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Analytical Harmonic Method for Modeling
High-Frequency Oscillation With Applications to

Aircraft Piston Pump Vibration Analysis
Lei Li , Kok-Meng Lee , Fellow, IEEE, Xiaoping Ouyang, and Huayong Yang

Abstract—Undesired oscillations are often encountered
in controlled systems at steady state due to high-frequency
(HF) periodic disturbance and/or feedback noises. This arti-
cle presents a computationally efficient alternative to derive
an analytical harmonic model (AHM) that expresses the os-
cillatory variable as a series of harmonic kernel vectors and
a position-independent harmonic amplitude vector for iden-
tifying the dominant harmonic components of the unde-
sired effects on the manipulated variables. Illustrated in the
context of an aircraft pressure-controlled piston pump (PC-
PP) where the pressure feedback pulsations and the torque
disturbances from the piston/slipper assemblies lead to
HF swash-plate (SP) oscillation at steady state, the AHM
and its significance were investigated experimentally on
a PC-PP test-rig capable of simultaneously measuring the
HF feedback pressure and SP-angle. Good agreements be-
tween the experimental and numerical results validate the
AHM, and reveal that the HF SP-oscillation is dominated by
its fundamental harmonic component, and primarily con-
tributed by the disturbance torque.

Index Terms—Analytical harmonic model (AHM), feed-
back noises, piston pump, swash-plate oscillation, vibra-
tion analysis.

I. INTRODUCTION

SUSTAINED steady-state high-frequency (HF) oscillations
that occur in controlled systems are undesired as they

cause increased vibration and wear/tear leading to device dam-
age. Repetitive time-varying excitations and/or disturbances are

Manuscript received April 3, 2020; revised June 19, 2020; accepted
July 21, 2020. Date of publication July 28, 2020; date of current version
April 15, 2021. This work was supported in part by the National Science
Foundation of China under Grant 51675473, in part by U.S. National
Science Foundation under Grant CMMI-1662700, and in part by the
National Basic Research Program of China (973 Program) under Grant
2013CB035803. Recommended by Technical Editor L. Zhu and Senior
Editor Y. Li. (Corresponding author: Kok-Meng Lee.)

Lei Li, Xiaoping Ouyang, and Huayong Yang are with the State
Key Lab of Fluid Power and Mechatronics Systems, Zhejiang Univer-
sity, Hangzhou 310027, China (e-mail: tjull1991@163.com; ouyangxp
@zju.edu.cn; yhy@zju.edu.cn).

Kok-Meng Lee is with the Woodruff School of Mechanical Engineer-
ing, Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail:
kokmeng.lee@me.gatech.edu).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMECH.2020.3012297

commonly encountered in continuous operations [1]–[6] of me-
chanical and electrical devices; for example, electromagnetic
actuators excited by current harmonics [3], [4], [6], piston-
pumps where chamber pressures are subjected to repetitive
transitions between high discharge and low suction pressures
[7], to name a few. The repetitive excitation and disturbances
along with their accompanying periodic oscillations offer rich
structured information for inspecting the underlying dynamics
and for evaluating the performance of these industrial devices.
To provide a basis for performance monitoring and/or ripple
suppression [1]–[6], the periodic oscillations and their effects on
the involved dynamic systems must be analyzed and identified
in a computationally efficient manner by properly accounting
for the structured information, especially for safety-critical ap-
plications (like aircraft piston pumps or other devices requiring
uninterruptable operations).
In aircraft piston-pumps, the discharge pressure is regulated

by an efficient swash-plate (SP) angle manipulation [8], [9]
through a pressure-controlled (PC) system; and once appropri-
ately manipulated, the SP-angle (as a manipulated variable) is
expected to maintain at a steady-state value. However, repeti-
tive transitions between high and low pressures of the piston
chamber result in HF oscillations. Furthermore, the inherent
HF feedback (discharge-pressure) ripples [10], [11] in the PC
system, along with the pulsating torque disturbances [12]–[14],
cause the SP-angle to oscillate at HF about its steady-state
position [15], [16], which incur larger structural-borne noises
[17], poor efficiency [18], and even device damage. Due to
the complex and/or nonlinear dynamics involved in the PC
system of the aircraft pressure-controlled piston pump (PC-PP),
it is difficult to relate the resulting SP oscillations explicitly to
the periodic torque disturbance and feedback pressure ripples.
Motivated by the needs to analyze/predict SP oscillations of
an aircraft PC-PP, this article presents an analytical method to
derive computationally efficient models that directly relate the
HF vibration characteristics as a function of feedback ripples
and pulsating disturbances by actively utilizing the periodic
information and properly formulating the dynamic model; both
time- and frequency-domain formulations are discussed.
Noting that earlymodels assuming a constant SP-angle and/or

an averageddisturbance torquemaybe inaccurate,Dobchuk [19]
modeled the internal dynamics of the pump at the subcomponent
level and computed the SP-angle variations; however, due to
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limited angle-sensor resolution, the measured SP-angle was a
sequence of discrete signals with a step size larger than the
SP oscillation amplitude. In [20], the vibration of a constant
power-regulated PP was analyzed numerically; simulations
showed that the SP-angle and its control-valve displacement
oscillated periodically at steady state. In [15] and [21], the HF
behaviors of a floating-cup pump were investigated with the
SP-angle measured by an inductive sensor. Their experimental
results revealed that the periodic SP oscillation has a funda-
mental frequency equaling to the product of pump speed and
piston-number (with its amplitude increasing with the discharge
pressure and decreasing with the pump speed up to 3000 r/min),
and that the pump volumetric discharge has no impact on the
swash plate oscillation. Similar investigation was conducted in
[13] for a variable displacement-PP numerically demonstrating
the effects of the valve-plate design and pump speed (up to 3000
r/min) on SP oscillations. More recently, a frequency-domain
model for numerical investigating the effects of PC parameters
on the HF SP oscillations was experimentally validated with
measured SP-angle and discharge pressure in [16].
Due to the complexity and nonlinearity involved in the PC-PP

dynamics, analytical characterization of the HF oscillations
under various pump speeds at steady state remains a challenge.
Conventional time-domain models (TDMs) [19]–[21] are com-
monly formulated as a set of nonlinear differential equations
(that require highly repetitive time-consuming integrations) to
calculate the point-by-point HF oscillations, whereas complex
calculations are necessary to convert frequency-domain results
into time-domain counterparts in the recently developed fre-
quency model [16]. These existing (time and frequency) meth-
ods, in general, focus on describing the complex (high-order)
and/or nonlinear system dynamics without exploiting the struc-
tured information in periodic oscillations. Although periodici-
ties of HF discharge-pressure ripples [10], [11] and pulsating
torque disturbances [12]–[14] as well as their resulting effects
on the SP-angle [15], [16], [20], are well known in the field
of fluid-power, there has been scarcely any published work
that exploits their harmonics in the modeling of piston pumps.
This article offers a novel method, referred to here as analytical
harmonic model (AHM), to derive explicit relationships among
the harmonics of key performance variables. Specifically, AHM
simultaneously offers both time- and frequency-domain infor-
mation for analyses, and explicitly characterizes the harmonics
of the periodic oscillations as a function of feedback pressure
ripples and pulsating external disturbance. As a result, time-
consuming calculations that are required in existing (time- and
frequency domain) methods are avoided in the rest offered here
as a computationally efficient alternative. The remainder of this
article is organized as follows.

1) Section II begins with the derivation of AHM that ex-
presses the oscillatory variable as a series of harmonic
kernel vectors and a position-independent harmonic am-
plitude vector. Its significances as a computationally
efficient alternative to identify the dominant harmonic
components of the undesired effects on the manipulated
variables are then illustrated in the context of a high-order
stable controlled PC-PP system.

2) Section III presents the investigations conducted on an
aircraft PC-PP, both in time and frequency domain under
typical operating speeds, which illustrate and validate the
AHM, and provide physical insights into the characteris-
tics of the HF SP oscillations under various speeds.

II. ANALYTICAL HARMONIC MODEL

For a noisy control system suffered fromHF periodic external
disturbances and/or feedback signal noises, the controlled or
manipulated variable may oscillate periodically at steady state.
As an illustration, consider a rotational dynamic system, where
x represents a function of its angular position θ(t) = θ(t = 0)
+ ωt; and ω is the operating frequency. The periodic position-
dependent variable x is an incremental change from its steady-
state value x0; and its first and second time-derivatives can be
expressed as a series of harmonic kernel vectors h(�θ), where
� = 0, 1, 2,…, and a position-independent harmonic amplitude
vector (HAV) x� with amplitude x� and phase angle ϕx�

x (θ) =

∞∑
�=1,2...

h (�θ)x� (1a)

ẋ (θ) =
dx

dt
= ω

∞∑
�=1,2...

�h (�θ)Sx� (1b)

ẍ (θ) =
d2x

dt2
= −ω2

∞∑
�=1,2...

�2h (�θ)x� (1c)

where

h (�) =
[
sin (�) cos (�)

]
;
x�

x�
=

[
cosϕx�

sinϕx�

]
and S =

[
0 −1
1 0

]
(1d–f)

The trigonometric functions in (1d) obey the orthogonal prop-
erty [22]

N∑
n=1

h [k (θ1 + 2π (n− 1) /N)] =

{
Nh (�Nθ1) k = �N

0 others.
(1g)

As defined in (1a–g), the dominant harmonic components of
the periodic pulsating variables and their effects on the noisy
dynamic system can be fully characterized by the position-
independent HAVs in terms of the operating frequency ω.
Given a physics-based dynamic model, the HAVs can be

derived for its periodic external disturbanceD�, feedback noise
Y� and the controlled variable ripples C� using the harmonic
formulation (1a–c)

C� = G (ω)D� −H (ω)Y�. (2)

In (2), where theminus sign originates from the negative feed-
back,G(ω) andH(ω) account for the dynamics of the disturbance
and feedback, respectively. Equation (2) is referred to here as
the position-independent AHM, which offers an efficient means
to analyze the dynamic effects of the disturbance D� on the
controlled variableC� based on themeasuredY�. The time- and
frequency-domain dynamics are simultaneously accounted for
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Fig. 1. PC-PP system. (a) CAD model. (b) SP adjustment mechanism.
(c) Piston/slipper (P/S) assembly and coordinate systems. (d) PC sys-
tem. (e) SP angle as the system output.

using (1a) and the AHM (2), which go beyond the conventional
analytical methods based on Laplace-transform or numerical
integration operations. AHM can be applied to a broad range of
applicationswhere periodic disturbances and/or feedback noises
on the controlled variable are major concerns. As illustrated in
Appendix B, where a noisy speed control system is formulated,
AHM once derived can be used as constraints to design an
appropriate controller to suppress ripples.

A. Pressure Controlled Piston Pump

The method to derive an AHM in terms of the HAVs ( D�

andC�) of a high-order stable controlled system at steady state
is illustrated in the context of a PC-PP system (see Fig. 1). In
a PC-PP, the rotation of the shaft/cylinder-block (driven by an
electricmotor operating at speedωm) is converted into the recip-
rocating displacement of the piston-slipper assemblies pressing
against an inclined SP. As schematically shown in Fig. 1(a), the
inclined SP of a typical PC-PP is subjected to the torques from
the vertical actuator [23] [see Fig. 1(b)], andN evenly distributed
piston/slipper (P/S) assemblies [see Fig. 1(c)]. The two block
diagrams in Fig. 1(d) and (e) describe the PC system, where τp
is the disturbance torque from the P/S assemblies. Fig. 1(d) is
commonly used to describe the closed-loop control of the pump
discharge pressure pd for a given reference fr, whereas Fig. 1(e)

focuses on analyzing the noise/disturbance effects on the control
of the SP-angle β for a reference pdi.

As illustrated in Fig. 1(b) and (d), where the functional block
“external loading mechanism” represents the dynamics from
the SP-angle β to the resulting pdβ in terms of a discharge
flowrate as an intermediate variable not explicitly shown, the
SP inclination (characterized by its primary angle β around the
SP bearing axis) is adjusted by a mechanism where the pump
discharge pressure pd is fedback to the PC valve (sectional area
Av) and compared against the preload (or reference) force fr of
the valve spring (stiffness, kv). The comparison error determines
the valve displacement xv to control the flowrate qa and pressure
pa of the control actuator chamber. Combined with the torque
from the SP bias-spring (preload force fb and stiffness kb), the
pressure pa acted on the sectional areaAa generates a torque τa
to counteract the disturbance torque τp and adjust β to regulate
the pump discharge flow and pressure pd. The feedback pressure
pd and disturbance torque τp oscillate (period 2π/N) around
their respective steady-state values (pd0, τp0) [10], [11], [13],
[14], [21] due to the inherent pumping dynamics. Consequently,
the SP-angle β also vibrates about its steady-state value β0 as
demonstrated numerically and/or experimentally in [15], [16],
and [20]. Caused by the SP ripples β, an additional pulsating
pressure component pdβ (with a zero-average value) is superim-
posed on the inherent pressure component pdi (corresponding to
β0) to generate the feedback pressurepd. In the following discus-
sion, the variables (β, pd, τp, pa, xv) represent the incremental
changes from their respective steady-state values (β0, pd0, τp0,
pa0, xv0) for the specified reference fr. For completeness, the
calculations of the relevant steady-state values are given in
Appendix A.
Fig. 1(e) provides insights into the AHM (3) for analyzing a

noisy PC system, where the SP oscillation β (or ripple) is the
variable of interest while the pulsating variables (pd, τp) are
characterized by (Y�, D�)

β� = G (ω) τp� −H (ω)pd�. (3)

By excluding the complex external loading mechanism dy-
namics from the forward path, β can be effectively characterized
as a function of (pd, τp) in terms of the speed-dependent transfer
matrices G(ω) and H(ω) to be derived. The significance and
formulation of (3) are detailed in the following sections; time-
domain PC-PP dynamic model (see Section II-B) and derivation
of the AHM (see Section II-C).

B. Time-Domain Dynamic Model for the PC-PP

The dynamics of the PC-PP system [see Fig. 1(a)] are con-
tributed by two primary subsystems; swash-plate [see Fig. 1(c)],
PC-valve controlled actuator [see Fig. 1(b)].

1) Swash-Plate Dynamics: Fig. 1(c) shows the coordinate
systems and parameters, where the reference XYZ is at the SP
pivot O (with X along its bearing axis and Z parallel to the
pump shaft); and the moving xyz is attached to the SP (with
z perpendicular to its surface). The coordinate transformation
from XYZ to xyz is accomplished by two successive rotations,
ΓX(β) and Γy(φ), in (4c), where the secondary SP-angle γ
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(small fixed angle around the Y-axis) is often designed to reduce
the discharge flow ripple and SP overall control effort [24], [25]

ΓX (β) =

⎡
⎢⎣1 0 0

0 cosβ sinβ

0 − sinβ cosβ

⎤
⎥⎦ and

Γy (−φ) =

⎡
⎢⎣cosφ 0 − sinφ

0 1 0

sinφ 0 cosφ

⎤
⎥⎦ (4a-b)

tanφ = tan γ cosβ. (4c)

The position coordinates [xn, yn, a]
T of the nth P/S assembly

(n= 1, 2, …, N) are transformed to rpn from xyz to XYZ by (5a)
with (4a–c). In (5a), (rp, θn) are the (distribution radius, angular
position) of the nth P/S assembly from the X-axis [see Fig. 1(a)];
e is an offset between the Z-axis and pump shaft centerline; and
a is an offset of the P/S ball-joint [see Fig. 1(c)] from the xy
plane

rpn =

⎡
⎣ rpcosθn
rpsinθn − e

Zn

⎤
⎦ = Γ−1

X (β)Γ−1
y (−φ)

⎡
⎣xn

yn
a

⎤
⎦ (5a)

where θn = θ10 + ωmt+ 2π (n− 1) /N (5b)

Zn = rp (sin θn tanβ − tan γ cos θn)− e tanβ

+ a/ (cosφ cosβ) . (5c)

In (5a), the rotation matrices (ΓX and Γy) defined in (4a, b)
are nonsingular since det[ΓX ] = det[Γy] = 1; thus, their inverse
matrices exist. In (5b), θ10 is the initial position of first P/S
assembly. Similarly, the local force vector [0, 0, fzn]T of the
nth P/S assembly is transformed to fpn in the XYZ frame by (6a,
b), wheremps is the mass of the P/S assembly, and the pressure
pn of the nth piston chamber is enclosed by the cylindrical-bore
and applied on the piston area Ap

fpn = Γ−1
X (β)Γ−1

y (−φ)

⎡
⎣ 0

0
fzn

⎤
⎦ = fZn

⎡
⎣ tan γ
− tanβ

1

⎤
⎦ . (6a)

where fZn = pnAp −mpsZ̈n. (6b)

When rotating, the nth piston chamber is alternatively con-
nected with the low- and high-pressure kidney of the valve-plate
[see Fig. 1(a)], where the transitions between high and low pres-
sures are characterized by the angles (ϕrs, ϕre) and (ϕfs, ϕfe).
The first subscript (r or f) denotes the rise or fall of the pressure,
while the second subscript (s or e) represents the start or end of
the pressure transition. The pressure transients within the angles
(ϕrs, ϕre) and (ϕfs, ϕfe) are related to the complex pumping
dynamics and must be solved numerically [26].
Derived from the Newton second law, the SP dynamics (with

moment of inertia Is and viscous damping coefficient bs) is given
in (7a), where the pulsating torque τp from the N P/S assemblies
[see Fig. 1(c)] is a function of β, and the PC control actuating
τa [see Fig. 1(b)] depends on pd

Isβ̈ + bsβ̇ + kbl
2
aβ = τp (β)− τa (pd) (7a)

Fig. 2. Connecting hydraulic circuit that links the control actuator with
the PC valve and feedback pressure.

where τp =

N∑
n=1

τpn =

N∑
n=1

[(rpn × fpn) • uX ] − τp0;

τa = Aalapa. (7b-c)

In (7b, c), la is an actuation arm [see Fig. 1(a)]; τpn is the X-
component of the torque ripple acting on the SP calculated from
(rpn × fpn) • uX (where uX is the unit vector of the X-axis).

2) Control Actuator Dynamics: Different from τp that is di-
rectly related to β, the actuation torque τa or pressure pa (7c)
that counteracts the pulsating τp (7b) is implicitly related to
the feedback pressure ripples pd through the PC valve, control
actuator, and connecting hydraulic (pipe/chamber) circuit as
illustrated in Fig. 2. The PC valve that controls the flowrate qv
switches between positive and negative displacements to stroke
or destroke the control actuator. For clarity, qv through the PC
valve at displacement xv is formulated in terms of qv± and xv±,
where (qv+, qv–) are defined as the flowrate through the PC
valve when the displacement is (positive xv+, negative xv–)

xv = xv+ + xv− =

{
xv+, xv− = 0 xv ≥ 0
xv−, xv+ = 0 xv < 0

(8a)

qv = qv+ (xv+) + qv− (xv−) . (8b)

In other words,
1) a positive flowrate qa (from the discharge at pd) that

strokes the control actuator, flows through Pipe 1, Cham-
ber 2, Pipe 3 + , Chamber 4 + , Valve opening 5 at xv+

Chamber 6, Pipe 7, Chamber 8 and Damping Pipe 9 into
the actuator chamber Va;

2) a negative rate qa that destrokes the control flows through
Pipe 9, Chamber 8, Pipe 7, Chamber 6, Valve opening
5 at xv−, Chamber 4− and Pipe 3− and returns to the
reservoir.

For ease of manufacturing, the valve-spool end-surfaces were
flattened with Pipe 3± (same cross section but different aspect-
ratio κ= l3+/l3) connecting Chamber 4± to (Chamber 2, pump
reservoir) as shown in Fig. 2 (top-left), where Av1 and Av2

(= Av–Av1) are the effective cross-sectional areas. The dy-
namics of the PC valve displacement is governed by (9), where
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(mv, bv) are the (valve and 1/3 spring mass, viscous damping
coefficient) respectively

mvẍv + bvẋv + kvxv = p2Av1 + (p4+ − p4−)Av2. (9)

The dependence of pa on qa is defined by (10) considering
the effect of fluid capacitance Ca, the flowrate Aalaβ̇ induced
by the actuator movement and the leakage flow to the reservoir

Caṗa + clapa = qa +Aalaβ̇. (10)

In (10),Ca = (Va0 −Aalaβ0)/Ke, where Va0 is the actuator
chamber volume at zero plate angle (β0 = 0);Ke is the oil bulk
modulus; and cla is the actuator leakage coefficient.
The pressures (p2 and p4±) and flowrate qa can be determined

from the hydraulic circuit, where the flow dynamics of the pipes
(length li and diameter di with i = 1, 3±, 7, 9) are modeled
by their respective (inertance Ii, resistance Ri) in the following
equation:

Ii
Ri

dqi
dt

+ qi =
1
Ri

⎧⎪⎨
⎪⎩
pi−1 − pi+1 i = 1, 7, 9

p2 − p4+ i = 3+

p4− i = 3−
(11)

where Ii
Ri

=
d2
i

32υ ; Ri =
128μli
πd4

i
; p0 = pd; p10 = pa; and (υ, μ)

are the (kinematic, dynamic) viscosity of the hydraulic oil.
Similarly, the fluid dynamics of the chambers (volumeVj where j
= 2, 4±, 6, 8) characterized by their capacitanceCj aremodeled
in the following equation:

dpj
dt

=

{
(qj−1 − qj+1) /Cj j = 2, 6, 8

(±q3± ∓ qv±) /Cj j = 4± (12)

where Cj = Vj/Ke; q5 = qv and q9 = qa. The flowrate qv±
through the orifice (PC-valve opening) can be derived as follows:

qv±
xv±

= λ±sgn
(
1+

±p4± ∓ p6
±p(4±)0 ∓ p60

)√∣∣∣∣1+ ±p4± ∓ p6
±p(4±)0 ∓ p60

∣∣∣∣
(13a)

and λ± = Cdw±
√

2
(±p(4±)0 ∓ p60

)
/ρ. (13b)

In (13b) where Cd is the PC-valve discharge coefficient
and w± are the circumferential opening lengths correspond-
ing to xv±, (±p4± ∓ p6) are normalized to their steady-state
values (±p(4±)0 ∓ p60), where p (4+)0 >p60>p(4−)0 and hence
λ± > 0.

C. Derivation of Analytical Harmonic Model for a PC-PP

The PC-PP system [see Fig. 1(e)] governed by (9) to (12)
is a 15th order system with nonlinear switching defined by
(8a, b) and (13a), where the solutions require time-consuming
numerical computations. As an alternative to investigate the (τp,
pd) effects on β under different operating speed ωm, the AHM
(3) that relates the SP-ripple β� to τp�(β0) and pd� is derived
from the dynamic models of the SP and control actuator.

1) Swash-Plate Oscillations Linked to Disturbance: For a
PC-PP (mps, rp, γ, a, e,Ap) operated at a steady-state condition
(pd0, ωm, β0), the disturbance torque ripple τp (7b) depends
on the nth piston pressure pn (6b). With the pressure in the
transitions [(ϕrs, ϕre); (ϕfs, ϕfe)] approximated by a sinu-
soidal waveform [see Fig. 1(a)], pn is formulated as a harmonic
function of the angular position θn (period 2π) in (14a–c),
where ps is the pump suction pressure, ϕ̂r = ϕre − ϕrsand
ϕ̂f = ϕfe − ϕfs

pn =

∞∑
k=1,2....

h (kθn)pnk (14a)

where
pnk

pd0 − ps
=

Tk

2πk

[
1

1−(k/π)2ϕ̂2
r

1
1−(k/π)2ϕ̂2

f

]T
(14b)

and Tk =

[
cos kϕrs + cos kϕre − cos kϕfs − cos kϕfe

− sin kϕrs − sin kϕre sin kϕfs + sin kϕfe

]
.

(14c)

In (14c), (ϕrs, ϕre, ϕfs, ϕfe) can be determined from the pn
curve obtained numerically and experimentally. By substituting
rpn from (5a) and fpn from (6a), where pn is given by (14a)
into (7b) and by using the orthogonality (1g), the disturbance
dynamics (7b) is expressed explicitly in terms of τp� and β� to
account for the steady-state variation τp0(β0) caused by the SP
oscillation

τp (β) =
dτp0 (β)

dβ

∣∣∣∣
β=β0

∞∑
�=1

h (�Nθ) β�

+

∞∑
�=1

[h (�Nθ1) τp� (β0)]−
(
Isaβ̈+csaβ̇

2 + bsaβ̇
)
.

(15)

The steady-state parameters in (15), τp0, τp�, the incremental
moment of inertia Isa and the (quadratic, viscous) damping
coefficients (csa, bsa) of the SP rotational system, are given in
(A.2a–e). In (15), the τp� term is measured from the first piston
angular position θ1, while the β� term is formulated in terms of
the operating position θ of the PP. The phase difference between
the τp� and β� terms can be accounted for by a transformation
matrixT�(�Nα), where α= θ–θ1, with which (7a) is rewritten
in harmonic form (16a) after substituting τp from (15), express-
ing pa and β (and its time derivatives) in the form of (1a–c) and
neglecting the quadratic terms of HAVs

∞∑
�=1...

h (�Nθ)
[
�Nωmb̄sSβ� − (�Nωm)2ĪsI β�

]

=
∞∑

�=1..

h (�Nθ)
[
T�τp� (β0)− k̄sβ� −Aalapa�

]
(16a)

where Īs = Is + Isa (β0) ; b̄s = bs + bsa (β0) (16b-c)

k̄s = kbl
2
a −

dτp0
dβ

∣∣∣∣
β0

;T�(�Nα)=

[
cos(�Nα) sin(�Nα)
− sin(�Nα) cos(�Nα)

]
.

(16d-e)
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Fig. 3. Impedance representation of the hydraulic connecting circuit.

Expressed in terms of an impedance matrixZs� that describes
the �th torque harmonics of the SP, (16a) is compactly written
as follows:

Zs� (ω) β� = T�τp� (β0)−Aalapa� (17a)

where Zs�(ω) = k̄sI+ (�ω) b̄sS− (�ω)2ĪsI and

ω = Nωm. (17b-c)

2) Swash-Plate Oscillations Linked to PC-Feedback Noises:
To derive the AHM (3) that relates β� to pd�, the relationship
between the HAV pa� of the control-actuator pressure pa (17a)
and pd� can be derived similarly from the dynamic model of the
PC-valve controlled actuator, (8)–(13).
a) PC-valve displacement: For investigating the effects of

the PC-valve displacement xv on SP ripples, the valve flowrate
(13a) is linearized and its HAV is formulated in (18a), where the
positive steady-state value xv0 is given in (A.3f) and x(v±)� are
the HAVs of xv±

q(v±)�

λ±
≈ x(v±)� ± xv0

2

±p(4±)� ∓ p6�

±p(4±)0 ∓ p60
. (18a)

From (8a), xv� = x(v+)� + x(v−)� along with (18a), where
λ± > 0 as defined in (13b)

xv� =
q(v+)�

λ+
+

q(v−)�

λ−

+
xv0

2

(
p6� − p(4−)�

p60 − p(4−)0
− p(4+)� − p6�

p(4+)0 − p60

)
. (18b)

From (9), the HAV xv� corresponding to the PC-valve dis-
placement xv is derived in (19a), where (p2�, p4�±) are the
respective HAVs of (p2, p4±)

Zx�xv� = Av1p2� +Av2
[
p(4+)� − p(4−)�

]
(19a)

where Zx� (ω) = kvI+ (�ω) bvS− (�ω)2mvI (19b)

b) Hydraulic circuit: To help visualize the interrelations
among the hydraulic componentsmodeled as impedances, Fig. 3
schematically shows an equivalent circuit of the PC-valve
controlled actuator (see Fig. 2), where the flowrates satisfy
the Kirchhof’s current law: q1 = q2 + q3+; q3± = ±qv± ± q4±;
qv = q6 + q7; and q7 = q8 + qa.

With Fig. 3, the impedancematricesZi� of the hydraulic pipes
and chambers, (10)–(12), are formulated in (20a–c), where the
admittance Z−1

a� in (20a) is written as a reciprocal of impedance
to avoid introducing additional symbols

qa� + (�ω)AalaSβ� = Z−1
a�pa�

where Z−1
a� = claI+ (�ω)CaS (20a)

Zi�(ω)qi� =

⎧⎪⎨
⎪⎩
p(i−1)� − p(i+1)� i= 1, 7, 9

p2� − p(4+)� i= 3+

p(4−)� i = 3−
where Zi�(ω) = RiI+ (�ω) IiS (20b)

pj� = Zj�(ω)qj� =

{
Zj�(ω)

[
q(j−1)� − q(j+1)�

]
j= 2, 6, 8

Zj�(ω)
[±q(3±)� ∓ q(v±)�

]
j= 4±

where Zj�(ω) = −(�ωCj)
−1S. (20c)

Unlike the (β�, τp�) relationship characterized by a single
mechanical impedance (17b), pd� and pa� are implicitly related
by the HAVs (p(4+)�, p6� and q(v+)�) in the PC-valve (18a,b)
and (19a,b). These implicit relations are derived from (20a–c),
which are the defined impedances and the continuity equations
at the nodal pressures (p2, p4+, p8, and p4–).

1) From q1� = q2� + q(3+)� with the flowrates defined in
(20b) with i = 1 and (20c) with j = 2 and 4 +

pd� = ρ12p2� + ρ14p(4+)� + Z1�q(v+)�

where ρ12 = I+ Z1�Z
−1
2� and ρ14 = Z1�Z

−1
(4+)�. (21a)

2) From q(3+)� = q(v+)� + q(4+)� with the flowrates ex-
pressed in terms of pressures using (20b) with i = 3 +
and (20c) with j = 4 +

p2� = ρ34p(4+)� + Z(3+)�q(v+)l

where ρ34 = I+ Z(3+)�Z
−1
(4+)�. (21b)

3) From q7� = q8� + qa� with the flowrates given by (20b)
with i = 7 and 9 and (20c) with j = 8

p6� = ρ78pa� + ZT�qa�

where ρ78 =
(
I+ Z7�Z

−1
8�

)
and ZT� = Z9�

+ Z7�Z
−1
8� Z9� + Z7�. (21c)

4) The flowrate qv� = q(v+)� + q(v−)� can be expressed in
terms of (p6�, pa�, qa�) using (20b) with i = (7, 9) and
(20c) with j = 8

qv� = Z−1
6� p6� + Z−1

8� pa� + ρ89qa�

where ρ89 = I+ Z−1
8� Z9�. (21d)

5) From Fig. 3, we have (21e) where the minus sign before
q(v–)� is used to negate flowrate qv– defined in (13a)

−q(v−)� = Z−1
p� p(4−)� where Z

−1
p� = Z−1

(4−)� + Z−1
(3−)�.
(21e)

The admittances Z−1
j� = −�ωCjS

−1 wherein (21a–e), which
are written as a reciprocal of the impedance defined in (20c),
are nonsingular since det[S] = 1, where S is defined in (1f).
Similarly, the inverse matrix of a pipe, for example, Z−1

(3−)� in
(21e) exists because of nonzero flow resistance in real pipes. The
same argument can be made for the existence of the admittance
Z−1

p� for the network composed of chamber Z4− and pipe Z3− in
parallel as shown in Figs. 2 and 3.
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3) Procedure for Deriving the PC-PP AHM: To derive the
AHM (3) that directly relates β� to pd� and τp�, the intermediate
HAVsvariables [(pa�,qa�), (p2�,xv�) andp(4±)�] are eliminated
from the hydraulic circuit equations so that the remaining two
variables (p6�, qv�) are only functions of pd� and τp�. The
procedure involves the following steps.
Step 1: Eliminate (pa�, qa�) from (p6�, qv�) by substituting

(17a) and (20a) into (21c) and (21d)

(Aala)p6� = ρhT�τp� − Zmβ�

where Zm = ρhZs� + �ωA2
al

2
aZT�S

and ρh = ρ78 + ZT�Z
−1
a� (22a)

(Aala)qv� = Z−1
h T�τp� − ρhmβ�

where Z−1
h = Z−1

6� ρh + Z−1
8� + ρ89Z

−1
a� ;

and ρhm = Z−1
h Zs� + �ωA2

al
2
a

(
ρ89 + Z−1

6� ZT�

)
S. (22b)

In (22a, b), (p6�, qv�) are derived as a function of β� and τp�;
andZ−1

h is the admittance of the network formed by the chambers
(Z6,Z8) and the pipe (Z7,Z9) as shown in Figs. 2 and 3.

Step 2: Eliminate p2� (that relates xv� and pd�), xv� and
p(4±)�. Given that the pressure (p4±) effect on the valve displace-
ment can be accounted for in (19a), the pressure across the valve
opening is neglected (or p6� = p(4+)�) in computing qv� (18b);
in other words, qv� is controlled by the valve displacement xv�.
To begin with, substitute p2� (21b) and (21e) into (19a) leading
to (23a), whereρA = Av2/Av1 and Av1 �= 0

A−1
v1Zx�xv� = (ρ34 + ρAI)p6� + Z(3+)�qv�

+
(
Z(3+)�Z

−1
p� − ρAI

)
p(4−)�. (23a)

Then, eliminate xv� from the above using (18b) resulting in

ρ4+p6� =
(
A−1

v1 λ−1
+ Zx� − Z3�+

)
qv� + ρ4−p(4−)�

where ρ4+ = (ρ34 + ρAI)− CoZx�;

Co =
xv0

2Av1
(
p60 − p(4−)0

) ;
and ρ4− = A−1

v1

(
λ−1
+ − λ−1

−
)
Zx�Z

−1
p�

−
(
Z3�+Z

−1
p� − ρAI

)
− CoZx�. (23b)

Next, substitute (21b, e) into (21a) leading to (23c)

pd� = (ρ12ρ34 + ρ14)p6�

+
(
ρ12Z(3+)� + Z1�

) (
qv� + Z−1

p� p(4−)�

)
. (23c)

After eliminating p(4−)� from the above pair of (23b, c), we
have (23d) relating (p6�, qv�) to pd�

ρdpd� = Zvqv� + ρvp6�

where ρd = ρ4−
[(

ρ12Z(3+)� + Z1�
)
Z−1

p�

]−1
;

ρv = ρd (ρ12ρ34 + ρ14) + ρ4+

and Zv = ρ4−Zp� + Z(3+)� −A−1
v1 λ−1

+ Zx�. (23d)

Step 3:Derive (G,H) in (3) which account for all the elements
from the pump discharge port to the SP. By substituting (p6�,
qv�) from (22a, b) into (23d)

(Zvρhm + ρvZm) β� =
(
ZvZ

−1
h + ρvρh

)
T�τp�

− (Aalaρd)pd�. (24)

Rewriting (24) in the form suggested by (3), (G, H) are
deduced in (25a, b) with T� defined in (16e), the equivalent
impedances in (26a–e) and the pressure ratios in (27a–e)

G (ω) = (Zvρhm+ρvZm)−1 (ZvZ
−1
h +ρvρh

)
T�

(25a)

H (ω) = Aala(Zvρhm+ρvZm)−1ρd (25b)

Zm(ω) = ρh

[
−(�ω)2ĪsI+ (�ω) b̄sS+ k̄sI

]
+ �ω(Aala)

2ZT�S; (26a)

Zv (ω) = −A−1
v1 λ−1

+

[
−(�ω)2mvI+ kvI+ �ωbvS

]
+ ρ4−Zp� + Z(3+)�; (26b)

and Z−1
h = Z−1

6� ρh + Z−1
8� + ρ89Z

−1
a� ; (26c)

where ZT� = Z9� + Z7�Z
−1
8� Z9� + Z7�; (26d)

Z−1
p� = Z−1

(4−)�+Z−1
(3−)� and ω = Nωm (26e-f)

ρd =

[
A−1

v1

(
λ−1
+ − λ−1

−
)
Zx�Z

−1
p�−(

ρAI− Z3�+Z
−1
p�

)
− CoZx�

]

×
[(

ρ12Z(3+)� + Z1�
)
Z−1

p�

]−1
(27a)

ρh = ρ78 + ZT�Z
−1
a� (27b)

ρhm = Z−1
h Zs� + �ω(Aala)

2 (ρ89 + Z−1
6� ZT�

)
S
(27c)

ρv = ρd (ρ12ρ34 + ρ14) + (ρ34 + ρAI)− CoZx�

(27d)

and ρij = I+ Z−1
i� Zj�; (27e)

where ρA =
Av2

Av1
and Co =

xv0

2Av1
(
p60 − p(4−)0

) . (27f-g)

The parameters (inertia, damping coefficient, and stiffness)
in (26a, b) of Zm and Zv are defined in (16b–c) and (19b).
For a stable-controlled system, it is always possible to derive
nonsingular transfer functions, G(ω) and H(ω) as defined in
(25a, b) describing the dynamics of periodic torque disturbance
and feedback noises on the manipulated variables, respectively.
In general, the poles that can be derived from the characteristic
equation det[Zvρhm+ρvZm] = 0 are on the left-half complex
plane for the stable-controlled system, which account for the
coupling between the mechanical and hydraulic subsystems.

4) Computing Steps for Analyzing Swash-Plate Oscillation:
The transfermatrices (G,H) derived in (25a, b) provide a basis to
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TABLE I
NOMENCLATURE AND PARAMETRIC VALUES OF THE PC-PP

analyze the SP oscillation frommeasured HF discharge pressure
pd, where the computation involves the following three stages.

1) For a given piston pumpwith known geometric/operating
parameters (pd0, β0, ωm), determine the steady-state val-
ues (τp0, pa0, qa0, p60, p(4±)0, xv0, p20) according to
Appendix A.

2) Formulate (G, H) according to (25a, b), along with the
equivalent impedances (26a–e), pressure ratios (27a–g),
and hydraulic impedances (see Figs. 2 and 3) defined in
(20a–c).

3) Compute β� (and hence β of the SP) from (3) with τp�
derived in (A.2b) and pd� determined from the measured
discharge pressure pd.With calculated β�, the (amplitude,
phase) of the �th harmonic of β can be obtained in the
form of (1a, d, e). Note that the angle α in T�(α) can
be identified from the comparison between the measured
and computed β at the initial stage of the pump opera-
tions. Once determined, α keeps constant during every
operations of the pump.

III. RESULTS AND DISCUSSIONS

An investigation was conducted on an aircraft PC-PP (see
Fig. 1) to illustrate and validate the AHM, and analyze the
HF oscillation characteristics of the SP under various operating
speeds. The parametric values of the PC-PP used in the inves-
tigation are listed in Table I. Fig. 4 illustrates the test rig and
setup used in the experiments, where the pump was driven by
a variable-frequency electric motor; and an adjustable throttle
valve was connected to its discharge port as a load as shown
in Fig. 4(a). An HF pressure sensor was installed to measure
the discharge pressure pd. The SP-angle β was measured by
a high-precision potentiometric angle sensor (P6500 series @

Fig. 4. Test rig. (a) Schematic diagram. (b) Swash-plate angle mea-
surement device installed on the aircraft pump case.

Fig. 5. Discharge pressure. (a) 2400 r/min. (b) 3000 r/min. (c) 3600
r/min. (d) 4200 r/min. Left: Time domain. Right: Frequency domain.

Novotechnik) mounted on the pump case through a frame [see
Fig. 4(b)]; and the SP rotation was transmitted to its input shaft
via the mid-shaft/ coupling.
Due to stringent lubrication conditions of the friction pairs,

mechanical dynamics, andoil cavitation, hydraulic pistonpumps
are often operated within an upper limit beyond which the
sharply increased wear and vibrations of the overall pump will
greatly influence the swash-plate angle measurements. Equa-
tions (25)–(27) reveal that β0 has little effect on G(ω) and
H(ω) and hence the swash-plate HF oscillation characteristics,
which is consistent with that reported in [15] and [21]. Thus, the
following discussions are based on four typical pump speeds
nr = 60ωm/2π (= 2400, 3000, 3600, 4200) r/min operated at
the same steady-state discharge pressure pd0 at 20.9MPa, while
the SP was kept at the mid-position (β0 = 8°–10°). During
experiments, pd and β were simultaneously sampled at a rate of
20 kHz. The results are summarized in Figs. 5 –7, and Tables II
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Fig. 6. Disturbance torque. (a) 2400 r/min. (b) 3000 r/min. (c) 3600
r/min. (d) 4200 r/min. Left: Time domain. Right: Frequency domain.

Fig. 7. Swash-plate HF oscillations; Comparisons between proposed
AHM and conventional TDM. (a) 2400 r/min. (b) 3000 r/min. (c) 3600
r/min. (d) 4200 r/min. Left: Time domain. Right: Frequency domain.

and III. To validate the AHM and demonstrate its potential
advantages for real-time applications, the β calculated by the
AHM (see Section II-C) and the conventional TDM described
in Section II-B and their required computation times (based on
laptop with 2.3 GHz CPU and 16Gmemory) are compared with
thatmeasured experimentally in Fig. 7 and in Table III (last row),
respectively.

TABLE II
HAVS OF THE DISCHARGE PRESSURE AND DISTURBANCE TORQUE

TABLE III
HAV OF THE SWASH-PLATE ANGLE AND COMPUTATION TIME

Fig. 5 depicts the measured discharge pressures (left column)
as a function of the angular position θ(t) in time domain and
their �th harmonics pd� (right column), where � = 1, …, 5 for
the four operating speeds. The disturbance torque τp(β0) and
their corresponding �th harmonics (�= 1, …, 5) computed from
(A.2a) and (A2.b) are presented in the left and right columns of
Fig. 6, respectively. For completeness, the steady-state values
(β0, τp0) and (τp�, pd�) at each operating speed are listed in
Table II; only � = 1, 2, 3 components are included because the
amplitudes of the higher order harmonics (�=4, 5) are negligibly
smaller than their fundamental components.
With known (τp, pd) in terms of their steady-state values (τp0,

pd0) andHAVs (τp�,pd�), the computedβ are comparedwith that
experimentally measured in Fig. 7, both in time and frequency
domains. The effects of the disturbance torque and feedback
pressure on the HF SP oscillation are illustrated in Table III
that compares their contributions characterized by (Gτp�,Hpd�)
defined in (25a, b) for the four pump speeds.
The followings summarize the findings from the results.
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1) As shown in Figs. 5 and 6, the measured discharge
pressure pd and computed disturbance torque τp(β0)
periodically fluctuate (with a period 2π/N) about their
steady-state values (pd0, τp0) for all four speeds. As a
result, the �th (� = 1, 2, 3) harmonics can be seen at the
frequency �Nnr/60.

2) As compared in Fig. 6 and Table II (for identical pd0 and
similar β0), the waveforms (left) and harmonic ampli-
tudes (right) of τp are almost the same under the four
pump speeds, but those of the measured pd vary with
pump speeds.

3) As compared in Fig. 7 and Table III (last row), although
both AHM and TDM predictions closely agree with that
measured, the AHM took only 90ms to calculate the HF
oscillations of a piston pump during one cycle, represent-
ing three orders less computation time than (or less than
0.5% of 19 s) that taken by the TDM. Some discrepancies
are due to the neglected quadratic terms when deriving
the AHM. The above results demonstrate that the AHM,
which avoids highly repetitive integrations (required in
TDM) in predicting the HF SP oscillations, is a compu-
tationally efficient model for real-time applications.

4) As shown in Fig. 7, the SP oscillates around its steady-
state position β0 (left column); and its HF oscillation is
dominated by the fundamental component (right column).
From the comparison between Gτp� and Hpd� in Ta-
ble III, the HF oscillation is primarily contributed by the
disturbance torque.

5) As shown in the zoom-in subplots of Figs. 5 and 6, there
are low-frequency components in the discharge pressure
and disturbance torque (at �nr /60 where � = 1, 2, 3
and nr is the pump operational speed), which vary with
operating conditions. Their magnitudes are much smaller
than that of the dominant HF components at �Nnr /60
(N = 9 is the piston number) but these low-frequency
harmonics (unmodeled in AHM) contribute to some fre-
quency shifts in the SP-angle oscillations; the discrepancy
between predictions and measurements can be observed
in Fig. 7 (left side), especially for the cases nr = (3600,
4200) r/min.

IV. CONCLUSION

A computationally efficient method to derive an AHM has
been presented, where the AHM explicitly characterizes the
harmonics of SP oscillations as a function of the feedback
pressure ripples and pulsating external disturbance. Illustrated
in the context of a PC system in an aircraft PC-PP, both the
TDM and the AHM have been derived to characterize the
SP oscillations under various operating speeds. The AHM has
been evaluated by comparing its numerical solutions with ex-
perimental results; good agreements between simulations and
experimental measurements validate the AHM method, and
demonstrate its remarkable advantage for real time applications
over conventional TDMmethods. It is concluded that the HF SP
oscillations under different operating speeds are dominated by
their fundamental components; and that the disturbance torque

is themain contributor on theHF SP oscillations. AHMprovides
a time-efficient alternative for modeling a noisy control system:
Once the HAVs and 2×2 transfer matrices are derived; it can be
used as a basis to analyze the periodic disturbance and/or feed-
back noises effects and design controllers to suppress undesired
oscillations as illustrated in Appendix B.

APPENDIX

A. Calculations of Steady-State Values

For the PC-PP shown in Fig. 1 (where the parameters are
defined in Table I), the equilibrium torques acting on the swash-
plate at any steady-state operating point (β0, pd0, ωm) can be
expressed as (A.1), where βm is the maximum SP-angle

τp0 (β0) + fbla + kbl
2
a (βm − β0)− pa0Aala = 0. (A.1)

From (5a–c), (6a, b), (7b), and (1g), the steady-state
value τp0 of the disturbance torque τp along with the
HAV τp� and (Isa, csa, bsa) in (16) are derived in (A.2a–
e) whereTβ γ = tanβ0 tan γ,Sβ0 = sinβ0, C−n

β0
= (cosβ0)

−n

and C−1
φ = (cosφ)−1

τp0 (β0)

Nmpsr2pω
2
m

=
tanβ0

2

(
C−2

β0
+ tan2γ

)

+
App0a

mpsr2pω
2
m

[
C−2

β0

(
Sβ0C

−1
φ − e

a

)
+
[
C−2

β0
−Tβ γ

] pn(k=1)

p0a

]
(A.2a)

τp� (β0) =
NAp

2
rp

∑
±

(
±C−2

β0
S− Tβ γI2×2

)
pn(k=�N±1)+

aNApC
−2
β0

(
Sβ0C

−1
φ − e

a

)
pn(k=�N) (A.2b)

Isa (β0)

Nmpsr2p
=

C−4
β0

2

[
1+ 2

a2

r2p

(
Sβ0C

−1
φ − e

a

)(
Sβ0 −

e

a

)]
(A.2c)

csa (β0)

Nmpsr2p
= Sβ0C

−5
β0

×
[
1+

a2

r2p

(
Sβ0C

−1
φ − e

a

)(
S−1
β0

− 2e
a

+ Sβ0

)]
(A.2d)

bsa (β0)

Nmpsr2p
= −ωmTβ γC

−2
β0

. (A.2e)

In (A.2a), pnk has been defined in (15b), the steady-state
value p0 of the nth piston chamber pressure pn can be directly
obtained from the Fourier Transform of the pressure profile [see
Fig. 1(a)] as given in the following equation:

p0 = ps + (pd0 − ps) (ϕfe + ϕfs − ϕrs − ϕre) /4π. (A.2f)

As indicated in (A.2a, b), the reciprocating inertial force of
the piston/slipper assemblies increases with ω2

mcontributing to
a growing average torque τp0(β), while τp�(β) is independent
of ωm with given pnk.
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Fig. 8. Speed control system with noisy load and back emf [27].

Given (β0, pd0, ωm) and the pump parameters, the steady-
state value pa0 determined from (A.1) provides a basis to cal-
culate the remaining steady-state values in the hydraulic circuit
(see Fig. 2)

q10 = q(3+)0 = qv0 = q70 = qa0 = cla(pa0 − pc) (A.3a)

p20 = pd0 − q10R1; p(4−)0 = pc (A.3b-c)

p(4+)0 = p20 − q(3+)0R3+; p60 = pa0 + (R7 +R9) qa0
(A.3d-e)

kvxv0 = (p20 − pc)Av1 +
(
p(4+)0 − p(4−)0

)
Av2 − fr.

(A.3f)

Note that the valve displacement xv0 is positive introduc-
ing the oil from the discharge port to compensate the leakage
flowrate qa0 to the reservoir pc. Thus, q(3+)0 = qv0 in (A.3a),
and the steady state p(4–)0 = pc.

B. Illustrative AHM Applications

Consider the noisy speed control system in Fig. 8, where
(J, b) are the (moment of inertia, viscous damping coefficient)
of the rotating system; (La,Ra) are the (inductance, resistance)
of the motor windings with current ia and input voltage vi; and
km (= τm/ia) of the motor-torque constant. AHM is used to
identify periodic disturbance torque τd and back electromotive-
force (back emf vb = kbωm as internal feedback) for designing
the speed and current controllers, Gv(s) and Gi(s), to suppress
speed ripple ωm with respect to the reference ωmr [27]. Using
the definitions (1a–c), the HAVs (vi�, vb�, ia�, τd�, ωm�) of the
incremental variables (vi, vb, ia, τd, ωm) can be derived

vi� = −Gi (Gvωm� + ia�) ;

vi� − vb� = (�ωLaS+RaI) ia� (B.1a-b)

(�ωJS+ bI)ωm� = kmia� + τd�. (B.1c)

In (B.1a), (Gv ,Gi) are the 2×2 transfer-function matrices of
the speed and current controllers respectively. Consider the com-
monly used proportional–integral–differential controller with
parameters (Kp, Ti, Td) as an illustrative example in (B.2a),
its transfer-function matrixGc has the form in (B.2b)

Gc (s) = Kp (1+ 1/Tis+ Tds) (B.2a)

Gc = Kp

(
S−1/�ωTi

) [(
1− �2ω2TiTd

)
I+ �ωTiS

]
. (B.2b)

Eliminating vi� and ia� from (B.1a–c), the AHM for the noisy
speed control system (see Fig. 8) can be derived as follows:

ωm� = H−1 (Gττd� − kmvb�) (B.3a)

where Gτ = Gi + �ωLaS+RaI; and (B.3b)

H = kmGiGv +Gτ (�ωJS+ bI) . (B.3c)

With known operating frequencies �ω and parameters (J, b,
La,Ra), AHM (B.3a–c) with the 2×2 transfer matrices (H,Gτ )
can be used as constraints to design (Gv ,Gi) to suppress ripples
(for example, proportion-integral-resonant controller [27]), and
estimate the effects of the unknown disturbance torque in real-
time if the back emf vb and speed ripple ωm can be monitored.
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