
Vision Only 3-D Shape Estimation for Autonomous Driving

Josephine Monica1 and Mark Campbell2

Abstract— We present a probabilistic framework for detailed

3-D shape estimation and tracking using only vision measure-

ments. Vision detections are processed via a bird’s eye view

representation, creating accurate detections at far ranges. A

probabilistic model of the vision based point cloud measure-

ments is learned and used in the framework. A 3-D shape

model is developed by fusing a set of point cloud detections via

a recursive Best Linear Unbiased Estimator (BLUE). The point

cloud fusion accounts for noisy and inaccurate measurements,

as well as minimizing growth of points in the 3-D shape. The

use of a tracking algorithm and sensor pose enables 3-D shape

estimation of dynamic objects from a moving car. Results are

analyzed on experimental data, demonstrating the ability of

our approach to produce more accurate and cleaner shape

estimates.

I. INTRODUCTION

To achieve safe autonomous operation of a vehicle in a
dynamic environment with other cars, pedestrians, cyclists,
as well as less common objects such as buses or trailers,
having an accurate and detailed shape estimates of objects
surrounding the car is crucial. The current state of the art
tracking algorithms estimate an object’s pose and shape typi-
cally with a simple bounding box approximation [1]. While a
bounding box may give a rough estimate of an object, it often
over-estimates the occupied space, thus significantly limiting
the available motion, particularly in challenging conditions,
such as heavy traffic. In the event of occlusion and rapid
viewpoint changes, such as lane merging and changing, the
estimated bounding box can also give a misleading estimate
of the object’s size and pose. Moreover, the capability to
produce detailed shape estimates can be used to build a
database collection of objects for other applications, such as
shape completion training and auto-labeling. Thus, detailed
3-D shape estimates can yield a broad impact.

As the performance of perception algorithms is highly
dependent on the supplied sensor information, most state
of the art tracking and shape estimation algorithms rely on
LiDAR sensors for its ability to produce accurate measure-
ments. Common LiDAR sensors utilize multiple lasers at
different longitudes rotating concurrently to give surrounding
measurements. Although the state of the art LiDAR with
64 beams provides good resolution and accuracy, it is cost
prohibitive for consumer products and is sparse at far ranges.
Camera sensors are much more affordable than LiDAR.
However, vision only based detection usually suffers from
much larger depth errors compared to LiDAR [2], thus
camera sensors are typically not used as the primary sensors
for tracking and shape estimation.

1,2School of Mechanical and Aerospace Engineering, Cornell University
jm2684@cornell.edu, mc288@cornell.edu

A recent algorithm called Pseudo-LiDAR [2] attempts
to bridge the performance gap between LiDAR and vi-
sion based object detection. [2] argues that it is not the
quality of the measurement data, but its representation that
accounts for the performance difference. In [2], the depth
map from stereo or monocular camera is converted into point
cloud representation, called Pseudo-LIDAR, before being fed
into deep convolutional networks. Then, detections via 3-
D convolutions on point cloud or 2-D convolutions in the
bird’s-eye-view slices are less sensitive and more physically
meaningful, leading to more accurate results. Furthermore,
the identical representation of both LiDAR and Pseudo-
LiDAR enables any point cloud based algorithm to be used
interchangeably for the two different measurements. A more
recent development, Pseudo-LiDAR++ [3], advances previ-
ous work [2] through improvement in stereo depth estimation
to provide even more accurate measurements, especially for
faraway objects.

In this paper we propose a probabilistic framework to
produce detailed and accurate shape estimates of tracked
objects around a moving car using only camera sensors.
Our method leverages the novel Pseudo-LiDAR++ [3] to
produce point cloud detections from stereo cameras, which
bypasses the challenges inherent in 3-D object detections
with convolutional networks. Given that the accuracy of
each measurement varies, we learn a probabilistic model
of Pseudo-LiDAR++ and incorporate it into the framework
in order to improve the performance of shape estimation
and tracking. Our method allows the use of any tracking
algorithm. The point cloud detections are fused via a recur-
sive Best Linear Unbiased Estimator (BLUE) to build a 3-D
shape model while keeping the growth of points minimal.
We show that our method can produce accurate and clean
shape estimates of tracked objects despite inaccurate and
noisy measurements.

II. RELATED WORK

Estimating detailed objects’ shape is vital in autonomous
driving scenes, such as trajectory planning in evasive steer-
ing. A pervasive practice in shape estimation is to represent
the object’s shape as 2-D bird’s-eye view of its extent.
Besides bounding box, one common approach for the bird’s-
eye view outline is to represent the object as an ellipse
using Random Hypersurface Model (RHM) [4], [5]. The
RHM framework can be extended further to model a star-
convex shape [6]. While these approaches provide richer
models than bounding boxes, they still pose an underlying
and limiting assumption about the shape of the object being
ellipse and star-convex. [7] attempts to remove this limiting

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6212-6/20/$31.00 ©2020 IEEE 1676

20
20

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 |

97
8-

1-
72

81
-6

21
2-

6/
20

/$
31

.0
0

©
20

20
 IE

EE
 |

D
O

I:
10

.1
10

9/
IR

O
S4

57
43

.2
02

0.
93

41
63

1

Authorized licensed use limited to: Cornell University Library. Downloaded on August 06,2021 at 14:43:35 UTC from IEEE Xplore. Restrictions apply.

shape assumption by using a polyline to represent the tightest
2-D bound of a tracked object. However, the performance,
especially the shape growth mechanism, is very sensitive to
the sensor accuracy.

While 2-D bird’s eye view simplifications may be suf-
ficient for collision avoidance, having detailed 3-D shape
estimates can be beneficial for tracking, detections, building
data collection, and other applications. Representations for 3-
D shape estimation include point clouds, mesh, voxels, and
Gaussian processes. For example, [8] initializes the tracked
car model with a generic category-level car mesh. The
vertices and other parameters of the mesh are then refined
using sensor measurements. While promising, this method
requires a prior understanding of the general object’s shape,
as it relies on a good mesh and parameters’ initialization.
[9] approximates the object’s surface with a radial function
and uses a Gaussian process to refine the shape function
with newly received measurements. Representing the shape
with radial function, however limits the object to being star
convex. More importantly, the resulting shape is unnaturally
smooth, causing unnecessary difficulty in representing pro-
trusions on objects.

Using a point cloud representation for shape estimation is
arguably the most natural, as measurements are already in
point clouds, and the potential space of shapes is infinite. [10]
estimates the velocity of an object by finding the best Marko-
vian alignment between current and previous point cloud
measurements. The Annealed Dynamic Histogram (ADH)
tracker coarsely samples the velocity estimate and refines
the resolution over iterations using the posterior distribution.
The shape model is then obtained by simply accumulating the
point cloud after transformation to the new coordinate frame
using the estimated velocity. Although ADH tracker can
give accurate velocity estimates, the shape estimation using
simple point cloud accumulation is inferior, especially when
the sensor is noisy and less accurate. Since existing shape
points are never updated, and all measurements are simply
appended to the shape, the quality of the shape estimate
suffers from measurement error and noise. Despite being
a probabilistic framework, there is no uncertainty estimate
available for the shape. Furthermore, the resulting accumu-
lation based on kinematics alignment generally contains a
large number of redundant points, as the existing points are
not rectified but simply expanded with new measurements.

III. 3-D SHAPE ESTIMATION FRAMEWORK

The work proposed here is based on the recursive Best
Linear Unbiased Estimate (BLUE) for non-redundant point
cloud accumulation. Each point in the measurement is either
used to refine points in the current model or is accumulated
into the model. This approach minimizes the growth of
points, as redundant points from multiple overlapping mea-
surements are fused [11]. More importantly, the probabilistic
fusion allows the correction of errors in shape points, as well
as provides an estimate of the uncertainty of the shape. A key
innovation of this work is in the learning of a sensor error
model and inclusion in the probabilistic framework. Finally, a

shape compression algorithm and an outlier removal method
are also implemented to maintain the most efficient shape.

Fig. 1 shows the overall pipeline for our vision only
tracking and shape estimation framework. Measurement from
stereo images are processed using Pseudo-LiDAR++, which
includes PointRCNN [12] detection algorithm, resulting in
3-D point cloud detections. Our framework consists of two
main components, tracking and point cloud fusion; both
utilize the output from Pseudo-LIDAR++. Before fusing the
point cloud, the shape model and the new measurement
must be transformed into the same coordinate frame. This
transformation is obtained via a tracking algorithm relative
to the sensor. Note that all points are defined with respect to
the ego frame, unless otherwise stated.

Fig. 1. Block diagram describing the overall pipeline of shape estimation
and tracking.

While an object tracking algorithm is required for the
proposed framework, the proposed point cloud fusion al-
gorithm is agnostic to the specific type of object tracking
algorithm. In this paper, we use a standard Kalman filter
algorithm for tracking. However, more sophisticated tracking
algorithms, such as the ADH tracker [10] could be used. In
fact, with the benefit of non-redundant representation of the
proposed shape in our algorithm, we can further improve the
accuracy of ADH tracker. Instead of comparing the current
measurement to only the previous measurement, the current
measurement can be compared to the full shape model.
This was previously infeasible, as the run time for velocity
estimation scales with the total number of points.

IV. SENSOR ERROR ANALYSIS

The accuracy of a sensor generating point clouds is
usually affected by the relative pose between the measured
object to the sensor, i.e., measurements are less accurate and
more noisy at farther distances. Given that the accuracy of
each measurement varies, modeling the accuracy of each
measurement point can be beneficial to the eventual shape
estimate. We can improve the performance of both tracking
and shape estimation by learning a probabilistic error model
as a function of range, and incorporating this error model
into tracking and shape estimation approaches.

[3] pre-trains its stereo depth network on the synthetic
Scene Flow dataset [13] and fine-tunes it on the 3,172
training images of KITTI dataset. We evaluate on the KITTI
tracking benchmark [14], specifically on the car category,

1677

Authorized licensed use limited to: Cornell University Library. Downloaded on August 06,2021 at 14:43:35 UTC from IEEE Xplore. Restrictions apply.

which is split into 25 sequences (436 cars) for training and
12 sequences (408 cars) for validation. We compare the
bounding box detections from the Pseudo-LiDAR++ in our
training data set to the ground truth provided by KITTI.

Fig. 2 shows the box plot of x, y , z, and yaw angle errors
of Pseudo-LiDAR++ bounding box detections as a function
of planar x � y range measurement. An illustration of the
coordinate frame notation can be seen in Fig. 4. In order
to reduce bias in the statistical evaluation of the errors, if a
tracked car does not move within a sequence of detections,
for example when both the ego and tracked car are stationary,
only the first measurement is counted. This is to avoid bias
towards series of long stationary measurements. We then take
the mean of every bin and fit as a quadratic function of x�y
measurement range. Note that bins with too few data points
are removed from the fit. These quadratic functions of error
as a function of measurement range are used to model the
sensor error standard deviation.

Fig. 2. Box plot for Pseudo-LiDAR++ detection errors in x, y, z and yaw
angle as a function of x� y planar distance.

V. POINT CLOUD FUSION

Each measurement point p̃ of the surface of the shape is
assumed to be located at p and corrupted with zero-mean
Gaussian noise:

p̃ = p+N (0, C̃) (1)

where C̃ is the measurement covariance matrix modeled in
Section IV. We assume no correlation between points in a
point cloud.

Fig. 3 shows the recursive steps of point cloud fusion
process in a block diagram. The new measurement points
are compared with the current shape model to decide if they
were previously seen or unseen. Familiar or seen points are
used to refine the existing shape, while unfamiliar or unseen
points are added to the shape model. Shape compression
and outlier removal can also be performed to enhance the
result as desired. Each component of the process is further
explained in the following subsections.

Fig. 3. Block diagram describing the process of point cloud fusion.

A. Dynamics Update

Before performing point cloud fusion, the shape model
and the new measurement must be transformed into the
same coordinate frame. Given a transformation comprising
a rotation R about point c and a translation �, dynamics
update to a shape point estimate p̂ and its covariance Ĉ is
defined as:

p̂ R(p̂� c) + c+ � (2)

Ĉ RĈRT (3)

(3) assumes that all the transformation parameters are exact,
i.e., ground truth transformation. For transformation with
uncertainty, the covariance update can be simply derived
from (2) either analytically through Jacobian matrices or
numerically through sigma point filter.

B. Distinguishing Familiar and Unfamiliar Points

Before deciding whether measurement p̃ and existing
point p̂ come from the same surface point, we need to
compute the merged estimate p̂0. That is, the updated shape
point location if the two points are merged is given as:

p̂0 = p̂+ Ĉ 0C̃�1(p̃� p̂) (4)

1678

Authorized licensed use limited to: Cornell University Library. Downloaded on August 06,2021 at 14:43:35 UTC from IEEE Xplore. Restrictions apply.

where Ĉ 0 is the merged point’s covariance matrix:

Ĉ 0 = (Ĉ�1 + C̃�1)�1 (5)

We use a measure of ’closeness’ to capture familiarity: in this
case, the Mahalanobis distance. The Mahalanobis distances
from the merged estimate p̂0 to the new measurement point
p̃ and the existing point p̂ can be defined as:

d̃ =
q
(p̂0 � p̃)T C̃�1(p̂0 � p̃) (6)

d̂ =
q
(p̂0 � p̂)T Ĉ�1(p̂0 � p̂) (7)

Measurement p̃ and existing point p̂ come from the same
surface point if both Mahalanobis distances d̃ and d̂ are
smaller than a user defined threshold dthres:

d̃, d̂ < dthres (8)

We use dthres = 3 in our experiments.

C. Point Cloud Refinement

Given a set of measurement points {p̃j} originating from
the same surface point as p̂, we use best linear unbiased
estimator to update our estimates of p̂ and its covariance Ĉ:

p̂0 = p̂+
X

j

Ĉ 0C̃�1
j (p̃j � p̂) (9)

Ĉ 0 =
�
Ĉ�1 +

X

j

C̃�1
j

��1 (10)

where {C̃j} are the covariance matrices corresponding to
measurement {p̃j}, p̂0 is the new estimated location, and Ĉ 0

is the updated covariance estimate.
The full measurement update process is presented in

Algorithm 1.

D. Shape Compression

Given a set of points � constituting an object, shape
compression aims to reduce the number of shape points n
while maintaining as much information about the object’s
shape. To do this, first we find a pair of points that are most
likely to be similar, namely:

(p̂a, p̂b) = argmax
p̂i,p̂j2�,i 6=j

N (0; p̂i � p̂j , Ĉi + Ĉj) (11)

From the pair (p̂a, p̂b), we delete the less certain point, i.e.,
the point with the larger determinant of its covariance matrix
|Ĉ|. This process is repeated until the desired number of
points is reached or until the maximum likelihood of point
pairs being similar is smaller than a user defined threshold.

Input: Measurement points Zt = {P̃j = (p̃j , C̃j)}
and existing shape model
�t�1 = {P̂i = (p̂i, Ĉi)}.

Output: Updated model �t

�t �t�1, U Zt;
foreach point P̂i 2 �t do

F ;;
Compute a set of k-nearest new measurement
points K {P̃j |P̃j 2 kNN(P̂i, k)};

foreach point P̃j 2 K do

Compute Ĉ 0
ij from (5);

Compute p̂0
ij from (4);

Compute d̃ij , d̂ij from (6) and (7);
if d̃ij , d̂ij < dthres then

F F [{P̃j};
U U \ {P̃j}

end

end

if F 6= ; then

Compute P̂ 0
i the merged point of P̂i and F

with (9) and (10);
P̂i P̂ 0

i
end

end

�t �t [U ;

Algorithm 1: Point cloud fusion algorithm.

E. Outlier Removal

Even with a statistical model of sensor error, sensor mea-
surements often contain outliers. While our fusion algorithm
accounts for noisy measurements, we prefer to not fuse
outliers with existing shape points, as they may distort the
shape estimate. However, since outliers are not used to refine
existing points, they are counted as unfamiliar points and
will be appended to the shape estimate. Thus, the purpose
of outlier removal is to remove the outliers to get a cleaner
shape estimate.

To detect such points, we first find the distance to the
kth nearest neighbor for every point. Typically, outliers do
not have many nearby points. Thus, we remove points whose
distance to its kth nearest neighbor lie beyond Q3+1.5IQR,
where Q3 is the 75% quartile, and IQR is the interquartile
range. A value of k = 30 is used in our experiments.

VI. TRACKING

The purpose of tracking in the context of shape estimation
is to find the coordinate transformation of the tracked object
across time steps. This transformation is used to bring the
shape points to the same coordinate frame as the new
measurement prior to fusion, as described in Section V-A.
While our point cloud fusion framework can use any tracking
algorithm, a standard 3-D centroid Kalman filter tracking is
used here as a baseline to evaluate shape estimates using
only vision detections.

1679

Authorized licensed use limited to: Cornell University Library. Downloaded on August 06,2021 at 14:43:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Diagram picturing a tracked object’s pose relative to the ego vehicle.

A. State

The state s of our tracker is defined as the pose of
the center of the object’s bounding box and its first time
derivatives:

s =
⇥
x y z ✓ ẋ ẏ ż ✓̇

⇤T

where x, y, z, ✓ are the pose of the tracked object relative
to the ego vehicle as depicted in Fig. 4, and ẋ, ẏ, ż, ✓̇ are
their first time derivatives.

B. Measurements

Pseudo-LiDAR++ [3] in conjunction with PointRCNN
[12] generates bounding box detection for objects. We use
the pose of the bounding box detection as our measurement
vector:

h =
⇥
xbb ybb zbb ✓bb

⇤T (12)

where (xbb, ybb, zbb) is the center location of the detected
bounding box, and ✓bb is its detected orientation.

VII. EXPERIMENTS

We present experiments on car objects in the KITTI
tracking dataset [14] that is split into 25 sequences (436
cars) for training and 12 sequences (408 cars) for validation.
In all experiments, every point cloud measurement from
the Pseudo-LiDAR++ is stochastically down-sampled to a
maximum of 2000 points.

The following subsections are organized as follows. In
Section VII-A, we present a method and metrics to evaluate
shape estimates. To first develop an insight of the importance
and merit of our probabilistic fusion approach for shape
estimation, we present a study case of a challenging scenario
of approaching car in Section VII-B. Next, we evaluate our
algorithm on the whole KITTI validation set to show that our
algorithm can work for varying cases. Finally, Section VII-D
presents a qualitative study to demonstrate the novelty of our
shape estimation algorithm pictorially. In all the studies, we
show a comparison of our method to the simple accumulation
baseline.

A. Evaluation Metric for Shape Estimation

Determining an appropriate evaluation metric to evaluate a
point cloud is challenging. Ideally, we want a reference of the
true shape to compare. Unfortunately, generally there is no
true shape reference except for controlled experiments with
known cars and well defined CAD models. Consequently,
this does not lend to a holistic statistical analysis. Instead,
we compare to a shape reference defined by the accurate
measurements from LiDAR which are also known to be
metrically very precise. In order to compare to the best
full shape as possible, we accumulate all available LiDAR
point clouds across all frames for a given car using the
ground truth transformation, which is provided in the KITTI
dataset. Even after the LiDAR point clouds are accumulated,
the shape reference developed from LiDAR can still be
incomplete, especially for cars at far ranges. Therefore, a
shape completion method called Point Completion Network
(PCN) [15] is applied to complete the shape for evaluation.

Before evaluation, the shape reference must be trans-
formed to the same coordinate frame as the shape estimate.
For every point in a shape estimate, its nearest neighbor
distance to point cloud reference di is computed. We define
evaluation metrics dnn and �nn, the average and standard
deviation of nearest neighbor distances among all n shape
points:

dnn =
1

n

nX

i=1

di (13)

�nn =

vuut 1

n

nX

i=1

(di � dnn)2 (14)

dnn measures the accuracy of the shape, while �nn indicates
its precision or uncertainty.

B. Study Case: Car Approaching from Far

In order to gain insight into the performance of the 3-
D shape estimation algorithm with Pseudo-LiDAR++, we
first study a particularly challenging case from the KITTI
dataset: a car approaching from far distance. Intuitively,
initial detections are sparse and uncertain, but get better as
the car approaches. The varying number and quality of points
will stress the fusion algorithm. Fig. 5 shows images seen
by the ego vehicle at two different time instances. Initially,
the point cloud detections are inaccurate, as depth prediction
is challenging for small objects at far ranges. This is mostly
due to the poor quality of associated pixels when the car is
faraway; the car is also in shadow. As the car comes closer,
the depth errors and noises reduce over time; close detections
are quite accurate and detailed. For this analysis, we compare
our algorithm with a baseline of simple accumulation, with
both transformations from ground truth and tracking result.

We first isolate the point cloud fusion from the tracking
component to independently analyze the performance of only
the fusion algorithm. Thus, ground truth transformation is
used here. Fig. 7 (left) shows the shape result of the simple
accumulation baseline. The baseline result shows multiple

1680

Authorized licensed use limited to: Cornell University Library. Downloaded on August 06,2021 at 14:43:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Images from the left camera. The car of interest here is the one
in front. Top: Initial detection. Bottom: Sixteenth detection (one and a half
seconds later).

car front layers corresponding to inaccurate point cloud mea-
surements from different time instances. These inaccuracies
are mostly due to the detections when the car is very distant.
If the measurements were perfectly accurate, the layers
would perfectly align. It shows that simple accumulation
baseline suffers in the event of inaccurate measurements. Fig.
7 (right) shows the result of our fusion algorithm. Unlike the
simple accumulation model, our algorithm nicely fuses the
multiple car layers. Quantitative metrics comparing the two
approaches as a function of number of detections received
are plotted in Fig. 9. The accuracy of our approach is clear.
In addition, while we do not apply shape compression in
these results, the number of points n reduces significantly
using our approach (Fig. 10).

Fig. 6. Top down view of the tracked and true trajectories of the car in
ego frame.

Fig. 7. Point cloud model after running shape estimation with Pseudo-
LIDAR++ measurements for one and a half seconds (sixteen detections).
Left: Baseline method. Right: Our fusion method.

Next, we perform the same analysis using the transfor-
mation obtained from the tracking algorithm. Fig. 6 shows a
bird eye view comparison between the true trajectory and the
trajectory from our tracker. We can see that there is a larger
error at ranges from 60m (initial detection) to 40m. These
range dependent errors align with our intuition of the sensor
processing, and with the statistical error analysis in Fig. 2.
Fig. 8 compares our full fusion and tracking algorithm with
the simple accumulation baseline using the same tracking

Fig. 8. Point cloud model after running shape estimation and tracker
with Pseudo-LIDAR++ measurements for one and a half seconds (sixteen
detections). Left: Baseline method. Right: Our fusion method.

result. Again, the shape estimate from our fusion algorithm
looks cleaner and better aligned than the simple accumulation
baseline. The quantitative results are also reported in Fig. 9
and Fig. 10, where the performance of our point cloud fusion
algorithm surpasses the simple accumulation method in all
aspects.

Fig. 9. The evolution of performance metrics of the shape in the study
case. Top: Run with ground truth transformation. Bottom: Run with tracker.

Fig. 10. The evolution of the number of shape points in the study case,
evaluated for transformations from both tracker (trk) and ground truth (gt).

In this study case, the quality of shape estimate generally
improves over time (Fig. 9), as better point cloud detections
are received when the car comes closer. One exception
is in the last few detections of the tracking case (Fig. 9
(bottom)), where the error increases. This is because the
car becomes partially occluded, as it comes too close to

1681

Authorized licensed use limited to: Cornell University Library. Downloaded on August 06,2021 at 14:43:35 UTC from IEEE Xplore. Restrictions apply.

the ego vehicle, causing difficulty in tracking accurately.
While we quantitatively and qualitatively observe (Fig. 7-10)
that shape estimation performs better given its ground truth
transformations due to errors from tracker, the performance
gap of shape estimation between the two is narrower using
our fusion algorithm, showing the robustness of our method.

C. Quantitative Evaluation on KITTI Dataset

We evaluate the performance of our vision only 3-D
shape estimation algorithm on the whole KITTI validation
set, and compare it to the simple accumulation baseline.
The validation set consists of a mix of trajectory scenarios.
The statistics of the measurement ranges in Fig. 12 shows
that most cars tend to be at farther distances at their first
detections and approach the ego over time. For each car, we
run the two shape estimation algorithms from its initial to its
final detection and evaluate the shape estimate at every time
step, resulting in shape estimates built using 1 detection, 2
detections, and so on. In this study, we show the results only
up to 30 detections, where the number of data points (cars)
in the category is still sufficiently large.

Fig. 11. Statistics of measurement range Vs the number of measurements
received from the initial detection up to the current measurement for cars
on the KITTI validation set.

1) Shape estimation with ground truth transformation:

First, we perform shape estimation using the ground truth
transformation to analyze the performance of shape es-
timation apart from the influence of tracking error. The
distribution of the evaluation metrics (Section VII-A) of
shape estimates with fusion and simple accumulation are
compared in Fig. 12. Here, it is clear that our fusion
algorithm outperforms the baseline method in all aspects.
Additionally, it shows a general trend of improvement in the
quality of shape estimates with more detections. This aligns
with the statistics of the measurement ranges (Fig. 11) that
most cars in the validation set are initially at farther distances
and approach the ego vehicle, hence giving more accurate
measurements, over time.

2) Shape estimation with tracking result: We perform
the same analysis as in VII-C.1, but now using the es-
timated transformation from tracking. The distribution of
performance metrics for both algorithms are shown in Fig.
13. Comparing Fig. 12 to Fig. 13, both shape estimation
algorithms generally perform worse when using tracking

Fig. 12. Statistical analysis on the metrics of our fusion method Vs the
simple accumulation baseline on the KITTI validation set.

Fig. 13. Statistical analysis on the metrics of our fusion method Vs the
simple accumulation baseline with tracking on the KITTI validation set.

result, due to the additional error induced from the estimated
transformation. Nevertheless, the performance of our fusion
approach outperforms the simple accumulation method.

D. Qualitative evaluation on KITTI dataset

To complement the quantitative evaluation and demon-
strate the merit of our fusion algorithm, several shape es-

1682

Authorized licensed use limited to: Cornell University Library. Downloaded on August 06,2021 at 14:43:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 14. Leftmost: Shape estimates of the baseline method with a tracker. Left: Shape estimates of our method with a tracker. Right: Accumulated LiDAR
point clouds transformed with ground truth information. Rightmost: Completed point clouds output by PCN [15].

timation with tracking results using the full measurement
sequences are shown in Fig. 14, along with the developed
shape references. It can be seen that our fusion algorithm
accounts for bias due to measurement and tracking error,
and reduces noisy measurement, resulting in more accurate
and precise shape estimates.

VIII. CONCLUSION

We present a probabilistic framework for precise 3-D
shape estimation and tracking using vision only measure-
ment. For novel Pseudo-LiDAR++ measurements, we learn
a probabilistic error model of the point clouds as a function
of range, and incorporate this error model into tracking and
shape estimation approaches. Our shape estimation algorithm
minimizes the growth of shape points, and can be used
with any tracking algorithm. Quantitative and qualitative
experiments demonstrate that our fusion algorithm is able to
give more accurate and efficient shape estimates compared
to the simple accumulation baseline in spite of inaccurate
measurements and tracking errors.

ACKNOWLEDGMENT

The authors would like to acknowledge the support from
NSF grant S&AS: INT: Inference, Reasoning and Learning
for Robust Autonomous Driving Grant, IIS-1724282.

REFERENCES

[1] Hyunggi Cho, Young-Woo Seo, BVK Vijaya Kumar, and Ragu-
nathan Raj Rajkumar. A multi-sensor fusion system for moving object
detection and tracking in urban driving environments. In ICRA. IEEE,
2014.

[2] Yan Wang, Wei-Lun Chao, Divyansh Garg, Bharath Hariharan, Mark
Campbell, and Kilian Q Weinberger. Pseudo-lidar from visual depth
estimation: Bridging the gap in 3d object detection for autonomous
driving. In CVPR, 2019.

[3] Yurong You, Yan Wang, Wei-Lun Chao, Divyansh Garg, Geoff Pleiss,
Bharath Hariharan, Mark Campbell, and Kilian Q Weinberger. Pseudo-
lidar++: Accurate depth for 3d object detection in autonomous driving.
In ICLR, 2020.

[4] Marcus Baum and Uwe D Hanebeck. Random hypersurface models
for extended object tracking. In International Symposium on Signal

Processing and Information Technology (ISSPIT). IEEE, 2009.
[5] Marcus Baum, Benjamin Noack, and Uwe D Hanebeck. Extended

object and group tracking with elliptic random hypersurface models.
In 13th International Conference on Information Fusion. IEEE, 2010.

[6] Marcus Baum and Uwe D Hanebeck. Shape tracking of extended
objects and group targets with star-convex rhms. In 14th International

Conference on Information Fusion, pages 1–8. IEEE, 2011.
[7] Kevin Wyffels and Mark Campbell. Precision tracking via joint

detailed shape estimation of arbitrary extended objects. IEEE Trans-

actions on Robotics, 33(2), 2016.
[8] Q. Feng, Y. Meng, M. Shan, and N. Atanasov. Localization and

mapping using instance-specific mesh models. In IEEE/RSJ Int. Conf.

on Intelligent Robots and Systems (IROS), 2019.
[9] Murat Kumru and Emre Özkan. Three-dimensional extended object

tracking and shape learning using gaussian processes. arXiv preprint

arXiv:1909.11358, 2019.
[10] David Held, Jesse Levinson, Sebastian Thrun, and Silvio Savarese.

Combining 3d shape, color, and motion for robust anytime tracking.
In Robotics: science and systems, 2014.

[11] Tomi Kyöstilä, Daniel Herrera, Juho Kannala, and Janne Heikkilä.
Merging overlapping depth maps into a nonredundant point cloud. In
Scandinavian Conference on Image Analysis. Springer, 2013.

[12] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointrcnn: 3d
object proposal generation and detection from point cloud. In CVPR,
2019.

[13] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel
Cremers, Alexey Dosovitskiy, and Thomas Brox. A large dataset to
train convolutional networks for disparity, optical flow, and scene flow
estimation. In CVPR, 2016.

[14] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for
autonomous driving? the kitti vision benchmark suite. In CVPR, 2012.

[15] Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and Martial
Hebert. Pcn: Point completion network. In International Conference

on 3D Vision. IEEE, 2018.

1683

Authorized licensed use limited to: Cornell University Library. Downloaded on August 06,2021 at 14:43:35 UTC from IEEE Xplore. Restrictions apply.

