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Abstract Heterogeneity in physical and functional characteristics of cells (e.g. size, cycle time,
growth rate, protein concentration) proliferates within an isogenic population due to stochasticity
in intracellular biochemical processes and in the distribution of resources during divisions.
Conversely, it is limited in part by the inheritance of cellular components between consecutive
generations. Here we introduce a new experimental method for measuring proliferation of
heterogeneity in bacterial cell characteristics, based on measuring how two sister cells become
different from each other over time. Our measurements provide the inheritance dynamics of
different cellular properties, and the ‘inertia’ of cells to maintain these properties along time. We
find that inheritance dynamics are property specific and can exhibit long-term memory (~10
generations) that works to restrain variation among cells. Our results can reveal mechanisms of
non-genetic inheritance in bacteria and help understand how cells control their properties and
heterogeneity within isogenic cell populations.

Introduction

One of the main challenges in biological physics today is to quantitatively predict the change over
time in cells’ physical and functional characteristics, such as cell size, growth rate, cell-cycle time,
and gene expression. All cellular characteristics are determined at all times by the interaction of
genetic and non-genetic factors. While genetic information passed from generation to the next is
the main scheme, by which cells conserve their characteristics, non-genetic cellular components,
such as all proteins, RNA, and other chemicals, are also transferred between consecutive generations
and thus influence the state of the cell's characteristics (or its phenotype) in future generations
(Lambert et al., 2014; Robert et al., 2010). The mechanism of genetic information transfer between
generations, as well as how this information is expressed, is mostly understood (Casadests and
Low, 2006; Chen et al., 2017; Turnbough, 2019). This information can be altered by rare occurring
processes such as mutations, lateral gene transfer, or gene loss (Bryant et al., 2012; Robert et al.,
2018). Therefore, changes resulting from genetic alterations emerge over very long timescales (sev-
eral 10 s of generations). On the other hand, inheritance of non-genetic cellular components, which
are subject to a considerable level of fluctuations, can influence cellular characteristics at shorter
timescales (Casadesis and Low, 2013; Huh and Paulsson, 2011; Norman et al., 2013,
Veening et al., 2008).

Here we focus on understanding how robust cellular characteristics are to intrinsic sources (sto-
chastic gene expression and division noise) and extrinsic sources (environmental fluctuations) of vari-
ation, and how cells that emerge from a single mother develop distinct features and over what time
scale. While our understanding of variation sources has increased significantly over the past two dec-
ades (Ackermann, 2015; Avery, 2006; Elowitz et al., 2002), progress in understanding non-genetic
inheritance and its contribution to restraining the proliferation of heterogeneity has been extremely
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elLife digest All the different forms of life on our planet — including animals, plants, fungi and
bacteria — tend to grow, multiply and expand. This happens through a process called cell division,
where one cell becomes two; two cells become four; four cells become eight; and so on. Each
dividing cell passes on the same set of genetic instructions to its two daughter cells in the form of
DNA. Its remaining contents, made up of a mixture of proteins, RNA and other chemicals, also get
divided up equally between the two new cells.

This division of cellular assets establishes a form of ‘cellular memory’, where daughter cells retain
very similar properties to their ancestors, which helps them remain stable over time. Yet this
memory can fade, and small changes in how a cell looks or acts can appear over many generations
of cell division. This happens even when the exact same set of DNA-based genetic instructions have
been passed down to daughter cells, confirming that other factors aside from DNA do influence
cellular properties and can act to maintain them or introduce variation over time.

Here, Vashistha, Kohram and Salman set out to understand how long cellular memory could be
maintained in dividing E. coli bacteria. To do this, they created a technique to track cellular memory
as it passed down from a single mother cell to two daughter cells over dozens of generations. Using
this technique, Vashistha, Kohram and Salman found that some inherited elements, including cell
size and the time cells took to divide, were maintained between mother and daughter cells for
almost 10 generations. Other elements, such as the density of proteins inside each cell, started
changing almost immediately after daughter cells were formed, and only remained similar for about
two generations.

These findings suggest that cellular memory may be long, but is not infinite, and that inheritance
of non-genetic elements can help maintain cellular memory and reduce variation among new-born
cells for considerable number of generations. Building on this research to achieve a better
understanding of cellular memory may allow researchers to harness these insights to direct the
evolution of different cellular properties over time. This could have a wide range of potential
applications, such as designing new infection control measures for viruses or bacteria; enhancing our
ability to grow working organs for tissue transplant; or improving the texture and consistency of
cultured, lab-grown meat.

limited. Extensive studies have been dedicated to revealing the different non-genetic mechanisms
that influence specific cellular processes and how they are inherited over time (Chai et al., 2010;
Govers et al., 2017; Mosheiff et al., 2018; Sandler et al., 2015; Wakamoto et al., 2005). How-
ever, the cell’'s phenotype is determined by the integration of multiple processes. Thus, to predict
the inheritance dynamics of a cellular phenotype, we need to measure the inheritance dynamics
directly rather than characterizing the effect of individual inheritance mechanisms separately. Prog-
ress in this research has been drastically hindered by the limited experimental techniques that can
provide reliable quantitative measurements.

The recent development of the ‘mother machine’ (Brenner et al., 2015, Wang et al., 2010) has
provided valuable data of growth and division, as well as protein expression dynamics. These data
have been used to gain insight into non-genetic inheritance and cellular memory. The results
obtained have consistently showed that non-genetic memory in bacteria is almost completely erased
within two generation (Susman et al., 2018; Tanouchi et al., 2015; Wang et al., 2010). This has
also been the conclusion of theoretical calculations of cell size autocorrelation (Ho et al., 2018;
Susman et al., 2018), which are based on the adder model (Amir, 2014; Taheri-Araghi et al., 2015;
Si et al., 2019) for size homeostasis. The consensus of previous experimental studies is founded on
the calculation of the autocorrelation function (ACF) for the different measurable cellular properties,
such as cell size, growth rate, cell-cycle time, and protein content. It is important to note that in cal-
culating the ACF, measurements of cells from different traps of the mother machine are averaged
together. However, small variation in the trap sizes can manifest during the fabrication process,
which can lead to distinct environments in different traps (Yang et al., 2018). In addition, cells might
experience slightly different environments at different times resulting from thermal fluctuations and
their dynamic interaction with their surroundings, i.e. environmental fluctuations can influence the
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cell's growth and division dynamics, which in turn can change the cell’s micro-environment through
consumption of nutrients and/or secretion of other chemicals. As a result of the individuality of the
cell-environment interaction, different micro-niches can be created in different traps (as we demon-
strate later in the Results section), which give rise to diverse patterns of growth and division dynam-
ics and therefore distinct ACFs (Figure 1—figure supplement 1) (see also Susman et al., 2018;
Yang et al., 2018; Tanouchi et al., 2015). Averaging over many traps, with such various ACFs, will
thus erase the dynamics of cellular memory.

To overcome this hurdle, we have developed a new measurement technique, which enables us to
separate environmental effects from cellular ones. The technique is based on a new microfluidic
device that allows trapping two cells immediately after they divide from a single mother simulta-
neously and sustain them right next to each other for extended time. Thus, with this technique, we
track the lineages of the two sister cells (SCs) from the time of their birth and follow them as they
age together for tens of generations. This enables us to measure how two cells that originate from
the same mother become different over time, while experiencing exactly the same environment.
Thus, we are able to measure the non-genetic memory of bacterial cells for several different traits.
Our results reveal important features of cellular memory. We find that different traits of the cell
exhibit different memory patterns with distinct timescales. While the cell-cycle time and cell size
exhibit slow exponential decay of their memory that extends over several generations, other cellular
features exhibit complex memory dynamics over time. The growth rates of two SCs, for example,
diverge immediately after division, but re-converge toward the end of the first cell cycle and subse-
quently persist together for several generations. In comparison, the mean fluorescence intensities,
reporting gene expression, are identical in both cells immediately after they separate but diverge
within two cell cycles.

Results

Our new microfluidic device, dubbed the ‘sisters machine’ (Figure 1A), consists of 30 um long nar-
row trapping channels (1 um—1 um) open at one end to a wide channel (30 um—30 um), through
which fresh medium is continuously pumped to supply nutrients to cells in the traps and wash away
cells that are pushed out of them. Here however, every two neighboring trapping channels are
joined on the closed end through a v-shaped connection of the same width and height. The tip of
the v-shaped connection is made 0.5 um narrower than the rest of the channel to reduce the likeli-
hood of cells passing from one side to the other (Figure 1B). Therefore, once it happens, the cells at
the tip will remain there, while we track their growth and division events, and measure their size and
protein expression (Figure 1C,D), until the next cell passage occurs, which can take 10 s of genera-
tions (see Figure 1—video 1). The environment in this setup is identical for both cells at the tip of
the v-shaped connection, as they are kept in close proximity to each other. This ensures that differ-
ences observed between the two cells are due to internal cellular factors only. A comparison of the
growth patterns of two pairs of SCs measured in the same experiment, where each pair shares a
common trap, reveals that while the growth dynamics of SCs are strikingly similar, they are signifi-
cantly different between the two pairs (Figure 2A). This is further confirmed by comparing the distri-
bution of the difference between the average growth rates of SCs to that of pairs of cells residing in
different channels (Figure 2B). These results highlight the significance of the contribution of environ-
mental fluctuations to cellular growth dynamics and support the existence of different environmental
micro-niches within our, and similar, microfluidic setups as mentioned earlier. Note, however, that
cell division in the new v-shaped channels does not alter the statistics of SCs’ relative sizes, growth
rates, or generation times, in comparison to that observed in the case of division in straight channels
(Figure 3).

Using this setup, we successfully trapped pairs of cells next to each other for 20—160 generations.
Images of the cells in both Differential Interference Contrast (DIC) and fluorescence modes were
acquired every 3 min. Under our experimental conditions (cells growing in LB medium at 32°C), the
average generation time was 34 + 7 min, which provided ~11 images every generation. The acquired
images were used to measure various cellular characteristics as a function of time, including cell size,
protein concentration, growth rate, and generation time. To measure cellular memory, we replace
the ACF, used in previous studies, with the Pearson correlation function (PCF) between pairs of cells:

Vashistha et al. eLife 2021;10:e64779. DOI: https://doi.org/10.7554/eLife.64779 3of 16


https://doi.org/10.7554/eLife.64779

eLife

Cell Biology | Physics of Living Systems

A Growth channels B Mother cell Sister cells

; AT A%
/I \ /7 \
: \ /

! |

asawo,
a>an®®

PDMS Growth medium '
C Mother cell Sister cells

T=36 min

Time(hr)

Figure 1. Scheme of the experimental setup for tracking sister cells. (A) Long (30 um) narrow traps (1 um—1 pm)
are connected on one end and open on the other to wide (30 pum—30 um) perpendicular flow channels through
which fresh medium is pumped and washes out cells that are pushed out of the traps. (B) lllustration of SCs being
born from a single mother cell at the tip of the trap, as can also be seen in real fluorescence images of the cells in
the trap (C), which are then followed for a long time (see Figure 1—video 1). (D) Section of example traces of two
sister cells from the time they are born, which shows how they become different over time.

The online version of this article includes the following video and figure supplement(s) for figure 1:

Figure supplement 1. The ACFs of individual lineages measured in separate traps.
Figure 1—video 1. Creation of sister cells (SCs) in the experimental setup.
https://elifesciences.org/articles/64779#fig1video

PCFY() =3 () ). 0£(0) - <) M

where y is the cellular property of interest, t is the measurement time, n is the number of cell pairs
measured, oy is the population standard deviation of y, and (1) and (2) represent the two cells being
considered. PCFY)(t) is therefore a measure of the correlation between the values of a specific cellu-
lar property at time t. We use this correlation function to compare three types of cell pairs
(Figure 4A): (1) SCs are cells that originate from the same mother at time 0, and therefore, the value
of PCF at time 0 is 1. (2) Neighbor cells (NCs) are cells that reside next to each other at the tip of
the v-shaped connection. However, NCs are cells that do not originate from the same mother. They
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Figure 2. Individuality of cellular growth dynamics in different microenvironments. (A) Depicts the cell length of two pairs of SCs measured in two
different V-shaped traps as a function of time. The length of each cell is presented in a 'stitched’ form, where the length of the cell in each cell cycle is
adjusted to start from the length of the cell at the end of the previous cycle, ignoring by this the division events. This is done by dividing the length in
each cycle by the starting length and multiplying it by the length of the cell at the end of the previous cycle. This presentation emphasizes the
difference in the average growth rates measured in different traps. Note, however, that each pair of SCs exhibits similar average growth rate. (B)
Probability distribution function (PDF) of the absolute difference in the average growth rate of two SCs is compared with the absolute difference in the
average growth rate of two randomly paired cells (RPs) growing in separate traps in the same device (see Figure 4A for further elaboration on random
pairing of cells). The standard deviation of the difference for SCs (osc,) is almost half of the calculated value for RPs (ogps). This shows that cells grow
with different average growth rates in different traps and supports the idea of micro-niche formation in the microfluidic device.

are cells that happen to enter into both sides of the same v-shaped channel from the start of the
experiment. We initiate their tracking though, only when they happen to divide at the same time,
such that at time 0O, they are both at the start of a new cell cycle, and if their length is almost identi-
cal at that point in time. This choice is to ensure that any long-term correlation measured in SCs
does not stem from a size homeostasis mechanism, which would maintain the size of both cells simi-
lar for several generations if they start similar. (3) Random cell pairs (RPs) are cells that reside in dif-
ferent traps and their lineages are aligned artificially even though they can be measured at different
times. In this case, t is measured relative to the alignment point, which is chosen to be at the start of
the cell cycle for both cells. Since NCs and RPs do not originate from the same mother at time 0, the
PCF is measured from the first generation only, and we set it to be 1 at time 0. Comparing the corre-
lation of NCs, which experience the same environmental conditions at the same time, with that of
RPs allows us to determine the effect of the environment on the correlation. On the other hand, the
comparison of SCs with NCs provides the effect of cellular factors (i.e. epigenetics) that are shared
between SCs, on the correlation function. This in turn allows us to determine the cellular memory of
a specific property resulting from shared information passed on from the mother to the two sisters
(see Appendix for the mathematical relationship between the different measures).

We measured the correlations between the different pair types for cell-cycle time (T). We find
that T of SCs remain strongly correlated for up to eight successive cell divisions (Figure 4B also see
Figure 4—figure supplements 1 and 2) regardless of the environmental conditions (Figure 4—fig-
ure supplement 3), while the NCs correlation decays to zero within three generations (Figure 4C).
These results clearly reveal the effects of epigenetics and environmental conditions on cellular mem-
ory when compared to the RPs correlation, which as expected decays to zero within one generation
similar to the ACF (Figure 4B,C).
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Figure 3. The effect of the v-shaped channel on the distribution of the different cellular characteristics between SCs during division. (A) Probability
distribution Function (PDF) of the difference in the first cell-cycle time of two sister cells after separation relative to the population’s average cycle time
under the same experimental conditions. (B) PDF of the difference in cell length between the sister cells immediately after division relative to the
population’s average length at the start of the cell cycle. (C) PDF of the difference in the growth rate of the two sister cells after separation relative to
the population’s average growth rate. The difference measured in the straight channels here is larger than that measured in the v-shaped channels. This
could be due to the fact that the two cells in the mother machine trap are at different distance from the nutrients diffusing from the flow channel into
the traps. This has been shown before to result in variation in the cells growth rate (Yang et al., 2018). In all graphs, the blue curves represent the
distributions measured in our new device with the v-shaped channels using 194 pairs, while the brown curves were measured in the straight channels of
the mother machine using 198 pairs.

Next, we applied our method to cell size. Also here, our measurements show that SCs correlation
decays slowly over ~7 generations (Figure 4D), while the correlation of NCs exhibit fast decay to
zero within two generations similar to the ACF (Figure 4E). Note that RPs exhibit no correlation
from the start of the measurement (Figure 4D, E). These results further demonstrate the existence of
strong non-genetic memory that restrains the variability of cell size between SCs for a long time.
Unlike the cell-cycle time however, the effect of both epigenetic factors and environmental condi-
tions on the cellular memory appears to extend for a slightly shorter time.

To quantify the increase in variability among cells along time differently, we measured the change
in the variance of a cellular property as time advances, which is expected to reach an equilibrium sat-
uration value at long timescales. Measuring how the variance reaches saturation provides informa-
tion about cellular memory and the nature of forces acting to restrain variation. The cellular
memories of cell-cycle time and length, measured using this method, agree well with our previous
PCF results (Figure 5—figure supplements 1 and 2). Thus, we have measured the relative fluctua-
tions in the exponential elongation rate of the cell pairs S« defined as:

da(t) =aV (1) —a® (1) 2

where a(t) = (dInL/dr) is the exponential elongation rate of the cell, L(t) is the cell length at time t,
and (1) and (2) distinguish the cell pair (Figure 5—figure supplement 3). As expected, da for all
pairs of lineages is randomly distributed with (8a) = 0 (Figure 5—figure supplement 3), as the elon-
gation rate of all cells fluctuate about a fixed value identical for all cells in the population and
depends on the experimental conditions. The variance of da for both RPs (a%am) and NCs (agam)
was found to be constant over time and is similar for both types of cell pairs (Figure 5A). However,
the variance of 8« for SCs (agam) exhibits a complex pattern (Figure 5B), which eventually converges
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Figure 4. PCF of cell-cycle time and cell size measured in cell pairs as a function of number of generations. (A)
Three types of pairs used for calculating PCF. (B) PCF of cell-cycle time for SCs (122 pairs from three separate
experiments) exhibit memory that extends for almost nine generations (half lifetime ~ 4.5 generations). This is
~3.5x longer than the half lifetime of NCs PCF (calculated using a 100 pairs from three separate experiments) (C),
which is comparable to the ACF (half lifetime ~1 generation). (D) Similarly, SCs exhibit strong cell size correlation
that decays slowly over a long time (half lifetime ~3.5 generations), while (E) NCs show almost no correlation in cell
size similar to ACF of initial sizes (half lifetime ~1 generation). For details of the cell-cycle time PCF and errors
calculation see Sl and Figure 4—figure supplements 1 and 2. PCF values for cell size were calculated in similar
way to cell-cycle time and were then averaged over a window of six consecutive time frames (15 min time window)
(See Figure 4—figure supplement 4 for raw data). Shaded area represents the standard deviation of the average.
The equations in the graphs represent the best fit to the PCF depicted in each graph with g is generation number.
The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Distributions of different cell parameters.

Figure supplement 2. Correlation in cell-cycle times for SCs was verified by calculating slopes of best fits to the
plots of normalized TimeA vs TimeB.

Figure supplement 3. The PCF of cell-cycle time (T) for SCs in different growth conditions.

Figure supplement 4. Raw PCF values of cell size as a function of time for SCs, NCs, and RPs.

Figure supplement 5. PCF values of cell size and cell-cycle duration as a function of time for NCs with different
starting sizes.
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Figure 5. Variance (Uﬁa) as a function of the time. (A) ¢? of the growth rate difference (a) between cell pairs for
NCs and RPs as a function of time (see Figure 5—figure supplement 3 for the details of the calculation). The
variance for both pair types does not change over time. (B) 8a of SCs, on the other hand, exhibits large variance
immediately after separation (~50%) higher than NCs and RPs and rapidly drops to its minimum value within one
generation time (~30 min), and increases thereafter for 4 hr (~8 generations) until saturating at a fixed value
equivalent to that observed for NCs and RPs. Each point in A and B is the average over three frames moving
window, and the shaded area represents the standard deviation of that average. (C) Unlike 8, 8f of SCs increases
to its saturation value within ~2 generations (see Figure 5—figure supplement 4 for the details of the calculation).
Here, each point represents the average of three different experiments, and the shaded part represents the
standard deviation.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Cell-cycle time variance (¢;) as a function of time.

Figure supplement 2. Cell size variance (03,,) as a function of time.

Figure supplement 3. Exponential elongation rate difference (§a) as a function of time.

Figure supplement 4. Mean fluorescence variance (03/) as a function of time.
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to the same value as RPs (03, ) and NCs (03, ). The time it takes for (g3, ) to reach saturation
extends over almost eight generations, which again reflects a long memory resulting from epigenetic
factors. These results show that, unlike cell-cycle time and cell length, elongation rates of SCs imme-
diately after their division from a single mother exhibit the largest variation. This variation decreases
to its minimum value within a single cell-cycle time (~30 min). To understand the source of this large
variation immediately following separation, we have measured the growth rate over a moving time
window of 6 min throughout the cell cycle and compared the results between SCs. Our comparison
clearly shows that an SC that receives a smaller size-fraction from its mother exhibits a larger growth
rate immediately after division. The growth rate difference between the small and large sisters
decreases to almost zero by the end of the first cell cycle after separation (Figure 5B inset). This
result reveals that the exponential growth rate of a cell immediately after division inversely scales
with the size-fraction the cell receives from its mother (see also Kohram et al., 2020). It also demon-
strates that the difference in the growth rates between SCs changes during the cell cycle, indicating
that they are not constant throughout the whole cycle as has been accepted so far (Godin et al.,
2010; Soifer et al., 2016, Wang et al., 2010). Note that similar results have been reported recently
for Bacillus subtilis (Nordholt et al., 2020), where it was observed that the growth rate is inversely
proportional to the cell size at the start of the cell cycle and changes as the cell-cycle advances.

We have also examined how the protein concentration varies over time between the two cells by
measuring the concentration of GFP (green fluorescent protein), via its fluorescence intensity,
expressed from a constitutive promoter in a medium copy-number plasmid. The variance of fluores-
cence intensity difference between cell pairs 8f was calculated as for the growth rate (see Figure 5—
figure supplement 4 for details). Upon division, soluble proteins are partitioned symmetrically with
both daughters receiving almost the same protein concentration. As expected, agfm starts from ~0
initially, and diverges to reach saturation within two generations (Figure 5C). On the other hand,
NCs and RPs exhibit constant variance throughout the whole time, with o7, twice as large as o3;
which reflects the influence of the shared environment resulting in additional correlations between
NCs. The relatively short-term memory in protein concentration may be protein specific (Figure 5—
figure supplement 4), or it could reflect the fact that in this case the protein is expressed from a
plasmid. Nevertheless, this result indicates that cellular properties are controlled differently and can
exhibit distinct memory patterns. It is important therefore to distinguish between different cellular
characteristics and to examine their inheritance patterns individually.

Discussion
There has been a rising interest over the past two decades in understanding the contribution of epi-
genetic factors to cellular properties and their evolution over time. Here, we introduce a new mea-
surement technique that can separate environmental fluctuations from cellular processes. This allows
for quantitative measurement of non-genetic memory in bacteria and reveals its contribution to
restraining the variability of cellular properties. Our results show that the restraining force dynamics
vary significantly among different cellular properties, and its effects can extend up to simqo genera-
tions. In addition, the growth rate variation emphasizes the effect of division asymmetry, which can
help in understanding the mechanism that controls cellular growth rate. The slow increase in the
growth rate variance that follows reflects the effect of inheritance. Since both cells inherit similar
content, which ultimately determines the rate of all biochemical activities in the cell and thus its
growth rate, it is expected that both cells would exhibit similar growth rates once they make up for
the uneven partitioning of size acquired during division. The short memory we see in the protein
concentration, on the other hand, suggests that cells are less restrictive of their protein concentra-
tion. This might be protein specific, or for proteins that are expressed from plasmids only. Neverthe-
less, these results highlight the importance of such studies, and how this new method can help
answer fundamental questions about non-genetic memory and variability in cellular properties.
Finally, in order to understand and characterize the evolution of population growth rate as it
reflects its fitness, there is a need to incorporate inheritance effects, which has been thus far
assumed to be short lived. This study confirms that cellular memory can persist for several genera-
tions, and therefore limits the variation in certain cellular characteristics, including growth rate. Such
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Key resources table

Reagent type (species)
or resource

Designation
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memory should be considered in future studies and has the potential of changing our perception of
population growth and fitness.

Materials and methods

Source or reference Identifiers Additional information

Strain, strain
background
(Escherichia coli)

Recombinant
DNA reagent

MG 1655 Coli Genetic Stock 6300

pZA3R-GFP

F-, A—, rph-1
Center (CGSC)

Lutz and Bujard, 1997 GFP expressed from

the A Pr promoter

https://academic.oup.com/nar
/article/25/6/1203/1197243

Recombinant
DNA reagent

Software, algorithm

Software, algorithm

pZA32wt-GFP

Lutz and Bujard, 1997 https://academic.oup.com/nar/

article/25/6/1203/1197243

GFP expressed from
the LacO promoter

MATLAB MathWorks N/A
Oufti Paintdakhi et al., 2016

http://oufti.org/

Device fabrication

The master mold of the microfluidic device was fabricated in two layers. Initially, the growth channels
for the cells were printed on a 1 mm x 1 mm fused silica substrate using Nanoscribe Photonic pro-
fessional (GT). The second layer, containing the main flow channels that supply nutrients and wash
out excess cells, was formed using standard soft lithography techniques (Jenkins, 2013; Martinez-
Duarte and Madou, 2016). SU8 2015 photoresist (MicroChem, Newton, MA) was spin coated onto
the substrate to achieve a layer thickness of 30 um and cured using maskless aligner MLA100 (Hei-
delberg Instruments). Following a wash step with SU8 developer, the master mold was baked and
salinized. The experimental setup described in the main text was then prepared using this master
mold, from PDMS prepolymer and its curing agent (Sylgard 184, Dow Corning) as described in previ-
ous studies.

Cell culture preparation

The wild-type MG1655 E. coli bacteria were used in all experiments described. Protein content was
measured through the fluorescence intensity of green fluorescent protein (GFP) inserted into the
bacteria on the medium copy-number plasmid pZA (Lutz and Bujard, 1997). The expression of GFP
was controlled by one of two different promoters, the Lac Operon (LacO) promoter was used to
measure the expression level of a metabolically relevant protein, while the viral A-phage Pr promoter
was used to measure the expression level of a constitutive metabolically irrelevant protein.

Two testing media were used in our experiments. M9 minimal medium supplemented with 1 g/I
casamino acids and 4 g/l lactose (M9CL) was used for measuring the expression level from the LacO
Promoter, and LB medium was used for all other experiments. The cultures were grown over night
at 30°C, in either LB or M?CL medium depending on the intended conditions. The following day, the
cells were diluted in the same medium and regrown to early exponential phase, optical density (OD)
between 0.1 and 0.2. When the cells reached the desired OD, they were concentrated into fresh
testing medium to an OD~0.3 and loaded into a microfluidic device. Once enough cells were
trapped in the channels, fresh testing medium was pumped through the wide channels of the device
to supply the trapped cells with nutrients and wash out extra cells that are pushed out of the chan-
nels. The cells were allowed to grow in this device for days, while maintaining the temperature, using
a microscope top incubator (Okolab, H201-1-T-UNIT-BL).

Image acquisition and data analysis

Images of the channels were acquired every 3 min (in LB medium) or 7 min (in M9CL medium) in DIC
and fluorescence modes using a Nikon eclipse Ti2 microscope with a 100x objective. The size and
protein content of the SCs were measured from these images using the image analysis software
Oufti (Paintdakhi et al., 2016). The data were then used to generate traces such as in Figure 1D,
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and for further analysis as detailed in the main text. Single-cell measurements were analyzed using
MATLAB. Sample ACFs, Pearson correlation coefficients, sample distributions, and curve fitting were
all calculated by their implementations in MATLAB toolboxes.
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Appendix 1

Mathematical framework

Assuming that x(r) is a measurable cellular property, such as cells size, growth rate, etc. We can pres-
ent it as:

x(1) = x4+ 6x(¢)

where x is the average of x() over time, and 6x is its fluctuations around x. The difference of this
measured property between two cells:

Ax(t) = x1 (1) — x2(2) 4)

where 1 and 2 represent the two different cells, will average to zero, that is, <Ax>=0. Its variance
on the other hand will be:

02 (1) = <Ax(1)*> — <Ax(1)>? = 2<8x2(1)> — 2<8x, (1)8x () > (5)

where <8x?> = <8x,>> = <8x,>> is the variance of x, which is the same for all cells, and <8x, (£)8x,()>
is the covariance of the fluctuations in both cells, which when normalized by os,,. 05, would give the
correlation, that is, the PCF, between the two variables. On the other hand, if we assume that x is
determined by two factors, internal cellular composition (I(¢)) and external environmental conditions
(E(1)), such that:

x(t) =1(1) + E(1) (6)

Then o (1) =<[(l — L)+ (E; — E»)]*> would depend on whether the two cells share the same
environment and/or the same cellular compositions. Therefore, random pair of cells (RPs), which
reside in different channels and thus do not share neither the environment nor the internal composi-
tion would exhibit a variance:

RPs: 02 (1) =207 +20% +4cov(I,E) (7)

where g% = <I*> — <[>? is the variance in the internal composition of the cell (similar for all cells and
constant over time), 02 = <E?> — <E>? is the variance in the environmental conditions (also the same
for all cells in the same experiment), and cov(I,E) is the covariance of the environment and the inter-
nal composition of the cell, which as discussed earlier can influence each other in a trap-specific man-
ner. However, averaging many measurements from different traps erases this effect as clear from
Figure 1—figure supplement 1 (see also Susman et al., 2018). On the other hand, for cells that
share the environment but not their internal composition, that is, neighboring cells (NCs), the vari-
ance would be:

NCs: 03 (t) =207 8

Note that when the NCs are chosen to have similar size and divide simultaneously at time zero,
this variance for cell size would be small initially and its increase would not be constrained by the
epigenetic similarity between the two cells as in the case of sister cells (SCs). And finally, for SCs,
which share both the environment and their internal composition, which means that I, and I, can be
correlated, then:

SCs : 03, (t) =207 —2cov(I}, I) 9)

where cov(I},1,) is the covariance of the internal states of the cells as a function of time, that is, the
non-genetic memory of the cell. Using the definitions above, it is easy to see the relationship
between the variance and the PCF. It is also clear that the difference between NCs and RPs varian-
ces would provide the contribution of the environment, while the difference between SCs and NCs
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variances would give the contribution of the internal composition of the cell to the variance, or the
epigenetic memory.

Appendix 1—table 1. The calculated values of the PCF for SCs were verified by calculating the
slopes of best fits to the plots of TimeA vs TimeB graphs (Figure 4—figure supplement 2).

Generation PCF +opcr Slope of best fit line (Figure 4—figure supplement 2)
1st 0.86 +£0.02 0.87
2nd 0.65 = 0.05 0.69
3rd 0.54 +£0.06 0.44
4th 0.36 £ 0.07 0.42
Sth 0.28 + 0.08 0.25
6th 0.23 +£0.08 0.25
7th 0.12 £0.09 0.1
8th 0.23 +0.09 0.25
9th 0.00 + 0.09 0.00
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Appendix 2

Supplementary material
PCF and error calculation

The PCF was calculated using following equation:
1 n

)00 Z(yt('l) (t) — <y(l)>).(y§2) (1) — <y@>) 3)
YR =1

PCFY) (1) =

and the standard deviation (Bowley, 1928):

(1—PCF?)
O'PCF:T

where n is the number of cell pairs considered in the calculation.
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