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Abstract (196 Words)

Running is a common exercise with numerous health benefits. Vertical ground reaction
force (vGRF) influences running injury risk and running performance. Measurement of vGRF
during running is now primarily constrained to a laboratory setting. The purpose of this study
was to evaluate a new approach to measuring vGRF during running. This approach can be used
outside of the laboratory and involves running shoes instrumented with novel piezoresponsive
sensors and a standard accelerometer. Thirty one individuals ran at three different speeds on a
force-instrumented treadmill while wearing the instrumented running shoes. vVGRF were
predicted using data collected from the instrumented shoes, and predicted vGRF were compared
to vGRF measured via the treadmill. Percent error of the resulting predictions varied depending
upon the predicted vGRF characteristic. Percent error was relatively low for predicted vGRF
impulse (2-7%), active peak vGRF (3-7%), and ground contact time (3-6%), but relatively high
for predicted vGRF load rates (22-29%). These errors should decrease with future iterations of
the instrumented shoes and collection of additional data from a more diverse sample. The novel
technology described herein might become a feasible way to collect large amounts of vGRF data

outside of the traditional biomechanics laboratory.
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Introduction (Total Word Count = 5380)

Scientists have estimated that 64 million Americans run for exercise, and more than
30,000 official running races were held in 2017 [1]. Multiple salutary health benefits result from
running [2]. For example, when combined with appropriate nutrition, running for exercise can
improve cardiovascular health [3], increase skeletal strength [4], and enhance cognitive
performance [5]. Distance running may even maintain or improve joint health for young healthy
individuals [6]. Wearable devices can provide important information concerning an individual’s
health status and increase an individual’s motivation to exercise, including running [7-9].

Vertical ground reaction force (vGRF) applied to the plantar surface of the foot during
running strongly influences magnitude of load transmitted through lower-extremity joints,
including the ankle, knee, and hip. Specific characteristics of vGRF during running are
associated with musculoskeletal injury etiologies, joint disease progression rates, and athletic
performance. For example, peak vGRF magnitude during sprinting (i.e., the active peak; Figure
1) is related to speed and corresponding performance [10], as well as risk for various
musculoskeletal injuries during running [11-13]. Impact peak vGRF and corresponding load
application rate (Figure 1) have also been associated with musculoskeletal injury risk; numerous
researchers have hypothesized that running injury risk increases as peak impact vGRF and
corresponding load rate increase [14-19]. Duration of the foot-ground contact phase of running
(Figure 1) has also been associated with running performance: increased ground contact duration
corresponds to decreased running speed [10, 20-22] and increased fatigue [23]. Impulse due to
VGRF (the time integral of the vGRF during the ground contact phase) is a measure that

simultaneously considers vVGRF magnitude and ground contact time. This impulse, and measures
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derived from it, are thought to influence running performance [24, 25] and risk of joint injury
and disease [24, 26].

Although vGRF magnitude and other characteristics are valuable to consider during
running, high cost and limited mobility of force platforms now limit accurate measurement of
vGREF to traditional biomechanics research laboratories. Further, certain characteristics of
running VGRF measured inside a traditional motion analysis laboratory likely differ from the
same characteristics of running vGRF measured outside of the laboratory [27-30]. Additionally,
without an expensive force instrumented treadmill, it is difficult to collect a substantial number
of laboratory running trials. Researchers are currently seeking ways to measure vGRF outside of
the laboratory, recently testing effectiveness of various novel approaches, like accelerometry [31,
32], inertial measurement units [31, 33, 34], and different measures of plantar pressure [35-38].
In particular, the capability of inertial measurement units to estimate continuous 3D ground
reaction force traces, during various human movements has been evaluated, via direct modeling
methods and machine learning methods [31], with varying levels of success.

The purpose of the present project was to test the accuracy of a new sensing technology,
different from inertial measurements, in predicting important characteristics of VGRF during
running at three different speeds. This new technology is an inexpensive nanocomposite
piezoresponsive foam (NCPF) that can be inserted into the running shoe under the insole (Figure
2). When the NCPF is compressed, conductive additives in the foam interact with the foam
substrate, creating a triboelectric response that is related to the vGRF applied to the plantar
surface of the foot. Rather than measuring inertial properties on externally fixed devices, as
accelerometers and inertial measurement units do, this new technology directly measures ground

reaction forces at the foot-ground interface. The capability of accurately predicting the following
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discrete vGRF characteristics, using the new technology, was evaluated: (1) active and impact
peak vGRF magnitudes, (2) average and maximum instantaneous load rates for the impact peak
VGREF, (3) impulse due to vGRF during the ground contact phase, and (4) duration of the ground
contact phase. The capability of determining heel strike pattern was also evaluated; i.e., whether
test subjects ran with a heel strike or non-heel strike pattern. This was evaluated because this is a
running characteristic that has also been hypothesized to be related to running injury rates [39,
40]. Prior to this study, it was unknown whether the new NCPF technology could be used to

accurately measure vGRF during running.
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Methods
Subjects

Thirty one volunteers (17 male, 14 female; age = 23 + 3 years; mass = 68 £+ 10 kg; height
= 174.4 £ 8.0 cm) participated in this study. Subjects were required to be between the ages of 18
and 30, have no lower-extremity injury within six months of data collection, and have no history
of lower-extremity surgery. All subjects reported that they could continuously run for at least 5
km at each of the tested running speeds. Due to a limited number of instrumented shoes at the
time of data collection, subjects were required to wear one of the following U.S. shoe sizes: 9.5,
10.5, or 11.5 for male subjects, or 7, 8, or 9 for female subjects. Subjects provided informed
consent before data collection. All procedures were approved by the appropriate institutional
review board.
Instrumentation

Subjects wore standardized athletic shoes. For each subject, the right shoe was
instrumented with the novel NCPF sensors (under the insole) and an accelerometer (Range = +
16 g’s; Bosch Sensortec, Mount Prospect, IL, USA) for all of the running trials (Figure 2). The
same instrumented shoes were worn during previous experiments designed to predict continuous
VGRF during walking [41]. The NCPF sensors are made of a combination of nickel coated nano
carbon fibers and dendritic nickel powder, added to a polyurethane foam substrate. When the
NCPF sensors are compressed during running, conductive additives in the foam interact with the
foam substrate to create a triboelectric response. This electrical response is measured by
embedding a conductive material into the foam attached to a voltage measurement system. The
measured voltages are associated, as described later in this manuscript, with the vGRF. The

NCPF sensors were positioned under the shoe insole, in locations generally corresponding to the
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heel, arch, ball, and great toe of the foot (Figure 2). Each subject’s right shoe was also
instrumented with a microcontroller to collect voltage response data from the NCPF sensors and
accelerometer; these voltage data were stored on a MicroSD card and uploaded after each data
collection session. A reflective marker was placed on both the right and left shoe, posterior to the
heel, over the 2" distal phalanx, and over the head of the 5" metatarsal; these markers and high-
speed video (VICON, Centennial, CO, USA) were used to measure the motions of the right and
left feet during running. This motion analysis was used only to assign the vGRFs to the correct
foot (right or left). Only vGRF applied to the instrumented foot were analyzed during the present
study. A force instrumented treadmill (AMTI, Watertown, MA, USA) was used to measure
actual vGRF, including ground contact time which was necessary to evaluate accuracy of the
predicted vGRF characteristics.
Data Collection Procedures

While wearing the aforementioned standardized running shoes, subjects first performed a
15 minute warmup run on the force instrumented treadmill at a speed of 2.68 m/s. Subjects were
then instructed to ambulate (walk or run) at the following speeds for four minutes each: 2.24,
2.68, 3.13, and 3.58 m/s. Only data collected at the three fastest speeds were presently analyzed
because these speeds represented actual running gait for all of the subjects: several subjects
chose to walk quickly at the slowest speed, determined from the observation of a double-limb
support phase. Throughout each 4-minute running session, data were continuously collected
from the NCPF sensors (1029 Hz), accelerometer (16 Hz), instrumented force treadmill (1000
Hz), and high-speed video cameras (250 Hz). At the beginning of each running speed, subjects
stomped on the instrumented treadmill. This stomp/event was used to synchronize the NCPF

sensor, accelerometer, treadmill, and video data. The NCPF sensor, accelerometer, and video
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data were all resampled to 1000 Hz so that all data could be synchronized to the vGRF data
collected using the instrumented treadmill. Additionally, the NCPF sensor and vGRF data were
filtered via a 4™ order Butterworth filter with a low-pass cutoff frequency of 75 Hz. Due to two
different errors in the data collection process, data were unavailable for the 3.13 and 3.58 m/s
speeds for one subject and for the 3.58 m/s speed for two other subjects: battery failure in the
instrumented shoes for one subject and two subjects were unable to complete the fastest speed.
Ultimately, for all subjects combined, 9924, 9666, and 9131 running strides (defined as initial
ground contact to subsequent initial ground contact) were collected for the 2.68, 3.13, and 3.58
m/s running speeds, respectively. Representative vGRF traces measured using the instrumented
treadmill are shown for three different subjects in Figure 3.
Variable Definitions and Data Reduction

Impact peak vGRF was defined using a previously described approach [42]; essentially,
impact peak was identified when impact peak was at least 1.2 times greater than a subsequent
local minimum vGREF, early in the ground contact phase. Active peak vVGRF was defined as
maximum VGRF during each running stride. Impulse was defined as the time integral of vGRF
during each running stride. Ground contact duration was defined as the duration of vGRF
application during each running stride. All of these quantities are depicted in Figure 1. Ground
contact phases containing an impact peak were considered to represent a heel-strike pattern,
while ground contact phases with no impact peak were considered to represent a non-heel strike
pattern. Maximum instantaneous impact peak load rate was defined as the maximum time
derivative of VGRF between initial ground contact and impact peak. Average impact peak load

rate was defined as the average rate of vGRF change between initial ground contact and impact



147  peak. Impact peak vGRF magnitude, maximum instantaneous impact peak load rate, and average
148 impact peak load rate were analyzed only for running strides exhibiting a heel-strike pattern.
149 The beginning and end of each running stride were identified using the accelerometer
150  data because this will be necessary when the instrumented shoe is used outside the laboratory.
151  After experimenting with several different approaches, the following approach was chosen

152 because it matched well with the beginning and end of each running stride, as determined using
153 the instrumented treadmill (touchdown and toeoff were defined as the time vGRF increased to
154  above 50 N and then decreased below 50 N, respectively). Initial ground contact was defined to
155  occur 65 ms prior to peak acceleration in the Z direction for each running stride. The

156  accelerometer was consistently positioned and oriented so that the Z axis was most closely

157  aligned to vertical, while the foot was flat on the ground, with the subject in a static standing
158  position.

159 In total, 54 potential predictor variables were available to predict the running vGRF

160  characteristics of interest. These variables are described in this paragraph. For each observed
161  running stride, certain discrete characteristics of eight signals were used, including the three
162 orthogonal components of acceleration and resultant acceleration, measured using the

163  accelerometer, and one signal from each of the four NCPF sensors (Figure 2). Six potentially
164  predictive characteristics of these eight signals were identified: absolute maximum, absolute
165  minimum, time to absolute maximum, time to absolute minimum, time integral, and primary
166  signal frequency. Additionally, six other characteristics were available to predict characteristics
167  of the running vGRF: (1) running stride duration derived from the acceleration data (for each
168  observed running strides), (2) subject age, (3) subject gender, (4) subject height, (5) subject

169  weight, and (6) subject body mass index (BMI).
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Statistical Analysis

To create statistical models capable of accurately predicting discrete vGRF
characteristics, two potential prediction approaches were considered. First, a unique statistical
model was created for each subject to produce vGRF predictions as accurate as possible for each
subject. This approach in practice required a separate calibrated model for each subject,
necessitating methods described in this paper for every individual end user. Second, a general
model encompassing all of the present subjects; while predictive accuracy is sure to be less using
this approach, no calibration is required before vGRF predictions can be made for any end user
within the involved demographic range. The first approach might be more appropriate for
researchers who have access to the data collection and analytical tools described in this paper,
while the second approach is likely more realistic in a commercial setting where a subject-
specific lab calibration process is not feasible. In this subsection, the process of building a
general model is first described for all of the present subjects and then the process is extended to
create subject-specific models.

The general model was created to predict vGRF characteristics for subjects that are
similar to the present subjects. The response variables of interest were impact peak,
instantaneous and average load rates, active peak, impulse, and ground contact duration. For
each of these variables of interest, the 54 potential predictor variables were ordered in terms of
their ability to represent the response. This ordering was done by representing the response with
a linear regression model, and then conducting a forward selection process with the sum of
squared residuals as the selection criterion. Backward selection and sequential
replacement/stepwise selections were also tried, but forward selection yielded optimal results.

For a more complete discussion of the model selection process, see Section 9.4 of Kutner et al.
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[43]. This yielded a total of 54 potential models, the first including only the most important
predictor variable, the second including the two most important variables, etc. It’s well-known
that variable selection procedures based on in-sample data tend to overfit the data and produce
less-than-optimal out-of-sample predictions [44]. So in order to determine which of these 54
models would provide the most accurate out-of-sample predictions, a leave-one-subject-out
cross-validation process was performed (Section 5.1 of [45]) and the model that yielded the
lowest cross-validated root mean square error (RMSE), averaged across all subjects, was
selected; i.e., the selected model was the one that most accurately predicted a single excluded

subject’s VGRF characteristics. Corresponding percent errors were also calculated, defined as the

. |actual—predicted
ratio l P l

— X 100%. The predictor variables were also used to obtain stride-by-stride

predictions of foot-strike pattern, classified as either heel-strike or non-heel-strike. The process
for selecting the optimal model for heel-strike pattern identification was identical to the process
for the other six variables, except that logistic regression was used in place of standard linear
regression, and error was measured in terms of the percentage of misclassified strides, rather than
RMSE.

Some of the selected models contained predictors that are highly correlated with one
another; e.g. subject weight and BMI in the vGRF, impulse, and ground contact time models. In
order to alleviate concerns with multi-collinearity, coefficient estimation and inference for all
models were performed using principal component regression (PCR) on the selected variables.
PCR is a simple extension of multiple regression that replaces the original matrix of predictor
variables (X) with a new matrix of predictors Z, where Z=XC and C contains the subset
of m eigenvectors of X'X that correspond to the m largest eigenvalues of X'X. Although we

estimate the regression coefficients associated with the new predictors in Z, we are easily able to



216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

transform these coefficients back to the scale of the original variables in X for simple
interpretation. For a thorough discussion of PCR, see either of the following two references [46,
47]. Furthermore, the usual regression assumption of independent residuals is clearly invalid
here, as we expect substantial correlation between observations within a trial, especially for
observations that are close together in time. To account for this, we included a random intercept,
and modeled the residuals with an AR(1) structure, for each subject-trial combination. For
further details on random effects see the following reference [48].

This process was then extended to select optimal models of the response variables for
each of the 30 subjects. Because these models were independent across subjects, the five
demographic variables were not utilized in this process. Further, because the dataset for each
subject was much smaller than the entire dataset, it was necessary to exclude some predictor
variables, including the eight primary frequency variables; i.e., primary frequencies of the signals
originating from the NCPF sensors and accelerometer. Thus, there were 41 potential predictor
variables here. The variables were ordered using data from all 30 subjects, just as in the ordering
process for creating the general model, yielding a total of 41 potential models. Instead of
performing a leave-one-subject-out cross-validation process using data from all subjects, a
separate cross-validation process was performed for each subject, treating the first 50% of the
strides from each of the three running speeds as the training set and the remaining strides as the
test set. The final set of common predictor variables for the subject-specific models was the one
that minimized the average cross-validation error across all subjects, measured by RMSE for the
quantitative variables and misclassification rate for foot-strike pattern. As with the general
model, the final subject-specific models were fit using principal components regression, with a

random intercept term and an AR(1) component to account for within-trial correlation. To



239  evaluate the predictive ability of these models, final cross-validation analyses were run where
240  30%, 50%, and 70% of each subject’s data were used as training data to better understand the

241  amount of data needed to create an accurate subject-specific model.
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Results

Descriptive statistics for the VGRF characteristics of interest, measured using the force
instrumented treadmill, are presented in Table 1. Initially, to explore our entire data set prior to
the construction of the prediction models described in the methods section, we calculated
Pearson correlation coefficients between each potential predictor variable, including
characteristics of the NCPF sensors, accelerometer, and subject demographics, and the vGRF
characteristics of interest (Table 2). Many of these correlations indicated a moderate-to-strong
association between the potential predictors and vGRF characteristics of interest. Consequently,
we anticipated that a statistical model based on these predictors would be at least moderately
successful in predicting characteristics of vGRF during running.

After performing the aforementioned initial correlational analyses, we constructed
predictive models for each vGRF characteristic of interest using the predictor-subset-selection
approach described in the methods section. Average RMSE from the leave-one-subject-out
cross-validation analyses of the general across-all-subjects models are presented in Table 3,
along with the corresponding percent error. Figure 4 shows predicted values from these general
models, plotted against the corresponding actual, measured values. RMSE for active peak vGRF
magnitude, impulse due to vGRF, and ground contact duration were lower, relative to the RMSE
for the other predicted vGRF characteristics. RMSE for impact peak vGRF, and the average and
maximum instantaneous load rates were relatively high. Bias is near zero for all variables, as
shown in Figure 4. Additionally, using the general approach, across-all-subjects, 66.1% of the
running strides were correctly identified as either a heel-strike or non-heel-strike pattern; 65.1%
and 67.8% of the heel-strike and non-heel-strike patterns, respectively, were identified correctly.

Appendix A shows the predictor variables included in the final across-all-subjects model for
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each quantitative vGRF characteristic and foot-strike pattern identification. For example, the
general model for average impact rate is:
Average Impact Rate = [, + fiTimelnt; + BoMaxjiee; + PsMingee; + BaMaxpq,; +
BsMing,,; + BeTimelntg,,;, + B;Weight*,

. . . . . Timelntz — mean(Timelnt
where x* is the standardized version of variable x, e.g. Timelnt; = o ( z)
sd(Timelntyz)

Among all models, subject weight was the most commonly selected variable. Age was used only
in the ground contact time model. Variables derived from acceleration in the X direction, which
was approximately in the anterior-posterior direction, were not commonly selected compared to
other accelerometer variables. Variables derived from the arch and toe sensors were selected less
often than variables derived from the heel and ball sensors. Some common regression statistics
further describing the final across-all-subjects models (Table 3) are presented in Appendix B.
Average RMSE, along with corresponding percent error, for the cross validation analyses
of subject-specific models is contained in Table 4. As anticipated, RMSE for the subject-specific
models were consistently lower than for the general models. Similar to the results related to the
general model, percent error was smallest for active peak vGRF, impulse due to vGRF, and
ground contact time, and prediction errors were greater for impact force GRF and maximum
instantaneous impact and average load rates. As expected, prediction errors were often greater
when only 30% of a subject’s running data were used to train the models, relative to using 50%
or 70% of a subject’s running data (Table 4). Additionally, the existence of a heel-strike pattern
was identified much more accurately for the subject-specific models relative to the general
model. On average, the subject-specific models correctly identified a heel-strike pattern
approximately 87% of the time, and this did not appear to be substantially affected by the

amount of training data used: the model accurately identified heel strike 85.5 and 87.8% of the



288  time when the data-usage percentage was 30 and 70%, respectively, of the running strides for the

289  training data.
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Discussion

The purpose of this study was to evaluate a new approach involving novel
piezoresponsive sensors and statistical modeling methods to predict specific characteristics of
VGRF during running. This study was conducted in a traditional biomechanics laboratory, but is
a step toward using the evaluated approach to measure vGRF outside of the traditional
biomechanics laboratory. The present work is important because running vGRF affects injury
risk and performance, and running biomechanics likely differ inside and outside the laboratory
[27, 28, 49, 50]. The current results demonstrated that the evaluated approach was satisfactorily
accurate in predicting active peak vGRF magnitude, impulse due to vGRF, and ground contact
time, especially when using prediction models specific to each individual user, in which case
average errors were 2.9, 1.7 and 3.6%, respectively, when using a 50% cross-validation
procedure (Table 4). The present approach was less effective in accurately predicting impact
peak vGRF magnitude and corresponding average/maximum load rates, with average errors
ranging from 9 to nearly 26% in the 50% cross-validation procedure performed on subject-
specific models. Future research is required to increase accuracy for all variables, especially
predictions of impact peak vGRF and corresponding load rates.

Prediction errors for ground contact time ranged from 11 ms (3.4%) for the most accurate
subject-specific model to 17 ms (5.8%) for the general across-subjects model (Tables 3-4). These
levels of accuracy are likely sufficient to detect fatigue during distance running; e.g., ground
contact time was shown to increase 13.1% between the early and later stages of a marathon [23].
The detection of fatigue is important because fatigue is associated with running performance and
various running injuries [51-54]. Further, the presently reported errors for peak active vGRF,

which ranged from 59 (2.9%) to 130 N (6.9%; corresponding to the best subject-specific model
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and the general across-subjects model, respectively), are also likely acceptable for certain
applications. For example, differences in active peak vGRF of about 5% are known to exist
between heel-strike and non-heel-strike patterns [55], and differences of about 7.5% are known
to exist between a healthy and impaired (chronic ankle instability) subject sample [56].
Conversely, average errors reported herein for predicted average and maximum instantaneous
impact load rates are likely not acceptable for any known application. These errors, predicted via
both the subject-specific and general models, ranged from approximately 22 to 29%,
respectively. In comparison, a recent systematic review concerning potential associations
between vGRF load rates and tibial stress fracture, a relatively common running injury, reported
an average difference of only 12% in load rate between healthy and injured runners [19]. In
speculation, perhaps the present relatively high errors for load rates were due to the high-
frequency nature of these signals and low sampling rate of the accelerometer used during the
present study. In future iterations of the present system, an upgraded accelerometer will be used,
which might improve the accuracy of predictions concerning high frequency characteristics of
the VGRF. Accurate predictions of impact vGRF and corresponding load rates is of interest
because such predictions can be used to provide biofeedback to runners concerning these
variables. Researchers recently reported that biofeedback concerning impact vGRF and load
rates, provided in the laboratory, can be used to reduce impact vGRF and corresponding load
rates [57]. Such biofeedback might be even more effective when provided for longer durations,
outside of the laboratory, although future testing is needed to test this idea.

Two approaches were presently taken to predict running vGRF characteristics: subject-
specific models and a general model applicable to all subjects within the demographic range of

the current sample. As expected, the subject-specific models were more accurate for every vGRF
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characteristic and would be preferred, however, this approach requires a calibration process for
each end user. An instrumented treadmill is necessary for this approach, limiting the approach to
research settings and/or a small number of clinical settings; although simple predictive variables
(e.g., age, height, weight, and gender) were presently required, relative to more complex
kinematic measures necessary to derive vGRF from inertial measurement unit data. Regarding
the subject-specific models, the use of 70% of the stances as training data generally yielded only
a small improvement in accuracy relative to using 50% of the stances as training data. Because it
took approximately two minutes of running at each ambulation speed to collect 50% of the
stances, we conclude that when creating a subject-specific calibration, predictive accuracy is
nearly optimized with just two minutes of data-collection at each speed, or six minutes of total
running. The general prediction models were always less accurate than the subject-specific
models; however, a potential end user who fits within the demographic range of the present
subjects could expect to have errors comparable to errors reported herein. The general prediction
models are especially valuable because a new subject can be measured without the creation of a
new prediction model. The general prediction models will be necessary to collect data using the
present novel sensors on a desirably large scale (e.g., at least thousands of users). Additionally,
recruitment and analysis of more subjects will increase the accuracy of the general models. In the
future, we plan to use other analytical approaches like machine learning, still in combination
with the NCPF sensors and accelerometry, to predict running vGRF characteristics to further
improve accuracy of the prediction models.

It is somewhat difficult to compare the present results to previous related research,
because few researchers have reported attempts to predict running vGRF characteristics using a

single wearable device; additionally, the present NCPF technology is fundamentally different



359  from previous technologies used to measure ambulatory vGRF. Further, most previous reports
360  concerning wearable devices designed to measure ambulatory vGRF have focused on walking
361  rather than running. The study that is most similar to the present study used one uniaxial

362  accelerometer positioned over the shoe laces and a neural network model to measure impact and
363 active peak VGRF during running at three speeds [32]. Errors for prediction of peak impact
364  vGRF were comparable to the present results and ranged from 0.10 to 0.18 body weights,

365  depending upon running speed; errors for the peak active vGRF ranged from 0.10 to 0.12 body
366  weights. Other researchers have used inertial measurement units placed in various anatomical
367  locations to predict walking, running, and jumping vGRF, with errors comparable to or greater
368  than the present errors [31, 33, 34, 58]. Previous researchers have also used pressure insoles to
369  predict various components of the walking ground reaction force [59-61].

370 Relatively tight scatter plots for average and max impact rate (Figure 4) could be

371  perceived to indicate greater predictive accuracy, yet greater percent error resulted in the

|actual—predicted|

372 prediction of these two variables (Table 3). This is because percent error ( g

373 100) naturally decreases with increases in the measured (actual) values. This idea is illustrated

374 by comparing percent error between the impulse (7%) and max impact rate models (25%).

375  Judging using only percent error, the impulse model appears to be more accurate, yet the scatter
376  plots in Figure 4 appear to imply somewhat more accurate predictions of max impact rate. This is
377  partly due to the fact that measures of impulse ranged from 158 to 373 Ns, while measures of
378  max impact rate ranged from 16 to 179 kN/s (Figure 4); i.e., measures of max impact rate

379  clustered relatively closer to zero than measures of impulse. In addition, Figure 4 clearly shows
380 that distinct clusters were prominent for some variables (active peak vGRF and impulse), but not

381  others (average and max impact rate); these clusters appeared when between-subject variability
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far exceeded within-subject variability, reflecting the fact that out-of-sample prediction for a new
subject is especially difficult in these cases.

The NCPF sensors presently tested have other uses in addition to the prediction of
ambulatory vGRF. For example, the NCPF sensors have previously been used to measure
vibrations for machinery bushings [62] and impact energy and forces in American football [63].
When deformed, the NCPF sensors produce a voltage related to the magnitude of impact. These
voltages can be measured by connecting the foam to a microcontroller powered by a 3.7 V, 300
mA, lithium ion polymer battery. The NCPF sensors cost approximately $4 per shoe. The
electronics cost approximately $50, but this cost depends upon quantity and will decrease with
larger numbers of production. Together, the NCPF sensors, microcontroller, and battery increase
the weight of the shoe by 25.5 grams, which is substantially less massive than other wearable
VGRF measurement systems. The NCPF self-sensing material is made of a combination of 1 mm
chopped nickel coated carbon fiber, nickel powder, and Poron® microcellular urethane.

This is the first report concerning the ability of the novel NCPF sensors to predict
running VGRF characteristics and the present results are limited in several important ways that
have not yet been discussed. The system tested herein, including the novel sensors,
accelerometer, and electronics used to measure and record the related signals contained inherent
limitations. Although we did not quantify the quality of the electrical connections between each
novel sensor and microcontroller, we suspect that the quality of these connections varied and
likely decreased prediction accuracies of the general across-subjects models. Further, the low
accelerometer sampling rate and few available shoe sizes limit the present results. The low
sampling rate of the acceleration data (16 Hz) was due to user error: a setting on the

accelerometer was unknowingly set to the undesirably low sampling rate. Additionally, the
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NCPF sensors relied on each individual connection made in the lab; future NCPF sensors will be
connected to the microcontroller via a printed flexible circuit. It is unclear how/if these
improvements will affect accuracy of future vGRF predictions. Another primary limitation of
this study is that only young and healthy subjects were tested. It is unclear how/if the present
models relate to subjects with characteristics that differ from the present subjects, like obese,
aged, injured, or diseased subjects; it will be important to clarify this issue, as the use of these
sensors to measure ambulatory vGRF will be particularly valuable for aged, diseased, or
otherwise impaired individuals. It is also unclear how the NCPF sensor outputs will behave
under various conditions within real-world environments like a moist, sloped, dirt, running
surface. Additionally, it is unclear how the present prediction models will fare as the mechanical
properties of the sensors change due to degradation of the foam; e.g., over a 3 hour marathon, or
the average running shoe life of approximately 500 Km. Additional research is certainly needed
to clarify all of these issues.

In summary, this experiment was conducted to evaluate the effectiveness of a new
technology, piezoresponsive foam, in predicting specific characteristics of vVGRF during running.
vGRF were measured at three different running speeds while subjects wore shoes instrumented
with NCPF sensors and a triaxial accelerometer. Principal component regression was used to
create prediction models from signals originating from the NCPF sensors and accelerometer to
predict the vGRF characteristics of interest. For each response variable of interest, the most
accurate models were subject-specific models. General models were also created that applied to
all subjects within the present study, as well as future subjects that fit within the demographic
characteristics of the present sample. Peak vGRF, impulse due to vGRF, and ground contact time

were most accurately predicted. Such predictions can be used to reduce running-related injuries
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and/or improve running technique and performance. Future research designed to test the
effectiveness of future iterations of the novel NCPF sensors and improved data collection
systems will build upon the prediction models produced in this study. The purpose of this line of
research will continue to be to improve our present ability to predict real-world running vGRF

outside of the traditional biomechanics laboratory.



433  Table 1. Means, standard deviations, and coefficients of variation for six vertical ground reaction
434  force (VGRF) characteristics during running at three different speeds, measured using a force

435  instrumented treadmill, including the percentage of running strides that involved a heel strike

436  pattern.

437

2.68 m/s 3.13 m/s 3.58 m/s
Active Peak vGRF (N) 1584 + 264 1667 + 287 1742 + 298
Coefficient of Variation (%) 17 17 17
Impulse (Ns) 254 + 42 249 + 42 247 £ 42
Coefficient of Variation (%) 17 17 17
Ground Contact Time (s) 0.268 + 0.015 0.248 + 0.012 0.232 + 0.012
Coefficient of Variation (%) 6 5 5
Impact Peak vGRF (N) 923 + 195 1073 + 232 1278 £ 270
Coefficient of Variation (%) 21 22 21
Average Impact Rate (KN/s) 36.2+11.0 438 +12.1 549+149
Coefficient of Variation (%) 30 28 27
Max Impact Rate (KN/s) 52.3+17.7 63.4 +20.9 81.6 +258
Coefficient of Variation (%) 34 33 32
Percent Heel Strike Pattern 23% 40% 51%

438
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Table 2. Correlation values describing linear relationships between the most highly correlated
predictor variables and measured vertical ground reaction force (vGRF) characteristics.
Correlations between these predictor variables and measured vGRF characteristics allowed for
prediction of VGRF characteristics using novel sensors and an accelerometer attached to a
running shoe. (BMI = body mass index; NCPF = novel nanocomposite piezoresponsive foam
sensors placed under the arch, ball, or toe; Accel = X, Y, Z, or resultant acceleration measured

via an accelerometer placed approximately over the shoelaces)

Active Peak vGRF Impulse Ground Contact Time

Predictor Correlation Predictor Correlation Predictor Correlation
Subject Weight 0.91 Subject Weight 0.95 Z Accel: Integral -0.56
Subject Height 0.68 Subject Height 0.72 Res Accel: Integral -0.55
Subject BMI 0.67 Subject BMI 0.7 Z Accel: Min 0.51
Toe NCPF: Max 0.56 Toe NCPF: Min -0.48 X Accel: Integral -0.46
Toe NCPF: Min -0.56 Toe NCPF: Integral 0.47 Stride Time 0.43
Toe NCPF: Integral 0.55 Toe NCPF: Max 0.45 Res Accel: Primary Freq -0.37
Ball NCPF: Integral -0.39 Ball NCPF: Min 0.42 Res Accel: Max -0.37
Ball NCPF: Max Time -0.38 Ball NCPF: Integral -0.41 X Accel: Primary Freq -0.36
Y Accel: Min -0.37 Y Accel: Min -0.38 Arch NCPF: Min 0.31
Ball NCPF: Min 0.35 Ground Contact Time 0.35 X Accel: Max -0.31
Impact Peak vGRF Average Impact Rate Maximum Impact Rate

Predictor Correlation Predictor Correlation Predictor Correlation
Subject Weight 0.75 Subject Weight 0.67 Subject Weight 0.69
Subject BMI 0.62 Ball NCPF: Integral -0.58 Ball NCPF: Integral -0.6
Ball NCPF: Integral -0.6 Subject BMI 0.57 Subject BMI 0.58
Toe NCPF: Min -0.45 Toe NCPF: Min Time -0.45 Toe NCPF: Min Time -0.51
Subject Height 0.44 Toe NCPF: Min -0.4 Toe NCPF: Min -0.46
Ball NCPF: Max Time -0.44 Ball NCPF: Max Time -0.38 Subject Height 0.39
Toe NCPF: Min Time -0.43 Y Accel: Integral 0.37 Z Accel: Integral 0.38
Y Accel: Integral 0.42 Z Accel: Integral 0.36 Ball NCPF: Max Time -0.37
Ball NCPF: Min 0.41 Ball NCPF: Min 0.36 Ball NCPF: Min 0.36
Toe NCPF: Max 0.4 Subject Height 0.36 Y Accel: Integral 0.32
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Table 3. Average root mean squared error (RMSE) for the leave-one-subject-out cross-validation
analyses of the general (across-subjects) models created in the present study, and some
information concerning each model (i.e., which demographic predictor variables were used, and
how many novel sensor and acceleration predictor variables were used). RMSE for active peak
vertical ground reaction force (VGRF) magnitude, impulse due to vGRF, and ground contact time
were relatively low, while errors for impact peak vGRF and corresponding average and
maximum instantaneous load rates were greater. (G = gender; W = body weight; B = body mass

index; A = age; H = height)

Leave-one-

subject-out # of Used # of Used

Mean RMSE Demographic Sensor Principal
vGRF Characteristic (% Error) Variables Used Variables Components
Active Peak VGRF (N) 129.8 (6.87%) G, W,B 7 9
Impulse (N*s) 17.69 (6.67%) W, B 10 11
Ground Contact Time (s) 0.0171 (6.77%) A, G, W,H,B 7 10
Impact Peak vGRF (N) 316.94 (26.09%) G, W 8 8
Average Impact Rate (kN/s) 10.544 (28.85%) W 7 7
Max Impact Rate (kN/s) 14.987 (25.04%) W 4 5
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Table 4. Average root mean squared errors (RMSE; i.e., actual minus predicted) for the subject-
specific models created using 30, 50, and 70%, of each subject’s data as the training data. Active
peak vertical ground reaction force (vGRF) magnitude, impulse due to vGRF, and ground
contact time errors were relatively low, while errors for impact peak vGRF and corresponding
average and maximum instantaneous load rates were greater.

Percent of Data Used to Train the Model

VGRF Characteristic 30% 50% 70%
Active Peak vGRF (N) 59.4 (2.9%) 59.0 (2.9%) 60.4 (3.0%)
Impulse (N*s) 5.8 (1.9%) 54 (1.7%) 5.1 (1.6%)
Ground Contact Time (s) 0.011 (3.4%) 0.011 (3.6%) 0.011 (3.6%)
Impact Peak vGRF (N) 131.6 (9.4%) 122.7 (8.8%) 123.0 (8.8%)
Average Impact Rate (kN/s) 8.8 (26.7%) 8.5 (25.5%) 8.2 (26.5%)
Max Impact Rate (kN/s) 12.9 (24.0%) 11.4 (22.1%) 11.1 (22.2%)
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Figure 1. A typical vertical ground reaction force curve observed during the present study. The
following characteristics of the curve were predicted via novel piezoresponsive sensors and an
accelerometer attached to the running shoe: impact and active peak magnitudes, average impact
peak load rate (depicted via the slope of the dashed line), maximum instantaneous impact peak
load rate, ground contact time (depicted via the length of the dotted line), and impulse due to the
ground reaction force.
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473  Figure 2. The running shoes used throughout the present study were instrumented with four
474  novel nanocomposite piezoresponsive foam sensors (2A) and a triaxial accelerometer (2B).
475
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Figure 3. Ten representative vertical ground reaction force (GRF) traces measured using a force
instrumented treadmill from three different running speeds, for three different subjects. Subjects
302 and 340 exhibited primarily heel-strike patterns, while Subject 320 exhibited primarily non-
heel-strike patterns.
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Figure 4. Out-of-sample predicted values from the cross-validation process on the general
(across-all-subjects) model vs. actual measurements of each of the six quantitative variables of
interest. Predictions are closest to actual values for the impulse and active peak vGRF variables.
Overall bias is small across all actual measured values for each of the variables of interest.
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504  Appendix A. An explanation of all of the predictor variables used in the final general models (across-all-subjects) to predict each of
505  the seven vertical ground reaction force (vGRF) characteristics (response variables) of interest. For example, the model for the

506  response variable “Active Peak vGRF” used 7 of the possible 48 sensor-based predictors including: (1) max on the Z Accel curve, (2)
507  primary frequency on the Z Accel curve, (3) max on the Resultant Accel curve,..., and (7) max on the NCPF Toe curve. The model
508  for “Active Peak vGRF” also used Gender, Weight, and BMI. Subject weight was the most used predictor variable. The novel

509  nanocomposite piezoresponsive foam (NCPF) sensors placed under the heel and ball of the foot were used more often than sensors
510  placed under the arch and toe.

511
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) g g g g ) g
ES = 8 3 =& £ w 5 E © 5 ES © 5 » ™ 5 ES " 5
5 S|S/s| |8 E|g S a SIS S| = SIS 8 £|f S T S tS 8 £ S
x = (= 2 8 8- = 2 c 2 ] E- = = (= 2 9 g = 2 c = ] g = 2 c 2 - E = 2 c 2 i g = 2 c s . g
S 2|2 ek 88z 8k &els|8ElxEes|8 e S8 8 ek ges 8 Elx &8s 8
= P = @ ; - = ™ = @ ; :_E @ = @ ; - = @ = o ; ,_E @ b= @ ; - b3 o = @ ; - = o 2 @ ; -
E EEls |E| E|lE & E ElE|&s| E EEl& E| |E E|ls E EgEl5 |E| EElS
= FIE|E = F|F|E 1= FlF|E = FlF|E = FlE|E 1= FIF|E = FIE|E
a & & [ [ a &
X Accel. X | | | IX X | | X X
Y Accel. X | [ | X | X X |
Z Accel.| X X X | X X | X X X X
Res. Accel| X X X X X
Heel X X X X X X X X X
Arch X X X
Ball X X X X X X X X X X
Toe| X X
Stride Duration X X
Ee - - S L - B - - s L Fe L - ) e L e e - -

e 3 BLH S |gddE s o HEs 9 8 B 5 s o8 ®Es 9/8 B 5 S 9 3B %S
Demograhics | & 5|3 |3 3| |25/3 3|3 25353 |5 s s Ss5swa |PSeleal 2s5vea
grap 02T AR+ 0T CAE - o2 o =T o|3 T

XX X X X XX | XXX X | X X X
512

513



Appendix B. Additional descriptive data for each of the final general models (across-all-
subjects) used to predict various discrete characteristics of running vertical ground reaction
force. Coefficients and standard errors are standardized on the scale of the covariates.

Active Peak VGRF (N)

Lower 95% Upper 95%

Estimate Standard Error t value Bound Bound
(Intercept) 1665.020 13.470 123.630 1638.620 1691.410
Subject Weight 106.900 5.850 18.290 95.440 118.360
Toe NCPF: Max 7.760 0.880 8.850 6.040 9.480
Res Accel: Integral 5110 0.510 9.930 4100 6.120
Subject Gender 105.060 13.000 8.080 79.570 130.550
Heel NCPF: Min -4.250 1.170 -3.620 -6.550 -1.940
Res Accel: Max -8.090 0.670 -12.140 -9.400 -6.790
Z Accel: Max 2.870 0.510 5.630 1.870 3.860
Subject BMI 84.620 11.190 7.560 62.680 106.560
Z Accel: Primary Freq 1.080 0.290 3.740 0.510 1.640
Arch NCPF: Max 14.400 0.860 16.670 12.710 16.090
R.squared: 0.80
F-statistic: 109.9 (9, 28623 df)
AR(1) Coefficient: 0.41
SD Random Intercept: 126.98
Impulse due to vGRF (Ns)

Lower 95% Upper 95%

Estimate Standard Error t value Bound Bound
(Intercept) 250.510 2.110 118.480 246.370 254.650
Subject Weight 17.260 1.000 17.240 15.300 19.230
Stride Time 2.110 0.060 34.820 1.990 2.230
Z Accel: Integral -1.260 0.060 -19.840 -1.380 -1.130
Heel NCPF: Min -2.630 0.130 -20.540 -2.880 -2.380
Subject BMI 20.230 1.210 16.670 17.850 22.610
Arch NCPF: Integral -1.080 0.190 -5.620 -1.450 -0.700
Z Accel: Primary Freq 0.380 0.030 12.860 0.320 0.440
X Accel: Max Time -0.330 0.020 -13.480 -0.380 -0.280
Z Accel: Max Time 0.160 0.020 6.460 0.110 0.210
Z Accel: Min 1.140 0.080 15.010 0.990 1.290
Y Accel: Max Time -0.090 0.030 -2.620 -0.160 -0.020
Ball NCPF: Min 0.970 0.120 8.400 0.750 1.200

R.squared: 0.78

F-statistic: 242.0 (11, 28621 df)

AR(1) Coefficient: 0.47

SD Random Intercept: 19.94




Ground Contact Time (s)

Lower 95% Upper 95%

Estimate Standard Error t value Bound Bound
(Intercept) 0.24984 0.00169 147.49420 0.24652 0.25316
Z Accel: Integral -0.00042 0.00011 -3.91123 -0.00063 -0.00021
Stride Time 0.00198 0.00010 19.46941 0.00178 0.00217
Subject Weight 0.00176 0.00075 2.34633 0.00029 0.00323
Ball NCPF: Max Time 0.00018 0.00005 3.76488 0.0000¢2 0.00028
Res Accel: Integral -0.00233 0.00017 -13.49891 -0.00267 -0.00199
Res Accel: Max 0.00057 0.00006 9.29148 0.00045 0.00069
Subject Age 0.00138 0.00177 0.78331 -0.00208 0.00485
Subject Gender -0.00020 0.00074 -1.22025 -0.00236 0.00055
Heel NCPF: Min 0.00060 0.00016 3.70757 0.00028 0.00092
Subject Height 0.00334 0.00109 3.05575 0.00120 0.00548
Subject BMI -0.00022 0.00129 -0.16752 -0.00274 0.00231
Heel NCPF: Max -0.00052 0.00010 -5.46341 -0.00071 -0.00034
R.squared: 0.28
F-statistic: 58.3 (10, 28622 df)
AR(1) Coefficient: 0.37
SD Random Intercept: 0.02
Peak Impact Force (N)

Lower 95% Upper 95%

Estimate Standard Error t value Bound Bound
(Intercept) 1100.740 21.668 50.801 1058.270 1143.209
Subject Weight 22.738 19.155 1.187 -14.806 60.283
Ball NCPF: Integral -70.376 6.110 -11.518 -82.353 -58.400
Res Accel: Integral -0.952 1.362 -0.699 -3.622 1.718
Ball NCPF: Min -7.466 1.802 -4.144 -10.997 -3.935
Heel NCPF: Min -70.090 3.162 -22.167 -76.287 -63.892
Subject Gender 141.449 13.346 10.598 115.290 167.609
Ball NCPF: Max 14.357 2114 6.790 10.213 18.501
Y Accel: Max Time -1.596 1.082 -1.476 -3.717 0.524
X Accel: Min 2110 1.105 1.909 -0.057 4276
X Accel: Min Time 1.792 0.889 2.015 0.049 3.535

R.squared: 0.62

F-statistic: 77.7 (8, 10714 df)

AR(1) Coefficient: 0.17

SD Random Intercept: 183.16




Average Load Rate (kN/s)

Lower 95% Upper 95%

Estimate Standard Error t value Bound Bound
(Intercept) 44.074 1.026 42.950 42.063 46.085
Subject Weight 7.456 0.862 8.647 5.766 9.146
Ball NCPF: Integral -3.580 0.263 -13.617 -4.095 -3.065
Ball NCPF: Min -3.133 0.182 -17.178 -3.490 -2.775
Heel NCPF: Min -5.699 0.260 -21.949 -6.208 -5.190
Y Accel: Integral 0.797 0.156 5.100 0.490 1.103
Z Accel: Integral 0.347 0.095 3.640 0.160 0.535
Heel NCPF: Integral -4.834 0.308 -15.711 -5.437 -4.231
Y Accel: Min -0.405 0.156 -2.596 -0.711 -0.099
R.squared: 0.57
F-statistic: 129.5 (7, 10715 df)
AR(1) Coefficient: 0.24
SD Random Intercept: 8.58
Maximum Instantaneous Load Rate (kN/s)

Lower 95% Upper 95%

Estimate Standard Error t value Bound Bound
(Intercept) 63.774 1.447 44.083 60.938 66.609
Subject Weight 12.985 1.224 10.610 10.587 15.384
Ball NCPF: Integral -14.708 0.737 -19.962 -16.153 -13.264
Ball NCPF: Min -7.619 0.299 -25.518 -8.205 -7.034
Heel NCPF: Min -5.013 0.332 -15.117 -5.663 -4.363
Z Accel: Integral 0.516 0.119 4.325 0.282 0.749

R.squared: 0.70

F-statistic: 259.5 (5, 10717 df)
AR(1) Coefficient: 0.30

SD Random Intercept: 12.07
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