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Abstract

In the domain of autonomous driving, deep learning has

substantially improved the 3D object detection accuracy for

LiDAR and stereo camera data alike. While deep networks

are great at generalization, they are also notorious to over-

fit to all kinds of spurious artifacts, such as brightness, car

sizes and models, that may appear consistently throughout

the data. In fact, most datasets for autonomous driving are

collected within a narrow subset of cities within one coun-

try, typically under similar weather conditions. In this pa-

per we consider the task of adapting 3D object detectors

from one dataset to another. We observe that naı̈vely, this

appears to be a very challenging task, resulting in dras-

tic drops in accuracy levels. We provide extensive exper-

iments to investigate the true adaptation challenges and

arrive at a surprising conclusion: the primary adaptation

hurdle to overcome are differences in car sizes across ge-

ographic areas. A simple correction based on the aver-

age car size yields a strong correction of the adaptation

gap. Our proposed method is simple and easily incorpo-

rated into most 3D object detection frameworks. It pro-

vides a first baseline for 3D object detection adaptation

across countries, and gives hope that the underlying prob-

lem may be more within grasp than one may have hoped

to believe. Our code is available at https://github.

com/cxy1997/3D_adapt_auto_driving.

1. Introduction

Autonomous cars need to accurately detect and localize
vehicles and pedestrians in 3D to drive safely. As such, the
past few years have seen a flurry of interest on the problem
of 3D object detection, resulting in large gains in accuracy
on the KITTI benchmark [11, 14, 15, 16, 18, 19, 28, 29, 30,
31, 32, 33, 34, 37, 40, 41, 52, 53, 54, 51, 61, 62, 63, 64,
65, 68, 69]. However, in the excitement this has garnered, it
has often been forgotten that KITTI is a fairly small (∼15K
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Figure 1: Datasets. We show frontal view images (left) and
the corresponding LiDAR signals (right) from the bird’s-eye view
for five datasets: KITTI [18, 19], Argoverse [7], nuScenes [4],
Lyft [25], and Waymo [3]. These datasets not only capture scenes
at different geo-locations, but also use different LiDAR models,
making generalizing 3D object detectors a challenging problem.

scenes) object detection dataset obtained from a narrow do-
main: it was collected using a fixed sensing apparatus by
driving through a mid-sized German city and the German
countryside, in clear weather, during the day. Thus, the
3D object detection algorithms trained on KITTI may have
picked up all sorts of biases: they may expect the road to
be visible or the sky to be blue. They may identify only
certain brands of cars, and might have even over-fit to the
idiosyncrasies of German drivers and pedestrians. Carrying
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these biases over to a new environment in a different part
of the world might cause the object detector to miss cars or
pedestrians, with devastating consequences [1].

It is, therefore, crucial that we (a) understand the biases
that our 3D object detectors are picking up before we deploy
them in safety-critical applications, and (b) identify tech-
niques to mitigate these biases. Our goal in this paper is to
address both of these challenges.

Our first goal is to understand if any biases have crept
into current 3D object detectors. For this, we leverage mul-
tiple recently released datasets with similar types of sensors
to KITTI [18, 19] (cameras and LiDAR) and with 3D anno-
tations, each of them collected in different cities [3, 4, 7, 25]
(see Figure 1 for an illustration). Interestingly, they are
also recorded with different sensor configurations (i.e., the
LiDAR and camera models as well as their mounting ar-
rangements can be different). We first train two represen-
tative LiDAR-based 3D object detectors (PIXOR [63] and
POINTRCNN [52]) on each dataset and test on the others.
We find that when tested on a different dataset, 3D object
detectors fail dramatically: a detector trained on KITTI per-
forms 36 percent worse on Waymo [3] compared to the
one trained on Waymo. This indicates that the detector has
indeed over-fitted to its training domain.

What domain differences are causing such catastrophic
failure? One can think of many possibilities. There may
be differences in low-level statistics of the images. The Li-
DAR sensors might have more or fewer beams, and may
be oriented differently. But the differences can also be in
the physical world being sensed. There may be differences
in the number of vehicles, their orientation, and also their
sizes and shapes. We present an extensive analysis of these
potential biases that points to one major issue — statistical
differences in the sizes and shapes of cars.

In hindsight, this difference makes sense. The best
selling car in the USA is a 5-meter long truck (Ford F-
series) [2], while the best selling car in Germany is a 4-
meter long compact car (Volkswagen Golf1). Because of
such differences, cars in KITTI tend to be smaller than cars
in other datasets, a bias that 3D object detectors happily
learn. As a counter to this bias, we propose an extremely
simple approach that leverages aggregate statistics of car
sizes (i.e., mean) to correct for this bias, in both the output

annotations and the input signals. Such statistics might be
acquired from the department of motor vehicles, or car sales
data. This single correction results in a massive improve-
ment in cross-dataset performance, raising the 3D easy part
average precision by 41.4 points and results in a much more
robust 3D object detector.

Taken together, our contributions are two-fold:

• We present an extensive evaluation of the domain dif-

1https://www.best-selling-cars.com/germany/

2019-q1-germany-best-selling-car-brands-and-models/

ferences between self-driving car environments and
how they impact 3D detector performance. Our results
suggest a single core issue: size statistics of cars in
different locations.

• We present a simple and effective approach to mitigate
this issue by using easily obtainable aggregate statis-
tics of car sizes, and show dramatic improvements in
cross-dataset performance as a result.

Based on our results, we recommend that vision researchers
and self-driving car companies alike be cognizant of such
domain differences for large-scale deployment of 3D detec-
tion systems.

2. Related Work

We review 3D object detection for autonomous driving,
and domain adaptation for 2D segmentation and detection
in street scenes.
LiDAR-based detection. Most existing techniques of 3D
object detection use LiDAR (sometimes with images) as
the input signal, which provides accurate 3D points of the
surrounding environment. The main challenge is thus on
properly encoding the points so as to predict point labels
or draw bounding boxes in 3D to locate objects. Frus-
tum PointNet [41] applies PointNet [42, 43] to each frus-
tum proposal from a 2D object detector; POINTRCNN
[52] learns 3D proposals from PointNet++ features [43].
MV3D [11] projects LiDAR points into frontal and bird’s-
eye views (BEV) to obtain multi-view features; PIXOR [63]
and LaserNet [37] show that properly encoding features in
one view is sufficient to localize objects. VoxelNet [69]
and PointPillar [30] encode 3D points into voxels and ex-
tracts features by 3D convolutions and PointNet. UberATG-
ContFuse [34] and UberATG-MMF [33] perform continu-
ous convolutions [56] to fuse visual and LiDAR features.
Image-based detection. While providing accurate 3D
points, LiDAR sensors are notoriously expensive. A 64-
line LiDAR (e.g., the one used in KITTI [19, 18]) costs
around $75, 000 (US dollars). As an alternative, researchers
have also been investigating purely image-based 3D detec-
tion. Existing algorithms are largely built upon 2D ob-
ject detection [45, 20, 35], imposing extra geometric con-
straints [6, 8, 38, 59] to create 3D proposals. [9, 10, 39, 60]
apply stereo-based depth estimation to obtain 3D coordi-
nates of each pixel. These 3D coordinates are either entered
as additional input channels into a 2D detection pipeline,
or used to extract hand-crafted features. The recently pro-
posed pseudo-LiDAR [58, 44, 66] combined stereo-based
depth estimation with LiDAR-based detection, converting
the depth map into a 3D point cloud and processing it ex-
actly as LiDAR signal. The pseudo-LiDAR framework has
largely improved image-based detection, yet a notable gap
is still remained compared to LiDAR. In this work, we
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therefore focus on LiDAR-based object detectors.
Domain adaptation. (Unsupervised) domain adaptation
has also been studied in autonomous driving scenes, but
mainly for the tasks of 2D semantic segmentation [13,
22, 24, 36, 48, 49, 50, 55, 67, 73] and 2D object detec-
tion [5, 12, 21, 23, 26, 27, 46, 47, 57, 72, 71]. The com-
mon setting is to adapt a model trained from one labeled
source domain (e.g., synthetic images) to an unlabeled tar-
get domain (e.g., real images). The domain difference is
mostly from the input signal (e.g., image styles), and many
algorithms have built upon adversarial feature matching and
style transfer [17, 22, 70] to minimize the domain gap in the
input or feature space. Our work contrasts these methods
by studying 3D object detection. We found that, the output
space (e.g., car sizes) can also contribute to the domain gap;
properly leveraging the statistics of the target domain can
largely improve the model’s generalization ability.

3. Datasets

We review KITTI [18, 19] and introduce the other four
datasets used in our experiments: Argoverse [7], Lyft [25],
nuScenes [4], and Waymo [3]. We focus on data related to
3D object detection. All the datasets provide ground-truth
3D bounding box labels for several kinds of objects. We
summarize the five datasets in detail in Table 1.
KITTI. The KITTI object detection benchmark [18, 19]
contains 7, 481 (left) images for training and 7, 518 images
for testing. The training set is further separated into 3, 712
training and 3, 769 validation images as suggested by [9].
All the scenes are pictured around Karlsruhe, Germany in
clear weather and day time. For each (left) image, KITTI
provides its corresponding 64-beam Velodyne LiDAR point
cloud and the right stereo image.
Argoverse. The Argoverse dataset [7] is collected around
Miami and Pittsburgh, USA in multiple weathers and dur-
ing different times of a day. It provides images from stereo
cameras and another seven cameras that cover 360◦ infor-
mation. It also provides 64-beam LiDAR point clouds cap-
tured by two 32-beam Velodyne LiDAR sensors stacked
vertically. We extracted synchronized frontal-view images
and corresponding point clouds from the original Argov-
erse dataset, with a timestamp tolerance of 51 ms between
LiDAR sweeps and images. The resulting dataset we use
contains 13, 122 images for training, 5, 015 images for val-
idation, 4, 168 images for testing.
nuScenes. The nuScenes dataset [4] contains 28, 130 train-
ing and 6, 019 validation images. We treat the validation im-
ages as test images, and re-split and subsample the 28, 130
training images into 11, 040 training and 3, 026 validation
images. The scenes are pictured around Boston, USA and
Singapore in multiple weathers and during different times of
a day. For each image, nuScenes provides the point cloud
captured by a 32-beam roof LiDAR. It also provides images

from another five cameras that cover 360◦ information.

Lyft. The Lyft Level 5 dataset [25] contains 18, 634 frontal-
view images and we separate them into 12, 599 images for
training, 3, 024 images for validation, 3, 011 images for
testing. The scenes are pictured around Palo Auto, USA
in clear weathers and during day time. For each image, Lyft
provides the point cloud captured by a 40 (or 64)-beam roof
LiDAR and two 40-beam bumper LiDAR sensors. It also
provides images from another five cameras that cover 360◦

information and one long-focal-length camera.

Waymo. The Waymo dataset [3] contains 122, 000 train-
ing, 30, 407 validation, and 40, 077 test images and we sub-
sample them into 12, 000 , 3, 000, and 3, 000, respectively.
The scenes are pictured at Phoenix, Mountain View, and
San Francisco in multiple weathers and at multiple times of
a day. For each image, Waymo provides the combined point
cloud captured by five LiDAR sensors (one on the roof). It
also provides images from another four cameras.

Data format. A non-negligible difficulty in conducting
cross-dataset analysis lies in the differences of data formats.
Considering that most existing algorithms are developed us-

ing the KITTI format, we transfer all the other four datasets

into its format. See the Supplementary Material for details.

4. Experiments and Analysis

4.1. Setup

3D object detection algorithms. We apply two LiDAR-
based models POINTRCNN [52] and PIXOR [63] to detect
objects in 3D by outputting the surrounding 3D bounding
boxes. PIXOR represents LiDAR point clouds by 3D ten-
sors after voxelization, while POINTRCNN applies Point-
Net++ [43] to extract point-wise features. Both methods
do not rely on images. We train both models on the five
3D object detection datasets. POINTRCNN has two sub-
networks, the region proposal network (RPN) and region-
CNN (RCNN), that are trained separately. The RPN is
trained first, for 200 epochs with batch size 16 and learn-
ing rate 0.02. The RCNN is trained for 70 epochs with
batch size 4 and learning rate 0.02. We use online ground
truth boxes augmentation, which copies object boxes and
inside points from one scene to the same locations in an-
other scene. For PIXOR, we train it with batch size 4 and
initial learning rate 5 × 10−5, which will be decreased 10
times on the 50th and 80th epoch. We do randomly hori-
zontal flip and rotate during training.

Metric. We follow KITTI to evaluate object detection in
3D and the bird’s-eye view (BEV). We focus on the Car

category, which has been the main focus in existing works.
We report average precision (AP) with the IoU thresholds
at 0.7: a car is correctly detected if the intersection over
union (IoU) with the predicted 3D box is larger than 0.7. We
denote AP for the 3D and BEV tasks by AP3D and APBEV.
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Table 1: Dataset overview. We focus on their properties related to frontal-view images, LiDAR, and 3D object detection. The dataset size
refers to the number of synchronized (image, LiDAR) pairs. For Waymo and nuScenes, we subsample the data. See text for details.

Dataset Size LiDAR Type Beam Angles Object Types Rainy Weather Night Time

KITTI [18, 19] 14, 999 1× 64-beam [−24◦, 4◦] 8 No No
Argoverse [7] 22, 305 2× 32-beam [−26◦, 25◦] 17 No Yes
nuScenes [4] 34, 149 1× 32-beam [−16◦, 11◦] 23 Yes Yes
Lyft [25] 18, 634 1× 40 or 64 + 2× 40-beam [−29◦, 5◦] 9 No No
Waymo [3] 192, 484 1× 64 + 4× 200-beam [−18◦, 2◦] 4 Yes Yes

KITTI evaluates three cases: Easy, Moderate, and Hard.
Specifically, it labels each ground truth box with four levels
(0 to 3) of occlusion / truncation. The Easy case contains
level-0 cars whose bounding box heights in 2D are larger
than 40 pixels; the Moderate case contains level-{0, 1} cars
whose bounding box heights in 2D are larger than 25 pixels;
the Hard case contains level-{0, 1, 2} cars whose bounding
box heights in 2D are larger than 25 pixels. The heights are
meant to separate cars by their depths with respect to the ob-
serving car. Nevertheless, since different datasets have dif-
ferent image resolutions, such criteria might not be aligned
across datasets. We thus replace the constraints of “larger
than 40, 25 pixels” by “within 30, 70 meters”. We further
evaluate cars of level-{0, 1, 2} within three depth ranges:
0− 30, 30− 50, and 50− 70 meters, following [63].

We mainly report and discuss results of POINTRCNN
on the validation set in the main paper. We report results of
PIXOR in the Supplementary Material.

4.2. Results within each dataset

We first evaluate if existing 3D object detection models
that have shown promising results on the KITTI benchmark
can also be learned and perform well on newly released
datasets. We summarize the results in Table 2: the rows
are the source domains that a detector is trained on, and the
columns are the target domains the detector is being tested
on. The bold font indicates the within domain performance
(i.e., training and testing using the same dataset).

We see that POINTRCNN works fairly well on the
KITTI, Lyft, and Waymo datasets, for all the easy, mod-
erate, and hard cases. The results get slightly worse on Ar-
goverse, and then nuScenes. We hypothesize that this may
result from the relatively poor LiDAR input: nuScenes has
only 32 beams; while Argoverse has 64 beams, every two of
them are very close due to the configurations that the signal
is captured by two stacked LiDAR sensors.

We further analyze at different ranges in Table 2 (bot-
tom). We see a drastic drop on Argoverse and nuScenes for
the far-away ranges, which supports our hypothesis: with
fewer beams, the far-away objects can only be rendered by
very sparse LiDAR points and thus are hard to detect. We
also see poor accuracies at 50−70 meters on KITTI, which
may result from very few labeled training instances there.

Overall, both 3D object detection algorithms work fairly

well when being trained and tested using the same dataset,
as long as the input sensor signal is of high quality and the
labeled instances are sufficient.

4.3. Results across datasets

We further experiment with generalizing a trained detec-
tor across datasets. We indicate the best result per column
and per setting by red fonts and the worst by blue fonts.

We see a clear trend of performance drop. For instance,
the POINTRCNN model trained on KITTI achieves only
45.2% APBEV (Moderate) on Waymo, lower than the model
trained on Waymo by over 40%. The gap becomes even
larger in AP3D: the same KITTI model attains only 11.9%
AP3D, while the Waymo model attains 85.3%. We hypoth-
esize that the car height is hard to get right. In terms of the
target (test) domain, Lyft and Waymo suffer the least drop
if the detector is trained from the other datasets, followed
by Argoverse. KITTI and nuScenes suffer the most drop,
which might result from their different geo-locations (one is
from Germany and the other contains data from Singapore).
The nuScenes dataset might also suffer from its relatively
fewer beams in the input and other models may therefore
not be able to apply. By considering different ranges, we
also find that the deeper the range is, the bigger the drop is.

In terms of the source (training) domain, we see that the
detector trained on KITTI seems to be the worst to transfer
to others. In every 5 × 1 block that is evaluated on a sin-
gle dataset in a single setting, the KITTI model is mostly
outperformed by others. Surprisingly, nuScenes model can
perform fairly well when being tested on the other datasets:
the results are even higher than on its own. We thus have
two arguments: The quality of sensors is more important in
testing than in training; KITTI data (e.g., car styles, time,
and weather) might be too limited or different from others
and therefore cannot transfer well to others. In the follow-
ing subsections, we provide detailed analysis.

4.4. Analysis of domain idiosyncrasies

Table 2 and subsection 4.3 reveal drastic accuracy drops
in generalizing 3D object detectors across datasets (do-
mains). We hypothesize that there exist significant idiosyn-
crasies in each dataset. In particular, Figure 1 shows that the
images and point clouds are quite different across datasets.
One one hand, different datasets are collected by cars of dif-
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Table 2: 3D object detection across multiple datasets (evaluated on the validation sets). We report average precision (AP) of the Car

category in bird’s-eye view (APBEV) and 3D (AP3D) at IoU = 0.7, using the POINTRCNN detector [52]. We report results at different
difficulties (following the KITTI benchmark, but we replace the 40, 25, 25 pixel thresholds on 2D bounding boxes with 30, 70, 70
meters on object depths, for Easy, Moderate, and Hard cases, respectively) and different depth ranges (using the same truncation and
occlusion thresholds as KITTI Hard case). The results show a significant performance drop in cross-dataset inference. We indicate the best
generalization results per column and per setting by red fonts and the worst by blue fonts. We indicate in-domain results by bold fonts.

Setting Source\Target KITTI Argoverse nuScenes Lyft Waymo

Easy

KITTI 88.0 / 82.5 55.8 / 27.7 47.4 / 13.3 81.7 / 51.8 45.2 / 11.9
Argoverse 69.5 / 33.9 79.2 / 57.8 52.5 / 21.8 86.9 / 67.4 83.8 / 40.2
nuScenes 49.7 / 13.4 73.2 / 21.8 73.4 / 38.1 89.0 / 38.2 78.8 / 36.7
Lyft 74.3 / 39.4 77.1 / 45.8 63.5 / 23.9 90.2 / 87.3 87.0 / 64.7
Waymo 51.9 / 13.1 76.4 / 42.6 55.5 / 21.6 87.9 / 74.5 90.1 / 85.3

Moderate

KITTI 80.6 / 68.9 44.9 / 22.3 26.2 / 8.3 61.8 / 33.7 43.9 / 12.3
Argoverse 56.6 / 31.4 69.9 / 44.2 27.6 / 11.8 66.6 / 42.1 72.3 / 35.1
nuScenes 39.8 / 10.7 56.6 / 17.1 40.7 / 21.2 71.4 / 25.0 68.2 / 30.8
Lyft 61.1 / 34.3 62.5 / 35.3 33.6 / 12.3 83.7 / 65.5 77.6 / 53.2
Waymo 45.8 / 13.2 64.4 / 29.8 28.9 / 13.7 74.2 / 53.8 85.9 / 67.9

Hard

KITTI 81.9 / 66.7 42.5 / 22.2 24.9 / 8.8 57.4 / 34.2 41.5 / 12.6
Argoverse 58.5 / 33.3 69.9 / 42.8 26.8 / 14.5 64.4 / 42.7 68.5 / 36.8
nuScenes 39.6 / 10.1 53.3 / 16.7 40.2 / 20.5 67.7 / 25.7 66.9 / 29.0
Lyft 60.7 / 33.9 62.9 / 35.9 30.6 / 11.7 79.3 / 65.5 77.0 / 53.9
Waymo 46.3 / 12.6 61.6 / 29.0 28.4 / 14.1 74.1 / 54.5 80.4 / 67.7

0-30m

KITTI 88.8 / 84.9 58.4 / 34.7 47.9 / 14.9 77.8 / 54.2 48.0 / 14.0
Argoverse 74.2 / 46.8 83.3 / 63.3 55.3 / 26.9 87.7 / 69.5 85.7 / 44.4
nuScenes 50.7 / 13.9 73.7 / 26.0 73.2 / 42.8 89.1 / 43.8 79.8 / 43.4
Lyft 75.1 / 45.2 81.0 / 54.0 61.6 / 25.4 90.4 / 88.5 88.6 / 70.9
Waymo 56.8 / 15.0 80.6 / 48.1 57.8 / 24.0 88.4 / 76.2 90.4 / 87.2

30m-50m

KITTI 70.2 / 51.4 46.5 / 19.0 9.8 / 4.5 60.1 / 34.5 50.5 / 21.4
Argoverse 33.9 / 11.8 72.2 / 39.5 9.5 / 9.1 65.9 / 39.1 75.9 / 42.1
nuScenes 24.1 / 3.8 46.3 / 6.4 17.1 / 4.1 70.1 / 18.9 69.4 / 29.2
Lyft 39.3 / 16.6 59.2 / 21.8 11.2 / 9.1 83.8 / 62.7 79.4 / 55.5
Waymo 31.7 / 9.3 58.0 / 18.8 9.9 / 9.1 74.5 / 51.4 87.5 / 68.8

50m-70m

KITTI 28.8 / 12.0 9.2 / 3.0 1.1 / 0.0 33.2 / 9.6 27.1 / 12.0
Argoverse 10.9 / 1.3 29.9 / 6.9 0.5 / 0.0 35.1 / 14.5 46.2 / 23.0
nuScenes 6.5 / 1.5 15.2 / 2.3 9.1 / 9.1 41.8 / 5.3 37.9 / 15.2
Lyft 13.6 / 4.6 23.1 / 3.9 1.1 / 0.0 62.7 / 33.1 54.6 / 27.5
Waymo 5.6 / 1.8 26.9 / 5.6 0.9 / 0.0 50.8 / 21.3 63.5 / 41.1

Figure 2: The average numbers of 3D points per car (left) and
per scene (right). We only include points within the frontal-view
camera view and cars whose depths are within 70 meters.

ferent sensor configurations. For example, nuScenes uses a
single 32-beam LiDAR; the point clouds are thus sparser
than the other datasets. On the other hand, these datasets

are collected at different locations; the environments and
the foreground object styles may also be different.

To provide a better understanding, we compute the aver-
age number of LiDAR points per scene and per car (using
the ground-truth 3D bounding box) in Figure 2. We see a
large difference: Waymo has ten times of points per car than
nuScenes2. We further analyze the size of bounding boxes
per car. Figure 3 shows the histograms of each dataset. We
again see mismatches between different datasets: KITTI
seems to have the smallest box sizes while Waymo has the
largest. We conduct an analysis and find that most of the
bounding boxes tightly contain the points of cars inside.
We, therefore, argue that this difference of box sizes is re-
lated to the car styles captured in different datasets.

2We note that POINTRCNN applies point re-sampling so that every
scene (in RPN) and object proposal (in RCNN) will have the same numbers
of input points while PIXOR applies voxelization. Both operations can
reduce but cannot fully resolve point cloud differences across domains.
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Figure 3: Car size statistics of different datasets.

Figure 4: Sizes of detected bounding boxes before and after our Statistical Normalization (Stat Norm). The detector is trained on Waymo
(w/o or w/ Stat Norm) and tested on KITTI. We also show the distribution of ground-truth box sizes in both datasets.

Figure 5: Car detection accuracy (AP3D at Moderate cases) on
KITTI, using POINTRCNN models trained on different datasets.
We vary the IoU threshold from 0.0 to 1.0 (x-axis). The curves in-
dicate that models trained on different datasets have similar detec-
tion abilities (converge at low IoU) but they differ in localization
(diverge at high IoU).

4.5. Analysis of detector performance

So what are the idiosyncrasies that account for the major-
ity of performance gap? There are two factors that can lead
to an miss-detected car (i.e., IoU < 0.7): the car might be
entirely missed by the detector, or it is detected but poorly
localized. To identify the main factor, we lower down the
IoU threshold using KITTI as the target domain (see Fig-
ure 5). We observe an immediate increase in AP3D, and the
results become saturated when IoU is lower than 0.4. Sur-
prisingly, POINTRCNN models trained from other datasets
perform on a par with the model trained on KITTI. In other
words, poor generalization resides primarily in localization.

We investigate one cause of mislocalization3: inaccurate
box size. To this end, we replace the size of every detected
car that has IoU > 0.2 to a ground-truth car with the cor-
responding ground-truth box size, while keeping its bottom
center and rotation unchanged. We see an immediate perfor-
mance boost in Table 3 (see the Supplementary Material for

3Mislocalization can result from wrong box centers, rotations, or sizes.

Table 3: Cross-dataset performance and gain (in parentheses) by
assigning ground-truth box sizes to detected cars while keeping
their centers and rotations unchanged. We report AP3D of the Car

category at IoU = 0.7, using POINTRCNN [52]. We show adap-
tation from KITTI to other datasets, and vice versa.

Setting Dataset From KITTI To KITTI

Easy

Argoverse 65.7 (+38.0) 59.2 (+25.3)
nuScenes 33.5 (+20.2) 63.9 (+50.5)
Lyft 74.8 (+23.1) 58.4 (+19.0)
Waymo 77.1 (+65.2) 78.2 (+65.1)

Moderate

Argoverse 50.9 (+28.6) 51.0 (+19.6)
nuScenes 18.2 (+9.9) 47.3 (+36.6)
Lyft 54.3 (+20.6) 49.4 (+15.1)
Waymo 63.0 (+50.7) 60.6 (+47.4)

Hard

Argoverse 49.3 (+27.1) 52.5 (+19.2)
nuScenes 17.7 (+8.9) 45.7 (+35.6)
Lyft 53.0 (+18.8) 52.0 (+18.1)
Waymo 59.1 (+46.5) 60.7 (+48.1)

complete results across all pairs of datasets). In other words,
the detector trained from one domain just cannot predict the
car size right in the other domains. This observation corre-
lates with our findings in Figure 3 that these datasets have
different car sizes. By further analyzing the detected boxes
(in Figure 4, we apply the detector trained from Waymo to
KITTI), we find that the detector tends to predict box sizes
that are similar to the ground-truth sizes in source domain,
even though cars in the target domain are indeed physically
smaller. We think this is because the detectors trained from
the source data carry the learned bias to the target data.

5. Domain Adaptation Approaches

The poor performance due to mislocalization rather than
misdetection opens the possibility of adapting a learned de-
tector to a new domain with relatively smaller efforts. We
investigate two scenarios: (1) a few labeled scenes (i.e.,
point clouds with 3D box annotations) or (2) the car size
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Table 4: Improved 3D object detection across datasets (evaluated on the validation sets). We report APBEV/ AP3D of the Car category
at IoU = 0.7, using POINTRCNN [52]. We investigate (OT) output transformation by directly adjusting the predicted box sizes, (SN)

statistical normalization, and (FS) few-shot fine-tuning (with 10 labeled instances). We also include (Direct) directly applying the detectors
trained on the source domain and (Within) applying the detectors trained on the target domain for comparison. We show adaption results
from KITTI to other datasets, and vice versa. We mark the best result among Direct, OT, SN, and FS in red fonts, and worst in blue fonts.

From KITTI (KITTI as the source; others as the target) To KITTI (KITTI as the target; others as the source)

Setting Dataset Direct OT SN FS Within Direct OT SN FS Within

Easy

Argoverse 55.8 / 27.7 72.7 / 9.0 74.7 / 48.2 75.8 / 49.2 79.2 / 57.8 69.5 / 33.9 53.3 / 5.7 76.2 / 46.1 80.0 / 49.7 88.0 / 82.5
nuScenes 47.4 / 13.3 55.0 / 10.4 60.8 / 23.9 54.7 / 21.7 73.4 / 38.1 49.7 / 13.4 75.4 / 31.5 83.2 / 35.6 83.8 / 58.7 88.0 / 82.5
Lyft 81.7 / 51.8 88.2 / 23.5 88.3 / 73.3 89.0 / 78.1 90.2 / 87.3 74.3 / 39.4 71.9 / 4.7 83.5 / 72.1 85.3 / 72.5 88.0 / 82.5
Waymo 45.2 / 11.9 86.1 / 16.2 84.6 / 53.3 87.4 / 70.9 90.1 / 85.3 51.9 / 13.1 64.0 / 3.9 82.1 / 48.7 81.0 / 67.0 88.0 / 82.5

Mod.

Argoverse 44.9 / 22.3 59.9 / 7.9 61.5 / 38.2 60.7 / 37.3 69.9 / 44.2 56.6 / 31.4 52.2 / 7.3 67.2 / 40.5 68.8 / 42.8 80.6 / 68.9
nuScenes 26.2 / 8.3 30.8 / 6.8 32.9 / 16.4 28.7 / 12.5 40.7 / 21.2 39.8 / 10.7 58.5 / 27.3 67.4 / 31.0 67.2 / 45.5 80.6 / 68.9
Lyft 61.8 / 33.7 70.1 / 17.8 73.7 / 53.1 74.2 / 53.4 83.7 / 65.5 61.1 / 34.3 60.8 / 5.6 73.6 / 57.9 73.9 / 56.2 80.6 / 68.9
Waymo 43.9 / 12.3 69.1 / 13.1 74.9 / 49.4 75.9 / 55.3 85.9 / 67.9 45.8 / 13.2 54.9 / 3.7 71.3 / 47.1 66.8 / 51.8 80.6 / 68.9

Hard

Argoverse 42.5 / 22.2 59.3 / 9.3 60.6 / 37.1 59.8 / 36.5 69.9 / 42.8 58.5 / 33.3 53.5 / 8.6 68.5 / 41.9 66.3 / 43.0 81.9 / 66.7
nuScenes 24.9 / 8.8 27.8 / 7.6 31.9 / 15.8 27.5 / 12.4 40.2 / 20.5 39.6 / 10.1 59.5 / 27.8 65.2 / 30.8 64.7 / 44.5 81.9 / 66.7
Lyft 57.4 / 34.2 66.5 / 19.1 73.1 / 53.5 71.8 / 52.9 79.3 / 65.5 60.7 / 33.9 63.1 / 6.9 75.2 / 58.9 74.1 / 56.2 81.9 / 66.7
Waymo 41.5 / 12.6 68.7 / 13.9 69.4 / 49.4 70.1 / 54.4 80.4 / 67.7 46.3 / 12.6 58.0 / 4.1 73.0 / 49.7 68.1 / 52.9 81.9 / 66.7

0-30

Argoverse 58.4 / 34.7 73.0 / 13.7 73.1 / 54.2 73.6 / 55.2 83.3 / 63.3 74.2 / 46.8 64.9 / 10.1 83.3 / 53.9 84.0 / 56.9 88.8 / 84.9
nuScenes 47.9 / 14.9 56.2 / 13.9 60.0 / 29.2 54.0 / 23.6 73.2 / 42.8 50.7 / 13.9 74.6 / 36.6 83.6 / 42.8 81.2 / 59.8 88.8 / 84.9
Lyft 77.8 / 54.2 88.4 / 27.5 88.8 / 75.4 89.3 / 77.6 90.4 / 88.5 75.1 / 45.2 74.8 / 9.1 87.4 / 73.6 87.5 / 73.9 88.8 / 84.9
Waymo 48.0 / 14.0 87.7 / 22.2 87.1 / 60.1 88.7 / 74.1 90.4 / 87.2 56.8 / 15.0 71.3 / 4.4 85.7 / 59.0 84.8 / 71.0 88.8 / 84.9

30-50

Argoverse 46.5 / 19.0 56.1 / 5.4 61.5 / 31.5 59.0 / 29.9 72.2 / 39.5 33.9 / 11.8 35.1 / 9.1 48.9 / 25.7 47.9 / 23.8 70.2 / 51.4
nuScenes 9.8 / 4.5 10.8 / 9.1 11.0 / 2.3 9.5 / 6.1 17.1 / 4.1 24.1 / 3.8 35.5 / 15.5 44.9 / 18.6 45.0 / 25.1 70.2 / 51.4
Lyft 60.1 / 34.5 67.4 / 10.7 73.8 / 52.2 73.7 / 50.4 83.8 / 62.7 39.3 / 16.6 43.3 / 3.9 58.3 / 38.0 57.7 / 33.3 70.2 / 51.4
Waymo 50.5 / 21.4 73.6 / 10.4 78.1 / 54.9 78.1 / 57.2 87.5 / 68.8 31.7 / 9.3 39.8 / 4.5 57.3 / 36.3 49.2 / 29.2 70.2 / 51.4

50-70

Argoverse 9.2 / 3.0 20.5 / 1.0 23.8 / 5.6 20.1 / 6.3 29.9 / 6.9 10.9 / 1.3 8.0 / 0.8 9.1 / 2.6 8.1 / 3.8 28.8 / 12.0
nuScenes 1.1 / 0.0 1.5 / 1.0 3.0 / 2.3 3.3 / 1.2 9.1 / 9.1 6.5 / 1.5 7.8 / 5.1 9.4 / 5.1 12.9 / 5.7 28.8 / 12.0
Lyft 33.2 / 9.6 41.3 / 6.8 49.9 / 22.2 46.8 / 19.4 62.7 / 33.1 13.6 / 4.6 12.7 / 0.9 21.1 / 6.7 17.5 / 8.0 28.8 / 12.0
Waymo 27.1 / 12.0 42.6 / 4.2 46.8 / 25.1 45.2 / 24.3 63.5 / 41.1 5.6 / 1.8 7.7 / 1.1 14.4 / 5.7 10.5 / 4.8 28.8 / 12.0

statistics of the target domain are available. We argue that
both scenarios are practical: we can simply annotate for ev-
ery place a few labeled instances, or get the statistics from
the local vehicle offices or car-selling websites. In the main

paper, we will mainly focus on training from KITTI and test-

ing on the others, and vice versa. We leave other results in
the Supplementary Material.

Few-shot (FS) fine-tuning. In the first scenario where a
few labeled scenes from the target domain are accessible,
we investigate fine-tuning the already trained object detec-
tor with these few-shot examples. As shown in Table 4,
using only 10 labeled scenes (average over five rounds of
experiments) of the target domain, we can already improve
the AP3D by over 20.4% on average when adapting KITTI
to other datasets and 24.4% on average when adapting other
datasets to KITTI. Figure 6 further shows the performance
by fine-tuning with different number of scenes. With merely
20 labeled target scenes, the adapted detector from Lyft
and Waymo can already be on a par with that trained from
scratch in the target domain with 500 scenes.

Statistical normalization (SN). For the second scenario
where the target statistics (i.e., average height, width, and
length of cars) are accessible, we investigate modifying the

Figure 6: The few-shot fine-tuning performance on KITTI val-
idation set with the model pre-trained on Argoverse, nuScenes,
Lyft, and Waymo datasets. The x-axis indicates how many KITTI
training images are used for fine-tuning. The y-axis marks AP3D

(moderate cases). Scratch denotes the model trained on the sam-
pled KITTI training images with randomly initialized weights.

already trained object detector so that its predicted box sizes
can better match the target statistics. We propose a data
modification scheme named statistical normalization by ad-
justing the source domain data, as illustrated in Figure 7.
Specifically, we compute the difference of mean car sizes
between the target domain (TD) and source domain (SD),
∆ = (∆h,∆w,∆l) = (hTD, wTD, LTD)− (hSD, wSD, LSD),
where h,w, l stand for the height, width, and length, re-
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Shrink Box Size

Figure 7: Statistical Normalization (SN). We shrink (or en-
large) the bounding box sizes (in the output space) and the corre-
sponding point clouds (in the input space) in the training scenes
of the source domain to match the mean statistics of the target do-
main. We fine-tune the detector with these modified source scenes.

spectively4. We then modify both the point clouds and the
labels in the source domain with respect to ∆. For each an-
notated bounding box of cars, we adjust its size by adding
(∆h,∆w,∆l). We also crop the points inside the original
box, scale up or shrink their coordinates to fit the adjusted
bounding box size accordingly, and paste them back to the
point cloud of the scene. By doing so, we generate new
point clouds and labels whose car sizes are much similar
to the target domain data. We then fine-tune the already
trained model on the source domain with these data.

Surprisingly, with such a simple method that does not
requires labeled target domain data, the performance is sig-
nificantly improved (see Table 4) between KITTI and other
datasets that obviously contain cars of different styles (i.e.,
one in Germany, and others in the USA). Figure 4 and Fig-
ure 8 further analyze the prediction before and after statis-
tical normalization. We see a clear shift of the histogram
(predicted box) from the source to the target domain.
Output transformation (OT). We investigate an even sim-
pler approach by directly adjusting the detector’s prediction
without fine-tuning — by adding (∆h,∆w,∆l) to the pre-
dicted size. As shown in Table 4, this approach does not
always improve but sometimes degrade the accuracy. This
is because when we apply the source detector to the target
domain, the predicted box sizes do slightly deviate from the
source statistics to the target ones due to the difference of
object sizes in the input signals (see Figure 4). Thus, sim-
ply adding (∆h,∆w,∆l) may over-correct the bias. We
hypothesize that by searching a suitable scale for addition
or designing more intelligent output transformations can al-
leviate this problem and we leave them for future work.
Discussion. As shown in Table 4, statistical normalization
largely improves over direct applying the source-domain
detector. For some pairs of data sets (e.g., from KITTI to
Lyft, the APBEV after statistical normalization is encourag-
ing, largely closing the gap to the Within performance.

Compared to domain adaptation on 2D images, there are
more possible factors of domain gaps in 3D. While the box
size difference is just one factor, we find addressing it to be

4Here we obtain the target statistics directly from the dataset. We in-
vestigate using the car sales data online in the Supplementary Material.

KITTI Prediction Before Stat Norm After Stat Norm

Figure 8: Illustration of car prediction on KITTI w/o and

w/ statistical normalization (Stat Norm). The green boxes and
red boxes indicate the ground truth and prediction, respectively.
The box in the left image is predicted by POINTRCNN trained on
KITTI. The middle image shows POINTRCNN that is pre-trained
on Waymo and directly tested on KITTI. With statistical normal-
ization, the model trained on Waymo only (with modified data)
can accurately predict the bounding box shown in the right image.

highly effective in closing the gaps. This factor is rarely dis-
cussed in other domain adaptation tasks. We thus expect it
and our solution to be valuable additions to the community.

6. Conclusion

In conclusion, in this paper we are the first (to our knowl-
edge) to provide and investigate a standardized form of most
widely-used 3D object detection datasets for autonomous
driving. Although naı̈ve adaptation across datasets is unsur-
prisingly difficult, we observe that, surprisingly, there ap-
pears to be a single dominant factor that explains a majority
share of the adaptation gap: varying car sizes across differ-
ent geographic regions. That car sizes play such an impor-
tant role in adaptation ultimately makes sense. No matter
if the detection is based on LiDAR or stereo cameras, cars
are only observed from one side — and the depth of the
bounding boxes must be estimated based on experience. If
a deep network trained in Germany encounters an American
Ford F-Series truck (with 5.3m length), it has little chance
to correctly estimate the corresponding bounding box. It
is surprising, however, that just matching the mean size of
cars in the areas during fine-tuning already reduces this un-
certainty so much. We hope that this publication will kin-
dle interests in the exciting problem of cross-dataset domain
adaptation for 3D object detection and localization, and that
researchers will be careful to first apply simple global cor-
rections before developing new computer vision algorithms
to tackle the remaining adaptation gap.
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