V,,, = &, Equation 4 recov-
ers Equation 2. Throughout this paper, we set the neighbor-
hood N, to the 26 neighboring bins (considering a 3x3x3
cube centered on the bin) and 02 = 0.01. Following [43],
we set the total number of bins to M = 700 x 800 x 35.
Our soft quantization module is fully differentiable. The
partial derivative BaTlE‘;‘;‘L) directly affects the points in bin
m (i.e., P,,) and its neighboring bins and enables end-to-
end training. For example, to pass the partial derivative
to a point p in bin m/, we compute 6(3‘%:: y X 8’;9":(1;7(17:3’) X
VpT (m, m'). More importantly, even when bin m mistak-

enly contains no point, a‘g,ﬁ(‘;j; y > 0 allows it to drag points

from other bins, say bin m/, to be closer to p,,, enabling
corrections of the depth error more effectively.

3.2. Subsampling

As an alternative to voxelization, some LiDAR-based
object detectors take the raw 3D points as input (either as
a whole [34] or by grouping them according to metric lo-
cations [16, 41, 47] or potential object locations [30]). For
these, we can directly use the 3D point clouds obtained by
Equation 1; however, some subsampling is required. Differ-
ent from voxelization, subsampling is far more amenable to
end-to-end training: the points that are filtered out can sim-
ply be ignored during the backwards pass; the points that
are kept are left untouched.

First, we remove all 3D points higher than the normal
heights that LiDAR signals can cover, such as pixels of the

sky. Further, we may sparsify the remaining points by sub-
sampling. This second step is optional but suggested in [45]
due to the significantly larger amount of points generated
from depth maps than LiDAR: on average 300,000 points
are in the pseudo-LiDAR signal but 18,000 points are in the
LiDAR signal (in the frontal view of the car). Although
denser representations can be advantageous in terms of ac-
curacy, they do slow down the object detection network. We
apply an angular-based sparsifying method. We define mul-
tiple bins in 3D by discretizing the spherical coordinates
(r,0,¢). Specifically, we discretize 0 (polar angle) and ¢
(azimuthal angle) to mimic the LiDAR beams. We then
keep a single 3D point (z,y, z) from those points whose
spherical coordinates fall into the same bin. The resulting
point cloud therefore mimics true LiDAR points.

In terms of back-propagation, since these 3D object de-
tectors directly process the 3D coordinates (z,y, z) of a
point, we can obtain the gradients of the final detection loss
Lger with respect to the coordinates; i.e., (83%’“ , %;e‘, %).
As long as we properly record which points are subsam-
pled in the forward pass or how they are grouped, back-
propagating the gradients from the object detector to the
depth estimates Z (at sparse pixel locations) can be straight-
forward. Here, we leverage the fact that Equation 1 is differ-
entiable with respect to z. However, due to the high sparsity
of gradient information in V z L4, we found that the initial
depth loss used to train a conventional depth estimator is
required to jointly optimize the depth estimator.

This subsection, together with subsection 3.1, presents a
general end-to-end framework applicable to various object
detectors. We do not claim this subsection as a technical
contribution, but it provides details that makes end-to-end
training for point-cloud-based detectors successful.

5884

3.3. Loss

To learn the pseudo-LiDAR framework end-to-end, we
replace Equation 2 by Equation 4 for object detectors that
take 3D or 4D tensors as input. For object detectors that
take raw points as input, no specific modification is needed.

We learn the object detector and the depth estimator
jointly with the following loss,

L= Adetﬁdet + >\depth£deptha

where L is the loss from 3D object detection and Lyepin
is the loss of depth estimation. Agepn and Age are the corre-
sponding coefficients. The detection loss L is the combi-
nation of classification loss and regression loss,

Edel = /\clsﬁcls +)\regﬁreg7

in which the classification loss aims to assign correct class
(e.g., car) to the detected bounding box; the regression loss
aims to refine the size, center, and rotation of the box.

Let Z be the predicted depth and Z* be the ground truth,
we apply the following depth estimation loss

1 *
Edeplh = m(Z)GAK(Z(U,’U) -7 (u,v)),

where A is the set of pixels that have ground truth depth.
£(x) is the smooth L1 loss defined as

0.5z2, if |z| < 1;
U(z) = = . ®)
|z| — 0.5, otherwise.

We find that the depth loss is important as the loss from
object detection may only influence parts of the pixels (due
to quantization or subsampling). After all, our hope is to
make the depth estimates around (far-away) objects more
accurately, but not to sacrifice the accuracy of depths on the
background and nearby objects®.

4. Experiments

4.1. Setup

Dataset. We evaluate our end-to-end (E2E-PL) approach
on the KITTI object detection benchmark [10, 11], which
contains 3,712, 3,769 and 7,518 images for training, val-
idation, and testing. KITTI provides for each image the

3The depth loss can be seen as a regularizer to keep the output of the
depth estimator physically meaningful. We note that, 3D object detectors
are designed with an inductive bias: the input is an accurate 3D point cloud.
However, with the large capacity of neural networks, training the depth
estimator and object detector end-to-end with the detection loss alone can
lead to arbitrary representations between them that break the inductive bias
but achieve a lower training loss. The resulting model thus will have a
much worse testing loss than the one trained together with the depth loss.

Table 1: Statistics of the gradients of different losses on the pre-
dicted depth map. Ratio: the percentage of pixels with gradients.

Depth Loss | P-RCNN Loss | PIXOR Loss
Ratio 3% 4% 70%
Mean 10°° 1077 107°
Sum 0.1 10 1

corresponding 64-beam Velodyne LiDAR point cloud, right
image for stereo, and camera calibration matrices.

Metric. We focus on 3D and bird’s-eye-view (BEV) object
detection and report the results on the validation set. We
focus on the “car” category, following [0, 36, 40]. We report
the average precision (AP) with the IoU thresholds at 0.5
and 0.7. We denote AP for the 3D and BEV tasks by APsp
and APggy. KITTI defines the easy, moderate, and hard
settings, in which objects with 2D box heights smaller than
or occlusion/truncation levels larger than certain thresholds
are disregarded. The hard (moderate) setting contains all
the objects in the moderate and easy (easy) settings.
Baselines. We compare to seven stereo-based 3D ob-
ject detectors: PSEUDO-LIDAR (PL) [36], PSEUDO-
LIDAR ++ (PL++) [45], 3DOP [4], S-RCNN [20],
RT3DSTEREO [14], OC-STEREO [29], and MLF-
STEREO [39]. For PSEUDO-LIDAR ++, we only compare
to its image-only method.

4.2. Details of our approach

Our end-to-end pipeline has two parts: stereo depth es-
timation and 3D object detection. In training, we first learn
only the stereo depth estimation network to get a depth esti-
mation prior, and then we fix the depth network and use its
output to train the 3D object detector from scratch. In the
end, we joint train the two parts with balanced loss weights.
Depth estimation. We apply SDN [45] as the backbone to
estimate a dense depth map Z. We follow [45] to pre-train
SDN on the synthetic Scene Flow dataset [24] and fine-
tune it on the 3,712 training images of KITTI. We obtain
the depth ground truth Z* by projecting the corresponding
LiDAR points onto images.

Object detection. We apply two LiDAR-based algorithms:
PIXOR [43] (voxel-based, with quantization) and PointR-
CNN (P-RCNN) [34] (point-cloud-based). We use the re-
leased code of P-RCNN. We obtain the code of PIXOR
from the authors of [45], which has slight modification to
include visual information (denoted as PIXOR™).

Joint training. We set the depth estimation and object
detection networks trainable, and allow the gradients of
the detection loss to back-propagate to the depth network.
We study the gradients of the detection and depth losses
w.r.t. the predicted depth map Z to determine the hyper-
parameters Agepth and Ager. For each loss, we calculate the
percentage of pixels on the entire depth map that have gra-

5885

Table 2: 3D object detection results on the KITTI validation set. We report APggy / AP3p (in %) of the car category, corresponding to
average precision of the bird’s-eye view and 3D object detection. We arrange methods according to the input signals: S for stereo images,
L for 64-beam LiDAR, M for monocular images. PL stands for PSEUDO-LIDAR. Results of our end-to-end PSEUDO-LIDAR are in blue.

Methods with 64-beam LiDAR are in gray. Best viewed in color.

IoU =0.5 IoU =0.7

Detection algo Input Easy Moderate Hard Easy Moderate Hard
3DOP [4] S 55.0/46.0 | 41.3/34.6 | 34.6/30.1 | 12.6/6.6 9.5/5.1 7.6/4.1
MLF-STEREO [39] S - 53.7/47.4 - - 19.5/9.8 -
S-RCNN [20] S 87.1/85.8 | 74.1/66.3 | 589/57.2 | 68.5/54.1 | 48.3/36.7 | 41.5/31.1
OC-STEREO [29] S 90.0/89.7 | 80.6/80.0 | 71.1/70.3 | 77.7/64.1 | 66.0/48.3 | 51.2/404
PL: P-RCNN [36] S 88.4/88.0 | 76.6/73.7 | 69.0/67.8 | 73.4/62.3 | 56.0/44.9 | 52.7/41.6
PL++: P-RCNN [45] S 89.8/89.7 | 83.8/78.6 | 77.5/75.1 | 82.0/67.9 | 64.0/50.1 | 57.3/45.3
E2E-PL: P-RCNN S 90.5/90.4 | 84.4/79.2 | 78.4/759 | 82.7/71.1 | 65.7/51.7 | 58.4/46.7
PL: PIXOR™ [36] S 89.0/- 75.2 1/ - 67.3/- 73.9/- 54.0/- 469/ -
PL++: PIXOR™* [45] S 89.9/ - 784/ - 74.71 - 79.71 - 61.1/- 54.5/-
E2E-PL: PIXOR* S 94.6 / - 84.8 /- 77.1/ - 80.4/- 64.3 /- 56.7 / -
P-RCNN [34] L 97.3/973 | 89.9/89.8 | 89.4/89.3 | 90.2/89.2 | 87.9/78.9 | 85.5/77.9
PIXOR™* [43] L+M |942/- 86.7/ - 86.1/ - 85.2 /- 81.2/- 76.1/ -

dients. We further collect the mean and sum of the gradients
on the depth map during training, as shown in Table 1. The
depth loss only influences 3% of the depth map because the
ground truth obtained from LiDAR is sparse. The P-RCNN
loss, due to subsampling on the dense PL point cloud, can
only influence 4% of the depth map. For the PIXOR loss,
our soft quantization module could back-propagate the gra-
dients to 70% of the pixels of the depth map. In our ex-
periments, we find that balancing the sums of gradients be-
tween the detection and depth losses is crucial in making
joint training stable. We carefully set Ageprn and Age; to make
sure that the sums are on the same scale in the beginning of
training. For P-RCNN, we set Agepth = 1 and Ager = 0.01;
for PIXOR, we Agepin = 1 and Agee = 0.1.

4.3. Results

On KITTI validation set. The main results on KITTI
validation set are summarized in Table 2. It can be seen
that 1) the proposed E2E-PL framework consistently im-
proves the object detection performance on both the model
using subsampled point inputs (P-RCNN) and that using
quantized inputs (PIXOR*). 2) While the quantization-
based model (PIXOR™) performs worse than the point-
cloud-based model (P-RCNN) when they are trained in a
non end-to-end manner, end-to-end training greatly reduces
the performance gap between these two types of models,
especially for IoU at 0.5: the gap between these two mod-
els on APggy in moderate cases is reduced from 5.4% to
—0.4%. As shown in Table 1, on depth maps, the gradients
flowing from the loss of the PIXOR* detector are much
denser than those from the loss of the P-RCNN detector,
suggesting that more gradient information is beneficial. 3)
For IoU at 0.5 under easy and moderate cases, E2E-PL:
PIXOR™* performs on a par with PIXOR* using LiDAR.

Table 3: 3D object (car) detection results on the KITTI test
set. We compare E2E-PL (blue) with existing results retrieved
from the KITTI leaderboard, and report APggv / AP3p at IoU=0.7.

Method Easy Moderate Hard
S-RCNN [20] 61.9/47.6\41.3/30.2|133.4/23.7
RT3DSTEREO [14] |58.8/29.9|46.8/23.338.4/19.0
OC-STEREO [29] 68.9/55.2|51.5/37.6|/43.0/30.3
PL [36] 67.3/54.5|45.0/34.1|38.4/28.3
PL++: P-RCNN [45]|78.3/61.1(58.0/42.4|51.3/37.0
E2E-PL: P-RCNN |79.6/64.8|58.8/43.9|52.1/38.1
PL++:PIXOR™* [45] |70.7/- 48.3 /- 41.0/-
E2E-PL: PIXOR* |71.9/- 51.77/ - 43.3 /-

On KITTI test set. Table 3 shows the results on KITTI
test set. We observe the same consistent performance boost
by applying our E2E-PL framework on each detector type.
At the time of submission, E2E-PL: P-RCNN achieves the
state-of-the-art results over image-based models.

4.4. Ablation studies

We conduct ablation studies on the the point-cloud-
based pipeline with P-RCNN in Table 4. We divide the
pipeline into three sub networks: depth estimation network
(Depth), region proposal network (RPN) and Regional-
CNN (RCNN). We try various combinations of the sub net-
works (and their corresponding losses) by setting them to
trainable in our final joint training stage. The first row
serves as the baseline. In rows two to four, the results in-
dicate that simply training each sub network independently
with more iterations does not improve the accuracy. In row
five, joint training RPN and RCNN (i.e., P-RCNN) does
not have significant improvement, because the point cloud
from Depth is not updated and remains noisy. In row six

5886

Table 4: Ablation studies on the point-cloud-based pipeline with P-RCNN. We report APgev / AP3p (in %) of the car category,
corresponding to average precision of the bird’s-eye view and 3D detection. We divide our pipeline with P-RCNN into three sub networks:
Depth, RPN and RCNN. / means that we set the sub network trainable and use its corresponding loss in joint training. We note that the
gradients of the later sub network would also back-propagate to the previous sub network. For example, if we choose Depth and RPN, the
gradients of RPN would also be back-propogated to the Depth network. The best result per column is in blue. Best viewed in color.

IoU=0.5 IoU=0.7

Depth | RPN | RCNN Easy | Moderate | Hard Easy [Moderate | Hard
89.8/89.7 | 83.8/78.6 | 77.5/75.1 | 82.0/67.9 | 64.0/50.1 | 57.3/45.3
Vv 89.7/89.5 | 83.6/78.5 | 77.4/74.9 | 82.2/67.8 | 64.5/50.5 | 57.4/45.4
Vv 89.3/89.0 | 83.7/78.3 | 77.5/75.0 | 81.1/66.5 | 63.9/50.0 | 57.1/45.2
Vv 89.6/89.4 | 83.9/78.2 | 77.6/75.2 | 81.7/68.2 | 63.4/50.4 | 57.2/45.9
vV vV 90.2/90.1 | 84.2/78.8 | 78.0/75.7 | 81.9/69.1 | 64.0/51.2 | 57.7/46.1
Vv N 89.3/89.1 | 83.9/78.5 | 77.7/75.2 | 81.3/69.4 | 64.7/50.7 | 57.7/45.7
vV V 89.8/89.7 | 84.2/79.1 | 78.2/76.5 | 84.2/69.9 | 65.5/51.0 | 58.1/46.2
N N N 90.5/90.4 | 84.4/79.2 | 78.4/75.9 | 82.7/71.1 | 65.7/51.7 | 58.4/46.7

we jointly train Depth with RPN, but the result does not
improve much either. We suspect that the loss on RPN is
insufficient to guide the refinement of depth estimation. By
combining the three sub networks together and using the
RCNN, RPN, and Depth losses to refine the three sub net-
works, we get the best results (except for two cases).

For the quantization-based pipeline with soft quantiza-
tion, we also conduct similar ablation studies, as shown in
Table 5. Since PIXOR™* is a one-stage detector, we di-
vide the pipeline into two components: Depth and Detector.
Similar to the point-cloud-based pipeline (Table 4), sim-
ply training each component independently with more it-
erations does not improve. However, when we jointly train
both components, we see a significant improvement (last
row). This demonstrates the effectiveness of our soft quan-
tization module which can back-propagate the Detector loss
to influence 70% pixels on the predicted depth map.

More interestingly, applying the soft quantization mod-
ule alone without jointly training (rows one and two)
does not improve over or is even outperformed by
PL++: PIXOR* with hard quantization (whose result is
89.9/79.7|78.4/61.1|74.7/54.5, from Table 2). But with
joint end-to-end training enabled by soft quantization, our
E2E-PL:PIXOR* consistently outperforms the separately
trained PL++: PIXOR™*.

4.5. Qualitative results

We show the qualitative results of the point-cloud-based
and quantization-based pipelines.
Depth visualization. We visualize the predicted depth
maps and the corresponding point clouds converted from
the depth maps by the quantization-based pipeline in Fig-
ure 5. For the original depth network shown in the first row,
since the ground truth is very sparse, the depth prediction is
not accurate and we observe clear misestimation (artifact)
on the top of the car: there are massive misestimated 3D

Table 5: Ablation studies on the quantization-based pipeline
with PIXOR*. We report APggy at IoU = 0.5/ 0.7 (in %) of
the car category. We divide our pipeline into two sub networks:
Depth and Detector. / means we set the sub network trainable
and use its corresponding loss in join training. The best result per
column is in blue. Best viewed in color.

Depth | Detector| Easy | Moderate | Hard
89.8/77.0(78.3/57.7|{69.5/53.8
Vv 89.9/76.9|78.7/58.0{69.7/53.9
Vv 90.2/78.1|79.2/58.9|69.6/54.2
N Vv 94.6/80.4|84.8/64.3|77.1/56.7
Whole scene Zoom-in Point cloud

Figure 5: Qualitative results on depth estimation. PL++
(image-only) has many misestimated pixels on the top of the
car. By applying end-to-end training, the depth estimation around
the cars is improved and the corresponding pseudo-LiDAR point
cloud has much better quality. (Please zoom-in for the better view.)

points on the top of the car. By applying end-to-end joint
training, the detection loss on cars enforces the depth net-
work to reduce the misestimation and guides it to generate
more accurate point clouds. As shown in the second row,
both the depth prediction quality and the point cloud qual-
ity are greatly improved. The last row is the input image

5887

Input

PL++
BEV

E2E-PL
BEV

Figure 6: Qualitative results from the bird’s-eye view. The red bounding boxes are the ground truth and the green bounding boxes
are the detection results. PL++ (image-only) misses many far-away cars and has poor bounding box localization. By applying end-to-end
training, we get much accurate predictions (first and second columns) and reduce the false positive predictions (the third column).

to the depth network, the zoomed-in patch of a specific car,
and its corresponding LiDAR ground truth point cloud.
Detection visualization. We also show the qualitative com-
parisons of the detection results, as illustrated in Figure 6.
From the BEYV, the ground truth bounding boxes are marked
in red and the predictions are marked in green. In the first
example (column), pseudo-LiDAR++ (PL++) misses one
car in the middle, and gives poor localization of the far-
away cars. Our E2E-PL could detect all the cars, and gives
accurate predictions on the farthest car. For the second ex-
ample, the result is consistent for the far-away cars where
E2E-PL detects more cars and localize them more accu-
rately. Even for the nearby cars, E2E-PL gives better re-
sults. The third example indicates a case where there is only
one ground truth car. Our E2E-PL does not have any false
positive predictions.

4.6. Other results

Speed. The inference time of our method is similar to
pseudo-LiDAR and is determined by the stereo and de-
tection networks. The soft quantization module (with 26
neighboring bins) only computes the RBF weights between
a point and 27 bins (roughly N = 300,000 points per
scene), followed by grouping the weights of points into
bins. The complexity is O(NN), and both steps can be par-
allelized. Using a single GPU with PyTorch implementa-
tion, E2E-PL: P-RCNN takes 0.49s/frame and E2E-PL:
PIXOR* takes 0.55s/frame, within which SDN (stereo net-
work) takes 0.39s/frame and deserves further study to speed
it up (e.g., by code optimization, network pruning, etc).

Others. See the Supplementary Material for more details
and results.

5. Conclusion and Discussion

In this paper, we introduced an end-to-end training
framework for pseudo-LiDAR [36, 45]. Our proposed
framework can work for 3D object detectors taking either
the direct point cloud inputs or quantized structured inputs.
The resulting models set a new state of the art in image
based 3D object detection and further narrow the remain-
ing accuracy gap between stereo and LiDAR based sen-
sors. Although it will probably always be beneficial to
include active sensors like LiDARs in addition to passive
cameras [45], it seems possible that the benefit may soon be
too small to justify large expenses. Considering the KITTI
benchmark, it is worth noting that the stereo pictures are of
relatively low resolution and only few images contain (la-
beled) far away objects. It is quite plausible that higher res-
olution images with a higher ratio of far away cars would
result in further detection improvements, especially in the
hard (far away and heavily occluded) category.

Acknowledgments

This research is supported by grants from the National Sci-
ence Foundation NSF (III-1618134, II1-1526012, 1IS-1149882,
1IS-1724282, and TRIPODS-1740822), the Office of Naval Re-
search DOD (N00014-17-1-2175), the Bill and Melinda Gates
Foundation, and the Cornell Center for Materials Research with
funding from the NSF MRSEC program (DMR-1719875). We are
thankful for generous support by Zillow and SAP America Inc.

5888

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

Florian Chabot, Mohamed Chaouch, Jaonary Rabarisoa,
Céline Teuliere, and Thierry Chateau. Deep manta: A
coarse-to-fine many-task network for joint 2d and 3d vehi-
cle analysis from monocular image. In CVPR, 2017. 2
Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo
matching network. In CVPR, 2018. 1, 2

Xiaozhi Chen, Kaustav Kundu, Ziyu Zhang, Huimin Ma,
Sanja Fidler, and Raquel Urtasun. Monocular 3d object de-
tection for autonomous driving. In CVPR, 2016. 2

Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Andrew G
Berneshawi, Huimin Ma, Sanja Fidler, and Raquel Urtasun.
3d object proposals for accurate object class detection. In
NIPS, 2015. 2,5, 6

Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Huimin Ma,
Sanja Fidler, and Raquel Urtasun. 3d object proposals using
stereo imagery for accurate object class detection. TPAMI. 2
Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.
Multi-view 3d object detection network for autonomous
driving. In CVPR, 2017. 2,3, 5

Yilun Chen, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Fast
point r-cnn. In ICCV, 2019. 2

Xinxin Du, Marcelo H Ang Jr, Sertac Karaman, and Daniela
Rus. A general pipeline for 3d detection of vehicles. In
ICRA, 2018. 2

Martin Engelcke, Dushyant Rao, Dominic Zeng Wang,
Chi Hay Tong, and Ingmar Posner. Vote3deep: Fast ob-
ject detection in 3d point clouds using efficient convolutional
neural networks. In ICRA, 2017. 2

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. The Inter-
national Journal of Robotics Research, 32(11):1231-1237,
2013. 1,2,5

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In CVPR, 2012. 1, 2,5

Kaiming He, Georgia Gkioxari, Piotr Dolldr, and Ross Gir-
shick. Mask r-cnn. In ICCV, 2017. 2

Jinyong Jeong, Younggun Cho, Young-Sik Shin, Hyunchul
Roh, and Ayoung Kim. Complex urban dataset with multi-
level sensors from highly diverse urban environments. The
International Journal of Robotics Research, 38(6):642—-657,
2019. 3

Hendrik Konigshof, Niels Ole Salscheider, and Christoph
Stiller. Realtime 3d object detection for automated driving
using stereo vision and semantic information. In 20719 IEEE
Intelligent Transportation Systems Conference (ITSC), 2019.
1,5,6

Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh,
and Steven Waslander. Joint 3d proposal generation and ob-
ject detection from view aggregation. In /ROS, 2018. 1, 2,
3

Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
for object detection from point clouds. In CVPR, 2019. 2, 4
Bo Li. 3d fully convolutional network for vehicle detection
in point cloud. In /ROS, 2017. 2

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

5889

Buyu Li, Wanli Ouyang, Lu Sheng, Xingyu Zeng, and Xiao-
gang Wang. Gs3d: An efficient 3d object detection frame-
work for autonomous driving. In CVPR, 2019. 2

Bo Li, Tianlei Zhang, and Tian Xia. Vehicle detection from
3d lidar using fully convolutional network. In Robotics: Sci-
ence and Systems, 2016. 2

Peiliang Li, Xiaozhi Chen, and Shaojie Shen. Stereo r-cnn
based 3d object detection for autonomous driving. In CVPR,
2019. 1,5,6

Ming Liang, Bin Yang, Yun Chen, Rui Hu, and Raquel Urta-
sun. Multi-task multi-sensor fusion for 3d object detection.
In CVPR, 2019. 2

Ming Liang, Bin Yang, Shenlong Wang, and Raquel Urtasun.
Deep continuous fusion for multi-sensor 3d object detection.
In ECCV, 2018. 2,3

Tsung-Yi Lin, Piotr Dolldr, Ross B Girshick, Kaiming He,
Bharath Hariharan, and Serge J Belongie. Feature pyramid
networks for object detection. In CVPR, volume 1, page 4,
2017. 2

Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In CVPR, 2016. 5
Gregory P Meyer, Jake Charland, Darshan Hegde, Ankit
Laddha, and Carlos Vallespi-Gonzalez. Sensor fusion for
joint 3d object detection and semantic segmentation. In
CVPRW, 2019. 2

Gregory P Meyer, Ankit Laddha, Eric Kee, Carlos Vallespi-
Gonzalez, and Carl K Wellington. Lasernet: An efficient
probabilistic 3d object detector for autonomous driving. In
CVPR, 2019. 2

Arsalan Mousavian, Dragomir Anguelov, John Flynn, and
Jana KoSeckd. 3d bounding box estimation using deep learn-
ing and geometry. In CVPR, 2017. 2

Cuong Cao Pham and Jae Wook Jeon. Robust object pro-
posals re-ranking for object detection in autonomous driving
using convolutional neural networks. Signal Processing: Im-
age Communication, 53:110-122, 2017. 2

Alex D Pon, Jason Ku, Chengyao Li, and Steven L Waslan-
der. Object-centric stereo matching for 3d object detection.
In ICRA, 2020. 1, 5,6

Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J
Guibas. Frustum pointnets for 3d object detection from rgb-d
data. In CVPR, 2018. 1,2, 4

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In CVPR, 2017. 2

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In NIPS, 2017. 2

Shaoging Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In NIPS, 2015. 2

Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-
cnn: 3d object proposal generation and detection from point
cloud. In CVPR, 2019. 1,2,4,5,6

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

(45]

[46]

[47]

Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang,
and Hongsheng Li. From points to parts: 3d object detec-
tion from point cloud with part-aware and part-aggregation
network. TPAMI, 2020. 2

Yan Wang, Wei-Lun Chao, Divyansh Garg, Bharath Hariha-
ran, Mark Campbell, and Kilian Q. Weinberger. Pseudo-lidar
from visual depth estimation: Bridging the gap in 3d object
detection for autonomous driving. In CVPR, 2019. 1, 2, 5,
6,8

Yu Xiang, Wongun Choi, Yuanqing Lin, and Silvio Savarese.
Data-driven 3d voxel patterns for object category recogni-
tion. In CVPR, 2015. 2

Yu Xiang, Wongun Choi, Yuanqing Lin, and Silvio Savarese.
Subcategory-aware convolutional neural networks for object
proposals and detection. In WACV, 2017. 2

Bin Xu and Zhenzhong Chen. Multi-level fusion based 3d
object detection from monocular images. In CVPR, 2018. 2,
5,6

Danfei Xu, Dragomir Anguelov, and Ashesh Jain. Pointfu-
sion: Deep sensor fusion for 3d bounding box estimation. In
CVPR, 2018. 2,5

Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embed-
ded convolutional detection. Sensors, 18(10):3337, 2018. 2,
4

Bin Yang, Ming Liang, and Raquel Urtasun. Hdnet: Exploit-
ing hd maps for 3d object detection. In CoRL, 2018. 2

Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-
time 3d object detection from point clouds. In CVPR, 2018.
2,3,4,5,6

Zetong Yang, Yanan Sun, Shu Liu, Xiaoyong Shen, and Jiaya
Jia. Std: Sparse-to-dense 3d object detector for point cloud.
In ICCV, 2019. 2

Yurong You, Yan Wang, Wei-Lun Chao, Divyansh Garg, Ge-
off Pleiss, Bharath Hariharan, Mark Campbell, and Kilian Q
Weinberger. Pseudo-lidar++: Accurate depth for 3d object
detection in autonomous driving. In ICLR, 2020. 1, 2, 4, 5,
6,8

X. Ye X. Tan W. Yang S. Wen E. Ding A. Meng L. Huang
Z. Xu, W. Zhang. Zoomnet: Part-aware adaptive zooming
neural network for 3d object detection. In AAAZ, 2020. 1
Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning
for point cloud based 3d object detection. In CVPR, 2018. 2,
4

5890

