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Arfiflf? history: Background: Before effective vaccines become widely available, sufficient understanding of the impacts
Received 12 July 2020 of climate, human movement and non-pharmaceutical interventions on the transmissibility of COVID-19
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is needed but still lacking.
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Methods: We collected by crowdsourcing a database of 11 003 COVID-19 cases from 305 cities outside
Hubei Province from December 31, 2019 to April 27, 2020. We estimated the daily effective reproduction
numbers (R;) of COVID-19 in 41 cities where the crowdsourced case data are comparable to the official
surveillance data. The impacts of meteorological variables, human movement indices and nonpharmaceu-
tical emergency responses on R; were evaluated with generalized estimation equation models.

Findings: The median R; was 0-46 (IQR: 0-37-0-87) in the northern cities, higher than 0-20 (IQR: 0-09-
0-52) in the southern cities (p=0-004). A higher local transmissibility of COVID-19 was associated with a
low temperature, a relative humidity near 70-75%, and higher intracity and intercity human movement.
An increase in temperature from 0°C to 20°C would reduce R; by 30% (95 CI 10-46%). A further increase
to 30°C would result in another 17% (95% CI 5-27%) reduction. An increase in relative humidity from
40% to 75% would raise the transmissibility by 47% (95% CI 9-97%), but a further increase to 90% would
reduce the transmissibility by 12% (95% CI 4-19%). The decrease in intracity human movement as a part
of the highest-level emergency response in China reduced the transmissibility by 36% (95% CI 27-44%),
compared to 5% (95% Cl 1-9%) for restricting intercity transport. Other nonpharmaceutical interventions
further reduced R; by 39% (95% CI 31-47%).

Interpretation: Climate can affect the transmission of COVID-19 where effective interventions are imple-
mented. Restrictions on intracity human movement may be needed in places where other nonpharma-
ceutical interventions are unable to mitigate local transmission.
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Introduction

The first wave of the coronavirus disease 2019 (COVID-19) had
been largely controlled in China by mid-April, after massive imple-

* Corresponding authors. mentation of stringent nonpharmaceutical interventions including
E-mail addresses: liuwei@bmi.ac.cn (W. Liu), yangyang@ufl.edu (Y. Yang). movement restrictions, social distancing, wearing face masks, case
! These authors contributed equally. isolation, and contact tracing and quarantine [1]. Epidemics outside

https://doi.org/10.1016/j.lanwpc.2020.100020
2666-6065/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)


https://doi.org/10.1016/j.lanwpc.2020.100020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/lanwpc
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:liuwei@bmi.ac.cn
mailto:yangyang@ufl.edu
https://doi.org/10.1016/j.lanwpc.2020.100020
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 L.-Q. Fang, H.-Y. Zhang and H. Zhao et al./The Lancet Regional Health - Western Pacific 2 (2020) 100020

Hubei Province in the country were characterized by inefficient lo-
cal transmission and low case fatality rates, owing to swift and
comprehensive public health responses immediately following the
lockdown of Wuhan [2]. By the end of April, most cities (92+3%)
had lowered the level of public health response and shifted focus
to the prevention of disease importation and resurgence.

The wide time lag in epidemic curves between northern hemi-
sphere and southern hemisphere countries has raised the question
about the role of seasonality in the pandemic of SARS-CoV-2, the
causative virus for COVID-19. A few recent studies on the impacts
of climatic factors on the spread of COVID-19 found negative asso-
ciations of disease incidence with temperature and humidity, while
others found none [3-6]. Two studies associated the effective re-
production numbers (R;) in China with climatic factors, yet both
ignored two important facts: (1) a large proportion of cases were
imported from Wuhan; and (2) crowdsourced data are incomplete
for most cities in China [4,6]. Two modeling studies assessed the
role of seasonality in future global transmission dynamics of SARS-
CoV-2, but the seasonality was derived from other human coron-
aviruses or influenza [7,8].

Human movement is a key driver for the diffusion of infectious
agents [9]. Several early studies found that the implemented in-
tercity travel restrictions had little effect in delaying the spread of
COVID-19 from Wuhan to other cities in China, and two of these
studies showed a beneficial impact of suspending intracity public
transport [1,10,11]. In additional to travel restrictions, other typical
nonpharmaceutical interventions such as social distancing and case
finding and isolation were also effective in curbing the epidemics
in China and other countries, either alone or in combination [1,11-
13]. None of these studies explicitly presented reduction in the re-
production number due to human movement restrictions which is
more generalizable than reduction in case incidence, especially in
the presence of case importation. In addition, climatic conditions
might have affected both human movement and transmissibility of
the disease and therefore should be controlled for when one eval-
uates the effects of human movement restrictions on transmissibil-
ity.

Using crowdsourced data of cases and case clusters in 305 cities
of China, we summarized the epidemiological features of COVID-
19 outside Hubei Province. We estimated city-specific real-time ef-
fective reproduction numbers and examined how climatic indices,
intercity and intracity human movement, and other public health
emergency responses jointly shaped the R; dynamics in 41 cities
of China where our data are nearly as complete as the officially
reported COVID-19 cases in the national surveillance system. Fi-
nally, we predicted potential R; values in these cities throughout
the year of 2020 under different levels of control, in particular to
answer the question whether it is safe to lift the intracity human
movement restrictions while maintaining other nonpharmaceutical
interventions.

Methods
Sources of data

COVID-19 cases and associated transmission clusters were
mainly obtained by crowdsourcing (Appendix p 1-3). The primary
data sources are websites and social media accounts of local health
commissions and branches of the Chinese Center for Disease Pre-
vention and Control (China CDC). For possible additional informa-
tion, we also searched internet using keywords in the form of
(“coronavirus” OR “pneumonia”) AND (province or city names), all
in Chinese. For each identified COVID-19 case, basic demographic
characteristics (age, sex, and city), starting and ending dates of
probable exposure, date of symptom onset, laboratory diagnosis
status, and associated epidemiological cluster were retrieved if

available. Cases reported in Hubei Province were excluded due to
lack of individual information in the public domain. To provide ro-
bust estimation of R;, we then cross-checked the number of cases
by city, age, sex and symptom onset date (or reporting date if
symptom onset date is not available) with the national surveil-
lance data provided by China CDC, and identified 41 cities satis-
fying the following inclusion criteria: (1) the crowdsourced data
cover >85% of surveillance-reported cases; and (2) case cluster-
ing information and whether each case was imported or locally
infected are known (Appendix p 10 and 20). These criteria are nec-
essary for reliable assessment of R; and its drivers. Data from these
41 cities were analyzed for the primary analysis. The surveillance
data from China CDC were not directly usable for estimating lo-
cal transmissibility due to lack of case clustering and case impor-
tation information. The timelines of nonpharmaceutical interven-
tion measures implemented by municipal governments and level-
1 emergency responses initiated by provincial governments were
collected from governmental websites and news media (Appendix
p 23-25).

Daily ambient temperature and relative humidity (RH) dur-
ing January and February of 2020 were collected from the Chi-
nese Academy of Meteorological Sciences. Weather station read-
ings were interpolated to the cities by krigging. Daily average
PM,.; data were obtained from open weather forecast websites
(http://106.37.208.233:20035). Population densities were collected
from the National Bureau of Statistics of China (www.stats.gov.cn).
Daily intercity migration data (immigration index) and the daily
values of an urban traffic index reflecting ground transportation
activities in each city during 2019 (Jan 12-Mar 13) and 2020 (Jan
1-Feb 27) were obtained from the open website of Baidu Corpora-
tion (http://qianxi.baidu.com/).

This study was approved by the institutional review board (IRB)
of the Beijing Institute of Microbiology and Epidemiology (Beijing,
China). All the case data had been deidentified before they were
made publicly accessible by public health authorities. All analyses
directly involving individual-level dates were performed at the Bei-
jing Institute of Microbiology and Epidemiology.

Statistical analyses
Descriptive analysis and estimating natural history of disease

Pearson’s Chi-square test was performed to compare categor-
ical variables between groups, and Wilcoxon rank sum test and
Kruskal-Wallis test were used to compare continuous variables be-
tween groups. To estimate the distribution of the incubation pe-
riod, cases with onset dates and probable exposure period ob-
served were used (Appendix p 3-4). Exposure was determined by
either recent residence in or travel to Wuhan or an epidemiological
link with a potential source case who had either an earlier symp-
tom onset or recent residence in or travel to Wuhan. Cases with
either the starting or the ending exposure dates missing or with
an exposure >15 days were excluded. The log-rank test adjusted
for interval-censoring was used to compare incubation periods be-
tween groups. To estimate the serial intervals, we identify trans-
mission pairs of primary cases and their potential secondary cases
from clusters of epidemiologically linked cases. In such a pair, both
cases had symptom onset dates, but only the primary case had
lived in or traveled to Wuhan or had a clear evidence of contacting
an earlier confirmed case. We fitted parametric models using log-
normal, gamma, log-logistic and Weibull distributions, and the best
fitted model was determined by the Akaike’s Information Criterion.

Estimating R; and associated determinants A COVID-19 pa-
tient is defined as an imported case if he or she had residence in
or travel history to Hubei Province (where Wuhan is located) dur-
ing the 2 weeks before symptom onset or as a local case otherwise.



L.-Q. Fang, H.-Y. Zhang and H. Zhao et al./The Lancet Regional Health - Western Pacific 2 (2020) 100020 3

Referring to the earliest symptom onset date in each case cluster as
day 0, we define a primary case as either a local case with symp-
tom onset on days 0 or 1 or an imported case with symptom on-
set on days 0-3. Other cases were considered secondary cases. A
cluster may have multiple co-primary cases. Coupling these defi-
nitions, the confirmed cases were partitioned into four categories:
imported primary cases, imported secondary cases, local primary
cases, and local secondary cases, which were defined in our previ-
ous study [14]. We used a simple moving average approach to esti-
mate the effective reproduction number R; for each day within the
study period (Appendix p 4-5) [14]. Briefly, the general estimator
for R; is given by

R = Nsec(t — 2, + 2)

Npri(t =2, £ +2) + Neee (t = 2,t +2)

where Np;(tq,t;) and Nsec(t1, t5) are the total numbers of primary
and secondary cases, respectively, in all clusters whose onset dates
were within the time window [tq, t;], and Nsec(tq,tz) is the total
number of secondary cases who might have been infected during
the same window. In the primary analysis, all imported cases, in-
cluding imported secondary cases, are considered as primary cases
(infectors) and contribute to Np;(t — 2, t + 2). The numerator,
Nsec(t — 2, t + 2), includes local secondary cases whose primary
cases in the same cluster had symptom onset during [t — 2, t + 2],
as well as local primary cases whose infection likely occurred in
this interval. A sensitivity analysis was conducted by treating im-
ported secondary cases as infectees rather than infectors.

To assess potential selection bias in the 41 cities chosen for the
primary analysis, we identified additional nine cities with >70%
coverage of surveillance-reported cases and complete information
on case importation. We then combined the nine cities with the
41 cities for another sensitivity analysis. As case-clustering infor-
mation is not available for the nine cities, we applied a traditional
approach for calculating R; that ignores case-clustering (Appendix
p 6) [15].We adapted this approach to account for imported cases.

Based on the estimated R; values in each city, we then used a
generalized estimation equation (GEE) model to assess the impacts
of seven potential risk factors on daily R;: air temperature, rela-
tive humidity, PM,.5, immigration index, traffic index, population
density, and an indicator for the time period of implementation
of nonpharmaceutical interventions (Appendix p 6-8) [16]. All fac-
tors are time-dependent except for population density. Selection of
polynomial orders and optimal time lags was based on the Quasi-
likelihood under Independence Model Criterion (QIC) [17]. To ac-
count for the temporal correlation of the R; values in each city, we
assumed an autoregressive correlation structure of order 1 that in-
duces a decreasing correlation for further apart time points, which
is justified by the partial autoregressive correlations of estimated
R: series in selected cities (Appendix p 13). A backward procedure
based on both p-values and QIC was used for model selection. The
model was fitted using the R package “geepack”. Using the final
model, we predicted weekly R; values in the 41 cities throughout
2020 under a variety of intervention assumptions.

Role of the funding source

The funder of the study had no role in study design, data col-
lection, data analyses, interpretation of the results, or the writing
of the manuscript. The corresponding authors had full access to all
the data and had final responsibility for the decision to submit for
publication.

Results

By crowdsourcing, we collected individual-level demographic,
exposure and disease information on 11 003 laboratory-confirmed

cases, including 1360 clusters (>2 cases per cluster), from 305
cities outside Hubei Province, whose symptom onsets span from
Dec 31, 2019 to Apr 27, 2020. These cases account for 84<2 % of
and share a similar temporal trend with the 13 069 cases outside
Hubei Province who were reported by China CDC for the same pe-
riod, excluding cases imported from abroad (Appendix p 11).

Among the 11 003 cases, 83<7% were adults aged 15-64 years,
12-7% were the elderly over 65 years, and the remaining 3-6% were
children 0-14 years (Table 1). There were more male cases (52+1%)
than female cases (47-9%). More cases were reported in southern
China (45-8%). The dominant type of known infection source was
household contact (56+8%), followed by dining out (17-3%). The CFR
was 0-9% among cases whose final survival outcome are known.
Imported cases were slightly younger than local cases, and primary
cases were less likely to be children (<15 years old) and elderlies
(=65 years old) than secondary cases. Among cases whose final
clinical outcomes are known, local cases had a higher CFR (1-1%)
than imported cases (0-6%).

We estimated the median incubation period to be 6-06 (95% CI:
5+84-6+29 days), and 5th and 95th percentiles to be 1+74 and 1221
days respectively (Appendix p 22). The duration of the incubation
period was not associated with sex, region, clinical outcome or
cluster size. The median incubation period was about 1 day longer
among children <15 years old compared to older cases (p=002)
and was slightly longer after the initiation of level-1 emergency re-
sponse compared to before (p=0-01, Appendix p 12 and 22). Using
648 pairs of cases for whom the transmission relationship is rela-
tively clear, we estimated a median serial interval of 4.8 days (95%
CI 4-4-5-3 days) (Appendix p 22). The serial interval tended to be
longer when the infector was a male vs. a female (median=5+3 vs.
4-4 days, p=0-01) and when the infector was a local case vs. an
imported case (median=6-7 vs. 3+5 days, p<0+001). In contrast to
the incubation period, the serial interval contracted after the initi-
ation of level-1 emergency response (p=006, Appendix p 12 and
22).

In the 41 cities where the crowdsourced data are relatively
complete, a total of 4 431 COVID-19 cases, including 1965 imported
cases, contributed to the analysis of R; and associated determi-
nants. The daily volume of passengers departing Wuhan increased
sharply during the Chunyun (spring festival commute) period start-
ing around Jan 7, topped at nearly 80 000 persons on Jan 21, and
dropped dramatically on and after Jan 23 when the lockdown of
Wuhan began (Fig. 1A). The number of symptom onsets among
infected travelers to the 41 cities grew exponentially from 7 on
Jan 13 to 154 on Jan 24 and declined rapidly afterwards. Cities at
higher latitudes were associated with later importation and epi-
demic peaks. Shenzhen and Guangzhou, both in the South, had the
largest total numbers and peak daily numbers of cases, followed
by Xinyang in central China and Harbin in the North (Fig. 1B-C).
More migrant cases went to the southern cities than to the north-
ern cities (Fig. 1C; Table 1).

We estimated the daily effective reproduction numbers, R;, for
each region as well as for each of the 41 cities. The overall trends
of the R; values over time are similar across regions (Fig. 2), start-
ing at nearly 2 in middle January and quickly descending to be-
low the critical value of 1 by Jan 24 in the northern region, Jan
22 in the central region and Jan 20 in the southern region. The
median region-level R; was 0+46 (IQR: 0+37-0-87) in the north-
ern region, similar to 0-40 (IQR: 0-14-0-76) in the central region
(p=0-22) but higher than 0-20 (IQR: 0-09-0-52) in the southern
region (p=0+004). The city-specific trends of R; mostly resemble
those at the regional level, although there appeared to be more
variations especially when the number of cases was small (Ap-
pendix p 14-16). The median city-level R; dropped from 1-0 (IQR:
0+7-1-7) one week before the initiation of level-1 responses to 0+6
(IQR: 0-4-0-9) one week after. In addition, eight out of 15 south-
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Table 1
Characteristics of crowdsourced COVID-19 patients as of April 27, 2020 in 305 cities of mainland China.
Characteristics Category All cases Imported Local p-value’ Primary Secondary p-value’
Age, year 0-14 369 (3+6) 166 (4+0) 203 (3-3) <0-0001 194 (2+4) 175 (8+1) <0-0001
15-64 8 560 (83+7) 3 604 (87-9) 4 956 (80-9) 6 930 (85:9) 1630 (756)
65-97 1296 (12+7) 331 (8+1) 965 (15-8) 944 (11+7) 352 (16-3)
Unknown 778 203 575 697 81
Sex Male 5615 (52-1) 2375 (56+4) 3240 (49:3) <0-0001 4576 (53-5) 1039 (46-8)  <0-0001
Female 5 164 (47+9) 1835 (436) 3 329 (50+7) 3984 (46:5) 1 180 (53-2)
Unknown 224 94 130 205 19
Location’ Northern China 2190 (19-9) 634 (14+7) 1556 (23:2) <0-0001 1511 (17:2) 679 (30:3) <0-0001
Central China 3 777 (34+3) 1426 (3341) 2351 (35-1) 3044 (347) 733 (32-8)
Southern China 5 036 (45+8) 2 244 (52+1) 2792 (41+7) 4210 (48+-0) 826 (36+9)
Infection Household contact 2 082 (56-8) 289 (54-3) 1793 (57+2) <0-0001 959 (48+5) 1 123 (66+5) <0-0001
source
Dining out 635 (17-3) 44 (8:3) 591 (18:9) 366 (18-5) 269 (15+9)
Public places 364 (9-9) 18 (3+4) 346 (11+0) 249 (12+6) 115 (6+8)
Hospitals 200 (5+5) 12 (2+3) 188 (6+0) 98 (50) 102 (6+0)
Work places 119 (3:2) 33 (6:2) 86 (2+7) 94 (4+7) 25 (14-8)
Public transportation 266 (7+3) 136 (25¢5) 130 (4-2) 212 (10+7) 54 (3+2)
Unknown 3870 0 3 870 3519 351
Level-1 Before 2 490 (22+6) 1566 (36.4) 924 (13-8) <0-0001 2340 (26:7) 150 (6+7) <0-0001
emergence After 8 513 (77+4) 2 738 (63+6) 5775 (86:2) 6 425 (73+3) 2 088 (93:3)
fasprense Discharge 9 686 (99-1) (99-2) 3 979 (99-4) 5 707 (98-9) 0-0051 7 747 (99-1) 1 939 (99:0) 0-8580
Death 89 (0-9) 23 (0-6) 66 (1+1) 70 (0-9) 19 (1-0)
Unknown 1228 302 926 948 280
Total 11 003 4304 6 699 8 765 2238

 Including 111, 70, 124 cities from northern, central, and southern China, respectively.
 p-values are based on Pearson’s Chi-square test.
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ern cities started with R; below 1 (appendix p 16), compared to
three out of ten northern cities (Appendix p 14), further suggesting
higher transmissibility of COVID-19 in the north before the imple-
mentation of interventions.

Using GEE models, we found that temperature, relative humid-
ity, immigration index, urban traffic index, and intervention mea-
sures jointly affected city-specific R; values, whereas PM,.5; and
population density did not (Appendix p 26). The best fit was ob-
tained with time lags of 2, 3, 7 and 5 days for temperature, relative
humidity, immigration index and urban traffic index, respectively.
A higher R; was associated with a lower temperature (Fig. 3A). The
effect of relative humidity was not monotone. The local transmis-
sibility of COVID-19 was low at both very low and very high lev-
els of relative humidity and reached its peak at relative humidity
near 75% (Fig. 3B). Both immigration index and urban transporta-
tion index were positively associated with R, indicating R; was re-
duced by restrictions on intercity and intracity human movement
(Fig. 3C-D). An increase of temperature from 0°C to 20°C would
reduce the transmissibility by 30% (95 CI 10-46%), and a further
increase to 30°C would reduce the transmissibility by another 17%
(95% CI 5-27%) (Table 2). An increase of relative humidity from 40%
to 75% would raise the transmissibility by 47% (95% CI 9-97%), but
a further increase to 90% will moderately suppress the transmis-
sibility by 12% (95% CI 4-19%). Decreases in the immigration in-
dex and urban traffic index from their median values before level-
1 response to the median values after reduced the transmissibil-
ity by 5% (95% ClI 1-9%) and 36% (95% Cl 27-44%), respectively. As
the level-1 response had very limited impact on the immigration

index (Appendix p 17), we assessed what would have happened
had the human movement indices been decreased from their 75%
percentiles to the 25% percentiles of the whole study period. Such
changes in the immigration index or the urban traffic index would
have reduced R; by 8% and 45%, respectively. In addition to mod-
ulating R; by reducing the human movement indices, the level-1
response further reduced R; by 39% (95% CI 31-47%).

We performed sensitivity analysis by considering imported sec-
ondary cases as infectees rather than infectors. The estimated R;
values increased only moderately in a few southern cities with
many visitors such as Guangzhou, Shenzhen and Sanya (Fig. 2; ap-
pendix p 14-16), and estimated effects of all the risk factors are
robust to this change (Table 2, appendix p 27, Fig. 3, Appendix p
18). Fitting a GEE model to the expanded data set of 50 cities led
to the drop-out of temperature but the addition of PM 2.5 (Ap-
pendix p 28); however, the risk ratio was moderately below 1 only
at extremely large values of PM 2.5 and basically flat elsewhere
(Appendix p 19). The effects of relative humidity, immigration in-
dex and urban traffic index were comparable to the primary re-
sults for the 41 cities (Appendix p 19 and 29). The effectiveness of
the level-1 responses that were not related to human movement
restriction, about 9%, was much smaller than 39% in the primary
results (appendix p 29).

Finally, we predicted the R; levels for the whole year of 2020.
We first assume that, after Apr 27, 2020, human movement re-
covers to the average level before Chunyun (based on immigra-
tion and urban traffic indices during March of 2019), i.e,, no hu-
man movement restriction, and level-1 emergency responses are
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Fig. 3. Estimated risk-ratio curves (red) and observed frequencies (histogram) for (A) temperature, (B) relative humidity, (C) immigration index, and (D) urban traffic
index on the effective reproduction number R; based on a multivariable general estimation equation model fitted to daily R, values in 41 cities of mainland China.
Imported secondary cases were considered infectors for calculating R;. The gray curves are the results of 100 times of parametric bootstrapping.

Table 2

Changes in mean R; (risk ratio) between selected levels of independent variables, in the form of risk
ratios (95% CI), based on the multivariable generalized estimated equation (GEE) applied to daily R;
values in the 41 cities of China.

Change Role of imported secondary cases in calculating Rt
Variable Efr]om, Infector (Primary Analysis)  Infectee (Sensitivity Analysis)
Temperature [0, 20°C] 070 (0+54, 0-90) 0-74 (061, 0-91)

[20°C, 30°C]  0-83 (0+73, 0+95) 086 (0+78, 0+96)
Relative [40%, 75%] 147 (1-09, 1-97) 131 (0-98, 1-77)
humidity [75% 90%]  0-88 (0-81, 0-96) 0-92 (0-84, 0-99)
Level 1 0-61 (0+53, 0+69) 0-61 (0+53, 0-70)
response
Immigration [2+41, 1-52]  0-95 (091, 0-99) 0-96 (0+93, 0-99)
index’ [3-32, 1+49]  0-92 (0-85, 0-99) 0-93 (0-87, 0-99)
Urban traffic [5:50, 3-20]  0-64 (056, 0-83) 0-68 (0-60, 0-76)
indext [5-67, 2-56]  0-55 (046, 0-66) 0-59 (0+50, 0+70)

T 2¢41 and 1-52 are the median immigration index values before (including) and after 5 days post
the initiation of level-1 response. 3-32 and 149 are the 75% and 25% percentiles of the immigration
index.

t 5.50 and 3-20 are the median urban traffic index values before and after (including) the initiation
of level-1 response. 567 and 2-56 are the 75% and 25% percentiles of the urban traffic index.
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Fig. 4. Model-predicted weekly average R; for 2020 under different assumptions about intervention policy: (A) level-1 emergency response is lifted, and human move-
ment recovers to normal level, i.e., neither restricted nor within the spring festival commute period (immigration index and urban traffic index are set to the average level
during March, 2019); (B) level-1 emergency response is lifted, but human movement is restricted (immigration index and urban traffic index are set to the average level
during February, 2020); (C) level-1 emergency response is in place, but human movement recovers to normal level; and (D) Both level-1 emergency response and human

movement restriction are in place.

absent after April (Fig. 4A). R; remains below 1 from April to Oc-
tober in most cities but close to 1 in a few cities in northeastern
China (Harbin and Changchun) or on the East Coast (Changzhou,
Wuxi, Suzhou and Ningbo). The East Coast cities are popular desti-
nations for tourists and migrant workers. By November, R; reaches
near or above 1+5 in Harbin, Changchun, Zhengzhou and Suzhou.
In December and January, R; increases to around 2 in Harbin and
Changchun. Human movement restriction alone (Fig. 4B, based on
immigration and urban traffic indices during Feb, 2020) or level-1
emergency response alone will bring Ry down to near or below 0+5
for most cities all the year round, although the former seems more
effective than the latter. When level-1 emergency response is im-
plemented alone, R; remains close to 1 in Harbin, Changchun and
Suzhou in the winter months (Fig. 4C). With human movement re-
striction and level-1 response both in place, R; stays near or below
0-5 in all 41 cities throughout the year (Fig. 4D).

Discussion

Using a crowdsourced database, we characterized the distribu-
tions of the incubation period and serial interval of COVID-19 and
assessed R; values in 41 cities of China and associated drivers. The
median R; was higher in the northern cities than in the southern
cities. We found COVID-19 was more locally transmissible at a low
temperature and at a relative humidity near 75%. Both intracity
and intercity human movements were driving factors for the trans-
missibility of COVID-19, but restricting intracity human movement
was more effective. Other nonpharmaceutical interventions helped
reducing R; greatly. Our model-based prediction indicated poten-
tially more active transmission in the northeastern region and the
East Coast compared to other areas in China for the rest of the
year, especially during the coming winter season, if human move-
ment restrictions are lifted.
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The estimated distribution of the incubation period is consis-
tent with previous studies in which medians range from 5-1 to 6-4
days [18-20].The longer incubation period post level-1 responses
could be related to the increasing detection of mild cases. The es-
timates for the serial interval are also in line with estimates of 4-5
days by previous studies [18,21,22]. Faster detection of secondary
cases post level-1 responses may explain the contraction of the se-
rial interval over time.

Our estimation approach for R; takes into account imported
cases and clustering. The majority of existing estimates for R; were
based on a traditional method that does not distinguish between
imported and local cases [15,23-24]. Other studies either adapted
the traditional method or used transmission models to account for
case importation, but those studies did not incorporate the clus-
tering information [2,18]. Our estimates of R; in Shenzhen resem-
ble those in a modeling study but differ from another study which
estimated an increasing trend of R; before Jan 20 [2,18].This dif-
ference could come from (1) whether R; is attributed to the on-
set time of the infectee (the previous study) or the onset time
of the infector (our study), and (2) the consideration of imported
secondary cases as infectees (the previous study) or infectors (our
study). Nevertheless, the overall subcritical levels of R; in cities
outside Hubei Province are consistent across most studies.

Our assessment of the effect of temperature on COVID-19 trans-
mission is in consensus with many other studies [3,5]. While some
studies found that transmission of SARS-CoV-2 and seasonal beta-
coronaviruses such as 0C43 and HKU1was facilitated by lower rel-
ative or absolute humidity [6-7,25], others found this is not neces-
sarily the case for SARS-CoV-2 [4,26]. Coronaviruses are wrapped
by a lipid bilayer that makes it sustain longer in the air when
relative humidity is low; on the other hand, a high relative hu-
midity is associated with much longer survival on solid surfaces
[27]. These two opposite effects of relative humidity on the sur-
vival of SARS-CoV-2 could partially explain our finding that a rela-
tive humidity near 75% maximizes local transmissibility of COVID-
19. The first COVID-19 outbreak in a fresh (wet) seafood mar-
ket in Wuhan and the recent outbreak in another seafood mar-
ket in Beijing suggest the preference of the virus for cold and
humid environments, consistent with our findings [28]. However,
previous modeling studies suggested the epidemics in a domi-
nantly susceptible population will not be decisively impacted by
climatic determinants [7-8], which is also evidenced by the sec-
ond wave of COVID-19 in southern United States during June, 2020
(https://coronavirus.jhu.edu/data/new-cases-50-states).

Both intercity and intracity human movements were impor-
tant drivers for local transmission, but the latter (the urban traf-
fic index) appeared more influential than the former (the immi-
gration index). The mild yet statistically significant impact of in-
tercity movement is likely due to different movement or contact
patterns of visitors and tourists, compared to local residents. The
level-1 emergency responses reduced intracity human movement
to a much greater extent compared to intercity human movement
(Appendix p 17), which is expected as intercity and interprovince
commutes were not explicitly prohibited except for those to and
from Wuhan. Even after adjusting for the human movement in-
dices, the level-1 emergency responses further reduced R; substan-
tially, suggesting other control measures including but not lim-
ited to social distancing, case finding and isolation, contact tracing
and quarantine, and mandatory mask-wearing had been effective
in mitigating local transmission.

Our analyses bear several limitations. We have not considered
the effect of changing definition of confirmed case by the Chi-
nese Commission of Health and Family Planning during the epi-
demic of COVID-19, which could have led to artificial temporal pat-
terns, e.g., a longer incubation period during the later epidemic
phase as more milder and younger patients were detected [29].

Secondly, the study period for the association of R; with climatic
factors is relatively short, covering only January and February when
air temperature was below 25°C in most cities of China. More
data from the subsequent months and from other countries are
needed to verify our findings. In addition, the subsets of cases
contributing to the inference on the natural history of disease,
R: and associated determinants are all limited and may not fully
represent the total of 11 003 cases in our database. These sub-
sets share similar age and sex profiles with the whole database,
but spatial-temporal distributions may differ (Appendix p 21). Fur-
thermore, our database may not be representative of all cases in
China; in particular, it lacks contact-tracing data from cities in
Hubei Province, the epi-center in China. Consequently, our results
could be subject to selection bias. Lastly, probable mutations in the
viral genome could have contributed to the spatiotemporal vari-
ability in the local transmissibility of SARS-CoV-2, e.g., the recently
reported “D614G” mutation in the S protein, which was not taken
into account in our analyses [30].

The ideal environmental conditions against SARS-CoV-2, a high
temperature plus either a very low or a very high relative humid-
ity, may not be available or sustainable in many countries. South
American countries such as Brazil, Peru and Chile are taking a hard
hit by the ongoing pandemic of COVID-19 in their winter season.
Meanwhile, parts of the United States are witnessing resurgence
of local transmissions in their summer after shelter-at-home was
lifted and social activities resumed. While classic control strate-
gies including social distancing, timely case finding and isolation,
and tracing and quarantine of close contacts can greatly reduce
the transmissibility of COVID-19, it may be necessary to reactivate
human movement restrictions to contain disease resurgence, espe-
cially when the climate is most suitable for viral transmission.

Research in context
Evidence before this study

On May 16, 2020, we searched PubMed, medRxiv and bioRxiv
for all papers published in English from December 1, 2019 to May
16, 2020, using the search terms (“nCoV” OR “COVID” OR “novel
coronavirus” OR “severe acute respiratory syndrome coronavirus
2") AND (“epidemiological characteristics” OR “transmission dy-
namics” OR “reproduction number” OR “meteorological factors” OR
“nonpharmaceutical interventions”). We identified 95 relevant pa-
pers after screening.

Sixteen studies evaluated the effect of nonpharmaceutical in-
terventions in mainland China. All these studies found the inter-
ventions to be effective, but very few directly assessed the effects
solely due to human movement restrictions. One study found that
social distancing led to a 7- to 8-fold reduction in contact rate
based on survey and contact-tracing data from Wuhan, Shanghai
and Hunan province. Three studies at the national scale found that
banning intercity transportation after Wuhan lockdown had a lim-
ited effect on intercity spread, and two of them found that restrict-
ing intracity public transport greatly reduced case incidence.

About 19 of the 95 papers focused on the impact of mete-
orological factors but the findings are inconsistent. Five studies
concluded that temperature had no impact, whereas 11 found a
negative association between temperature and case incidence. One
study indicated that a higher absolute humidity would benefit dis-
ease spread. Two studies found no impact of relative humidity
on disease incidence, while four suggested a negative association.
One study conducted in Brazilian cities found high temperatures
and intermediate relative humidity are favorable conditions for the
spread of COVID-19 in tropical climate.
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Added value of this study

We assessed local transmissibility of COVID-19 in terms of the
effective reproduction number (R;) in 41 cities where our crowd-
sourced data cover the dominant majority of reported cases (>95%
in 40 cities and 86% in one). Northern cities had noticeably higher
R; values than southern cities. By jointly considering meteorologi-
cal variables, human movement indices and other nonpharmaceu-
tical interventions in a statistical regression, we found low tem-
perature and relative humidity in the range of 70-75% were ideal
for the local transmission of COVID-19 in China. We found that re-
stricting intracity transport alone reduced local transmissibility by
36% (95% CI 27-44%), but restricting intercity transport alone had
limited effect. Nonpharmaceutical interventions other than human
movement restrictions were also effective, reducing R; by 39% (95%
Cl 31-47%). we predicted the potential R; values in these cities
throughout the year of 2020 under different levels of control.

Implications of all the available evidence

Temperature and relative humidity may potentially shape the
seasonality of COVID-19 where the susceptible population are suf-
ficiently depleted or effective interventions continue. While inter-
ventions such as social distancing, case finding and isolation, and
tracing and quarantine of close contacts are efficient in inhibiting
local transmission in most cities of China, they need to be used in
conjunction with restriction of intracity human movement in cen-
tral and northern China during the winter season to fully contain
the disease.

Contributors

LQF, YY, and WL designed the study. HYZ, HZ, TLC, ARZ, MJL,
WQS, JPG performed data sorting and database establishment. HYZ,
HZ, TLC, ARZ, and MJL conducted the analyses under supervision
of YY, YZ, WL and LQF. HYZ, LQF, YY and WL wrote the draft of
the manuscript. All authors contributed to and approved the final
version of the manuscript.

Data sharing statement
Deidentified data and R code used in the analyses can be down-
loaded as Multimedia Component 2.

Editor note: The Lancet Group takes a neutral position with respect
to territorial claims in published maps and institutional affiliations.

Declaration of Competing Interest

We declare no competing interests.

Acknowledgment

This work was financially supported by grants from the

China Mega-Project on Infectious Disease Prevention (No.
2018ZX10201001,  2018ZX10713001,  2018ZX10713002, and
2017ZX10303401), the National Natural Science Funds (No.

81825019), the U.S. National Institutes of Health (RO1 AI139761
and RO1 AI116770) and the U. S. National Science Foundation
(2034364).

Supplementary materials

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.lanwpc.2020.100020.

References

[1] Lai S, Ruktanonchai NW, Zhou L, et al. Effect of non-pharmaceutical
interventions to contain COVID-19 in China. Nature 2020. doi:10.1038/
541586-020-2293-x.

[2] Leung K, Wu JT, Liu D, Leung GM. First-wave COVID-19 transmissibility and
severity in China outside Hubei after control measures, and second-wave sce-
nario planning: a modelling impact assessment. Lancet 2020;395:1382-93.

[3] Tobias A, Molina T. Is temperature reducing the transmission of COVID-19. En-
viron Res 2020;186:109553.

[4] Luo W, Majumder MS, Liu D, et al. The role of absolute humidity on transmis-
sion rates of the COVID-19 outbreak. medRxiv 2020: 2020.02.12.20022467.

[5] Ujiie M, Tsuzuki S, Ohmagari N. Effect of temperature on the infectivity of
COVID-19. Int ] Infect Dis 2020;95:301-3.

[6] Wang ], Tang K, Feng K, et al. High temperature and high humidity reduce
the transmission of COVID-19. 2020. 10.2139/ssrn.3551767. (Accessed June 23,
2020)

[7] Baker RE, Yang W, Vecchi GA, Metcalf CJE, Grenfell BT. Susceptible supply
limits the role of climate in the early SARS-CoV-2 pandemic. Science 2020.
doi:10.1126/science.abc2535.

[8] Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M. Projecting the trans-
mission dynamics of SARS-CoV-2 through the postpandemic period. Science
2020;368:860-8.

[9] Viboud C, Bjernstad ON, Smith DL, Simonsen L, Miller MA, Grenfell BT. Syn-
chrony, waves, and spatial hierarchies in the spread of influenza. Science
2006;312:447-51.

[10] Chinazzi M, Davis JT, Ajelli M, et al. The effect of travel restrictions on
the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science
2020;368:395-400.

[11] Tian H, Liu Y, Li Y, et al. An investigation of transmission control mea-
sures during the first 50 days of the COVID-19 epidemic in China. Science
2020;368:638-42.

[12] Zhang ], Litvinova M, Liang Y, et al. Changes in contact patterns shape the
dynamics of the COVID-19 outbreak in China. Scienc 2020;368:1481-6.

[13] Keeling MJ, Hollingworth TD, Read JM. Efficacy of contact tracing for the con-
tainment of the 2019 novel coronavirus (COVID-19). ] Epidemiol Community
Health 2020. doi:10.1136/jech-2020-214051.

[14] Jing QL, Liu M], Zhang ZB, et al. Household secondary attack rate of COVID-
19 and associated determinants in Guangzhou, China: a retrospective cohort
study. Lancet Infect Dis 2020. doi:10.1016/S1473-3099(20)30471-0.

[15] Wallinga ], Lipsitch M. How generation intervals shape the relation-
ship between growth rates and reproductive numbers. Proc Biol Sci
2007;274:599-604.

[16] Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models.
Biometrika 1986;73:13-22.

[17] Pan W. Akaike’s information criterion in generalized estimating equations. Bio-
metrics 2001;57:120-5.

[18] Zhang ], Litvinova M, Wang W, et al. Evolving epidemiology and transmission
dynamics of coronavirus disease 2019 outside Hubei province, China: a de-
scriptive and modelling study. Lancet Infect Dis 2020;20:793-802.

[19] Linton NM, Kobayashi T, Yang Y, et al. Incubation period and other epi-
demiological characteristics of 2019 novel coronavirus infections with right
truncation: a statistical analysis of publicly available case data. ] Clin Med
2020;9:538.

[20] Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease
2019 (COVID-19) from publicly reported confirmed cases: estimation and ap-
plication. Ann Intern Med 2020;172:577-82.

[21] Nishiura H, Linton NM, Akhmetzhanov AR. Serial interval of novel coronavirus
(COVID-19) infections. Int ] Infect Dis 2020;93:284-6.

[22] Du Z, Xu X, Wu Y, Wang L, Cowling BJ, Meyers LA. Serial interval of COVID-19
among publicly reported confirmed cases. Emerg Infect Dis 2020;26:1341-3.

[23] Yuan ], Li M, Lv G, Lu ZK. Monitoring transmissibility and mortality of
COVID-19 in Europe. Int ] Infect Dis 2020;95:311-15.

[24] You C, Deng Y, Hu W, et al. Estimation of the time-varying reproduction num-
ber of COVID-19 outbreak in China. Int | Hyg Environ Health 2020;228:113555.

[25] Wu Y, Jing W, Liu J, et al. Effects of temperature and humidity on the daily
new cases and new deaths of COVID-19 in 166 countries. Sci Total Environ
2020;729:139051.

[26] Luo C, Yao L, Zhang L, et al. Possible transmission of severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) in a public bath center in Huai'an,
Jiangsu Province, China. JAMA Network Open 2020;3:e204583.

[27] Bhardwaj R, Agrawal A. Likelihood of survival of coronavirus in a respiratory
droplet deposited on a solid surface. Phys Fluids 2020;32:061704.

[28] Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of
novel coronavirus-infected pneumonia. N Engl ] Med 2020;382:1199-207.

[29] Tsang TK, Wu P, Lin Y, Lau EHY, Leung GM, Cowling B]J. Effect of changing case
definitions for COVID-19 on the epidemic curve and transmission parameters
in mainland China: a modelling study. Lancet Public health 2020;5:e289-ee96.

[30] Korber B, Fischer WM, Gnanakaran S, et al. Tracking changes in SARS-CoV-2
Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell
2020. doi:10.1016/j.cell.2020.06.043.


https://doi.org/10.1016/j.lanwpc.2020.100020
https://doi.org/10.1038/s41586-020-2293-x
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0002
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0002
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0002
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0002
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0002
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0003
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0003
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0003
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0005
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0005
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0005
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0005
https://doi.org/10.1126/science.abc2535
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0008
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0008
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0008
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0008
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0008
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0008
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0009
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0009
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0009
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0009
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0009
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0009
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0009
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0010
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0010
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0010
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0010
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0010
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0011
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0011
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0011
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0011
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0011
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0012
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0012
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0012
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0012
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0012
https://doi.org/10.1136/jech-2020-214051
https://doi.org/10.1016/S1473-3099(20)30471-0
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0015
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0015
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0015
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0016
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0016
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0016
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0017
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0017
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0018
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0018
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0018
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0018
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0018
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0019
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0019
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0019
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0019
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0019
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0020
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0020
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0020
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0020
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0020
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0021
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0021
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0021
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0021
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0022
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0022
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0022
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0022
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0022
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0022
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0022
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0023
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0023
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0023
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0023
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0023
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0024
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0024
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0024
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0024
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0024
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0025
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0025
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0025
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0025
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0025
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0026
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0026
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0026
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0026
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0026
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0027
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0027
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0027
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0028
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0028
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0028
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0028
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0028
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0029
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0029
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0029
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0029
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0029
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0029
http://refhub.elsevier.com/S2666-6065(20)30020-1/sbref0029
https://doi.org/10.1016/j.cell.2020.06.043

	Meteorological conditions and nonpharmaceutical interventions jointly determined local transmissibility of COVID-19 in 41 Chinese cities: A retrospective observational study
	Introduction
	Methods
	Sources of data

	Statistical analyses
	Descriptive analysis and estimating natural history of disease

	Role of the funding source
	Results
	Discussion
	Research in context
	Evidence before this study
	Added value of this study
	Implications of all the available evidence

	Contributors
	Data sharing statement
	Declaration of Competing Interest
	Acknowledgment
	Supplementary materials
	References


