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a b s t r a c t 

Background: Before effective vaccines become widely available, sufficient understanding of the impacts

of climate, human movement and non-pharmaceutical interventions on the transmissibility of COVID-19

is needed but still lacking.

Methods: We collected by crowdsourcing a database of 11 003 COVID-19 cases from 305 cities outside

Hubei Province from December 31, 2019 to April 27, 2020. We estimated the daily effective reproduction

numbers ( R t ) of COVID-19 in 41 cities where the crowdsourced case data are comparable to the official 

surveillance data. The impacts of meteorological variables, human movement indices and nonpharmaceu- 

tical emergency responses on R t were evaluated with generalized estimation equation models. 

Findings: The median R t was 0 • 46 (IQR: 0 • 37–0 • 87) in the northern cities, higher than 0 • 20 (IQR: 0 • 09–

0 • 52) in the southern cities ( p = 0 • 004). A higher local transmissibility of COVID-19 was associated with a 

low temperature, a relative humidity near 70–75%, and higher intracity and intercity human movement.

An increase in temperature from 0 ◦C to 20 ◦C would reduce R t by 30% (95 CI 10–46%). A further increase 

to 30 ◦C would result in another 17% (95% CI 5–27%) reduction. An increase in relative humidity from 

40% to 75% would raise the transmissibility by 47% (95% CI 9–97%), but a further increase to 90% would

reduce the transmissibility by 12% (95% CI 4–19%). The decrease in intracity human movement as a part

of the highest-level emergency response in China reduced the transmissibility by 36% (95% CI 27–44%),

compared to 5% (95% CI 1–9%) for restricting intercity transport. Other nonpharmaceutical interventions

further reduced R t by 39% (95% CI 31–47%). 

Interpretation: Climate can affect the transmission of COVID-19 where effective interventions are imple- 

mented. Restrictions on intracity human movement may be needed in places where other nonpharma- 

ceutical interventions are unable to mitigate local transmission.
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National Science Foundation.
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The first wave of the coronavirus disease 2019 (COVID-19) had

een largely controlled in China by mid-April, after massive imple-

entation of stringent nonpharmaceutical interventions including

ovement restrictions, social distancing, wearing face masks, case

solation, and contact tracing and quarantine [1] . Epidemics outside
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Hubei Province in the country were characterized by inefficient lo-

cal transmission and low case fatality rates, owing to swift and

comprehensive public health responses immediately following the

lockdown of Wuhan [2] . By the end of April, most cities (92 • 3%)

had lowered the level of public health response and shifted focus

to the prevention of disease importation and resurgence. 

The wide time lag in epidemic curves between northern hemi-

sphere and southern hemisphere countries has raised the question

about the role of seasonality in the pandemic of SARS-CoV-2, the

causative virus for COVID-19. A few recent studies on the impacts

of climatic factors on the spread of COVID-19 found negative asso-

ciations of disease incidence with temperature and humidity, while

others found none [3–6] . Two studies associated the effective re-

production numbers ( R t ) in China with climatic factors, yet both

ignored two important facts: (1) a large proportion of cases were

imported from Wuhan; and (2) crowdsourced data are incomplete

for most cities in China [ 4 , 6 ]. Two modeling studies assessed the

role of seasonality in future global transmission dynamics of SARS-

CoV-2, but the seasonality was derived from other human coron-

aviruses or influenza [ 7 , 8 ]. 

Human movement is a key driver for the diffusion of infectious

agents [9] . Several early studies found that the implemented in-

tercity travel restrictions had little effect in delaying the spread of

COVID-19 from Wuhan to other cities in China, and two of these

studies showed a beneficial impact of suspending intracity public

transport [ 1 , 10 , 11 ]. In additional to travel restrictions, other typical

nonpharmaceutical interventions such as social distancing and case

finding and isolation were also effective in curbing the epidemics

in China and other countries, either alone or in combination [ 1 , 11–

13 ]. None of these studies explicitly presented reduction in the re-

production number due to human movement restrictions which is

more generalizable than reduction in case incidence, especially in

the presence of case importation. In addition, climatic conditions

might have affected both human movement and transmissibility of

the disease and therefore should be controlled for when one eval-

uates the effects of human movement restrictions on transmissibil-

ity. 

Using crowdsourced data of cases and case clusters in 305 cities

of China, we summarized the epidemiological features of COVID-

19 outside Hubei Province. We estimated city-specific real-time ef-

fective reproduction numbers and examined how climatic indices,

intercity and intracity human movement, and other public health

emergency responses jointly shaped the R t dynamics in 41 cities

of China where our data are nearly as complete as the officially

reported COVID-19 cases in the national surveillance system. Fi-

nally, we predicted potential R t values in these cities throughout

the year of 2020 under different levels of control, in particular to

answer the question whether it is safe to lift the intracity human

movement restrictions while maintaining other nonpharmaceutical

interventions. 

Methods 

Sources of data 

COVID-19 cases and associated transmission clusters were

mainly obtained by crowdsourcing (Appendix p 1–3). The primary

data sources are websites and social media accounts of local health

commissions and branches of the Chinese Center for Disease Pre-

vention and Control (China CDC). For possible additional informa-

tion, we also searched internet using keywords in the form of

(“coronavirus” OR “pneumonia”) AND (province or city names), all

in Chinese. For each identified COVID-19 case, basic demographic

characteristics (age, sex, and city), starting and ending dates of

probable exposure, date of symptom onset, laboratory diagnosis

status, and associated epidemiological cluster were retrieved if
vailable. Cases reported in Hubei Province were excluded due to

ack of individual information in the public domain. To provide ro-

ust estimation of R t , we then cross-checked the number of cases

y city, age, sex and symptom onset date (or reporting date if

ymptom onset date is not available) with the national surveil-

ance data provided by China CDC, and identified 41 cities satis-

ying the following inclusion criteria: (1) the crowdsourced data

over ≥85% of surveillance-reported cases; and (2) case cluster-

ng information and whether each case was imported or locally

nfected are known (Appendix p 10 and 20). These criteria are nec-

ssary for reliable assessment of R t and its drivers. Data from these

1 cities were analyzed for the primary analysis. The surveillance

ata from China CDC were not directly usable for estimating lo-

al transmissibility due to lack of case clustering and case impor-

ation information. The timelines of nonpharmaceutical interven-

ion measures implemented by municipal governments and level-

 emergency responses initiated by provincial governments were

ollected from governmental websites and news media (Appendix

 23–25). 

Daily ambient temperature and relative humidity (RH) dur-

ng January and February of 2020 were collected from the Chi-

ese Academy of Meteorological Sciences. Weather station read-

ngs were interpolated to the cities by krigging. Daily average

M 2 • 5 data were obtained from open weather forecast websites

http://106.37.208.233:20035). Population densities were collected

rom the National Bureau of Statistics of China (www.stats.gov.cn).

aily intercity migration data (immigration index) and the daily

alues of an urban traffic index reflecting ground transportation

ctivities in each city during 2019 (Jan 12–Mar 13) and 2020 (Jan

–Feb 27) were obtained from the open website of Baidu Corpora-

ion (http://qianxi.baidu.com/). 

This study was approved by the institutional review board (IRB)

f the Beijing Institute of Microbiology and Epidemiology (Beijing,

hina). All the case data had been deidentified before they were

ade publicly accessible by public health authorities. All analyses

irectly involving individual-level dates were performed at the Bei-

ing Institute of Microbiology and Epidemiology. 

tatistical analyses 

escriptive analysis and estimating natural history of disease 

Pearson’s Chi-square test was performed to compare categor-

cal variables between groups, and Wilcoxon rank sum test and

ruskal–Wallis test were used to compare continuous variables be-

ween groups. To estimate the distribution of the incubation pe-

iod, cases with onset dates and probable exposure period ob-

erved were used (Appendix p 3–4). Exposure was determined by

ither recent residence in or travel to Wuhan or an epidemiological

ink with a potential source case who had either an earlier symp-

om onset or recent residence in or travel to Wuhan. Cases with

ither the starting or the ending exposure dates missing or with

n exposure ≥15 days were excluded. The log-rank test adjusted

or interval-censoring was used to compare incubation periods be-

ween groups. To estimate the serial intervals, we identify trans-

ission pairs of primary cases and their potential secondary cases

rom clusters of epidemiologically linked cases. In such a pair, both

ases had symptom onset dates, but only the primary case had

ived in or traveled to Wuhan or had a clear evidence of contacting

n earlier confirmed case. We fitted parametric models using log-

ormal, gamma, log-logistic and Weibull distributions, and the best

tted model was determined by the Akaike’s Information Criterion.

Estimating R t and associated determinants A COVID-19 pa-

ient is defined as an imported case if he or she had residence in

r travel history to Hubei Province (where Wuhan is located) dur-

ng the 2 weeks before symptom onset or as a local case otherwise.
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eferring to the earliest symptom onset date in each case cluster as

ay 0, we define a primary case as either a local case with symp-

om onset on days 0 or 1 or an imported case with symptom on-

et on days 0–3. Other cases were considered secondary cases. A

luster may have multiple co-primary cases. Coupling these defi-

itions, the confirmed cases were partitioned into four categories:

mported primary cases, imported secondary cases, local primary

ases, and local secondary cases, which were defined in our previ-

us study [14] . We used a simple moving average approach to esti-

ate the effective reproduction number R t for each day within the

tudy period (Appendix p 4–5) [14] . Briefly, the general estimator

or R t is given by 

ˆ 
 t = 

N sec ( t − 2 , t + 2 ) 

N pri ( t − 2 , t + 2 ) + 

˜ N sec ( t − 2 , t + 2 ) 
, 

here N pri ( t 1 , t 2 ) and 

˜ N sec ( t 1 , t 2 ) are the total numbers of primary

nd secondary cases, respectively, in all clusters whose onset dates

ere within the time window [ t 1 , t 2 ], and N sec ( t 1 , t 2 ) is the total

umber of secondary cases who might have been infected during

he same window. In the primary analysis, all imported cases, in-

luding imported secondary cases, are considered as primary cases

infectors) and contribute to N pri ( t − 2, t + 2). The numerator,

 sec ( t − 2, t + 2), includes local secondary cases whose primary

ases in the same cluster had symptom onset during [ t − 2, t + 2],

s well as local primary cases whose infection likely occurred in

his interval. A sensitivity analysis was conducted by treating im-

orted secondary cases as infectees rather than infectors. 

To assess potential selection bias in the 41 cities chosen for the

rimary analysis, we identified additional nine cities with ≥70%

overage of surveillance-reported cases and complete information

n case importation. We then combined the nine cities with the

1 cities for another sensitivity analysis. As case-clustering infor-

ation is not available for the nine cities, we applied a traditional

pproach for calculating R t that ignores case-clustering (Appendix

 6) [15] .We adapted this approach to account for imported cases. 

Based on the estimated R t values in each city, we then used a

eneralized estimation equation (GEE) model to assess the impacts

f seven potential risk factors on daily R t : air temperature, rela-

ive humidity, PM 2 • 5 , immigration index, traffic index, population

ensity, and an indicator for the time period of implementation

f nonpharmaceutical interventions (Appendix p 6–8) [16] . All fac-

ors are time-dependent except for population density. Selection of

olynomial orders and optimal time lags was based on the Quasi-

ikelihood under Independence Model Criterion (QIC) [17] . To ac-

ount for the temporal correlation of the R t values in each city, we

ssumed an autoregressive correlation structure of order 1 that in-

uces a decreasing correlation for further apart time points, which

s justified by the partial autoregressive correlations of estimated

 t series in selected cities (Appendix p 13). A backward procedure

ased on both p-values and QIC was used for model selection. The

odel was fitted using the R package “geepack”. Using the final

odel, we predicted weekly R t values in the 41 cities throughout

020 under a variety of intervention assumptions. 

ole of the funding source 

The funder of the study had no role in study design, data col-

ection, data analyses, interpretation of the results, or the writing

f the manuscript. The corresponding authors had full access to all

he data and had final responsibility for the decision to submit for

ublication. 

esults 

By crowdsourcing, we collected individual-level demographic,

xposure and disease information on 11 003 laboratory-confirmed
ases, including 1360 clusters ( ≥2 cases per cluster), from 305

ities outside Hubei Province, whose symptom onsets span from

ec 31, 2019 to Apr 27, 2020. These cases account for 84 • 2 % of

nd share a similar temporal trend with the 13 069 cases outside

ubei Province who were reported by China CDC for the same pe-

iod, excluding cases imported from abroad (Appendix p 11). 

Among the 11 003 cases, 83 • 7% were adults aged 15–64 years,

2 • 7% were the elderly over 65 years, and the remaining 3 • 6% were

hildren 0–14 years ( Table 1 ). There were more male cases (52 • 1%)

han female cases (47 • 9%). More cases were reported in southern

hina (45 • 8%). The dominant type of known infection source was

ousehold contact (56 • 8%), followed by dining out (17 • 3%). The CFR

as 0 • 9% among cases whose final survival outcome are known.

mported cases were slightly younger than local cases, and primary

ases were less likely to be children ( < 15 years old) and elderlies

 ≥65 years old) than secondary cases. Among cases whose final

linical outcomes are known, local cases had a higher CFR (1 • 1%)

han imported cases (0 • 6%). 

We estimated the median incubation period to be 6 • 06 (95% CI:

 • 84–6 • 29 days), and 5th and 95th percentiles to be 1 • 74 and 12 • 21

ays respectively (Appendix p 22). The duration of the incubation

eriod was not associated with sex, region, clinical outcome or

luster size. The median incubation period was about 1 day longer

mong children < 15 years old compared to older cases ( p = 0 • 02)

nd was slightly longer after the initiation of level-1 emergency re-

ponse compared to before ( p = 0 • 01, Appendix p 12 and 22). Using

48 pairs of cases for whom the transmission relationship is rela-

ively clear, we estimated a median serial interval of 4 • 8 days (95%

I 4 • 4–5 • 3 days) (Appendix p 22). The serial interval tended to be

onger when the infector was a male vs. a female (median = 5 • 3 vs.

 • 4 days, p = 0 • 01) and when the infector was a local case vs. an

mported case (median = 6 • 7 vs. 3 • 5 days, p < 0 • 001). In contrast to

he incubation period, the serial interval contracted after the initi-

tion of level-1 emergency response ( p = 0 • 06, Appendix p 12 and

2). 

In the 41 cities where the crowdsourced data are relatively

omplete, a total of 4 431 COVID-19 cases, including 1965 imported

ases, contributed to the analysis of R t and associated determi-

ants. The daily volume of passengers departing Wuhan increased

harply during the Chunyun (spring festival commute) period start-

ng around Jan 7, topped at nearly 80 0 0 0 persons on Jan 21, and

ropped dramatically on and after Jan 23 when the lockdown of

uhan began ( Fig. 1 A). The number of symptom onsets among

nfected travelers to the 41 cities grew exponentially from 7 on

an 13 to 154 on Jan 24 and declined rapidly afterwards. Cities at

igher latitudes were associated with later importation and epi-

emic peaks. Shenzhen and Guangzhou, both in the South, had the

argest total numbers and peak daily numbers of cases, followed

y Xinyang in central China and Harbin in the North ( Fig. 1 B–C).

ore migrant cases went to the southern cities than to the north-

rn cities ( Fig. 1 C; Table 1 ). 

We estimated the daily effective reproduction numbers, R t , for

ach region as well as for each of the 41 cities. The overall trends

f the R t values over time are similar across regions ( Fig. 2 ), start-

ng at nearly 2 in middle January and quickly descending to be-

ow the critical value of 1 by Jan 24 in the northern region, Jan

2 in the central region and Jan 20 in the southern region. The

edian region-level R t was 0 • 46 (IQR: 0 • 37–0 • 87) in the north-

rn region, similar to 0 • 40 (IQR: 0 • 14–0 • 76) in the central region

 p = 0 • 22) but higher than 0 • 20 (IQR: 0 • 09–0 • 52) in the southern

egion ( p = 0 • 004). The city-specific trends of R t mostly resemble

hose at the regional level, although there appeared to be more

ariations especially when the number of cases was small (Ap-

endix p 14–16). The median city-level R t dropped from 1 • 0 (IQR:

 • 7–1 • 7) one week before the initiation of level-1 responses to 0 • 6
IQR: 0 • 4–0 • 9) one week after. In addition, eight out of 15 south-
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Table 1 

Characteristics of crowdsourced COVID-19 patients as of April 27, 2020 in 305 cities of mainland China. 

Characteristics Category All cases Imported Local p-value ‡ Primary Secondary p -value ‡ 

Age, year 0–14 369 (3 • 6) 166 (4 • 0) 203 (3 • 3) < 0 • 0001 194 (2 • 4) 175 (8 • 1) < 0 • 0001 

15–64 8 560 (83 • 7) 3 604 (87 • 9) 4 956 (80 • 9) 6 930 (85 • 9) 1 630 (75 • 6) 

65–97 1 296 (12 • 7) 331 (8 • 1) 965 (15 • 8) 944 (11 • 7) 352 (16 • 3) 

Unknown 778 203 575 697 81 

Sex Male 5 615 (52 • 1) 2 375 (56 • 4) 3 240 (49 • 3) < 0 • 0001 4 576 (53 • 5) 1 039 (46 • 8) < 0 • 0001 

Female 5 164 (47 • 9) 1 835 (43 • 6) 3 329 (50 • 7) 3 984 (46 • 5) 1 180 (53 • 2) 

Unknown 224 94 130 205 19 

Location † Northern China 2 190 (19 • 9) 634 (14 • 7) 1 556 (23 • 2) < 0 • 0001 1 511 (17 • 2) 679 (30 • 3) < 0 • 0001 

Central China 3 777 (34 • 3) 1 426 (33 • 1) 2 351 (35 • 1) 3 044 (34 • 7) 733 (32 • 8) 

Southern China 5 036 (45 • 8) 2 244 (52 • 1) 2 792 (41 • 7) 4 210 (48 • 0) 826 (36 • 9) 

Infection 

source 

Household contact 2 082 (56 • 8) 289 (54 • 3) 1 793 (57 • 2) < 0 • 0001 959 (48 • 5) 1 123 (66 • 5) < 0 • 0001 

Dining out 635 (17 • 3) 44 (8 • 3) 591 (18 • 9) 366 (18 • 5) 269 (15 • 9) 

Public places 364 (9 • 9) 18 (3 • 4) 346 (11 • 0) 249 (12 • 6) 115 (6 • 8) 

Hospitals 200 (5 • 5) 12 (2 • 3) 188 (6 • 0) 98 (5 • 0) 102 (6 • 0) 

Work places 119 (3 • 2) 33 (6 • 2) 86 (2 • 7) 94 (4 • 7) 25 (14 • 8) 

Public transportation 266 (7 • 3) 136 (25 • 5) 130 (4 • 2) 212 (10 • 7) 54 (3 • 2) 

Unknown 3 870 0 3 870 3519 351 

Level-1 

emergence 

response 

Before 2 490 (22 • 6) 1 566 (36 • 4) 924 (13 • 8) < 0 • 0001 2 340 (26 • 7) 150 (6 • 7) < 0 • 0001 

After 8 513 (77 • 4) 2 738 (63 • 6) 5 775 (86 • 2) 6 425 (73 • 3) 2 088 (93 • 3) 

Outcome Discharge 9 686 (99 • 1) (99 • 2) 3 979 (99 • 4) 5 707 (98 • 9) 0 • 0051 7 747 (99 • 1) 1 939 (99 • 0) 0 • 8580 

Death 89 (0 • 9) 23 (0 • 6) 66 (1 • 1) 70 (0 • 9) 19 (1 • 0) 

Unknown 1 228 302 926 948 280 

Total 11 003 4 304 6 699 8 765 2 238 

† Including 111, 70, 124 cities from northern, central, and southern China, respectively. 
‡ p -values are based on Pearson’s Chi-square test. 

Fig. 1. Temporal and spatial distributions of COVID-19 cases in the crowdsourced contact-tracing data for the 41 cities of mainland China from January 1 to February 

29, 2020. (A) Daily frequencies of emigrants departing Wuhan and symptom onsets of cases imported from Wuhan. (B) Daily numbers of symptom onsets among cases in 

each city. (C) Spatial distribution of the 41 cities and decomposition by case type in each city: imported primary, imported secondary, local primary and local secondary. 
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Fig. 2. Epidemic curves and estimated effective reproduction numbers ( R t ) for (A) northern, (B) central and (C) southern China based on crowdsourced COVID-19 

cases in 41 cities of mainland China from January 1 to February 29, 2020. Cases are classified into imported primary, imported secondary, local primary and local 

secondary and shaded correspondingly. R t was estimated under two assumptions separately: imported secondary cases are considered as primary cases (infectors) in their 

clusters (red), and imported secondary cases are considered as secondary cases (infectees) in their clusters (green). 

e  

t  

h  

m

 

i  

s  

p  

t  

h  

A  

e  

s  

e  

n  

t  

d  

(  

r  

i  

(  

t  

a  

s  

d  

1  

i  

t  

i  

h  

p  

c  

h  

u  

r

 

o

v  

m  

p  

r  

1  

t  

p  

a  

(  

d  

s  

t  

r  

r

 

W  

c  

t  

m  
rn cities started with R t below 1 (appendix p 16), compared to

hree out of ten northern cities (Appendix p 14), further suggesting

igher transmissibility of COVID-19 in the north before the imple-

entation of interventions. 

Using GEE models, we found that temperature, relative humid-

ty, immigration index, urban traffic index, and intervention mea-

ures jointly affected city-specific R t values, whereas PM 2 • 5 and

opulation density did not (Appendix p 26). The best fit was ob-

ained with time lags of 2, 3, 7 and 5 days for temperature, relative

umidity, immigration index and urban traffic index, respectively.

 higher R t was associated with a lower temperature ( Fig. 3 A). The

ffect of relative humidity was not monotone. The local transmis-

ibility of COVID-19 was low at both very low and very high lev-

ls of relative humidity and reached its peak at relative humidity

ear 75% ( Fig. 3 B). Both immigration index and urban transporta-

ion index were positively associated with R t , indicating R t was re-

uced by restrictions on intercity and intracity human movement

 Fig. 3 C–D). An increase of temperature from 0 ◦C to 20 ◦C would

educe the transmissibility by 30% (95 CI 10–46%), and a further

ncrease to 30 ◦C would reduce the transmissibility by another 17%

95% CI 5–27%) ( Table 2 ). An increase of relative humidity from 40%

o 75% would raise the transmissibility by 47% (95% CI 9–97%), but

 further increase to 90% will moderately suppress the transmis-

ibility by 12% (95% CI 4–19%). Decreases in the immigration in-

ex and urban traffic index from their median values before level-

 response to the median values after reduced the transmissibil-

ty by 5% (95% CI 1–9%) and 36% (95% CI 27–44%), respectively. As

he level-1 response had very limited impact on the immigration
ndex (Appendix p 17), we assessed what would have happened

ad the human movement indices been decreased from their 75%

ercentiles to the 25% percentiles of the whole study period. Such

hanges in the immigration index or the urban traffic index would

ave reduced R t by 8% and 45%, respectively. In addition to mod-

lating R t by reducing the human movement indices, the level-1

esponse further reduced R t by 39% (95% CI 31–47%). 

We performed sensitivity analysis by considering imported sec-

ndary cases as infectees rather than infectors. The estimated R t 
alues increased only moderately in a few southern cities with

any visitors such as Guangzhou, Shenzhen and Sanya ( Fig. 2 ; ap-

endix p 14–16), and estimated effects of all the risk factors are

obust to this change ( Table 2 , appendix p 27, Fig. 3 , Appendix p

8). Fitting a GEE model to the expanded data set of 50 cities led

o the drop-out of temperature but the addition of PM 2.5 (Ap-

endix p 28); however, the risk ratio was moderately below 1 only

t extremely large values of PM 2.5 and basically flat elsewhere

Appendix p 19). The effects of relative humidity, immigration in-

ex and urban traffic index were comparable to the primary re-

ults for the 41 cities (Appendix p 19 and 29). The effectiveness of

he level-1 responses that were not related to human movement

estriction, about 9%, was much smaller than 39% in the primary

esults (appendix p 29). 

Finally, we predicted the R t levels for the whole year of 2020.

e first assume that, after Apr 27, 2020, human movement re-

overs to the average level before Chunyun (based on immigra-

ion and urban traffic indices during March of 2019), i.e., no hu-

an movement restriction, and level-1 emergency responses are
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Fig. 3. Estimated risk-ratio curves (red) and observed frequencies (histogram) for (A) temperature, (B) relative humidity, (C) immigration index, and (D) urban traffic 

index on the effective reproduction number R t based on a multivariable general estimation equation model fitted to daily R t values in 41 cities of mainland China. 

Imported secondary cases were considered infectors for calculating R t . The gray curves are the results of 100 times of parametric bootstrapping. 

Table 2 

Changes in mean R t (risk ratio) between selected levels of independent variables, in the form of risk 

ratios (95% CI), based on the multivariable generalized estimated equation (GEE) applied to daily R t 
values in the 41 cities of China. 

Variable 

Change 

[from, 

to] 

Role of imported secondary cases in calculating Rt 

Infector (Primary Analysis) Infectee (Sensitivity Analysis) 

Temperature [0, 20 ◦C] 0 • 70 (0 • 54, 0 • 90) 0 • 74 (0 • 61, 0 • 91) 

[20 ◦C, 30 ◦C] 0 • 83 (0 • 73, 0 • 95) 0 • 86 (0 • 78, 0 • 96) 

Relative 

humidity 

[40%, 75%] 1 • 47 (1 • 09, 1 • 97) 1 • 31 (0 • 98, 1 • 77) 

[75%, 90%] 0 • 88 (0 • 81, 0 • 96) 0 • 92 (0 • 84, 0 • 99) 

Level 1 

response 

0 • 61 (0 • 53, 0 • 69) 0 • 61 (0 • 53, 0 • 70) 

Immigration 

index † 
[2 • 41, 1 • 52] 0 • 95 (0 • 91, 0 • 99) 0 • 96 (0 • 93, 0 • 99) 

[3 • 32, 1 • 49] 0 • 92 (0 • 85, 0 • 99) 0 • 93 (0 • 87, 0 • 99) 

Urban traffic 

index ‡ 
[5 • 50, 3 • 20] 0 • 64 (0 • 56, 0 • 83) 0 • 68 (0 • 60, 0 • 76) 

[5 • 67, 2 • 56] 0 • 55 (0 • 46, 0 • 66) 0 • 59 (0 • 50, 0 • 70) 

† 2 • 41 and 1 • 52 are the median immigration index values before (including) and after 5 days post 

the initiation of level-1 response. 3 • 32 and 1 • 49 are the 75% and 25% percentiles of the immigration 

index. 
‡ 5 • 50 and 3 • 20 are the median urban traffic index values before and after (including) the initiation 

of level-1 response. 5 • 67 and 2 • 56 are the 75% and 25% percentiles of the urban traffic index. 
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Fig. 4. Model-predicted weekly average R t for 2020 under different assumptions about intervention policy: ( A) level-1 emergency response is lifted, and human move- 

ment recovers to normal level, i.e., neither restricted nor within the spring festival commute period (immigration index and urban traffic index are set to the average level 

during March, 2019); (B) level-1 emergency response is lifted, but human movement is restricted (immigration index and urban traffic index are set to the average level 

during February, 2020); (C) level-1 emergency response is in place, but human movement recovers to normal level; and (D) Both level-1 emergency response and human 

movement restriction are in place. 
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bsent after April ( Fig. 4 A). R t remains below 1 from April to Oc-

ober in most cities but close to 1 in a few cities in northeastern

hina (Harbin and Changchun) or on the East Coast (Changzhou,

uxi, Suzhou and Ningbo). The East Coast cities are popular desti-

ations for tourists and migrant workers. By November, R t reaches

ear or above 1 • 5 in Harbin, Changchun, Zhengzhou and Suzhou.

n December and January, R t increases to around 2 in Harbin and

hangchun. Human movement restriction alone ( Fig. 4 B, based on

mmigration and urban traffic indices during Feb, 2020) or level-1

mergency response alone will bring R t down to near or below 0 • 5
or most cities all the year round, although the former seems more

ffective than the latter. When level-1 emergency response is im-

lemented alone, R t remains close to 1 in Harbin, Changchun and

uzhou in the winter months ( Fig. 4 C). With human movement re-

triction and level-1 response both in place, R t stays near or below

 • 5 in all 41 cities throughout the year ( Fig. 4 D). 
iscussion 

Using a crowdsourced database, we characterized the distribu-

ions of the incubation period and serial interval of COVID-19 and

ssessed R t values in 41 cities of China and associated drivers. The

edian R t was higher in the northern cities than in the southern

ities. We found COVID-19 was more locally transmissible at a low

emperature and at a relative humidity near 75%. Both intracity

nd intercity human movements were driving factors for the trans-

issibility of COVID-19, but restricting intracity human movement

as more effective. Other nonpharmaceutical interventions helped

educing R t greatly. Our model-based prediction indicated poten-

ially more active transmission in the northeastern region and the

ast Coast compared to other areas in China for the rest of the

ear, especially during the coming winter season, if human move-

ent restrictions are lifted. 
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The estimated distribution of the incubation period is consis-

tent with previous studies in which medians range from 5 • 1 to 6 • 4
days [18–20] .The longer incubation period post level-1 responses

could be related to the increasing detection of mild cases. The es-

timates for the serial interval are also in line with estimates of 4–5

days by previous studies [ 18 , 21 , 22 ]. Faster detection of secondary

cases post level-1 responses may explain the contraction of the se-

rial interval over time. 

Our estimation approach for R t takes into account imported

cases and clustering. The majority of existing estimates for R t were

based on a traditional method that does not distinguish between

imported and local cases [15 , 23–24] . Other studies either adapted

the traditional method or used transmission models to account for

case importation, but those studies did not incorporate the clus-

tering information [ 2 , 18 ]. Our estimates of R t in Shenzhen resem-

ble those in a modeling study but differ from another study which

estimated an increasing trend of R t before Jan 20 [ 2 , 18 ].This dif-

ference could come from (1) whether R t is attributed to the on-

set time of the infectee (the previous study) or the onset time

of the infector (our study), and (2) the consideration of imported

secondary cases as infectees (the previous study) or infectors (our

study). Nevertheless, the overall subcritical levels of R t in cities

outside Hubei Province are consistent across most studies. 

Our assessment of the effect of temperature on COVID-19 trans-

mission is in consensus with many other studies [ 3 , 5 ]. While some

studies found that transmission of SARS-CoV-2 and seasonal beta-

coronaviruses such as OC43 and HKU1was facilitated by lower rel-

ative or absolute humidity [ 6–7 , 25 ], others found this is not neces-

sarily the case for SARS-CoV-2 [ 4 , 26 ]. Coronaviruses are wrapped

by a lipid bilayer that makes it sustain longer in the air when

relative humidity is low; on the other hand, a high relative hu-

midity is associated with much longer survival on solid surfaces

[27] . These two opposite effects of relative humidity on the sur-

vival of SARS-CoV-2 could partially explain our finding that a rela-

tive humidity near 75% maximizes local transmissibility of COVID-

19. The first COVID-19 outbreak in a fresh (wet) seafood mar-

ket in Wuhan and the recent outbreak in another seafood mar-

ket in Beijing suggest the preference of the virus for cold and

humid environments, consistent with our findings [28] . However,

previous modeling studies suggested the epidemics in a domi-

nantly susceptible population will not be decisively impacted by

climatic determinants [7–8] , which is also evidenced by the sec-

ond wave of COVID-19 in southern United States during June, 2020

(https://coronavirus.jhu.edu/data/new-cases-50-states). 

Both intercity and intracity human movements were impor-

tant drivers for local transmission, but the latter (the urban traf-

fic index) appeared more influential than the former (the immi-

gration index). The mild yet statistically significant impact of in-

tercity movement is likely due to different movement or contact

patterns of visitors and tourists, compared to local residents. The

level-1 emergency responses reduced intracity human movement

to a much greater extent compared to intercity human movement

(Appendix p 17), which is expected as intercity and interprovince

commutes were not explicitly prohibited except for those to and

from Wuhan. Even after adjusting for the human movement in-

dices, the level-1 emergency responses further reduced R t substan-

tially, suggesting other control measures including but not lim-

ited to social distancing, case finding and isolation, contact tracing

and quarantine, and mandatory mask-wearing had been effective

in mitigating local transmission. 

Our analyses bear several limitations. We have not considered

the effect of changing definition of confirmed case by the Chi-

nese Commission of Health and Family Planning during the epi-

demic of COVID-19, which could have led to artificial temporal pat-

terns, e.g., a longer incubation period during the later epidemic

phase as more milder and younger patients were detected [29] .
econdly, the study period for the association of R t with climatic

actors is relatively short, covering only January and February when

ir temperature was below 25 ◦C in most cities of China. More

ata from the subsequent months and from other countries are

eeded to verify our findings. In addition, the subsets of cases

ontributing to the inference on the natural history of disease,

 t and associated determinants are all limited and may not fully

epresent the total of 11 003 cases in our database. These sub-

ets share similar age and sex profiles with the whole database,

ut spatial-temporal distributions may differ (Appendix p 21). Fur-

hermore, our database may not be representative of all cases in

hina; in particular, it lacks contact-tracing data from cities in

ubei Province, the epi-center in China. Consequently, our results

ould be subject to selection bias. Lastly, probable mutations in the

iral genome could have contributed to the spatiotemporal vari-

bility in the local transmissibility of SARS-CoV-2, e.g., the recently

eported “D614G” mutation in the S protein, which was not taken

nto account in our analyses [30] . 

The ideal environmental conditions against SARS-CoV-2, a high

emperature plus either a very low or a very high relative humid-

ty, may not be available or sustainable in many countries. South

merican countries such as Brazil, Peru and Chile are taking a hard

it by the ongoing pandemic of COVID-19 in their winter season.

eanwhile, parts of the United States are witnessing resurgence

f local transmissions in their summer after shelter-at-home was

ifted and social activities resumed. While classic control strate-

ies including social distancing, timely case finding and isolation,

nd tracing and quarantine of close contacts can greatly reduce

he transmissibility of COVID-19, it may be necessary to reactivate

uman movement restrictions to contain disease resurgence, espe-

ially when the climate is most suitable for viral transmission. 

esearch in context 

vidence before this study 

On May 16, 2020, we searched PubMed, medRxiv and bioRxiv

or all papers published in English from December 1, 2019 to May

6, 2020, using the search terms (“nCoV” OR “COVID” OR “novel

oronavirus” OR “severe acute respiratory syndrome coronavirus

”) AND (“epidemiological characteristics” OR “transmission dy-

amics” OR “reproduction number” OR “meteorological factors” OR

nonpharmaceutical interventions”). We identified 95 relevant pa-

ers after screening. 

Sixteen studies evaluated the effect of nonpharmaceutical in-

erventions in mainland China. All these studies found the inter-

entions to be effective, but very few directly assessed the effects

olely due to human movement restrictions. One study found that

ocial distancing led to a 7- to 8-fold reduction in contact rate

ased on survey and contact-tracing data from Wuhan, Shanghai

nd Hunan province. Three studies at the national scale found that

anning intercity transportation after Wuhan lockdown had a lim-

ted effect on intercity spread, and two of them found that restrict-

ng intracity public transport greatly reduced case incidence. 

About 19 of the 95 papers focused on the impact of mete-

rological factors but the findings are inconsistent. Five studies

oncluded that temperature had no impact, whereas 11 found a

egative association between temperature and case incidence. One

tudy indicated that a higher absolute humidity would benefit dis-

ase spread. Two studies found no impact of relative humidity

n disease incidence, while four suggested a negative association.

ne study conducted in Brazilian cities found high temperatures

nd intermediate relative humidity are favorable conditions for the

pread of COVID-19 in tropical climate. 
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dded value of this study 

We assessed local transmissibility of COVID-19 in terms of the

ffective reproduction number ( R t ) in 41 cities where our crowd-

ourced data cover the dominant majority of reported cases ( ≥95%

n 40 cities and 86% in one). Northern cities had noticeably higher

 t values than southern cities. By jointly considering meteorologi-

al variables, human movement indices and other nonpharmaceu-

ical interventions in a statistical regression, we found low tem-

erature and relative humidity in the range of 70–75% were ideal

or the local transmission of COVID-19 in China. We found that re-

tricting intracity transport alone reduced local transmissibility by

6% (95% CI 27–44%), but restricting intercity transport alone had

imited effect. Nonpharmaceutical interventions other than human

ovement restrictions were also effective, reducing R t by 39% (95%

I 31–47%). we predicted the potential R t values in these cities

hroughout the year of 2020 under different levels of control. 

mplications of all the available evidence 

Temperature and relative humidity may potentially shape the

easonality of COVID-19 where the susceptible population are suf-

ciently depleted or effective interventions continue. While inter-

entions such as social distancing, case finding and isolation, and

racing and quarantine of close contacts are efficient in inhibiting

ocal transmission in most cities of China, they need to be used in

onjunction with restriction of intracity human movement in cen-

ral and northern China during the winter season to fully contain

he disease. 
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