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Abstract (196 Words) 10 

Running is a common exercise with numerous health benefits. Vertical ground reaction 11 

force (vGRF) influences running injury risk and running performance. Measurement of vGRF 12 

during running is now primarily constrained to a laboratory setting. The purpose of this study 13 

was to evaluate a new approach to measuring vGRF during running. This approach can be used 14 

outside of the laboratory and involves running shoes instrumented with novel piezoresponsive 15 

sensors and a standard accelerometer. Thirty one individuals ran at three different speeds on a 16 

force-instrumented treadmill while wearing the instrumented running shoes. vGRF were 17 

predicted using data collected from the instrumented shoes, and predicted vGRF were compared 18 

to vGRF measured via the treadmill. Percent error of the resulting predictions varied depending 19 

upon the predicted vGRF characteristic. Percent error was relatively low for predicted vGRF 20 

impulse (2-7%), active peak vGRF (3-7%), and ground contact time (3-6%), but relatively high 21 

for predicted vGRF load rates (22-29%). These errors should decrease with future iterations of 22 

the instrumented shoes and collection of additional data from a more diverse sample. The novel 23 

technology described herein might become a feasible way to collect large amounts of vGRF data 24 

outside of the traditional biomechanics laboratory.  25 



Introduction (Total Word Count = 5380) 26 

Scientists have estimated that 64 million Americans run for exercise, and more than 27 

30,000 official running races were held in 2017 [1]. Multiple salutary health benefits result from 28 

running [2]. For example, when combined with appropriate nutrition, running for exercise can 29 

improve cardiovascular health [3], increase skeletal strength [4], and enhance cognitive 30 

performance [5]. Distance running may even maintain or improve joint health for young healthy 31 

individuals [6]. Wearable devices can provide important information concerning an individual’s 32 

health status and increase an individual’s motivation to exercise, including running [7-9]. 33 

Vertical ground reaction force (vGRF) applied to the plantar surface of the foot during 34 

running strongly influences magnitude of load transmitted through lower-extremity joints, 35 

including the ankle, knee, and hip. Specific characteristics of vGRF during running are 36 

associated with musculoskeletal injury etiologies, joint disease progression rates, and athletic 37 

performance. For example, peak vGRF magnitude during sprinting (i.e., the active peak; Figure 38 

1) is related to speed and corresponding performance [10], as well as risk for various 39 

musculoskeletal injuries during running [11-13]. Impact peak vGRF and corresponding load 40 

application rate (Figure 1) have also been associated with musculoskeletal injury risk; numerous 41 

researchers have hypothesized that running injury risk increases as peak impact vGRF and 42 

corresponding load rate increase [14-19]. Duration of the foot-ground contact phase of running 43 

(Figure 1) has also been associated with running performance: increased ground contact duration 44 

corresponds to decreased running speed [10, 20-22] and increased fatigue [23]. Impulse due to 45 

vGRF (the time integral of the vGRF during the ground contact phase) is a measure that 46 

simultaneously considers vGRF magnitude and ground contact time. This impulse, and measures 47 



derived from it, are thought to influence running performance [24, 25] and risk of joint injury 48 

and disease [24, 26]. 49 

Although vGRF magnitude and other characteristics are valuable to consider during 50 

running, high cost and limited mobility of force platforms now limit accurate measurement of 51 

vGRF to traditional biomechanics research laboratories. Further, certain characteristics of 52 

running vGRF measured inside a traditional motion analysis laboratory likely differ from the 53 

same characteristics of running vGRF measured outside of the laboratory [27-30]. Additionally, 54 

without an expensive force instrumented treadmill, it is difficult to collect a substantial number 55 

of laboratory running trials. Researchers are currently seeking ways to measure vGRF outside of 56 

the laboratory, recently testing effectiveness of various novel approaches, like accelerometry [31, 57 

32], inertial measurement units [31, 33, 34], and different measures of plantar pressure [35-38]. 58 

In particular, the capability of inertial measurement units to estimate continuous 3D ground 59 

reaction force traces, during various human movements has been evaluated, via direct modeling 60 

methods and machine learning methods [31], with varying levels of success. 61 

The purpose of the present project was to test the accuracy of a new sensing technology, 62 

different from inertial measurements, in predicting important characteristics of vGRF during 63 

running at three different speeds. This new technology is an inexpensive nanocomposite 64 

piezoresponsive foam (NCPF) that can be inserted into the running shoe under the insole (Figure 65 

2). When the NCPF is compressed, conductive additives in the foam interact with the foam 66 

substrate, creating a triboelectric response that is related to the vGRF applied to the plantar 67 

surface of the foot. Rather than measuring inertial properties on externally fixed devices, as 68 

accelerometers and inertial measurement units do, this new technology directly measures ground 69 

reaction forces at the foot-ground interface. The capability of accurately predicting the following 70 



discrete vGRF characteristics, using the new technology, was evaluated: (1) active and impact 71 

peak vGRF magnitudes, (2) average and maximum instantaneous load rates for the impact peak 72 

vGRF, (3) impulse due to vGRF during the ground contact phase, and (4) duration of the ground 73 

contact phase. The capability of determining heel strike pattern was also evaluated; i.e., whether 74 

test subjects ran with a heel strike or non-heel strike pattern. This was evaluated because this is a 75 

running characteristic that has also been hypothesized to be related to running injury rates [39, 76 

40]. Prior to this study, it was unknown whether the new NCPF technology could be used to 77 

accurately measure vGRF during running.  78 



Methods 79 

Subjects 80 

Thirty one volunteers (17 male, 14 female; age = 23 ± 3 years; mass = 68 ± 10 kg; height 81 

= 174.4 ± 8.0 cm) participated in this study. Subjects were required to be between the ages of 18 82 

and 30, have no lower-extremity injury within six months of data collection, and have no history 83 

of lower-extremity surgery. All subjects reported that they could continuously run for at least 5 84 

km at each of the tested running speeds. Due to a limited number of instrumented shoes at the 85 

time of data collection, subjects were required to wear one of the following U.S. shoe sizes: 9.5, 86 

10.5, or 11.5 for male subjects, or 7, 8, or 9 for female subjects. Subjects provided informed 87 

consent before data collection. All procedures were approved by the appropriate institutional 88 

review board. 89 

Instrumentation 90 

Subjects wore standardized athletic shoes. For each subject, the right shoe was 91 

instrumented with the novel NCPF sensors (under the insole) and an accelerometer (Range = ± 92 

16 g’s; Bosch Sensortec, Mount Prospect, IL, USA) for all of the running trials (Figure 2). The 93 

same instrumented shoes were worn during previous experiments designed to predict continuous 94 

vGRF during walking [41]. The NCPF sensors are made of a combination of nickel coated nano 95 

carbon fibers and dendritic nickel powder, added to a polyurethane foam substrate. When the 96 

NCPF sensors are compressed during running, conductive additives in the foam interact with the 97 

foam substrate to create a triboelectric response. This electrical response is measured by 98 

embedding a conductive material into the foam attached to a voltage measurement system. The 99 

measured voltages are associated, as described later in this manuscript, with the vGRF. The 100 

NCPF sensors were positioned under the shoe insole, in locations generally corresponding to the 101 



heel, arch, ball, and great toe of the foot (Figure 2). Each subject’s right shoe was also 102 

instrumented with a microcontroller to collect voltage response data from the NCPF sensors and 103 

accelerometer; these voltage data were stored on a MicroSD card and uploaded after each data 104 

collection session. A reflective marker was placed on both the right and left shoe, posterior to the 105 

heel, over the 2nd distal phalanx, and over the head of the 5th metatarsal; these markers and high-106 

speed video (VICON, Centennial, CO, USA) were used to measure the motions of the right and 107 

left feet during running. This motion analysis was used only to assign the vGRFs to the correct 108 

foot (right or left). Only vGRF applied to the instrumented foot were analyzed during the present 109 

study. A force instrumented treadmill (AMTI, Watertown, MA, USA) was used to measure 110 

actual vGRF, including ground contact time which was necessary to evaluate accuracy of the 111 

predicted vGRF characteristics. 112 

Data Collection Procedures 113 

While wearing the aforementioned standardized running shoes, subjects first performed a 114 

15 minute warmup run on the force instrumented treadmill at a speed of 2.68 m/s. Subjects were 115 

then instructed to ambulate (walk or run) at the following speeds for four minutes each: 2.24, 116 

2.68, 3.13, and 3.58 m/s. Only data collected at the three fastest speeds were presently analyzed 117 

because these speeds represented actual running gait for all of the subjects: several subjects 118 

chose to walk quickly at the slowest speed, determined from the observation of a double-limb 119 

support phase. Throughout each 4-minute running session, data were continuously collected 120 

from the NCPF sensors (1029 Hz), accelerometer (16 Hz), instrumented force treadmill (1000 121 

Hz), and high-speed video cameras (250 Hz). At the beginning of each running speed, subjects 122 

stomped on the instrumented treadmill. This stomp/event was used to synchronize the NCPF 123 

sensor, accelerometer, treadmill, and video data. The NCPF sensor, accelerometer, and video 124 



data were all resampled to 1000 Hz so that all data could be synchronized to the vGRF data 125 

collected using the instrumented treadmill. Additionally, the NCPF sensor and vGRF data were 126 

filtered via a 4th order Butterworth filter with a low-pass cutoff frequency of 75 Hz. Due to two 127 

different errors in the data collection process, data were unavailable for the 3.13 and 3.58 m/s 128 

speeds for one subject and for the 3.58 m/s speed for two other subjects: battery failure in the 129 

instrumented shoes for one subject and two subjects were unable to complete the fastest speed. 130 

Ultimately, for all subjects combined, 9924, 9666, and 9131 running strides (defined as initial 131 

ground contact to subsequent initial ground contact) were collected for the 2.68, 3.13, and 3.58 132 

m/s running speeds, respectively. Representative vGRF traces measured using the instrumented 133 

treadmill are shown for three different subjects in Figure 3. 134 

Variable Definitions and Data Reduction 135 

 Impact peak vGRF was defined using a previously described approach [42]; essentially, 136 

impact peak was identified when impact peak was at least 1.2 times greater than a subsequent 137 

local minimum vGRF, early in the ground contact phase. Active peak vGRF was defined as 138 

maximum vGRF during each running stride. Impulse was defined as the time integral of vGRF 139 

during each running stride. Ground contact duration was defined as the duration of vGRF 140 

application during each running stride. All of these quantities are depicted in Figure 1. Ground 141 

contact phases containing an impact peak were considered to represent a heel-strike pattern, 142 

while ground contact phases with no impact peak were considered to represent a non-heel strike 143 

pattern. Maximum instantaneous impact peak load rate was defined as the maximum time 144 

derivative of vGRF between initial ground contact and impact peak. Average impact peak load 145 

rate was defined as the average rate of vGRF change between initial ground contact and impact 146 



peak. Impact peak vGRF magnitude, maximum instantaneous impact peak load rate, and average 147 

impact peak load rate were analyzed only for running strides exhibiting a heel-strike pattern. 148 

The beginning and end of each running stride were identified using the accelerometer 149 

data because this will be necessary when the instrumented shoe is used outside the laboratory. 150 

After experimenting with several different approaches, the following approach was chosen 151 

because it matched well with the beginning and end of each running stride, as determined using 152 

the instrumented treadmill (touchdown and toeoff were defined as the time vGRF increased to 153 

above 50 N and then decreased below 50 N, respectively). Initial ground contact was defined to 154 

occur 65 ms prior to peak acceleration in the Z direction for each running stride. The 155 

accelerometer was consistently positioned and oriented so that the Z axis was most closely 156 

aligned to vertical, while the foot was flat on the ground, with the subject in a static standing 157 

position. 158 

In total, 54 potential predictor variables were available to predict the running vGRF 159 

characteristics of interest. These variables are described in this paragraph. For each observed 160 

running stride, certain discrete characteristics of eight signals were used, including the three 161 

orthogonal components of acceleration and resultant acceleration, measured using the 162 

accelerometer, and one signal from each of the four NCPF sensors (Figure 2). Six potentially 163 

predictive characteristics of these eight signals were identified: absolute maximum, absolute 164 

minimum, time to absolute maximum, time to absolute minimum, time integral, and primary 165 

signal frequency. Additionally, six other characteristics were available to predict characteristics 166 

of the running vGRF: (1) running stride duration derived from the acceleration data (for each 167 

observed running strides), (2) subject age, (3) subject gender, (4) subject height, (5) subject 168 

weight, and (6) subject body mass index (BMI).  169 



Statistical Analysis 170 

 To create statistical models capable of accurately predicting discrete vGRF 171 

characteristics, two potential prediction approaches were considered. First, a unique statistical 172 

model was created for each subject to produce vGRF predictions as accurate as possible for each 173 

subject. This approach in practice required a separate calibrated model for each subject, 174 

necessitating methods described in this paper for every individual end user. Second, a general 175 

model encompassing all of the present subjects; while predictive accuracy is sure to be less using 176 

this approach, no calibration is required before vGRF predictions can be made for any end user 177 

within the involved demographic range. The first approach might be more appropriate for 178 

researchers who have access to the data collection and analytical tools described in this paper, 179 

while the second approach is likely more realistic in a commercial setting where a subject-180 

specific lab calibration process is not feasible. In this subsection, the process of building a 181 

general model is first described for all of the present subjects and then the process is extended to 182 

create subject-specific models. 183 

The general model was created to predict vGRF characteristics for subjects that are 184 

similar to the present subjects. The response variables of interest were impact peak, 185 

instantaneous and average load rates, active peak, impulse, and ground contact duration. For 186 

each of these variables of interest, the 54 potential predictor variables were ordered in terms of 187 

their ability to represent the response. This ordering was done by representing the response with 188 

a linear regression model, and then conducting a forward selection process with the sum of 189 

squared residuals as the selection criterion. Backward selection and sequential 190 

replacement/stepwise selections were also tried, but forward selection yielded optimal results. 191 

For a more complete discussion of the model selection process, see Section 9.4 of Kutner et al. 192 



[43]. This yielded a total of 54 potential models, the first including only the most important 193 

predictor variable, the second including the two most important variables, etc. It’s well-known 194 

that variable selection procedures based on in-sample data tend to overfit the data and produce 195 

less-than-optimal out-of-sample predictions [44]. So in order to determine which of these 54 196 

models would provide the most accurate out-of-sample predictions, a leave-one-subject-out 197 

cross-validation process was performed (Section 5.1 of [45]) and the model that yielded the 198 

lowest cross-validated root mean square error (RMSE), averaged across all subjects, was 199 

selected; i.e., the selected model was the one that most accurately predicted a single excluded 200 

subject’s vGRF characteristics. Corresponding percent errors were also calculated, defined as the 201 

ratio |"#$%"&'()*+,#$*+|"#$%"& × 100%. The predictor variables were also used to obtain stride-by-stride 202 

predictions of foot-strike pattern, classified as either heel-strike or non-heel-strike. The process 203 

for selecting the optimal model for heel-strike pattern identification was identical to the process 204 

for the other six variables, except that logistic regression was used in place of standard linear 205 

regression, and error was measured in terms of the percentage of misclassified strides, rather than 206 

RMSE. 207 

  Some of the selected models contained predictors that are highly correlated with one 208 

another; e.g. subject weight and BMI in the vGRF, impulse, and ground contact time models. In 209 

order to alleviate concerns with multi-collinearity, coefficient estimation and inference for all 210 

models were performed using principal component regression (PCR) on the selected variables. 211 

PCR is a simple extension of multiple regression that replaces the original matrix of predictor 212 

variables (X) with a new matrix of predictors Z, where Z=XC and C contains the subset 213 

of m eigenvectors of X´X that correspond to the m largest eigenvalues of X´X.  Although we 214 

estimate the regression coefficients associated with the new predictors in Z, we are easily able to 215 



transform these coefficients back to the scale of the original variables in X for simple 216 

interpretation.  For a thorough discussion of PCR, see either of the following two references [46, 217 

47].  Furthermore, the usual regression assumption of independent residuals is clearly invalid 218 

here, as we expect substantial correlation between observations within a trial, especially for 219 

observations that are close together in time. To account for this, we included a random intercept, 220 

and modeled the residuals with an AR(1) structure, for each subject-trial combination. For 221 

further details on random effects see the following reference [48]. 222 

 This process was then extended to select optimal models of the response variables for 223 

each of the 30 subjects. Because these models were independent across subjects, the five 224 

demographic variables were not utilized in this process. Further, because the dataset for each 225 

subject was much smaller than the entire dataset, it was necessary to exclude some predictor 226 

variables, including the eight primary frequency variables; i.e., primary frequencies of the signals 227 

originating from the NCPF sensors and accelerometer. Thus, there were 41 potential predictor 228 

variables here. The variables were ordered using data from all 30 subjects, just as in the ordering 229 

process for creating the general model, yielding a total of 41 potential models. Instead of 230 

performing a leave-one-subject-out cross-validation process using data from all subjects, a 231 

separate cross-validation process was performed for each subject, treating the first 50% of the 232 

strides from each of the three running speeds as the training set and the remaining strides as the 233 

test set. The final set of common predictor variables for the subject-specific models was the one 234 

that minimized the average cross-validation error across all subjects, measured by RMSE for the 235 

quantitative variables and misclassification rate for foot-strike pattern. As with the general 236 

model, the final subject-specific models were fit using principal components regression, with a 237 

random intercept term and an AR(1) component to account for within-trial correlation. To 238 



evaluate the predictive ability of these models, final cross-validation analyses were run where 239 

30%, 50%, and 70% of each subject’s data were used as training data to better understand the 240 

amount of data needed to create an accurate subject-specific model.  241 



Results 242 

Descriptive statistics for the vGRF characteristics of interest, measured using the force 243 

instrumented treadmill, are presented in Table 1. Initially, to explore our entire data set prior to 244 

the construction of the prediction models described in the methods section, we calculated 245 

Pearson correlation coefficients between each potential predictor variable, including 246 

characteristics of the NCPF sensors, accelerometer, and subject demographics, and the vGRF 247 

characteristics of interest (Table 2). Many of these correlations indicated a moderate-to-strong 248 

association between the potential predictors and vGRF characteristics of interest. Consequently, 249 

we anticipated that a statistical model based on these predictors would be at least moderately 250 

successful in predicting characteristics of vGRF during running. 251 

After performing the aforementioned initial correlational analyses, we constructed 252 

predictive models for each vGRF characteristic of interest using the predictor-subset-selection 253 

approach described in the methods section. Average RMSE from the leave-one-subject-out 254 

cross-validation analyses of the general across-all-subjects models are presented in Table 3, 255 

along with the corresponding percent error. Figure 4 shows predicted values from these general 256 

models, plotted against the corresponding actual, measured values. RMSE for active peak vGRF 257 

magnitude, impulse due to vGRF, and ground contact duration were lower, relative to the RMSE 258 

for the other predicted vGRF characteristics. RMSE for impact peak vGRF, and the average and 259 

maximum instantaneous load rates were relatively high. Bias is near zero for all variables, as 260 

shown in Figure 4. Additionally, using the general approach, across-all-subjects, 66.1% of the 261 

running strides were correctly identified as either a heel-strike or non-heel-strike pattern; 65.1% 262 

and 67.8% of the heel-strike and non-heel-strike patterns, respectively, were identified correctly. 263 

Appendix A shows the predictor variables included in the final across-all-subjects model for 264 



each quantitative vGRF characteristic and foot-strike pattern identification. For example, the 265 

general model for average impact rate is: 266 

%&'()*'	,-.)/0	1)0' = 3- + 3.56-',70/∗ + 318)92**&∗ + 338672**&∗ + 348)95"&&∗ +267 

368675"&&∗ + 3756-',705"&&∗ + 38:'6*ℎ0∗, 268 

where 9∗ is the standardized version of variable 9, e.g. 56-',70/∗ = 9,:*;<$!	'	:*"<(9,:*;<$!)
@+(9,:*;<$!)

. 269 

Among all models, subject weight was the most commonly selected variable. Age was used only 270 

in the ground contact time model. Variables derived from acceleration in the X direction, which 271 

was approximately in the anterior-posterior direction, were not commonly selected compared to 272 

other accelerometer variables. Variables derived from the arch and toe sensors were selected less 273 

often than variables derived from the heel and ball sensors. Some common regression statistics 274 

further describing the final across-all-subjects models (Table 3) are presented in Appendix B. 275 

 Average RMSE, along with corresponding percent error, for the cross validation analyses 276 

of subject-specific models is contained in Table 4. As anticipated, RMSE for the subject-specific 277 

models were consistently lower than for the general models. Similar to the results related to the 278 

general model, percent error was smallest for active peak vGRF, impulse due to vGRF, and 279 

ground contact time, and prediction errors were greater for impact force GRF and maximum 280 

instantaneous impact and average load rates. As expected, prediction errors were often greater 281 

when only 30% of a subject’s running data were used to train the models, relative to using 50% 282 

or 70% of a subject’s running data (Table 4). Additionally, the existence of a heel-strike pattern 283 

was identified much more accurately for the subject-specific models relative to the general 284 

model. On average, the subject-specific models correctly identified a heel-strike pattern 285 

approximately 87% of the time, and this did not appear to be substantially affected by the 286 

amount of training data used: the model accurately identified heel strike 85.5 and 87.8% of the 287 



time when the data-usage percentage was 30 and 70%, respectively, of the running strides for the 288 

training data.  289 



Discussion 290 

The purpose of this study was to evaluate a new approach involving novel 291 

piezoresponsive sensors and statistical modeling methods to predict specific characteristics of 292 

vGRF during running. This study was conducted in a traditional biomechanics laboratory, but is 293 

a step toward using the evaluated approach to measure vGRF outside of the traditional 294 

biomechanics laboratory. The present work is important because running vGRF affects injury 295 

risk and performance, and running biomechanics likely differ inside and outside the laboratory 296 

[27, 28, 49, 50]. The current results demonstrated that the evaluated approach was satisfactorily 297 

accurate in predicting active peak vGRF magnitude, impulse due to vGRF, and ground contact 298 

time, especially when using prediction models specific to each individual user, in which case 299 

average errors were 2.9, 1.7 and 3.6%, respectively, when using a 50% cross-validation 300 

procedure (Table 4). The present approach was less effective in accurately predicting impact 301 

peak vGRF magnitude and corresponding average/maximum load rates, with average errors 302 

ranging from 9 to nearly 26% in the 50% cross-validation procedure performed on subject-303 

specific models. Future research is required to increase accuracy for all variables, especially 304 

predictions of impact peak vGRF and corresponding load rates. 305 

Prediction errors for ground contact time ranged from 11 ms (3.4%) for the most accurate 306 

subject-specific model to 17 ms (5.8%) for the general across-subjects model (Tables 3-4). These 307 

levels of accuracy are likely sufficient to detect fatigue during distance running; e.g., ground 308 

contact time was shown to increase 13.1% between the early and later stages of a marathon [23]. 309 

The detection of fatigue is important because fatigue is associated with running performance and 310 

various running injuries [51-54]. Further, the presently reported errors for peak active vGRF, 311 

which ranged from 59 (2.9%) to 130 N (6.9%; corresponding to the best subject-specific model 312 



and the general across-subjects model, respectively), are also likely acceptable for certain 313 

applications. For example, differences in active peak vGRF of about 5% are known to exist 314 

between heel-strike and non-heel-strike patterns [55], and differences of about 7.5% are known 315 

to exist between a healthy and impaired (chronic ankle instability) subject sample [56]. 316 

Conversely, average errors reported herein for predicted average and maximum instantaneous 317 

impact load rates are likely not acceptable for any known application. These errors, predicted via 318 

both the subject-specific and general models, ranged from approximately 22 to 29%, 319 

respectively. In comparison, a recent systematic review concerning potential associations 320 

between vGRF load rates and tibial stress fracture, a relatively common running injury, reported 321 

an average difference of only 12% in load rate between healthy and injured runners [19]. In 322 

speculation, perhaps the present relatively high errors for load rates were due to the high-323 

frequency nature of these signals and low sampling rate of the accelerometer used during the 324 

present study. In future iterations of the present system, an upgraded accelerometer will be used, 325 

which might improve the accuracy of predictions concerning high frequency characteristics of 326 

the vGRF. Accurate predictions of impact vGRF and corresponding load rates is of interest 327 

because such predictions can be used to provide biofeedback to runners concerning these 328 

variables. Researchers recently reported that biofeedback concerning impact vGRF and load 329 

rates, provided in the laboratory, can be used to reduce impact vGRF and corresponding load 330 

rates [57]. Such biofeedback might be even more effective when provided for longer durations, 331 

outside of the laboratory, although future testing is needed to test this idea. 332 

Two approaches were presently taken to predict running vGRF characteristics: subject-333 

specific models and a general model applicable to all subjects within the demographic range of 334 

the current sample. As expected, the subject-specific models were more accurate for every vGRF 335 



characteristic and would be preferred, however, this approach requires a calibration process for 336 

each end user. An instrumented treadmill is necessary for this approach, limiting the approach to 337 

research settings and/or a small number of clinical settings; although simple predictive variables 338 

(e.g., age, height, weight, and gender) were presently required, relative to more complex 339 

kinematic measures necessary to derive vGRF from inertial measurement unit data. Regarding 340 

the subject-specific models, the use of 70% of the stances as training data generally yielded only 341 

a small improvement in accuracy relative to using 50% of the stances as training data. Because it 342 

took approximately two minutes of running at each ambulation speed to collect 50% of the 343 

stances, we conclude that when creating a subject-specific calibration, predictive accuracy is 344 

nearly optimized with just two minutes of data-collection at each speed, or six minutes of total 345 

running. The general prediction models were always less accurate than the subject-specific 346 

models; however, a potential end user who fits within the demographic range of the present 347 

subjects could expect to have errors comparable to errors reported herein. The general prediction 348 

models are especially valuable because a new subject can be measured without the creation of a 349 

new prediction model. The general prediction models will be necessary to collect data using the 350 

present novel sensors on a desirably large scale (e.g., at least thousands of users). Additionally, 351 

recruitment and analysis of more subjects will increase the accuracy of the general models. In the 352 

future, we plan to use other analytical approaches like machine learning, still in combination 353 

with the NCPF sensors and accelerometry, to predict running vGRF characteristics to further 354 

improve accuracy of the prediction models. 355 

It is somewhat difficult to compare the present results to previous related research, 356 

because few researchers have reported attempts to predict running vGRF characteristics using a 357 

single wearable device; additionally, the present NCPF technology is fundamentally different 358 



from previous technologies used to measure ambulatory vGRF. Further, most previous reports 359 

concerning wearable devices designed to measure ambulatory vGRF have focused on walking 360 

rather than running. The study that is most similar to the present study used one uniaxial 361 

accelerometer positioned over the shoe laces and a neural network model to measure impact and 362 

active peak vGRF during running at three speeds [32]. Errors for prediction of peak impact 363 

vGRF were comparable to the present results and ranged from 0.10 to 0.18 body weights, 364 

depending upon running speed; errors for the peak active vGRF ranged from 0.10 to 0.12 body 365 

weights. Other researchers have used inertial measurement units placed in various anatomical 366 

locations to predict walking, running, and jumping vGRF, with errors comparable to or greater 367 

than the present errors [31, 33, 34, 58]. Previous researchers have also used pressure insoles to 368 

predict various components of the walking ground reaction force [59-61]. 369 

Relatively tight scatter plots for average and max impact rate (Figure 4) could be 370 

perceived to indicate greater predictive accuracy, yet greater percent error resulted in the 371 

prediction of these two variables (Table 3). This is because percent error <|"#$%"&'()*+,#$*+|"#$%"& ×372 

100= naturally decreases with increases in the measured (actual) values. This idea is illustrated 373 

by comparing percent error between the impulse (7%) and max impact rate models (25%). 374 

Judging using only percent error, the impulse model appears to be more accurate, yet the scatter 375 

plots in Figure 4 appear to imply somewhat more accurate predictions of max impact rate. This is 376 

partly due to the fact that measures of impulse ranged from 158 to 373 Ns, while measures of 377 

max impact rate ranged from 16 to 179 kN/s (Figure 4); i.e., measures of max impact rate 378 

clustered relatively closer to zero than measures of impulse. In addition, Figure 4 clearly shows 379 

that distinct clusters were prominent for some variables (active peak vGRF and impulse), but not 380 

others (average and max impact rate); these clusters appeared when between-subject variability 381 



far exceeded within-subject variability, reflecting the fact that out-of-sample prediction for a new 382 

subject is especially difficult in these cases. 383 

The NCPF sensors presently tested have other uses in addition to the prediction of 384 

ambulatory vGRF. For example, the NCPF sensors have previously been used to measure 385 

vibrations for machinery bushings [62] and impact energy and forces in American football [63]. 386 

When deformed, the NCPF sensors produce a voltage related to the magnitude of impact. These 387 

voltages can be measured by connecting the foam to a microcontroller powered by a 3.7 V, 300 388 

mA, lithium ion polymer battery. The NCPF sensors cost approximately $4 per shoe. The 389 

electronics cost approximately $50, but this cost depends upon quantity and will decrease with 390 

larger numbers of production. Together, the NCPF sensors, microcontroller, and battery increase 391 

the weight of the shoe by 25.5 grams, which is substantially less massive than other wearable 392 

vGRF measurement systems. The NCPF self-sensing material is made of a combination of 1 mm 393 

chopped nickel coated carbon fiber, nickel powder, and Poron® microcellular urethane. 394 

This is the first report concerning the ability of the novel NCPF sensors to predict 395 

running vGRF characteristics and the present results are limited in several important ways that 396 

have not yet been discussed. The system tested herein, including the novel sensors, 397 

accelerometer, and electronics used to measure and record the related signals contained inherent 398 

limitations. Although we did not quantify the quality of the electrical connections between each 399 

novel sensor and microcontroller, we suspect that the quality of these connections varied and 400 

likely decreased prediction accuracies of the general across-subjects models. Further, the low 401 

accelerometer sampling rate and few available shoe sizes limit the present results. The low 402 

sampling rate of the acceleration data (16 Hz) was due to user error: a setting on the 403 

accelerometer was unknowingly set to the undesirably low sampling rate. Additionally, the 404 



NCPF sensors relied on each individual connection made in the lab; future NCPF sensors will be 405 

connected to the microcontroller via a printed flexible circuit. It is unclear how/if these 406 

improvements will affect accuracy of future vGRF predictions. Another primary limitation of 407 

this study is that only young and healthy subjects were tested. It is unclear how/if the present 408 

models relate to subjects with characteristics that differ from the present subjects, like obese, 409 

aged, injured, or diseased subjects; it will be important to clarify this issue, as the use of these 410 

sensors to measure ambulatory vGRF will be particularly valuable for aged, diseased, or 411 

otherwise impaired individuals. It is also unclear how the NCPF sensor outputs will behave 412 

under various conditions within real-world environments like a moist, sloped, dirt, running 413 

surface. Additionally, it is unclear how the present prediction models will fare as the mechanical 414 

properties of the sensors change due to degradation of the foam; e.g., over a 3 hour marathon, or 415 

the average running shoe life of approximately 500 Km. Additional research is certainly needed 416 

to clarify all of these issues. 417 

In summary, this experiment was conducted to evaluate the effectiveness of a new 418 

technology, piezoresponsive foam, in predicting specific characteristics of vGRF during running. 419 

vGRF were measured at three different running speeds while subjects wore shoes instrumented 420 

with NCPF sensors and a triaxial accelerometer. Principal component regression was used to 421 

create prediction models from signals originating from the NCPF sensors and accelerometer to 422 

predict the vGRF characteristics of interest. For each response variable of interest, the most 423 

accurate models were subject-specific models. General models were also created that applied to 424 

all subjects within the present study, as well as future subjects that fit within the demographic 425 

characteristics of the present sample. Peak vGRF, impulse due to vGRF, and ground contact time 426 

were most accurately predicted. Such predictions can be used to reduce running-related injuries 427 



and/or improve running technique and performance. Future research designed to test the 428 

effectiveness of future iterations of the novel NCPF sensors and improved data collection 429 

systems will build upon the prediction models produced in this study. The purpose of this line of 430 

research will continue to be to improve our present ability to predict real-world running vGRF 431 

outside of the traditional biomechanics laboratory.  432 



Table 1. Means, standard deviations, and coefficients of variation for six vertical ground reaction 433 
force (vGRF) characteristics during running at three different speeds, measured using a force 434 
instrumented treadmill, including the percentage of running strides that involved a heel strike 435 
pattern. 436 
  437 

  438 



Table 2. Correlation values describing linear relationships between the most highly correlated 439 
predictor variables and measured vertical ground reaction force (vGRF) characteristics. 440 
Correlations between these predictor variables and measured vGRF characteristics allowed for 441 
prediction of vGRF characteristics using novel sensors and an accelerometer attached to a 442 
running shoe. (BMI = body mass index; NCPF = novel nanocomposite piezoresponsive foam 443 
sensors placed under the arch, ball, or toe; Accel = X, Y, Z, or resultant acceleration measured 444 
via an accelerometer placed approximately over the shoelaces) 445 
 446 

  447 



Table 3. Average root mean squared error (RMSE) for the leave-one-subject-out cross-validation 448 
analyses of the general (across-subjects) models created in the present study, and some 449 
information concerning each model (i.e., which demographic predictor variables were used, and 450 
how many novel sensor and acceleration predictor variables were used). RMSE for active peak 451 
vertical ground reaction force (vGRF) magnitude, impulse due to vGRF, and ground contact time 452 
were relatively low, while errors for impact peak vGRF and corresponding average and 453 
maximum instantaneous load rates were greater. (G = gender; W = body weight; B = body mass 454 
index; A = age; H = height) 455 

  456 



Table 4. Average root mean squared errors (RMSE; i.e., actual minus predicted) for the subject-457 
specific models created using 30, 50, and 70%, of each subject’s data as the training data. Active 458 
peak vertical ground reaction force (vGRF) magnitude, impulse due to vGRF, and ground 459 
contact time errors were relatively low, while errors for impact peak vGRF and corresponding 460 
average and maximum instantaneous load rates were greater. 461 
 462 

  463 



Figure 1. A typical vertical ground reaction force curve observed during the present study. The 464 
following characteristics of the curve were predicted via novel piezoresponsive sensors and an 465 
accelerometer attached to the running shoe: impact and active peak magnitudes, average impact 466 
peak load rate (depicted via the slope of the dashed line), maximum instantaneous impact peak 467 
load rate, ground contact time (depicted via the length of the dotted line), and impulse due to the 468 
ground reaction force. 469 

 470 

 471 
  472 



Figure 2. The running shoes used throughout the present study were instrumented with four 473 
novel nanocomposite piezoresponsive foam sensors (2A) and a triaxial accelerometer (2B). 474 
  475 

 476 

  477 



Figure 3. Ten representative vertical ground reaction force (GRF) traces measured using a force 478 
instrumented treadmill from three different running speeds, for three different subjects. Subjects 479 
302 and 340 exhibited primarily heel-strike patterns, while Subject 320 exhibited primarily non-480 
heel-strike patterns. 481 

 482 

  483 



Figure 4. Out-of-sample predicted values from the cross-validation process on the general 484 
(across-all-subjects) model vs. actual measurements of each of the six quantitative variables of 485 
interest. Predictions are closest to actual values for the impulse and active peak vGRF variables. 486 
Overall bias is small across all actual measured values for each of the variables of interest. 487 
 488 

 489 
 490 
 491 
 492 
 493 
 494 
 495 
 496 
 497 
 498 
 499 
 500 
 501 
 502 
 503 



Appendix A. An explanation of all of the predictor variables used in the final general models (across-all-subjects) to predict each of 504 
the seven vertical ground reaction force (vGRF) characteristics (response variables) of interest. For example, the model for the 505 
response variable “Active Peak vGRF” used 7 of the possible 48 sensor-based predictors including: (1) max on the Z Accel curve, (2) 506 
primary frequency on the Z Accel curve, (3) max on the Resultant Accel curve,…, and (7) max on the NCPF Toe curve. The model 507 
for “Active Peak vGRF” also used Gender, Weight, and BMI.  Subject weight was the most used predictor variable. The novel 508 
nanocomposite piezoresponsive foam (NCPF) sensors placed under the heel and ball of the foot were used more often than sensors 509 
placed under the arch and toe. 510 
  511 

 512 

  513 



Appendix B. Additional descriptive data for each of the final general models (across-all-
subjects) used to predict various discrete characteristics of running vertical ground reaction 
force. Coefficients and standard errors are standardized on the scale of the covariates. 
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