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ABSTRACT: Southeastern South America (SESA; encompassing Paraguay, southern Brazil, Uruguay, and northern

Argentina) experienced a 27% increase in austral summer precipitation from1902 to 2019, one of the largest observed trends

in seasonal precipitation globally. Previous research identifies Atlantic multidecadal variability and anthropogenic forcing

from stratospheric ozone depletion and greenhouse gas emissions as key factors contributing to the positive precipitation

trends in SESA. We analyze multimodel ensemble simulations from phases 5 and 6 of the Coupled Model Intercomparison

Project (CMIP) and find that not only do Earth system models simulate positive SESA precipitation trends that are much

weaker over the historical interval, but some models persistently simulate negative SESA precipitation trends under his-

torical forcings. Similarly, 16-member ensembles from two atmospheric models forced with observed historical sea surface

temperatures never simulate precipitation trends that even reach the lower bound of the observed trend’s range of un-

certainty. Moreover, while future twenty-first-century projections from CMIP6 yield positive ensemble mean precipitation

trends over SESA that growwith increasing greenhouse gas emissions, themean forced response never exceeds the observed

historical trend. Preindustrial control runs fromCMIP6 indicate that somemodels do occasionally simulate centennial-scale

trends in SESA that fall within the observational range, but most models do not. Results point to significant uncertainties in

the attribution of anthropogenically forced influences on the observed increases in precipitation over SESA while also

suggesting that internal decadal-to-centennial variability of unknown origin and not present in state-of-the-art models may

have also played a large role in generating the twentieth-to-twenty-first-century SESA precipitation trend.
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1. Introduction

Southeastern SouthAmerica (SESA) encompasses the area east

of theAndesMountains (;648W)between 208 and 408S, including
southern Brazil, Paraguay, Uruguay, and northern Argentina, and

experiences significant precipitation variability on interannual to

decadal time scales. This variability has serious implications for

agriculture, river flow, water resources, and power generation in

SESA (Robertson and Mechoso 1998; Viglizzo and Frank 2006;

Seager et al. 2010). Co-occurring with this decadal-to-multidecadal

variability, SESA experienced a robust positive precipitation trend

during the twentieth century, which has continued into the first two

decades of the twenty-first century (Liebmann et al. 2004; Haylock

et al. 2006; Barros et al. 2008; Seager et al. 2010; Gonzalez et al.

2014; Vera and Díaz 2015; Zhang et al. 2016; Díaz and Vera 2017;

Díaz et al. 2021). In particular, austral summer [December–

February (DJF)] precipitation in SESA has increased substan-

tially from the early twentieth century to the early twenty-first

century, one of the largest such trends in the observational record

(e.g., Liebmann et al. 2004; Haylock et al. 2006; Barros et al.

2008; Seager et al. 2010; Dai 2021). This DJF trend is the

principal contribution to the observed increase in total annual

precipitation in SESA and has promoted agricultural expansion,

increases in river flow, and increased vulnerability to flooding

(Genta et al. 1998; Viglizzo and Frank 2006; Zhang et al. 2016).

These precipitation trends across SESA are consistent and

robust across rain gauge data and gridded precipitation data-

sets (Carvalho 2020). For instance, Haylock et al. (2006) found

increased precipitation totals and extremes based on rain gauge

data in SESA between 1960 and 2000. These results corroborate

one of the first assessments of precipitation trends in South

America in which a positive summer precipitation trend was

observed south of 208S based on rain gauge and gridded precipi-

tation datasets (Liebmann et al. 2004). Significant rainfall trends

over the La Plata basin have been quantified, as have an increased

number of rainy days and extreme daily precipitation in the

southern region of the SouthAtlantic convergence zone (deBarros

Soares et al. 2017;Zilli et al. 2017). These trends are also reflected in

runoff records of downstreamriver flow rates after 1950 (Dai 2021).

Increases in precipitation over the SESA region have trans-

lated into important agricultural impacts, while the SESA region

more generally is a vital agricultural area and relies heavily on

hydroelectric power. Over the past several decades, Argentina’s

soy cultivation area increased by 210%, in large part because of

increased precipitation that promoted crop production expan-

sion into areas previously used for livestock (Magrin et al. 2005;

Baldi and Paruelo 2008; Barreiro et al. 2014; Lucas et al. 2018).

Similarly, southern Brazil includes most of the country’s irri-

gated crops and has been one of themost productive agricultural
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zones in the world over the past few decades (Schnepf et al.

2001). Southern Brazil also produces a large share of rice and

the state of Rio Grande do Sul is one of the most important

regions for soybean production in the country (Schnepf et al.

2001; Zortea et al. 2018). In sum, Brazil, Argentina, and

Paraguay are the second-, third-, and sixth-largest soybean

producers globally, with Brazil and Argentina also being among

the top 10 countries for maize and beef production (http://

www.fao.org/faostat/en/#rankings/commodities_by_country).

Land-use and land-cover changes associated with the expand-

ing agricultural practices in SESA are also likely to feed back

on the regional climate, including precipitation patterns (e.g.,

Xue et al. 2006; Lee et al. 2011). Modeling experiments com-

paring simulations with and without vegetation changes indi-

cate that land degradation is likely to have caused precipitation

reductions over SESA during the period 1948–2010 (Chilukoti

and Xue 2021). These results corroborate previous examina-

tions of the influence of land-use and land-cover changes on

precipitation in this region of South America (e.g., Xue et al.

2006; Lee et al. 2011; Salazar et al. 2015). These land-use im-

pacts may therefore have worked to diminish the magnitude of

the twentieth-to-twenty-first-century precipitation trends over

SESA, thus indicating that work to separate the influence of

anthropogenic land-use changes and anthropogenic emissions

is an important further area of study.

Many factors indeed influence SESA precipitation, yet there

is little consensus on the relative contributions to the positive

twentieth-to-twenty-first-century precipitation trend from ex-

ternal forcing and internal oceanic and atmospheric variability

(referred to collectively as internal variability hereinafter).

Furthermore, prior analyses have shown the near inability of

models to simulate the observed magnitude of the twentieth-

to-twenty-first-century wetting trend (e.g., Seager et al. 2010;

Gonzalez et al. 2014; Zhang et al. 2016). Analyses of historical

simulations from general circulation models have suggested that

radiative forcing due to increasing anthropogenic emissions of

greenhouse gases (GHGs) promotes increased precipitation in

SESA, but the forced trends are weaker than the observed trends

(e.g., Vera andDíaz 2015; Zhang et al. 2016; Díaz andVera 2017).

The proposed mechanism is that increased GHGs drive tropical

expansion, leading to a southward shift of the subtropical

dry branch of the Hadley cell, moving it poleward of SESA,

and thus promoting anomalous ascent that leads to increased

rainfall over the region (Son et al. 2010; Arblaster et al. 2011;

McLandress et al. 2011; Polvani et al. 2011; Zhang et al. 2016).

Stratospheric ozone depletion has been a major cause of

atmospheric circulation changes over the Southern Hemisphere

(SH) since 1960 (Thompson et al. 2000; 2011; Gonzalez et al.

2014). The ozone hole cooled the summer stratosphere over

the southern polar region, promoting changes in geopotential

heights and surface winds that manifest as a southward shift and

strengthening of the midlatitude jet (Thompson and Solomon

2002; Gillett and Thompson 2003; Perlwitz et al. 2008; Son et al.

2008), also evident as a positive trend in the southern annular

mode (SAM; Thompson et al. 2000) and a widening of the

summertime Hadley circulation (Son et al. 2009). Gonzalez

et al. (2014) found that the consequent impact of ozone de-

pletion on SESA precipitation during austral summer has

been as large as, and perhaps larger than, the impact of in-

creasing GHGs, but only after 1960.

The SAM is the leading mode of natural atmospheric cir-

culation variability in the SH with varying seasonal impacts on

SESA precipitation (Thompson et al. 2000; Marshall 2003;

Thompson et al. 2011). These impacts are strongest during

austral winter and late spring, but of opposite sign (Silvestri

and Vera 2003). The SAM influence on SESA precipitation is

not independent of El Niño–Southern Oscillation (ENSO)

because ENSO influences SAM (L’Heureux and Thompson

2006; Dätwyler et al. 2020). The strongest link between SESA

and SAM variability nevertheless occurs during austral winter

and spring, making the interannual variability of SAM unlikely

to contribute to the centennial trend in austral summer pre-

cipitation in SESA.

SESA precipitation is also strongly affected by sea surface

temperatures (SST; Seager et al. 2010). ENSO exerts its

strongest influence during austral spring and weakest during

austral summer (Pisciottano et al. 1994; Grimm et al. 2000;

Cazes-Boezio et al. 2003; Seager et al. 2010; Barreiro et al.

2014). However, ENSO is an unlikely driver of the secular

trends in SESA summer precipitation: there is no observed

trend towardEl Niño–like conditions that would wet SESA and

the strongest influence of ENSO on SESA precipitation is in

austral spring not summer (Li et al. 2011; McGregor et al. 2013;

Tindall et al. 2016; Grothe et al. 2020). These two consider-

ations suggest that if a mode of oceanic or atmospheric vari-

ability has significantly contributed to the SESA precipitation

trend, it is not likely to be directly associated with ENSO.

The Pacific Ocean also contributes to SESA precipitation

variability on multidecadal time scales through the Pacific

decadal oscillation (PDO; Mantua et al. 1997; Zhang et al.

1997; Mantua and Hare 2002) and the interdecadal Pacific

oscillation (Folland et al. 1999; Power et al. 1999), which

are closely related (Deser et al. 2004). Precipitation anomalies

are strongest when the warm phase of the PDO and the warm

phase of ENSO (El Niño) coincide, especially during January

and February (Andreoli and Kayano 2005; Kayano and

Andreoli 2007; Bonfils and Santer 2011; Kayano et al. 2020).

The PDO is therefore a potential contributor to the twentieth-

to-twenty-first-century precipitation trend in SESA, given its

potential to imprint decadal variability in SESA precipitation.

Anomalies in tropical Atlantic Ocean SSTs forced byAtlantic

multidecadal variability (AMV; Schlesinger and Ramankutty

1994; Kerr 2000; Enfield et al. 2001; Ting et al. 2009) are also

significant contributors to low-frequency SESA hydroclimate

variability (Seager et al. 2010). The negative AMV phase pro-

motes wet conditions in SESA, while the positive phase promotes

dry conditions (Seager et al. 2010). Seager et al. (2010) suggested

that AMV variability is principally associated with the SESA

precipitation trend and pointed out that the AMV transition

to a positive phase since the late 1990s (e.g., Ting et al. 2009)

could promote a return to drier conditions over the region.

The myriad factors listed above make it challenging to

isolate any single factor, natural or forced, as the causal

mechanism that drove the secular precipitation trend over

the twentieth to twenty-first centuries in SESA. Here we

build on prior work to provide a comprehensive assessment
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of contributions from forced and internal variability to sim-

ulated twentieth-to-twenty-first-century precipitation trends

in SESA. We perform this assessment across two model

generations, including the first detailed characterization of

how these trends are simulated in CMIP6 models. These sim-

ulations are evaluated against observed twentieth-to-twenty-

first-century precipitation trends in SESA. Our results have

critical implications for anticipated future hydroclimate trends

and their consequent impacts on agriculture, hydroelectric

power, and flooding risk over the SESA domain.

2. Data and methods

a. Observations

We use two datasets to assess observed precipitation in

SESA: 1) the Climatic Research Unit 0.58-resolution gridded

precipitation dataset, version 4.04 (CRU TS v. 4.04; Harris

et al. 2020), available from 1901 to 2019 and 2) the Global

Precipitation Climatology Centre 0.58-resolution precipitation

dataset available from 1891 to 2016 (GPCC v2018; Rudolf

et al. 2010).

b. Models

Wecompare two 16-member ensembles derived fromCMIP3-

and CMIP5-generation National Center for Atmospheric

Research (NCAR) atmosphericmodels: the Community Climate

Model, version 3 (CCM3; Kiehl et al. 1998), and the Community

Atmosphere Model, version 5 (CAM5; Neale et al. 2010). Both

ensembles are forced by globally observed SSTs derived from

Kaplan et al. (1998) and Hadley Centre Sea Ice and SST

(HadISST). Kaplan SSTs are specified over the tropical Pacific

(208S–208N) from 1856 to 2012, whereas HadISST is used ev-

erywhere else from 1870 to 2012. Kaplan SSTs were used

if available outside the tropical Pacific from 1856 to 1870,

and climatological SSTs from HadISST were used otherwise

(Seager et al. 2005); this adopted SST-forced configuration and

subsequent model experiments are referred to as the Global

Ocean Global Atmosphere (GOGA) simulations. The simu-

lations are performed with an approximate 2.58 grid resolution

and span 1856–2012.

Fully coupled historical simulations from 30 models within

the CMIP5 archive, forced by historical trace gases, aerosol,

solar, and volcanic forcing, are examined over 1901–2005 (in-

formation on the models is in Table 1; Taylor et al. 2012). The

CMIP5 ensemble includes the Community Earth System

Model, version 1 (CESM), which is the fully coupled Earth

system model developed by NCAR that uses CAM5 as the

atmospheric model component. The standard CMIP5 CESM

experiments are joined in our analysis by the NCAR CESM

Large Ensemble (CESM-LENS), derived from over 40 inte-

grations of CESM initialized after tiny perturbations are ap-

plied to the initial atmospheric temperature field in 1920 (Kay

et al. 2015). Our analysis uses the first 35 members of the

CESM-LENS because members 36–40 are known to be erro-

neously warm (see http://www.cesm.ucar.edu/projects/community-

projects/LENS/known-issues.html; last access: 16 June 2020). All

CESM-LENS runs are evaluated from 1920 to 2005.

Fully coupled historical experiments (1901–2014) from 52

CMIP6 models are also evaluated with natural and anthropo-

genic forcings including trace gases, aerosols, volcanic eruptions,

and solar variability (Eyring et al. 2016). CMIP6 projections for

four Shared Socioeconomic Pathways (SSPs) are additionally

analyzed over the 2015–2100 period (O’Neill et al. 2017). The SSP

projections are based on emissions scenarios assuming a range of

possible future trajectories in population, economics, urbaniza-

tion, and technological development (O’Neill et al. 2017). The

following SSPs are used: SSP1-2.6, a world focused on sustainable

growth and equity with 12.6Wm22 radiative imbalance; SSP2-

4.5, a ‘‘middle of the road’’ estimate incorporating trends

that broadly match historical patterns and 14.5 Wm22

radiative imbalance; SSP3-7.0, a fragmented world with a

resurgence of nationalism resulting in 17.0Wm22 radia-

tive imbalance; and SSP5-8.5, in which rapid and uncon-

strained economic growth and energy consumption persist

and a 18.5Wm22 radiative imbalance occurs (O’Neill

et al. 2017; Cook et al. 2020). Respective subsets of 32, 33,

31, and 36 models are assessed for the SSP1-2.6–SSP1-8.5

experiments, all of which exist within the 52-model col-

lection comprising the analyzed historical simulations

(Table 2). Last, preindustrial control runs from CMIP6 are

TABLE 1. List of CMIP5 models and the number of runs used for

the historical simulations. Expansions for many of these models

can be found online (https://www.ametsoc.org/PubsAcronymList).

Models Historical

BCC_CSM1.1 3

BCC_CSM1.1(m) 3

CESM1(BGC) 1

CESM1(CAM5) 3

CESM1(CAM5-FV) 4

CESM1(FASTCHEM) 3

CNRM-CM5 10

CNRM-CM5.2 1

CanESM2 5

EC-EARTH 1

FGOALS-g2 5

FGOALS-s2 3

GFDL CM3 5

GFDL-ESM2G 3

GFDL-ESM2M 1

GISS-E2-H 11

GISS-E2-H-CC 1

GISS-E2-R 16

GISS-E2-R-CC 1

HadGEM2-AO 1

IPSL-CM5A-LR 6

IPSL-CM5A-MR 3

IPSL-CM5B-LR 1

MIROC-ESM 3

MIROC-ESM-CHEM 1

MIROC5 5

MRI-CGCM3 5

MRI-ESM1 1

NorESM1-M 3

NorESM1-ME 1

Total 110
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TABLE 2. List of CMIP6 models and the number of runs used for the historical, preindustrial control (piControl) runs, and the future

projections using the SSP scenarios fromSSP1-2.6 to SSP5-8.5. Low-topmodels are denoted by superscript L, high-topmodels are denoted

by superscript H, and models with interactive stratospheric chemistry are denoted by superscript H*.

Models Historical piControl (length; yr) SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

ACCESS-CM2H 3 1 (500) 1 1 1 3

ACCESS-ESM1-5L 10 1 (900) 3 3 3 3

AWI-CM-1-1-MRH 5 1 (500) 1 1 5 1

AWI-ESM-1-1-LRH 1 1 (100) 1

BCC-CSM2-MRL 3 1 (600) 1 1 1 1

BCC-ESM1L 3 1 (451)

CAMS-CSM1-0L 3 1 (250)

CanESM5L 65 2 (451; 1000) 50 50 50 50

CanESM5-CanOEL 3 1 (501) 3 3 3 3

CAS-ESM2-0L 4 1 (549)

CESM2L 11 1 (1200) 3 3

CESM2-FV2L 3 1 (500) 5

CESM2-WACCMH* 3 1 (499) 1 5 1

CESM2-WACCM-FV2H* 3 1 (500) 1

CMCC-CM2-SR5L 1 1 (500) 1 6

CNRM-CM6-1H* 29 1 (500) 6 6 6 1

CNRM-CM6-1-HRH* 1 1 (300) 1 1 1 5

CNRM-ESM2-1H* 10 1 (500) 5 5 5

E3SM-1-0H* 3 1 (500)

E3SM-1-1H* 1 1 (165)

E3SM-1-1-ECAH* 1 1 (165)

EC-Earth3H 19 2 (501; 1255) 3 17 4 54

EC-Earth3-VegH 6 1 (500) 4 4 4 5

EC-Earth3-Veg-LRL 3 1 (501)

FGOALS-f3-LL 2 1 (501) 1 1 1 1

FGOALS-g3L 3 1 (700) 1 1 1 4

FIO-ESM-2-0L 3 – 3 3 3

GFDL-CM4L 1 1 (500) 1 1

GFDL-ESM4L 3 1 (500) 1 3 1 1

GISS-E2-1-GĤ 38 8 (100, 100, 165, 165,

201, 301, 345, and 851)

1 10 1 1

GISS-E2-1-G-CCH 1 1 (165)

GISS-E2-1-HĤ 23 2 (301, 401)

HadGEM3-GC31-LLH 4 1 (500) 1 1 4

HadGEM3-

GC31-MMH
2 1 (500) 3

INM-CM4-8L 1 1 (531) 1 1 1 1

INM-CM5-0H 10 1 (1201) 1 1 5 1

IPSL-CM6A-LRH 32 2 (250, 1200) 1 11 11 6

KACE-1-0-GH 3 1 (150) 3 3 3 3

MCM-UA-1-0L 2 1 (500) 1 1 1 1

MIROC-ES2LL 10 1 (500) 3 1 1 1

MIROC6H 50 1 (800) 3 3 3 50

MPI-ESM-1-

2-HAMH
2 1 (780)

MPI-ESM1-2-HRH 10 1 (500) 2 2 10 2

MPI-ESM1-2-LRH 10 1 (1000) 10 10 10 10

MRI-ESM2-0H* 6 2 (251, 701) 1 1 5 2

NESM3L 5 1 (500) 1 2 2

NorCPM1L 30 3 (500, 500, 500)

NorESM2-LML 2 1 (110) 1 3 1 1

NorESM2-MML 1 1 (500) 1 1 1 1

SAM0-UNICONL 1 1 (700)

TaiESM1L 1 1 (500)

UKESM1-0-LLH* 17 1 (750) 5 5 5 5

Total 52 models

(467 runs)

51 models

(65 runs)

32 models

(126 runs)

33 models

(162 runs)

31 models

(149 runs)

36 models

(245 runs)
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also analyzed. Of the 51 CMIP6 models considered, some

models have multiple ensemble members that vary in the

length of the simulation and/or the parameterizations. In

total, 65 total preindustrial simulations are analyzed from

51 of the 52 CMIP6 models. Information on all CMIP6

simulations is presented in Table 2; the selection of models

and simulations for all of the above experiments was based

on the current availability of data in the CMIP6 database.

c. Methods

Linear trends in precipitation are calculated for observa-

tions and model simulations. For CRU and GPCC, trends are

calculated from 1902 to 2019 (2016 for GPCC), from 1950 to

2019 (2016 for GPCC), from 1921 to 2005, and from 1921 to

2014 (Table 3). The latter two intervals are for comparisons

with modeled trends. Sliding trends are also calculated for the

observations in 85-yr moving windows incremented by 1 yr

over the 1902–2019 or 2016 period to estimate the spread in the

observed trend over the observational interval. The developed

framework allows us to compare the simulated trends with the

observed spread of trends rather than just the one instance of a

trend observed in both datasets. The 85-yr window is chosen

for direct comparison with the CMIP5 generation of models,

constrained by the CESM-LENS 1920–2005 period, and the

CMIP6 SSP projections (2015–2100). Sliding 85-yr trends are

also calculated in the preindustrial control runs. To test for the

robustness of the observed precipitation trends, Mann–Kendall

significance tests are employed using 95% as the significance

threshold (Hamed 2008).

3. Results

a. Seasonal and temporal variability of the observational
SESA precipitation trend

The annual observed SESA precipitation climatologies

according to CRU and GPCC are shown in Fig. 1a. The rainy

season is October–May, and we focus specifically on DJF, the

wettest average 3-month period (when ;32% of the total an-

nual precipitation falls). Secular positive precipitation trends

extend from October to March and are centered in the DJF

rainy season (Fig. 1b). Across CRU and GPCC all of the pre-

cipitation trends in DJF are significant. The seasonal trends for

CRU over 1901–2019 are plotted geographically in Fig. 2, for

all of South America with the SESA region indicated by the

black-outlined boxes and stippling over regions where the

trend does not pass the 95% significance threshold. The DJF

trend (Fig. 2b) occurs across almost all of SESA, is significant

throughout most of the region and also is reflected strongly in

the annual precipitation trends (Fig. 2a). Positive but smaller

trends that do not pass the 95% significant threshold also

occurred in autumn [March–May (MAM); Fig. 2c] and spring

[September–November (SON); Fig. 2e], whereas austral

winter [June–August (JJA); Fig. 2d] had no trend. The strong

positive DJF precipitation trend is also clearly evident in

the mean SESA precipitation in both the CRU and GPCC

datasets, with statistically significant linear increases of ;27%

and ;22% from 1902 to 2019 and from 1902 to 2016, respec-

tively (Fig. 3).

Data coverage over SESA reduces dramatically prior to

1945, and differences in how missing data are estimated likely

account for much of the differences between the GPCC and

CRU trends (Fig. 3). Particularly with regard to the calculated

trends, these differences contribute to a slightly more muted

trend estimate in the GPCC dataset relative to CRU. Given

these uncertainties prior to 1945, we evaluate the robustness of

the estimated trends. Our general approach is to test whether

the inclusion of pre-1945 data significantly affects our estimates

of the linear trends. Figure 4 presents the geographic trends of

DJF precipitation in CRU and GPCC from 1902 to 2019 (2016

forGPCC) and from 1950 to 2019 (2016 forGPCC). The trends

over the shorter interval compare well to the trends over the

longer interval in terms of spatial features and magnitudes;

however, the area in which the trends are significant over the

short periods is much smaller than the area where significant

trends occur over the longer period. Table 3 provides trend

values (and Mann–Kendall significance testing) calculated for

CRU andGPCC over the periods 1901–2019 (2016 for GPCC),

1950–2019 (2016 for GPCC), 1921–2005, and 1921–2014. The

latter two periods have been included because of subsequent

TABLE 3. Trends calculated as percent per decade on standardized precipitation data and the slope on the precipitation data (without

standardization and in units of millimeters per month per year; in parentheses) for CRU and GPCC over the periods indicated. Boldface

values highlight those trend that pass Mann–Kendall significance testing at the 95% threshold.

Time period 1901–2019 (2016) 1950–2019 (2016) 1920–2005 1920–2014

CRU

Annual 11.6 (10.14) 11.7 (10.20) 12.0 (10.18) 11.7 (10.15)

DJF 12.0 (10.23) 12.1 (10.25) 12.4 (10.28) 12.3 (10.26)
MAM 11.5 (10.14) 12.3 (10.25) 12.6 (10.23) 11.7 (10.16)

JJA 10.59 (10.04) 20.41 (-0.02) 10.87 (10.06) 10.34 (10.02)

SON 11.6 (10.14) 11.9 (10.20) 1 1.8 (10.18) 1 1.6 (10.14)

GPCC

Annual 11.3 (10.11) 11.9 (10.19) 11.9 (10.16) 11.5 (10.13)

DJF 11.7 (10.18) 12.5 (10.3) 12.1 (10.22) 12.0 (10.2)

MAM 10.95 (10.08) 11.8 (10.2) 12.2 (10.19) 11.4 (10.11)
JJA 10.83 (10.05) 10.18 (-0.004) 11.0 (10.07) 10.52 (10.04)

SON 11.5 (10.13) 12.3 (10.21) 1 1.9 (10.19) 1 1.7 (10.13)
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comparisons with model estimates of precipitation over SESA.

Over all intervals, the annual, DJF, and SON trends over

SESA are positive, of similar magnitude, and statistically sig-

nificant. Given the similarities between the trends calculated in

the two datasets whether or not pre-1945 data are used, we

employ all available data for subsequent precipitation trend

analyses but factor in the observational data uncertainties, as

represented by the different trend estimates from theCRU and

GPCC data.

As a final assessment of the observational data, we note that

the SESA summer precipitation time series in Fig. 3 does not

include the twenty-first-century downturn in SESA summer

precipitation reported by Zhang et al. (2016). This difference

arises because Zhang et al. (2016) use the November–April

(NDJFMA) window to characterize SESA summer precipita-

tion, whereas we use DJF. Zhang et al. (2016) also analyzed

data through 2012 whereas our analysis extends through 2019.

Figure 5 plots monthly precipitation from the CRU TS 4.04

time series in SESA from November through April, the 9-yr

running mean of monthly precipitation, and the 9-yr running

mean of NDJFMA average SESA precipitation, the latter of

which is consistent with Zhang et al. (2016). The downturn

in precipitation is most pronounced in March and April, is

more weakly expressed in November–January, and is absent

FIG. 1. (a) Annual climatology of SESA precipitation, and

(b) monthly linear trends calculated for observations and climate

model simulations. The model climatologies are determined from

ensembles of simulations from the CCM3 and CAM5 historical

SST-forcing experiments and from the CMIP5 (not including

CESM-LENS) and CMIP6 fully coupled historical experiments.

Shaded regions represent the interquartile range between the 25th

and 75th percentiles across the CMIP5 and CMIP6 multimodel

means. The periods over which the climatologies were determined

were: 1901–2019 (CRU), 1901–2016 (GPCC), 1901–2012 (CCM3

and CAM5), 1901–2005 (CMIP5), and 1901–2014 (CMIP6). Monthly

trends are calculated from 1920 to 2005 for all data. The stars in

(b) indicate where the monthly observed trends pass the Mann–

Kendall test at the 95% significance level. The model simulations pass

the Mann–Kendall test in less than 5% of the assessed months.

FIG. 2. Geographic linear precipitation trends calculated for

annual and seasonal CRU precipitation averages: (a) annual,

(b) DJF, (c) MAM, (d) JJA, and (e) SON. Trends are calculated as

the relative change per decade (%decade21) from 1901 to 2019.

Black-outlined boxes bound the SESA region; only precipitation

over the land area is used for the analysis. Stippling denotes where

the trend is not significant as based on a Mann–Kendall test and a

95% significance threshold.
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in February. In nearly all months, there is a rebound in pre-

cipitation after 2012 that is reflected in the running NDJFMA

mean. Consequently, the early-2000s downturn in SESA pre-

cipitation during NDJFMA was a temporary decadal departure

from the secular trend, in line with Zhang et al. (2016), who

argue it was associated with internal variability. Furthermore,

the decadal downturn is most weakly expressed in DJF pre-

cipitation and does not change the significance of the calculated

trend for that season. We therefore proceed to use the DJF

window for our analyses given its representation of the core

period of austral summer precipitation, and the associated trend,

in the region.

b. Is the wetting trend driven by SSTs?

The ensemble mean of the SST-forced simulations from

CCM3 and CAM5 allows an assessment of how much the

SESA hydroclimate variability and secular trend are driven

by global SSTs, whether through internal ocean variability

or radiatively forced changes reflected in the SSTs. The

annual climatological cycle of SESA precipitation is gen-

erally well represented in the CCM3 and CAM5 ensembles

(Fig. 1a). Both ensembles correctly simulate the wettest month

to be in January, whereas the CCM3 ensemble simulates a

wetter austral summer than observed or simulated by CAM5;

both models simulate drier austral winter conditions than

observed. Small differences notwithstanding, there is overall

agreement between the observations and the models in the

timing, the relative amplitudes of the wet and dry seasons,

and the average precipitation in each month.

Despite the climatological comparisons, neither model sim-

ulates DJF precipitation trends that are nearly as strong as ob-

served (Figs. 1b and 6a). The trend maps for the models

(Figs. 6b,c) indicate that the weak tendency toward positive

simulated SESA precipitation trends are not attributable to a

geographic displacement of wetting regions. The models also do

not simulate the positive precipitation trends in the autumn and

spring months (Fig. 1b). Furthermore, the interquartile range

(not shown) of the ensembles indicates that there is no overlap

between DJF trends in the individual ensemble members and

observations, thus indicating that the observed trends are out-

side the range of internal atmospheric variability within the

models for this period.

The SST-forced trends are further compared with obser-

vations in Fig. 7, which displays boxplots for the trends and

associated uncertainty range of the observational datasets

and the ensemble spread in the trends across the 16-member

ensembles from CCM3 and CAM5 models. We additionally

calculate the CRU and GPCC trend from 1921 to 2005 to

facilitate model comparisons with the specific 85-yr interval

spanned by the CCM3 and CAM5 experiments (stars in

Fig. 7). The median trend in each boxplot for the models

represents the forced SST response over SESA, with the

spread of the distribution characterizing the influence of

modeled internal atmospheric variability. The mean SESA

precipitation trend from 1921 to 2005 in both SST-forced

experiments is less than 25% of the 1921–2005 observed

trend in both CRU and GPCC. The trend over 1921–2005 is

2.4% and 2.1% decade21 in CRU and GPCC but only 0.43%

FIG. 3. Observed total precipitation for the DJF season esti-

mated from the CRU (black; 1902–2019) and GPCC (red; 1902–

2016) datasets over the SESA domain shown in Fig. 2. Dashed lines

show the calculated linear trends for each of the datasets, and the

numbers in the lower-left-hand side of the panel correspond to the

calculated trends as the total percent change in DJF precipitation

over the full time period of each dataset. Both time series pass the

Mann–Kendall test at the 95% significance level.

FIG. 4. GeographicDJF linear trends calculated in (a) CRU from

1902 to 2019, (b) GPCC from 1902 to 2019, (c) CRU from 1950 to

2019, and (d) GPCC from 1950 to 2016 as the relative change per

decade (%decade21). Black-outlined boxes bound the SESA re-

gion; land area is used only. Stippling denotes where the trend is

not significant as based on a Mann–Kendall test and a 95% sig-

nificance threshold.
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and 0.23%decade21 in CCM3 and CAM5. Additionally,

none of the ensemble members from either model produces

trends that even approach the magnitude of those in the

lower uncertainty range of the observations.

The implication of the SST-forced experiments, if taken at

face value, is that SST variability as realized over the his-

torical interval cannot explain the observed trend over

SESA. This conclusion, however, assumes that the CCM3

and CAM5 models realistically simulate atmosphere–ocean

coupling, atmospheric teleconnections, and the strength of

internal variability. Additionally, the precipitation trend in

SESA may have been forced by impacts of anthropogenic

emissions on atmospheric circulation that are not included,

or poorly represented, in the SST-forcedmodels. To address these

additional possibilities, we turn in the subsequent sections to

analyses of the fully coupled historical simulations from

CMIP5 and CMIP6.

c. Is the wetting trend driven by anthropogenic forcing?

The fully coupled historical simulations in CMIP5 and CMIP6

allow an assessment of the possible influence of atmosphere–ocean

coupling, anthropogenic emissions, and internal atmosphere–

ocean variability that could not be assessed in the SST-forced

simulations. These fully coupled simulations include GHG

forcing as well as aerosol forcing, land-use change, and strato-

spheric ozone depletion (Taylor et al. 2012; Eyring et al. 2016).

Some of the models include high-top atmospheric models

(defined as having a model top height , 1 hPa), which allows

an assessment of the impact of stratospheric dynamics on

SESA precipitation variability given the established influence

FIG. 5. Monthly SESA precipitation time series from CRU TS 4.04 calculated as the area-weighted average of

the land region in the black-outlined boxes in Fig. 2. Data are shown for each month in the NDJFMA window

over 1901–2019. Nine-year running means are shown for each of the individual monthly time series, and the

NDJFMA 9-yr running mean, parallel to what was calculated in Zhang et al. (2016), is provided in each of the

panels for reference. The values in the bottom-left corner of each panel are the total percent change for each

season from 1901 to 2019. The blue vertical line marks 2012, which was the last year included in the Zhang et al.

(2016) analysis.
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of stratospheric ozone depletion on the precipitation trend since

1960 (e.g., Gonzalez et al. 2014). A subset of the high-top models

includes interactive stratospheric chemistry schemes, which may

further impact model simulations of SESA precipitation trends.

Collectively, we do not perform an attribution of the individual

forcings herein, but instead assess the collective influence of the

incorporated forcings within the fully coupled all-forcing simu-

lations. Additionally, relative to the SST-forced simulations, the

FIG. 6. (a) Simulated ensemble mean DJF precipitation totals (mm month21) from CCM3

and CAM5, both over the period 1902–2012; shading represents the interquartile spread

across the respective ensembles. Dashed lines show the calculated linear trends for each

model’s ensemble mean, and the numbers in the lower-left-hand side of the panel corre-

spond to the calculated trends as the total percent change in DJF precipitation from 1902 to

2012. One ensemble member from CAM5 simulates a SESA precipitation trend that passes

the Mann–Kendall test at the 95% significance level, whereas the rest of the members in

the CAM5 ensemble and all of the CCM3 ensemble members simulate trends that do not

pass the significance test. Also shown are geographic trends calculated for the ensemble

mean DJF precipitation in (b) CCM3 and (c) CAM5 as the relative change per decade

(% decade21). The black-outlined box bounds the SESA region, in which only precipitation

over land area is used for the analysis. Stippling indicates where fewer than 12 ensemble

members agree on the sign of the trend. Where there is no stippling, 12 or more ensemble

members agree on the sign of the trend.
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fully coupled models should have a wider range of internal vari-

ability due to the presence of atmosphere–ocean coupling, which

is also assessed.

Figure 8 presents the distributions of SESA precipitation

trends simulated in the CMIP5 and CMIP6 historical experi-

ments and their multimodel means. The forced multimodel

mean trend in CMIP5 is 0.25%decade21, falling between

the CCM3 and CAM5 SST-forced trends (0.43% and 0.23%

decade21, respectively). The CMIP6 forced multimodel mean

trend is weaker than CMIP5 (and the SST-forced simulations)

at 0.12%decade21 over 1921–2005. The CMIP6 anthropogenic

forced trend is 0.17%decade21 when the trends are calculated

through 2014 and still weaker than CMIP5. The historical

simulations are further broken down by individual model in

Fig. 8 and compared with the observational range of uncer-

tainty, defined by theminimumGPCC trend and themaximum

CRU trend; this range is 1.36%–2.84%decade21 based on the

85-yr sliding-window trends calculated across GPCC and CRU

for 1902–2016 and 1902–2019, respectively. Across both en-

sembles, it is clear that, while the ensemble-mean forced re-

sponse is positive, there is a large discrepancy in the magnitude

and even sign of the trend among the individual models. None

of the median ensemble values of the individual model distri-

butions is as large as the observed values for the 1921–2005

period, denoted by the black and red markers in the CMIP5

and CMIP6 panels, respectively. For the CMIP5 ensemble, just

2.76% of the 145 simulations fall within the observed range of

uncertainty while 1.28% of the 467 CMIP6 simulations fall

within the observed range of uncertainty (Fig. 8). The CMIP6

forced trends are thus weaker than those in the CMIP5 en-

semble and even more inconsistent with the observed trends.

This tendency toward weaker trends in CMIP6 is not simply

due to the larger number of models and ensemble members in

the CMIP6 archive. In a bootstrapped comparison in which 31

models and one run per model are randomly sampled 10 000

times from each archive, the CMIP5 31-model mean trend is

higher than the CMIP6 31-model mean trend;80%of the time.

Previous studies have suggested that the difference between

the observed and simulated trends may be the consequence of

either underestimated forced responses or underestimated

low-frequency internal variability in the models (e.g., Seager

et al. 2010; Gonzalez et al. 2014; Vera and Díaz 2015; Zhang

et al. 2016; Díaz and Vera 2017; Díaz et al. 2021). Large indi-

vidual model ensembles within the CMIP5 and CMIP6 suites

allow forced responses to be estimated for individual models,

but there is a lack of agreement even on the sign of the forced

trend response in SESA. In CMIP6, there are 16 models that

include at least 10 ensemble members in the historical exper-

iment, affording the opportunity to estimate the forced re-

sponse more robustly for those models. Within these 16 model

ensembles, 6 models simulate forced negative trends over the

historical period. While there are fewer such large ensembles

available for CMIP5, the largest and most widely used large

ensemble from CMIP5, the CESM LENS, also estimates a

negative forced precipitation trend over SESA. These results

corroborate the findings discussed in Gonzalez et al. (2014)

FIG. 7. Boxplots of linear trends in SESA DJF precipitation calculated as the relative change (%decade21) for

CRU, GPCC, CCM3, and CAM5. Observational boxplots represent the distributions for sliding 85-yr trends cal-

culated from 1902 to 2019 (CRU) or 2016 (GPCC). The black and red stars represent specifically the 1921–2005

trend values in the CRU and GPCC datasets, respectively. All simulated trends are over 1921–2005. The dashed

horizontal lines represent the minimum and maximum thresholds of the observational uncertainty as based on the

minimumGPCC trend and the maximumCRU trend, which are 1.36% and 2.86%decade21, respectively. Internal

black lines in each boxplot represent the median value of the distribution, the box outlines the interquartile range,

and the whiskers are defined as 1.5 times the interquartile range. The numbers underneath the labels indicate the

number of simulations in the CCM3 and CAM5 ensembles.
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where 8 of 26 CMIP5 models produce negative trends across a

similar region from 1960 to 1999. These model details collec-

tively place more doubt on even the sign of the forced pre-

cipitation response over SESA as simulated in the CMIP5 and

CMIP6 models.

The CMIP5 and CMIP6 multimodel means are also bro-

ken down into low-top versus high-top models in Fig. 8 to

address the influence of ozone depletion on SESA precipi-

tation change. Based on previous literature regarding the in-

fluence of stratospheric influences on precipitation over SESA,

high-topmodelsmight be expected to simulate trends that better

compare with observations because they may better resolve

the influence of stratospheric ozone depletion on tropospheric

circulation (e.g., Son et al. 2010; Gonzalez et al. 2014). As in-

dicated in Fig. 8, however, there is no clear indication that this

is so. In fact, the forced response indicated by the CMIP6 high-

top models is similar to that of the low-top models, but with the

high-top models exhibiting larger variability. Twelve of the

CMIP6 high-top models also include interactive stratospheric

chemistry and are further broken into a model subset in Fig. 8.

Thesemodels simulate trends centered about zero with weaker

maximum trends than indicated by the full spread of the

CMIP6 multimodel ensemble means, further indicating that

more accurate representations of stratospheric dynamics and

chemistry do not yield trends or variability that better compare

with observations.

As anthropogenic GHG emissions continue, the wetting

trend in SESA is projected to continue as one of the most

pronounced precipitation trends globally (Cook et al. 2020).

The SSP projections included in CMIP6 allow assessment of

FIG. 8. Boxplots of linear trends in SESA DJF precipitation calculated as the relative change (%decade21) for

historical simulations in (a) CMIP5 and (b) CMIP6, both from 1921 to 2005. The black (CRU) and red (GPCC)

markers in each plot are the 1921–2005 trends, which allow for direct comparisonwith themodels. The black dashed

horizontal lines represent theminimum andmaximum thresholds of the observational uncertainty based on the full

spread of observations between the minimum GPCC trend and the maximum CRU trend, which are 1.36% and

2.86%decade21 for the 1902–2019 or 1902–2016 periods. Internal black lines in each boxplot represent the median

value of the distribution, the box outlines the interquartile range, and the whiskers are defined as 1.5 times the

interquartile range; trends that fall outside this latter range are considered to be outliers. The numbers above each

model name indicate the number of models included in the multimodel ensemble (MME) or the number of

members included in an individual model ensemble. The gray-and-white-striped background is for visualiza-

tion only.

1 AUGUST 2021 VARUOLO - CLARKE ET AL . 6451

Brought to you by Columbia University | Unauthenticated | Downloaded 07/26/21 02:52 PM UTC



the simulated precipitation trends in CMIP6 across different

forcing pathways in comparison with the historical forcing

(Fig. 8). There is a clear increase in simulated precipitation

trends as emissions within the scenarios increase (Fig. 9) from

SSP1-2.6 (lowest emissions) to SSP5-8.5 (highest emissions).

The CMIP6 models therefore do simulate a wetting response

to GHG forcing that appears to be a continuation and inten-

sification of the small (and ambiguous) trends in the historical

simulations. Despite the very strong and increasing GHG

forcings imposed in SSP5-8.5, however, the magnitude of the

multimodel median trend is still weaker than the observed

twentieth-to-twenty-first-century trend. One possible expla-

nation is that the model response to anthropogenic radiative

forcing is too weak. An alternative explanation might be that

the observed trend is due to internal variability, which is un-

derrepresented in the models.

d. Is the SESA precipitation trend consistent with modeled

internal variability?

To see whether the inability of models to simulate the ob-

served trends is because of an underestimate of low-frequency

internal variability, we calculate SESA trends as 85-yr sliding-

window trends incremented by 1 yr over the full length of each

preindustrial control run for CMIP6. Only 11 of 65 preindus-

trial control runs ever simulate a trend in DJF SESA precipi-

tation that falls within the observed range and none of the runs

ever simulates an 85-yr trend as strong as the median observed

85-yr sliding-window trend within the CRU dataset from 1902

to 2019 (Fig. 10). Two models (CNRM-ESM2-1 and GISS-E2-

1-H) simulate a single 85-yr trend approximately equal to the

GPCC mean estimate.

The observed trend is ultimately some combination of a

specific realization of internal variability and anthropogenic

forcing. However, when we add the CMIP6 multimodel en-

semble forced response of 0.12%decade21 to the trends cal-

culated for the preindustrial control runs (not shown), it is very

rare that this modeled combination of forced trend and inter-

nal variability ever produces a precipitation trend as strong as

observed. Adding the multimodel forced trend to the 65 pre-

industrial simulations results in an additional five simulations

that ever realize an 85-yr trend that falls within the observed

range of uncertainty (bringing the total to 16 simulations out of

65). Yet there is still no simulation with an 85-yr trend as strong

as the observed median 85-yr trend based on the CRU dataset

(not shown).

The explanation for the near inability of the models to

simulate observed trends is ambiguous because the models

may simulate either too small of a forced response and/or un-

derestimate precipitation trends generated by internal vari-

ability. However, the SST-forced experiments we evaluated,

which include the specific realization of internal oceanic vari-

ability over the twentieth to twenty-first centuries, still do not

achieve simulated trends that are comparable to the ob-

servations, potentially pointing to an undersampling of

internal atmospheric variability in the models as the reason

for the underestimated simulated trends. Further in-depth

FIG. 9. Boxplots of linear trends in SESA DJF precipitation calculated as the relative change (%decade21) for

CRU,GPCC, and the simulated forced trends fromCMIP5 andCMIP6 historical simulations, as well as the CMIP6

projections SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. Observational boxplots represent the distributions for

sliding 85-yr trends calculated from 1902 to 2019 (CRU) or 2016 (GPCC). CMIP5 and CMIP6 historical trends are

calculated from 1921 to 2005. Trends in SSP projections are calculated from 2016 to 2100. The values in parentheses

below the model labels indicate the number of models included in the respective analysis. Internal black lines in

each boxplot represent the median value of the distribution, the box outlines the interquartile range, and the

whiskers are defined as 1.5 times the interquartile range; trends that fall outside this latter range are considered to

be outliers.
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model-by-model analyses are therefore necessary to diagnose

both the nature of the forced responses in the CMIP6 models

and the dynamics of internal variability that drive the

simulated trends.

4. Conclusions

We have tested several large collections of model simula-

tions for their ability to simulate the observed twentieth-to-

twenty-first-century precipitation trend over SESA. There is

an ongoing discussion as to what drives the observed wetting

trend and on which time scales. On interannual time scales,

SESA precipitation is driven by ENSO and SAM (e.g.,

Silvestri and Vera 2003; Seager et al. 2010). On multidecadal

time scales, tropical Atlantic variability has driven much of

the trend (Seager et al. 2010). Since 1960, a poleward shift in

the descending branch of the Hadley cell as a result of

stratospheric ozone depletion also contributed to the trend

(Gonzalez et al. 2014). Stratospheric ozone depletion is

thought to have caused a precipitation increase that is at least

as large as the increase caused by GHG forcing alone

(Gonzalez et al. 2014; Zhang et al. 2016). As emissions of

ozone-depleting substances are reduced and ozone recovers,

the wetting response associated with the ozone depletion is

likely to plateau or reverse, even as GHG emissions continue

to march upward. It is unclear how hydroclimate in SESAwill

respond to these opposing forcings without a better under-

standing of how much they have contributed to observed

trends to date.

The two SST-forced simulations, which should include the

SESA variability driven by the tropical Pacific and Atlantic

plus the anthropogenic imprint on SSTs, simulate a forced

response that is positive but less than 25% of the observed

trend. The cause of the amplitude discrepancy between the

observed precipitation trend and the SST-forced precipitation

trend is likely a result of one or a combination of the following:

1) the SESA trend forced by SSTs in the models is too weak,

2) internal atmospheric variability is too weak, or 3) important

atmospheric trends forced by anthropogenic emissions are not

reflected in the SST-forced runs (e.g., ozone depletion).

Explanations 1 and 2 could both be a result of the lack of

atmosphere–ocean coupling in the SST-forced experiments

and/or poor atmospheric teleconnections simulated in these

two models.

The CMIPmodels contain both atmosphere–ocean coupling

and all radiative forcings. While CMIP5 simulates a trend

comparable to the SST-forced simulations, the most recent,

state-of-the-art CMIP6-based estimates of precipitation trends

are weaker. As GHG forcing increases through CMIP6 SSP5-

8.5, the models tend to simulate an increase in precipitation;

however, the multimodel median trend is always weaker than

the observed twentieth-to-twenty-first-century trend.

FIG. 10. Boxplots of the linear 85-yr sliding-window trends in SESADJF precipitation calculated as the relative change (% decade21)

for the CMIP6 preindustrial control runs. The models are ordered by length of control run, ranging from 100 to 1255 years. The

black and red stars represent specifically the 1921–2005 trend values in the CRU and GPCC datasets, respectively, and the 85-yr

sliding-window trends from 1902 to 2019 or 2016 are presented in the boxplot. The dashed horizontal lines represent the minimum

and maximum thresholds of the observational uncertainty as based on the full spread of observations between the minimum GPCC

trend and the maximum CRU trend, which are 1.36% and 2.86% decade21. Internal black lines in each boxplot represent the

median value of the distribution, the box outlines the interquartile range, and the whiskers are defined as 1.5 times the interquartile

range; trends that fall outside this latter range are considered to be outliers. Outliers are indicated by gray diamonds. The num-

bers above each model name indicate the length of the simulation (yr). The gray-and-white-striped background is for visualiza-

tion only.
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We also find that the observed trend falls at the tail end of

the distribution simulated in long preindustrial control runs.

Some model simulations do include a rare 85-yr trend that

crosses the lower range of the twentieth-to-twenty-first-century

trends estimated from observations, but most models do not

appear capable of producing a trend as large as that observed

due to internal variability alone. Given expectations that the

observed trend is a combination of anthropogenic forcing and

internal variability, we might not expect the historical simu-

lations or the preindustrial control runs to alone simulate the

trend. That is, the historical simulations, particularly the

single-run or small-ensemble simulations, only sample one

or a few realizations of internal viability, while the preindus-

trial control simulations do not contain the effects of anthro-

pogenic forcing. However, the near absence of simulated

trends within the many model simulations we evaluated for

the historical, preindustrial, and SST-forced scenarios that are

as strong as those in the observations suggests the models

systematically exhibit a forced response that is too weak and/

or internal variability that is also underestimated.

The findings presented herein corroborate and highlight

some of the previous literature that established the influence of

SST variability on SESA precipitation variability and precipi-

tation increases (e.g., Seager et al. 2010) and the anthropogenic

influence on SESA precipitation (e.g., Gonzalez et al. 2014;

Zhang et al. 2016). Our findings support suggestions that in-

ternal variability is underestimated in current state-of-the-art

models and the forced response may also be too small. Further

work is needed to gain a better understanding of what is driving

precipitation variability and trends in observations and indi-

vidual model simulations. An improved understanding of the

relative contributions of SSTs versus anthropogenic trends, as

well as their combined influence on SESA precipitation trends

over the twentieth to twenty-first centuries, is needed, in ad-

dition to model-by-model analyses of how and why the largest

positive precipitation trends over SESAare simulated.Assessing

the impacts of horizontal resolution on simulated trends is

something that we have not explored in this study, but it could be

important for understanding the modeled trend discrepancies.

Initial assessments (not shown) suggest the influence of model

resolution on simulated SESA precipitation trends is limited but

more work is left to be done on this topic.

Taking our current results at face value, a critical question

arises: how should the projected precipitation trends over

SESA be interpreted? If the model forced trend is too weak,

then the real-world SESA could become even wetter than

current models project. On the other hand, if modeled internal

variability is too weak, future internal variability in the real-

world could add to the forced response or counteract it, per-

haps even driving a return to a drier climate in SESA. The

situation is even more confused, however, because the relative

importance of ozone and GHG forcing for SESA precipitation

is unclear, leaving the combined influence of one reducing and

one increasing influence hard to parse in the future. The bot-

tom line is that—at present and given the ambiguous trends in

SESA precipitation over the twentieth to twenty-first centuries

in the SST-forced, fully coupled, and preindustrial control

simulations—many futures for SESA can be imagined. This

result needs to be reflected in a risk analysis of precipitation in

SESA that more accurately represents the range of possible

outcomes beyond the ensemble mean and spread of CMIP5

and CMIP6 projections. Fundamentally, a greatly improved

dynamical understanding of the drivers of long-term precipita-

tion changes in SESA is needed before confidence can be placed

in the projections of precipitation over this critical region.
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